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ABSTRACT

Three statistically optimal approaches, which have been proposed for detecting anthropogenic climate change,
are intercompared. It is shown that the core of all three methods is identical. However, the different approaches
help to better understand the properties of the optimal detection. Also, the analysis allows us to examine the
problems in implementing these optimal techniques in a common framework. An overview of practical consid-
erations necessary for applying such an optimal method for detection is given. Recent applications show that
optimal methods present some basis for optimism toward progressively more significant detection of forced
climate change. However, it is essential that good hypothesized signals and good information on climate variability
be obtained since erroneous variability, especially on the timescale of decades to centuries, can lead to erroneous
conclusions.

1. Introduction

Several different statistically optimal approaches to de-
tecting model-predicted signals (e.g., the signal of green-
house warming) in observational data have been proposed
recently (Hasselmann 1979; Bell 1982, 1986; Hasselmann
1993, 1997; North et al. 1995). The general approach is
similar to techniques used for processing radio or radar
signals (e.g., Wainstein and Zubakov 1962): Assume that
a data stream contains a signal that is embedded in a noise
background. Based on a priori knowledge of the expected
signal, and the structure of the noise that obscures the
signal, the noise can be selectively suppressed. This leads
to a higher ratio of the signal to the noise and thus to a
clearer detection of the signal.

In terms of climate change, we may wish to locate
the signal of an externally forced climate change, for
example, greenhouse warming, in the space–time de-
pendent stream of observed data, for example, atmo-
spheric or oceanic temperatures, precipitation, or pres-
sure. An a priori estimate of the climate change signal
is derived from model predictions of climate change.
Natural climate variability, often referred to as ‘‘climate
noise,’’ is obscuring the climate change signal. The nat-
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ural variability of climate derives from internal insta-
bilities in the climate system that cause the fields to
constantly undergo fluctuations over a broad range of
time–space scales. The response to other naturally oc-
curring occasional external forcings such as volcanism
or variations of solar radiation may be either included
into natural variability or can be systematically removed
from the data stream. In practice, however, this may be
difficult due to uncertainties in the estimates of forcing
and response.

The optimal detection methods diagnose the multi-
dimensional data stream by a one-dimensional (or small-
dimensional in the case of several interacting signals;
Hasselmann 1993, 1997; G. North, M. J. Stevens 1997,
manuscript submitted to J. Climate) indicator variable.
This leads to an estimate of the strength of the signal
of climate change in the observed data stream. This
indicator is obtained either by computing a detection
variable from the observed and the expected pattern of
climate change (the ‘‘fingerprint’’), a weighted average
of the multidimensional climate observation, or by fil-
tering the data and projecting them onto the expected
pattern. Such a one- (or small) dimensional approach is
useful since the significance of a given signal decreases
with increasing dimension of the problem (see Hassel-
mann 1979; Bell 1986). Thus, it would be far more
difficult to locate the signal in a high-dimensional space
of all variables in space and time.

Then a critical level for this univariate variable is
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established, beyond which the observed climate change
is considered to be significantly different from internal
climate variability. The statistical outline of such a pro-
cedure is given, for example, in Bell (1986). ‘‘Detection
of anthropogenic climate change’’ implies furthermore
that the climate change has in fact been caused by the
anthropogenic forcing, that is, it can be ‘‘attributed’’ to
the forcing (Wigley and Barnett 1990; Santer et al.
1996).

The merit of all optimal approaches is that they partly
suppress climate variability noise, allowing detection of
a fainter climate change signal. Thus, since climate
change is expected to become more significant in the
future, applying optimal techniques is expected to yield
an earlier detection of climate change. Furthermore, the
suppression of noise can also help to better distinguish
between different explanations for a significant climate
change. However, as will be outlined in the paper, a
critical component for using optimal techniques is an
estimate of the time–space structure of climate vari-
ability. Thus, optimal detection methods are superior to
more conventional techniques only if a sufficiently re-
liable estimate of climate variability is available.

