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Abstract

Ion trapping by ion wave breaking is investigated for laser-driven near-critical relativistically

transparent plasma. Guided by three-dimensional particle-in-cell simulations, we study ion motion

along the laser propagation direction within a 1D fluid model. The threshold for ion trapping is

found, and the singular behaviour of longitudinal electric field, ion velocity, and ion density in

the vicinity of the ion wave breaking point is derived analytically showing power-law distributions.

The important result is that only a fraction of ions is trapped, different from the regime of hole

boring. The number of trapped particles is determined and how it depends on target density for

fixed laser intensity. Results are confirmed by the simulations.
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Recent developments of ultra-intense laser technology have opened new options for laser-

driven plasma-based ion acceleration [1]. Ions are trapped and accelerated in a localized

charge-separation field, comoving with the propagating laser pulse. Relativistically trans-

parent plasma [2] close to the critical density is of particular interest [3–7], because pulse

propagation slows down and thus eases trapping of background ions. Simulations have shown

superior characteristics such as high ion energy [3, 6, 7], narrow energy spread [3], and low

beam emittance [7]. Moreover, it is possible to further improve the acceleration by shaping

the plasma density. This may become feasible with new techniques of preparing targets in

the near-critical density regime [8–12].

Here we address ion trapping by ion wave breaking, a mechanism that has not been

studied in sufficient detail, so far. The general scenario is that the laser pulse ionizes the

target material, pushes a high-density layer of relativistic electrons at the front, and leaves

behind a region occupied only by ions [13]. Charge separation builds up a longitudinal

electric field that drives an ion wave with phase velocity equal to the laser front velocity

vf . It turns out that the ion motion evolves along the laser axis and allows approximately

for one-dimensional (1D) modelling. When driven strongly [14], the ion wave breaks, such

that background ions are trapped and accelerated to velocities far above vf . The interesting

point is that this trapping process is self-regulating and stops when a fraction of ions is

trapped. This can be controlled by external parameters such as laser intensity and target

density. It allows to design ion pulses with low energy spread and beam emittance. It makes

ion wave breaking acceleration different from the regime of hole boring [15], where all ions

in the laser focus are accelerated and which applies to opaque plasma. In the following, we

treat ion trapping by wave breaking analytically within a 1D fluid model. Results are then

compared with 3D particle-in-cell (PIC) simulations.

For simplicity, we assume that the plasma is composed of electrons and only one kind

of ions, having number densities ne and ni, respectively. The ion motion in the region of

electron depletion (ne ≈ 0) is described by the equations

∂ni

∂t
+

∂

∂z
(nivi) = 0, (1)

(

∂

∂t
+ vi

∂

∂z

)

(miγivi) = qiEz, (2)

∂

∂z
Ez =

1

ǫ0
qini, (3)
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where z denotes the laser propagation direction, vi the ion velocity along the z-axis, γi =

1/
√

1− β2
i , βi = vi/c, c the light speed in vacuum, qi the ion charge, mi the ion mass, Ez

the longitudinal electric field, and ǫ0 the vacuum permittivity.

In the frame comoving with the laser front, we look for stationary propagating solutions

ni(ξ), βi(ξ), and Ez(ξ), where the comoving coordinate is ξ = ωi(z/vf − t). Introducing

also dimensionless quantities ñi = qini/en0, and Ẽ = Ez/E0, where E0 = micωi/qi, ωi =
√

qien0/miǫ0 is the ion oscillation frequency, e denotes the electron charge, and n0 the initial

plasma density, Eqs. (1,2,3) transform into

d

dξ
(ñi − ñiβi/βf ) = 0, (4)

(1− βi/βf)
dγiβi

dξ
= −Ẽ, (5)

dẼ

dξ
= βf ñi, (6)

where βf = vf/c. The ion density,

ñi =
1

1− βi/βf
, (7)

is obtained directly from Eq. (4); it satisfies ñi = 1 ahead of the laser front, where ions

are at rest (βi = 0). Ions oscillate in the longitudinal electric field Ez. They first acquire

velocity in laser direction (βi > 0) in the upstream region, where Ez > 0, but then loose it

again in the downstream region where Ez < 0. The interesting case, now to be studied in

detail, occurs when the ion velocity reaches the velocity of the laser front (βi = βf) at the

point where Ez switches sign (chosen here as ξ = 0). According to Eq. (7), the ion density

diverges at this point, and the downstream ion flow is disrupted. Ions are then reflected

back into the accelerating region (ξ > 0). Furthermore, combining Eqs. (5,6,7), we obtain

d

dξ

(

Ẽ2

2
+ βfγiβi

)

= 0. (8)

Integrating this equation from ξ = 0, where βi = βf and Ẽ = 0, we find for the maximum

electric field occuring close to the laser front, where βi ≪ βf ,

ẼIWB = βf

√

2γf ; (9)

here γf = 1/
√

1− β2
f . This gives the field EIWB = E0ẼIWB required for ion wave breaking;

we call it ion wave breaking field [16, 17]. It has to be provided by the laser pulse at the
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laser front. In the case that the maximum field Emax driven by the laser pulse becomes

larger than EIWB, ion trapping sets in.