The approach to the problem pursued by the three
authors is quite different. In the first approach to optimal
detection, Hasselmann (1979) proposes to use an opti-
mal fingerprint for detection. Later on, Bell (1982) sug-
gests computing an optimally weighted average, for ex-
ample, of global near surface temperature over a certain
period. As indicated by Bell, both methods lead to the
same optimal univariate detector. North et al. (1995)
construct a space–time filter that passes the signal of
climate change but suppresses a maximum amount of
noise. It is shown that if the detector of Hasselmann’s
and Bell’s approach is used to calculate the amplitude
of the climate change signal, North’s method agrees with
both other methods for data that are discrete in space
and time. However, the different approaches pursued
represent different interpretations of an optimal detector
and thus enable a better understanding of the underlying
idea of optimal detection methods. Additionally, the re-
sults of applying the different optimization methods can
now be understood in a common frame of reference.

This paper will first outline and intercompare the dif-
ferent optimization approaches (section 2), showing that
the core of the three methods is identical. Section 3
gives an overview of some more practical aspects, prob-
lems and difficulties in implementing such optimal de-
tection schemes. Finally, a short overview of the attri-
bution problem is provided.

2. Method intercomparison

a. Statistical model of climate change

All optimal detection methods addressed here are
based upon the same statistical concept of climate
change: the present climate is assumed to consist of a

linear combination of a forced signal and internal cli-
mate variability. Nonlinear interactions between both
are neglected. The present climate state C(x, t) (which
may be a vector of several variables dependent on space
x and time t) can then be decomposed as

C(x, t) 5 Cs(x, t) 1 (x, t).C̃ (1)

Here, CS(x, t) represents the expected change in the
mean state of climate that is caused by the external
forcing. Possibly, Cs(x, t) consists of a sum of several
superimposed climate change signals Cs(x, t) 5 mSn51

Csn(x, t). Examples are a greenhouse warming signal,
the response to anthropogenic aerosol forcing, and, pos-
sibly, responses to naturally occurring forcings like
changes in solar radiation or volcanic eruptions. Know-
ledge of the changed climate state is obtained a priori,
for example, from a climate model simulation. If the
model prediction is correct, Cs(x, t) represents the ex-
pectation of climate under climate change conditions:
^C(x, t)& 5 Cs(x, t), with ^·& denoting the statistical
expectation.

Also, (x, t) is a random component and representsC̃
the variability of climate in the absence of the external
forcing. We assume that (x, t) originates from a sta-C̃
tistically stationary process composed of fluctuations
about the constant mean state, which is for simplicity
taken to be zero: ^ (x, t)& 5 0. We further assume thatC̃
we have sufficient knowledge of the structure of climate
noise to determine its space–time-lagged covariance:

C(x, t, x9, t9) 5 ^ (x, t)· (x9, t9)&.˜ ˜C C (2)

This is a severe assumption, which will be discussed in
section 3.

Now, the optimal techniques are outlined and inter-
compared. We start with Bell’s approach since it is re-
lated to using the most familiar detector, an average of
the observed climate, for example, over global temper-
ature values. Then we discuss Hasselmann’s method
since it is closely related to Bell’s method. Also, both
methods rely upon a discrete representation of the data
in space and time, whereas North’s method is formulated
for continuous data. We will return to the continuous
representation when North’s method is outlined.

Consider data observed at p stations or grid points
and at n discrete time steps. For simplifying the algebra,
we use vector notation, transforming the space–time
representation of the data to a vector of length p·n (times
the number of variables if several variables are used;
for simplicity this is disregarded in the following); C(xi,
tk) can then be written as C 5 (Cj), j 5 1, · · · p·n; the
lagged covariance can be written as a matrix:

C 5 (^ i· j&)i,j51,..n·p.˜ ˜C C (3)

In this case, C is a matrix of dimension pn, whose di-
agonal elements are var(Ci) and whose other entries are
the covariance between different space–time points of
the climate state vector cov( i· j).˜ ˜C C
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b. Optimal weighting

Bell proposes to use a weighted average of the dis-
crete data. Averaging in space and time results in sup-
pressing small-scale noise and thus leads to an earlier
detection of large-scale changes in the mean (Bell 1982).
Using optimal weights for computing the average will
then offer the best possible signal-to-noise ratio of such
an approach. The weighted average is constructed in the
following manner (Bell 1982, 1986):

p n

TA 5 w C(x , t ) 5 w ·C. (4)O O i,k i k
i51 k51

Applying this to (1), we obtain a decomposition of the
present climate state into signal and noise in terms of
A (where As and Ã refer to the application of optimal
weighting to Cs and ):C̃

A 5 As 1 Ã. (5)

The weights wi,k are chosen in such a way that the signal-
to-noise ratio

^A&
(6)

2˜Ï^A &

is maximal under the constraint that the weights sum to
unity. The resulting optimal weights are shown to be

w 5 aC21Cs, (7)

with a denoting a constant factor. Thus, the optimal
weights can be gained from the climate change predic-
tion weighted according to the noise-contribution of
each component.

In the application of the method, relation (6) between
A computed from observations, which are suspected to
be influenced by climate change, and the standard de-
viation of A under unchanged conditions ^Ã2&½ is com-
puted. If the result exceeds a predefined threshold (e.g.,
1.96 for Gaussian distributions), a significant climate
change is diagnosed, since the null hypothesis that the
observations originate from climate variability has been
rejected (in our example with a risk of less than 5%).
Similar tests are applied in the other optimal detection
methods.

c. Optimal fingerprints

Hasselmann (1979, 1993) proposes to use a finger-
print method applying a statistically optimal fingerprint.
Fingerprint methods have been advocated, for example,
by Madden and Ramanathan (1980), Barnett (1986),
Barnett and Schlesinger (1987), Wigley and Barnett
(1990), and Barnett et al. (1991). They are based on a
pattern-oriented comparison between model predicted
patterns of climate change (the ‘‘fingerprint’’) and the
observations by a pattern congruence or pattern simi-
larity statistics. Some authors (e.g., Barnett 1986; Santer
et al. 1993) suggested a weighting of the fingerprint by
the standard deviation of noise at individual grid points.

While this technique is related to optimal fingerprints,
we will see that it provides only a suboptimal approach
since this method does not take the covariance structure
of noise into account. On the other hand, this has the
advantage of avoiding the difficult problem of estimat-
ing the noise covariance (see section 3).

The earlier paper on optimal fingerprints (Hasselmann
1979) presented the first optimal method for detecting
climate change signals in spatial fields applying the con-
cepts of contravariant and covariant optimal detection
patterns for several superimposed signals. In the 1993
paper, Hasselmann extended the method to explicitly
space–time dependent signals and fingerprints and ex-
plicitly discussed the case of several, linearly interacting
signals: Csn, n 5 1, m. Hasselmann proposes the use
of a projection of the observations on the fingerprints
fn, n 5 1, · · · m as a vector of detection variables (with
·T denoting the transposed vector):

dn 5 C, n 5 1, · · · m,Tf n (8)

where fn represents the fingerprint of climate change for
the nth signal. An optimal choice for fn, leading to an
optimal square signal-to-noise ratio for the detection
variable for several fingerprints, can be shown to be

fn 5 C21C .sv
(9)

In the case of a single signal, this is clearly identical to
the result (7) of Bell (1982), as is also mentioned in
Bell’s paper (up to constant factors). This is not sur-
prising since the basic approach is very similar. Both
methods represent merely different interpretations of
mathematically identical relations.

Having determined the optimal detection variable,
Hasselmann proposes two methods to interpret it as an
estimate of the signal in the data: if one adopts the view
that the observations are projected on the optimal fin-
gerprint rather than on the original signal, the detection
variable can be directly interpreted as the amplitude of
the signal. Hasselmann, however, advocates the view
that the signal is expected to lie in the direction of the
original model derived ‘‘guess’’ Cs. In that case, the
use of the optimal fingerprint can be understood as using
a scalar product, (a, b) 5 aTC21b, which is determined
by the inverse noise covariance. Such a scalar product
and its metric \a\ 5 (a, a) is very useful for assessingÏ
differences between climate vectors in the presence of
noise since it considers disagreement in regions of low
noise more severe than in regions of high noise.

In the case of one signal, this leads to the following
(least squares best) estimate s of the climate changeĈ
signal:

T 21d C C CsĈ 5 C 5 ·C . (10)s s sT 21d C C Cs s s

Note that s yields an estimate of the amplitude of theĈ
climate change signal that is derived directly from the
observations C, disregarding the amplitude of the mod-
el signal CS. In the case of using several fingerprints,
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a least square fit (also in terms of the covariance matrix
metric) needs to be used to retrieve amplitude estimates
for each climate change signal (Hasselmann 1993, 1997;
Hegerl et al. 1997).