We now investigate the ion flow close to wave breaking conditions in more detail. We

focus on local solutions of Eqs. (5,6,7) near the ion wave breaking point (ξ → 0) and in the

accelerating region (ξ > 0). We try the power-law ansatz

ñi(ξ) = ΛξΘ, (10)

with Λ > 0 and Θ < 0. Applying it to Eqs. (5,6,7) and making use of the identity

d(βγ) = γ3dβ, we find
γ3
fβfΘ

ξ1+ΘΛ
= −

βfξ
1+2ΘΛ2

(1 + Θ)
. (11)

Comparing exponents of ξ and front coefficients on both sides, we get

Θ = −2/3, Λ = 21/3γf/3
2/3. (12)

Finally, we have

Ẽ(ξ) = 21/3βfγf(3ξ)
1/3, (13)

(1− βi(ξ)/βf) = 2−1/3(3ξ)2/3/γf , (14)

ñi(ξ) = 21/3γf/(3ξ)
2/3. (15)

Apparently, the singular behaviour in the vicinity of the wave breaking point is characterised

by a set of critical point exponents. This reflects the fact that wave breaking is a kind of

critical phenomenon [18].

As soon as trapping sets in, a flow of reflected ions is superimposed to the flow of in-

coming ions in the region ξ > 0 close to the wave breaking point. Shortly after reflection,

the bunch of trapped ions moves almost with the laser front velocity and can also be de-

scribed approximately by quasi-stationary distributions of density nir(ξ) and velocity βir(ξ),

satisfying

d

dξ
(ñir − ñirβir/βf) = 0, (16)

(1− βir/βf)
d(γirβir)

dξ
= −Ẽ, (17)

just as the incoming flow; here γir = 1/
√

1− β2
ir. We now denote density and velocity of

the incoming flow by ñii and βii, respectively. The difference in this two fluid approach is
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that Poisson’s equation now includes the charge distribution of both flows:

dẼ

dξ
= βf(ñii + ñir). (18)

Since the downstream ion flow is disrupted, when wave breaking sets in, we have the bound-

ary condition ñii(1 − βii/βf) + ñir(1 − βir/βf) = 0 at ξ = 0 and since also densities match

for ξ → 0, again the ansatz ñii = ñir = ΛξΘ can be made near ξ = 0 for both the incoming

and the reflected ions. By using the same approach as before in deriving Eqs. (13,14,15),

we find the power-law distributions

Ẽ(ξ) = 2βfγf(3ξ)
1/3, (19)

(βir(ξ)/βf − 1) = (1− βii(ξ)/βf) = (3ξ)2/3/γf , (20)

ñir(ξ) = ñii(ξ) = γf/(3ξ)
2/3, (21)

for the combined flow of incoming and reflected ions. The total ion density becomes

ñi(ξ) = ñii(ξ) + ñir(ξ) = 2γf/(3ξ)
2/3. (22)

One observes that the power-law exponents are the same as before, but the amplitudes have

changed. Both the electric field and the total ion density have increased by a factor 22/3,

when compared with Eqs. (13,15).

The increase in electric field eventually closes the gap between the maximum field Emax

driven by the laser pulse and intrinsic wave breaking field, and then trapping stops. At this

time, the trapped ions have expanded over a short distance ∆ξ, and their areal density is

Ñir =

∫ ∆ξ

0

ñir(ξ)dξ = (3∆ξ)1/3γf . (23)

The analogue to Eq. (8) now reads

d

dξ

(

Ẽ2

2
+ βfγiiβii

)

= βf Ẽñir. (24)

Integrating again from ξ = 0 to the laser front and making use of Eqs. (9,19,21), we get

(Ẽ2
max − Ẽ2

IWB)/2 = β2
fγ

2
f(3∆ξ)2/3. (25)

It allows us to eliminate ∆ξ in Eq. (23) and to calculate the trapped charge per area. In

dimensional units with Ntrap = (n0vf/ωi)Ñir, we get

qiNtrap =
qi
e
ǫ0EIWB

(

1

2

(

E2
max/E

2
IWB − 1

)

)1/2

. (26)
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This is the central result of the present work. It gives the trapped charge per area in terms of

the displacement ǫ0EIWB, corresponding to the threshold electric field for ion wave breaking,

and a factor describing the onset of trapping for Emax > EIWB.