For a better understanding and later comparison it is
useful to formulate (8)–(10) in terms of the EOFs of
climate noise en, n 5 1, · · · np, the eigenvectors of the
covariance matrix (3) with eigenvalues le. The climate
state can then be formulated as a linear combination of
the EOFs (where ck refers to the kth coefficient of the
climate state vector C in terms of the EOF vectors):

n·p

C 5 c e . (11)O k k
k51

Similar notations are used for expanding Cs and InC̃.
this coordinate system, C and C21 are diagonal matrices,
and (9) yields the coordinates of the optimal fingerprint
as

cs,kf 5 , k 5 1, n·p. (12)k lk

Thus, the fingerprint is just the guess pattern weighted
in each coordinate by the inverse of the respective EOF-
eigenvalue, that is, its variance. Geometrically, this can
be interpreted as ‘‘rotating’’ the nonoptimal fingerprint
based on the original prediction of climate change into
low-noise directions. The estimate of the signal isĈS

then

n·p

c c /lO sk k k
k51

Ĉ 5 C . (13)s sn·p

2c /lO sk k
k51

Hasselmann’s first optimization approach has been ap-
plied to sea surface temperature observations by Han-
noschöck and Frankignoul (1985). Santer et al. (1995b)
applied the optimal fingerprint method to model-derived
ocean data, showing that for appropriately selected syn-
thetic ocean data detection may be already feasible.
They also discussed that there is substantial uncertainty
associated with the estimate of variability hampering
the interpretation of the results. Hegerl et al. (1996) used
the optimal fingerprint method to detecting greenhouse
warming in observed near surface temperature trends.
For the optimization only the spatial covariance was
used; the time component was represented by simple
linear trends. A similar approach has been pursued in
Hegerl et al. (1997), where a fingerprint of combined
greenhouse gas and aerosol forcing has been applied to
observed trends over 30 yr. Figure 1 shows the evolution
of the detection variable computed with the optimal fin-
gerprint for the combined greenhouse gas and aerosol
forcing applied to patterns of running 30-yr trends com-
puted from the observed temperature record (Jones and
Briffa 1992). The spatially optimal fingerprint was com-
puted using an estimate of the covariance matrix (3)

derived from 30-yr trends of an unforced model ‘‘con-
trol’’ simulation (von Storch et al. 1996; for more details
see Hegerl et al. 1996, 1997). The results indicated that
the recent 30-yr trends are highly significant relative to
all estimates of climate noise, with signal-to-noise ratios
ranking between 2.8 and 4.9 depending on the data used
to estimate natural climate variability.

d. Optimal filtering

North et al. (1995) propose to construct an optimal
filter that estimates the size of a given signal, for ex-
ample, of greenhouse warming, in noise-contaminated
data. For continuous data in space and time the filter is
defined as an integral operator with kernel G, which
produces an estimate of the signal based upon the fil-
tered data CS(x, t):

Ĉ (x, t) 5 G(x, t, x9, t9)C(x9, t9) dx9 dt9.s E E
time space

(14)

The method is formulated for one variable only [for a
scalar C(x, t)]; however, the extension to several vari-
ables is straightforward. The integral kernel G is chosen
in such a way that the mean square error ^( s(x, t) 2Ĉ
Cs(x, t))2& is minimal. The constraint for the optimi-
zation is that the expectation of the filtered signal wave-
form s should agree with Cs (‘‘no bias’’). The opti-Ĉ
mization is performed in terms of space–time EOFs,
which represent the (orthogonal) eigenfunctions of the
space–time lagged covariance (2):

C(x, t, x9, t9)e (x9, t9) dx9 dt9 5 l e (x9, t9).E E k k k

time space (15)

The continuous climate state can be developed into an
infinite series in terms of these EOFs:

C(x, t) 5 c e (x, t). (16)O k k
k

Using the EOFs, the optimal filter can be computed
(North et al. 1995):

C (x, t) cs skG(x, t, x9, t9) 5 e (x9, t9), (17)O k2g lk k

with
2csk2g 5 . (18)O

lk k

The optimal estimate for the signal in the data is then

C (x, t) c cs sk kĈ (x, t) 5 Os 2g lk k

c c /lO sk k k
k5 C (x, t) 5 aC (x, t). (19)s s2c /lO sk k

k
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FIG. 1. Time evolution of a detection variable computed from spatial patterns of observed near surface temperature trends (trends fitted
to 30-yr time series at each grid point; data from Jones and Briffa 1992). For each year t the same optimal fingerprint is applied (8) to the
observed trend pattern between the year t-29 and t. The spatially optimized fingerprint is based on the climate change signal in a greenhouse
gas plus sulphate aerosol simulation, using running 30-yr trends from a long model control simulation for the required estimate of the noise
covariance matrix. Also shown is the detection variable using a uniform fingerprint (which is equivalent to global mean temperature trends)
and a nonoptimized fingerprint (equivalent to the direct use of the model signal pattern). The comparison shows that the optimization
suppresses some of the climate variations earlier in the observed record and yields a proportionally stronger value for the latest observed
trends (which are expected to be most influenced by climate change) relative to the climate variations earlier in the record. All fingerprints
have been normalized to the same spatial variance. For more detailed information see Hegerl et al. (1996) and Hegerl et al. (1997).

For discrete data, the involved series will be finite. Then
the method results in the same signal estimate as in
Hasselmann’s method (13).

The amplitude a is a measure of how strong the signal
is compared to the hypothesized one. Thus, for green-
house warming, the estimate of the signal strength a
allows computation of the sensitivity of the climate sys-
tem to the greenhouse forcing independent of model
sensitivity estimates. Note that a is a random variable.
The width of the distribution of a depends on two fac-
tors. On the one hand, a contains a noise component
of variance 1/g2 around the ‘‘true’’ signal strength. This
represents the residual noise after the application of the
filter. On the other hand, if the noise is estimated from
a limited amount of data, the uncertainty in a may in-
crease substantially (see section 3; Stevens and North
1996).

A nice by-product of North’s method is that g2 (18)

represents the theoretical square signal-to-noise ratio
(North et al. 1995). In the case of discrete data and for
detection variable (8) this is obvious from

2 T 21 2d (C C C )s s s T 21 25 5 C C C 5 g , (20)s s2 T 21 21˜^d & C C CC Cs s

using , the definition of the covariance matrixT ˜d̃ 5 f C
(3) and the EOF representation.

Also, g2 enables us to study the decomposition of the
square signal-to-noise ratio in terms of space–time
EOFs. This allows investigation of which components
of the expected climate change are important for de-
tection. North’s optimal filter has been applied in a mod-
el-based study of the theoretical signal-to-noise ratio of
the greenhouse warming signal (North and Kim 1995).
They showed that the signal-to-noise ratio based on a
purely time-dependent signal is of the order of 3 for



1130 VOLUME 10J O U R N A L O F C L I M A T E

greenhouse warming. Of course, considerable uncer-
tainty still is associated with the estimates of the EOFs
and their eigenvalues. These must come either from long
model simulations, which are subject to model bias, or
from the observed record, which suffers from being too
short, leading to large sampling errors. This application
also showed that the dominant component is the change
in global mean temperature, which in the simple models
employed in their study overwhelmed the contributions
from such potential signatures as land-sea contrasts.
This can be also seen in Fig. 1, where especially the
results of the nonoptimized fingerprint are very similar
to the results using global mean trends (which is equiv-
alent to using a spatially uniform fingerprint). A similar
finding is shown in Santer et al. (1993, 1995a).

Recently, North’s optimal filter has been applied to
the detection of the signal of the 11-yr solar cycle in
observed surface temperature data (Stevens and North
1996). For this problem, the method revealed its full
potential, since the signal was so weak that it could only
be detected with a highly sophisticated technique.

3. Practical considerations

All detection methods require reliable observed data,
reliable estimates of climate variability and, for many
methods, reliable information on the structure of the
expected climate change. The uncertainties in each of
these components for different climate variables have
been discussed in the IPCC scientific assessment of cli-
mate change (e.g., Santer et al. 1996; Gates et al. 1996).
In the following subsections we focus only on the effect
of assumptions that are vital for optimal detection: That
we have a good ‘‘first guess’’ of the anthropogenic sig-
nal, and that we know the space–time covariance of the
noise. These assumptions and their implications for the
detection of anthropogenic climate change will be ad-
dressed one at a time, while their effect on attribution
is discussed in a separate subsection.

a. Signal uncertainties

The optimization is based on the idea that we know
the time evolution of the expected change CS(x, t) in
the mean state of climate. Even if we decide to rely
upon the model prediction (to verify which is part of
the task of detection), it is not a straightforward task to
obtain the space–time dependent change in the mean
state in view of the internal variability of the coupled
ocean–atmosphere model. One approach may be to use
several ‘‘Monte Carlo’’ type simulations starting from
different initial conditions since the average of several
simulations provides a much improved approximation
of the climate change signal compared to a single re-
alization. The use of the dominant climate change signal
(‘‘first EOF’’) of a simulation also proved a practically
useful method to filter the climate change signal from

a time-dependent simulation (Cubasch et al. 1992, 1994;
Hegerl et al. 1997).