Both Emax and EIWB depend on laser amplitude a0 and plasma density n0. For fixed

a0, the threshold for ion wave breaking is defined by Emax(n
∗

0) = EIWB(n
∗

0) and allows

to calculate the threshold density n∗

0. Here, we mark all quantities taken at the wave

breaking threshold by an asterisk. Introducing F (n0) = E2
max/E

2
IWB, such that F (n∗

0) = 1,

and expanding F (n0) around n0 = n∗

0, we get F (n0) = 1 + f0(n0/n
∗

0 − 1), where f0 =

n∗

0∂F (n∗

0)/∂n
∗

0. We then find the trapped charge per area in the form

qiNtrap ≈ f1
qi
e
ǫ0E

∗

0

(

n0

n∗

0

− 1

)1/2

, (27)

with f1 = β∗

f (f0γ
∗

f)
1/2. This result holds for fixed laser intensity and densities n0 close to

threshold density n∗

0, a region distinguished by high final ion energy and low energy spread.

The precise values of the front factors depend on details not treated in the present 1D model.

Comparing with simulation results in the following, they turn out to be of order one. We

emphasize that the important analytic result concerns the scaling exponent and that the

square root dependence in Eq. (27) traces back to the exponents in Eqs. (19,21).

We have carried out 3D PIC simulations to verify the model predictions, using the plasma

simulation code (PSC) [19]. A laser pulse with circular polarization and wavelength λL =

1µm is vertically incident on hydrogen plasma (mi/me = 1836 and qi/e = 1) with bulk

density n0 = 7.2nc; here nc = meω
2
Lǫ0/e

2 denotes the critical plasma density, me the electron

mass, and ωL the laser frequency. At the surface, the density rises in the region 0 < z < zn

according to n(z) = n0 exp(−(z − zn)
2/σ2

n) with zn = 3µm and σn = 0.63µm. The laser

intensity is I0 = 6 × 1020W/cm2, corresponding to laser amplitude a0 = 15. We have

chosen a relatively low value of intensity to demonstrate that ion trapping by ion wave

breaking can already be studied with laser pulses presently available experimentally. Also,

the shape of the pulse incident from the left side (z = 0) is modelled by a Gaussian amplitude

a(r, t) = a0 exp(−r2/R2
L) exp(−(t− t0)2/τ 2L) with pulse time τL = 33.33 fs (10 laser cycles),

focal radius RL = 3µm, and t0 = 66.67 fs, implying a moderate contrast ratio at the pulse

front. In order to resolve details of ion motion, in particular near the wave breaking point,

we have chosen 50 cells per micron and 10 macro-particles per cell for each species. The

initial temperatures are set to 10 keV for electrons and 1 keV for ions.
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Simulation results are displayed in Fig. 1 as snapshots at different times of on-axis

distributions (radially averaged over |r| < 0.2 µm): ion and electron density are shown in

the first row, longitudinal electric field in the second row, and ions phase space (pz/mic, z)

in the third row. At 55 fs (first column), the ion wave develops a sharp peak in density at

z ≈ 2.945 µm and is about to break. The local distributions near the ion wave breaking

point match well with the power-law scalings given by Eqs. (13,14,15) (dotted black lines).

The laser front velocity is equal to ion velocity at the wave breaking point, and we find

β∗

f ≈ pz/mic ≈ 0.1 from Fig.1(c). Somewhat later at 60 fs (second column), ion wave

breaking is in progress, and a good portion of the ions has already been reflected and is

accelerating in the region z > 3.1 µm. Ion density and electric field have increased in

agreement with the model results, now given by Eqs. (19,20,21). Later at 86 fs (third

column), an ion bunch is observed at z = 4.7µm, both in parts (g) and (i) of the figure.

The bunch propagates to the right with speed βi ≈ 0.3, about three times faster than β∗

f .

It corresponds to a proton energy of (40 ± 10) MeV at this time, but it will further gain

energy (reaching about 65 MeV), before overtaking the laser front and then freely cruising

to the right. It is noticed that, different from the model prediction, ion trapping is not

suppressed completely. Rather a thin tail of ions is attached to the main ion bunch, be it

of much reduced ion energy density. This feature is attributed to the time dependence of

the incident laser pulse and also to self-focusing which leads to an increase of laser intensity

on axis during the acceleration period. This is not accounted for in the model. We find,

however, that this has little influence on the number of trapped ions, which represents the

central interest of the present work. Actually, the trapped charge per area almost stagnates

shortly after wave breaking.