On the other hand, perfect knowledge of the signal
is not an essential requirement of the methods. Errors
in the structure of the model signal will merely diminish
the signal-to-noise ratio, leading only to a suboptimal
detection approach: If a model signal Cm disagrees from
the ‘‘true’’ signal Cs (e.g., due to model errors or climate
noise superimposed on the signal), the theoretical sig-
nal-to-noise ratio (20) can be shown to decrease by a
factor of (Cm,Cs)/(\Cm\·\Cs\) (the norm and scalar
product again being defined by the covariance matrix;
see section 2c), which is clearly smaller than one.

This reflects the fact that the optimal weights, fin-
gerprints, or filters are merely tools to enhance our
chances of detecting climate change. Errors or noise in
the estimated signal will merely decrease our chances
to detect climate change. Thus, we may fail to detect
forced climate change if the ‘‘first guess’’ is bad, but
we will not wrongly detect change where change does
not exist. However, incorrect model predictions can
cause serious problems if we try to attribute a detected
unusual behavior of climate to a cause (see below).

In addition, we need not know the actual amplitude
of the climate change signal to implement an optimal
detection scheme. As can be seen from the derivation
of the diverse optimal approaches, the amplitude is es-
timated separately and independently from the original
hypothesized shape of the signal [a in (19), (10)]. Sim-
ilarly, the application of several fingerprints (8) allows
to estimate the magnitude of each signal individually.
This is very useful in the case of uncertainties in the
magnitude of the forcing or the response, which is, for
example, the case for the aerosol effect (Penner et al.
1994). Thus, errors in the amplitude of the model signal
do not influence the outcome of the optimal detection.

Bell (1986) additionally proposed an interesting
method to address signal uncertainty: if the error co-
variance of the signal is known, the optimization can
be performed taking the signal uncertainty into account.
The optimal weights then are less straightforward and
have to be calculated numerically.

b. Noise uncertainties

The optimization assumes that the space–time co-
variance (2) of internal climate variability on all time
and space scales is known. This is, of course, not the
case, since it would require abundant reliable obser-
vations of undisturbed climate variations. Generally, we
have to estimate the space–time covariance from a lim-
ited amount of data.

The internal climate variability can be either esti-
mated from observed data or from model integrations
without external forcing (‘‘control’’ simulations). Each
estimate of climate noise has inherent uncertainties: Ob-
servational data are based on varying spatial and tem-
poral resolution with records that are inevitably too
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short. Additionally, observational data are influenced by
uncertainties and biases (e.g., urban warming, changes
in measurement methods, etc.). These effects are es-
pecially severe for detection, since low-frequency vari-
ability estimates need data that have been observed con-
sistently for a long period of time. In the case of syn-
thetic data, it is not clear if even present coupled ocean–
atmosphere models are able to reproduce internal
climate variability correctly.

These uncertainties confine the reliability of all pres-
ent efforts to detect climate change, not only optimal
approaches. For example, all detection methods errors
in the amplitude of climate noise cause erroneous as-
sessments of the signal-to-noise ratio and, thus, erro-
neous assessments of the significance of an observed
climate change signal (see section 2b). Furthermore,
model intercomparisons (Kim et al. 1996) and such with
paleodata (Barnett et al. 1996) also suggest uncertainties
in the structure of climate noise: The internal variability
EOF patterns of coupled climate models as well as those
derived from paleodata (which, however, have their own
inherent uncertainties) disagreed substantially. For op-
timal detection, however, more important than the shape
of individual EOFs is the distribution of variance be-
tween different EOFs for the estimate of the signal-to-
noise ratio (18). Note also that a poor estimate of the
covariance matrix should lead only to a suboptimal ap-
proach (yielding lower than possible signal-to-noise ra-
tios).

In order to address uncertainties in the structure and
amplitude of noise, Stevens and North (1996) and He-
gerl et al. (1996, 1997) both used data from different
long model control simulations. Both found that al-
though large uncertainties exist, the qualitative outcome
of detection was not dependent upon the model used.
However, in the latter paper it was found that the un-
certainties in the structure of variability in winter and
spring were so large that the optimization was not really
feasible. Clearly, more research is needed to understand
how reliable present coupled model data are for esti-
mating climate noise.

A second source of error (besides the uncertainty as-
sociated with data for climate variability) is inadequate
sampling, which poses a greater problem for optimal
detection approaches than for more conventional ap-
proaches. The problem arises from the limited length of
available records, which may severely hamper the es-
timate of the noise covariance (2) needed for optimi-
zation. Thus, the uncertainties associated with sampling
directly relate to the dimensionality of the problem (sec-
tion 3c). On the one hand, reliable space–time obser-
vational records are usually short. On the other hand,
only a few fully coupled ocean–atmosphere models have
been run for timescales of a millenium (Manabe and
Stouffer 1996; von Storch et al. 1997; Tett et al. 1996).
Even then, reasonable sampling is only possible in a
limited frequency range. In the case of undersampling,
the optimal approaches may put emphasis onto com-

ponents where the natural variability is poorly sampled
rather than genuinely low. Especially if EOFs are used,
estimation based upon undersampling leads to an un-
derestimation of the variance of EOFs with high indexes
(North et al. 1982; von Storch and Hannoschöck 1986).
If the same variability information is used for estimating
the statistics of the detection variable, the signal-to-
noise ratio is overestimated, as is obvious from (18).
This may even lead to erroneous positive detection.

Bell (1986) extended his analysis to the design of a
statistical test for Gaussian variability estimated from a
limited amount of data. The method basically results in
a blow-up factor for the noise that is dependent on the
dimension of the problem and the number of indepen-
dent samples. The latter may be difficult to estimate if
the variability data are not truly independent samples,
but are rather obtained from an auto-correlated time
series (e.g., from the observed record or from a model
control simulation). In this case, errors in the estimated
number of samples may cause severe errors in the sta-
tistics (Zwiers and von Storch 1995).

Stevens and North (1996) assessed the effect of sam-
pling errors by studies undersampling long simulations
with an energy balance model. A different approach has
been pursued by Hegerl et al. (1996), using independent
data for estimating the covariance matrix and for com-
puting the statistics of the detection variable. Errors in
the determination of the optimal fingerprint arising from
errors in the estimation of the variability covariance
matrix then should result in a conservative underesti-
mation of the signal-to-noise ratio of the true (optimal)
detection variable, since the fingerprint may not be truly
optimal, but will not cause a bias of the statistics. An
exception is the occurrence of systematic errors in the
variability data, as may occur if model data are used
exclusively and if climate models lack systematically
some mechanisms or feedbacks important for low-fre-
quency climate variability.

c. Dimensionality

When an optimal detection strategy is implemented,
a decision has to be made on the dimensionality of the
data space. This implies deciding how many variables
are to be considered and in what time–space represen-
tation. Theoretically, using a very high-dimensional
space may make it easier to detect a model predicted
signal and, especially, to attribute it to a cause. An ex-
ample of the benefit of using several ocean variables
instead of one is given in Santer et al. (1995b). However
there are several drawbacks of using many space–time
dimensions. First, including more dimensions will only
lead to a better signal detection if these additional di-
mensions really contribute to the definition of the signal
rather than just introduce additional noise. Second, as
mentioned above, the noise covariance matrix needs to
be estimated from a limited amount of climate vari-
ability data, and the higher dimensional the detection
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space, the more problematic the estimate (see above).
Bell (1986) gives an example of how the performance
of the method deteriorates with increasing number of
dimensions.