In Fig. 2 (a), we compare values of Ntrap from simulations with that from Eq. (27) for

laser pulses having very different amplitudes: case 1 with a0 = 15 (blue, same as in Fig.

1) and case 2 with a0 = 155 (black, reported in Ref. [7]). They correspond to threshold

densities n∗

0 = 6.5nc for case 1 and n∗

0 = 1.8nc for case 2. The simulations are well described

by the square root scaling, represented by the straight lines with slope 1/2 in the double-

logarithmic plot. The position of these lines has been adjusted by choosing in Eq. (27)

f1 = 0.25 for case 1 and f1 = 0.75 for case 2. It demonstrates that the present scaling

result holds over laser intensities ranging from 1020 to 1022W/cm2 and beyond. The 3D

PIC simulations provide us with absolute numbers of accelerated ions; they are plotted in

7



Fig. 2 (b). In the simulations, they appear as bullet-like beam bunches with transverse

dimensions ∆r similar to the longitudinal one ∆z, which is known from Eqs. (9) and (25)

to be ∆z = (cβ∗

f/ω
∗

i )∆ξ with ∆ξ ≈ ((E2
max/E

2
IWB − 1)/γ∗

f)
3/2/3. We may therefore estimate

the absolute number of trapped and accelerated ions as

N3D
trap ≈ (∆r)2Ntrap ≈ f2

(

c

ω∗

i

)2
ǫ0E

∗

0

e

(

n0

n∗

0

− 1

)7/2

. (28)

The straight lines in Fig. 2 (b) with slope 7/2 appear to describe the behaviour of the

simulation points quite well. Here we have used adjustment factors f2 = 2 for case 1 and

f2 = 0.4 for case 2. For high laser amplitudes, a0 > 100, bunches of 1011 protons and more

are predicted.

In summary, we have identified the dynamics of self-regulating ion trapping in a laser-

driven charge-separation field as a process of essentially one-dimensional ion wave breaking.

We succeeded to determine the power-law profiles of ion flow at the instant of wave breaking

and the finite amount of charge that is trapped and accelerated. The critical electric field for

ion wave breaking, EIWB, has been found as a function of laser front velocity, and the trapped

ion charge depends on how much the maximum field Emax driven by the laser pulse exceeds

EIWB. This can be controlled by tuning laser intensity and plasma density. Near threshold,

this charge is small and localized such that high-quality ion bunches with low energy spread

and beam emittance are expected. We hope that the present results stimulate experiments

to explore this regime; it occurs in relativistically transparent laser plasma, just below the

regime of hole boring.
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FIG. 1: Comparison of 3D PIC simulation with the 1D model (black dotted curves in the first

two columns) near the point of ion wave breaking, showing (a,d,g) ion density ni/n0 (red solid

line), electron density ne/n0 (blue dashed line), (b,e,h) longitudinal electric field Ez/E0 (green

solid line), and (c,f,i) ion kinetic energy density (d2NiEi/dzdpz in arbitrary units) in phase space

(z, pz/mic) on the laser axis (averaged over |r| < 0.2µm). The first column (a,b,c) refers to the

onset of ion wave breaking at 55 fs. The middle column (d,e,f) shows ion trapping at 60 fs. The

dashed vertical lines mark the ion wave breaking points in the first two columns. Column (g,h,i)

shows the results at 86 fs, when trapping stops and the ion bunch, marked by the dashed vertical

line, is still accelerating. These results correspond to a laser intensity of I0 = 6 × 1020W/cm2

(a0 = 15) and a hydrogen plasma density of n0 = 7.2nc; for details see text.
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FIG. 2: (a) The number of trapped ions per area Ntrap and (b) the total number of the accelerated

ions N3D
trap for fixed laser amplitude a0 versus (n0/n

∗

0 − 1), where n0 denotes the initial target

density and n∗

0 the threshold density required for ion trapping. Circles and squares refer to 3D PIC

simulations and the lines in (a) to Eq. (27) and in (b) to Eq. (28); blue circles (case 1, a0 = 15,

n∗

0 = 6.5nc) correspond to the laser parameters used in Fig. (1) and black sqares (case 2, a0 = 155,

n∗

0 = 1.8nc) to simulations reported in Ref. [7].
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