One consequence of this finding is that it is preferable
to use only a few variables for a detection approach
rather than a large pool of variables that may represent
climate change. Santer et al. (1994) screened the signal-
to-noise ratio in several model signals suggesting that
near surface temperature is a useful variable for de-
tecting climate change. Hasselmann (1993) proposes to
reduce the dimensionality through truncation to a lower-
dimensional subspace that allows a good representation
of climate variability. It is, however, important to use a
space that also allows a good representation of the cli-
mate change signal. This may not be the case for noise
EOFs (Santer et al. 1994). In practical applications, it
has proved to be useful to reduce the dimensionality, in
a way allowing for both the representation of the signal
and parts of climate noise (see Hegerl et al. 1996). In
the example given in Fig. 1, all data have been truncated
to a ten-dimensional space. The truncation level was
chosen by a heuristic method as a compromise between
using enough dimensions to provide some freedom for
optimization and avoiding emphasis on poorly sampled
small-scale noise that can occur for a poorly estimated
noise covariance matrix (note that less than 33 inde-
pendent samples of 30-yr trends are available from the
1000-yr simulation used to estimate the covariance ma-
trix). Interestingly, the truncation level chosen agrees
quite well with an example in Bell (1996), where the
optimal truncation level for 26 independent samples was
found to be 11. Even in that quite low-dimensional rep-
resentation of the fingerprint, which does not allow
much freedom for the rotation, the signal-to-noise ratio
increased by a factor of 1.04–1.3 (depending on the data
used to estimate variability) but also decreased for some
variability data. Stevens and North also reduced the data
space prior to applying the solar signal detection.

d. Attribution

All previous considerations deal with the detection of
a significant climate change. However, if such a climate
change is detected, further consideration will be needed
to prove that this climate change has, in fact, been
caused by the assumed forcing mechanism (e.g., green-
house warming). In this context it is helpful if the sig-
nificant observed climate change agrees to a large extent
with the model prediction, as can be assessed by a cor-
relation method disregarding the mean (Santer et al.
1993; Santer et al. 1995a).

The attribution question can be more quantitatively
assessed by investigating which of different, prespeci-
fied explanations of climate change is most consistent
with the observations (e.g., an increase in greenhouse
gases, with or without an increase in aerosols, changes
in solar irradiance, etc.). The outline of an attribution

method is beyond the scope of this paper; we refer to
Santer et al. (1996) for an overview and to Hasselmann
(1997) for an attribution technique using optimal fin-
gerprints. Optimal methods help to distinguish between
different forcing hypotheses by decreasing the noise that
tends to obliterate the difference between different forc-
ing hypotheses. A demonstration of this is given in He-
gerl et al. (1997). Also, Bell (1986) showed that the
optimal detection scheme is also optimal for detecting
a difference between the model prediction and the ob-
served climate state if the characteristics of climate
noise are assumed to be unchanged under climate
change conditions (1). Note, however, that the failure
to distinguish a significant disagreement between a mod-
el simulation and observations may either imply that
the model is correct or that the noncorrectness can only
not be proven due to the presence of noise. Hence, the
greater the availability of data, the greater the possibility
of demonstrating a difference between the model and
the data.

Note that errors in the model prediction are much
more severe for attribution. For example, while a wrong
amplitude of the model predicted climate change signal
had virtually no influence on detection of climate
change, such an erroneous amplitude may yield a sig-
nificant disagreement with the amplitude of the signal
in the observations, leading to the conclusion that this
mechanism does not correctly explain the observed cli-
mate change. A similar conclusion may be caused by
an erroneous structure or pattern of climate change in
the models. Errors in the structure and amplitude of
climate noise may lead to erroneous assessments if a
difference between observations and model predictions
is due to climate variability. Thus, a solution of the
attribution question is far more difficult than detection
of a significant climate change.

4. Concluding remarks

The comparison of different suggested optimal de-
tection methods shows that these methods are very
closely related. They have shown their potential in sev-
eral applications already and are expected to do more
so in the future. However, the implementation of optimal
detection (and attribution) strategies requires not only
an estimate of the expected model signal but also knowl-
edge of the space–time structure of climate noise. Un-
certainties and errors in both have different implications
on the outcome of a detection and attribution strategy.
Whereas errors in the amplitude of the predicted signal
have no influence on detection, and errors in the struc-
ture of the signal merely decrease the optimal signal to
noise ratio, both may cause serious problems for attrib-
uting an observed climate change to the assumed forcing
mechanisms. Uncertainties associated with climate vari-
ability noise are more severe in optimal detection ap-
proaches than in more conventional techniques. Fatal
results may occur if sampling problems are not taken
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into account. In order to use the full potential in optimal
methods for detection and attribution, the present lim-
itations in our knowledge of the structure and amplitude
of climate variability need to be resolved.
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