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Abstract

It is well known that optimisation of the MHD equilibrium of stellarators can have
great influence on the performance and hence have a significant effect on the potential of
stellarators as potential power plants.

The ROSE code was written to carry out an optimisation based on an equilibrium
evaluation using VMEC and several additional codes. This paper presents both a quasi-
axially symmetric and a quasi-isodynamic equilibrium obtained with ROSE and demon-
strates two important features that are new to stellarator optimisation. One allows the
reduction of coil complexity by analysing a current sheet obtained with NESCOIL. The
second is a new way of accounting for properties of the vacuum field while simultaneously
optimising the finite beta equilibrium.

1 Introduction
The properties and performance of stellarators depend sensitively on details of the under-
lying MHD equilibrium [1], which is (in the absence of magnetic islands) determined by
the shape of the plasma boundary and by the current and pressure profiles [2]. For the last
several decades, there have been stellarator design studies trying to find magnetic-field
geometries with particularly favourable confinement and stability properties. In most
such studies, the design of the MHD equilibrium is done in two stages. The shape of
the plasma boundary is found in the first stage, and magnetic-field coils producing this
plasma shape are sought in a second stage. There are several reasons for separating the
optimisation of the coils from that of the plasma shape in this way. A practical reason
is that fixed-boundary MHD equilibria are more easily and quickly computed than free-
boundary ones. A more fundamental reason for first optimising the plasma shape is that
the problem of seeking coils producing a given magnetic field is inherently ill-posed in the
sense that there are in general many different sets of currents that create approximately
the same magnetic field. In some respects, this is fortunate, since if it were not the case,
the (unique) set of coils required for the desired field would in general be impracticable,
perhaps impossible to build. It is precisely because the problem of finding magnetic-field
coils for a given field is ill-posed that it is possible to find practical solutions. However,
in practice these two stages of optimisation are usually not completely separated. For
instance, the target function used when optimising the plasma shape may include some
“guess” as to the coil complexity. Also in the design of the National Compact Stellara-
tor Experiment (NCSX) at PPPL, the coil shapes were even directly included in the
optimisation of the plasma shape [3].

Concerning the first stage, there are several physics goals of any optimisation. His-
torically, the first issue to receive attention was MHD stability. A notable example of a
device optimised for this property is TJ-II [4], which has configurations that are stable
up to very high values of 〈β〉 , the volume average of the normalised plasma pressure.
A number of further optimisation goals have also played a role. In the optimisation of

1



Wendelstein 7-X (W7-X) [5], great emphasis was put on the minimisation of the Pfirsch-
Schlüter (PS) currents, which have the potential to alter the properties of the equilibrium
and cause an outward (Shafranov) shift of the plasma column. The PS current can also
play a role in MHD stability. If the PS current is minimised, one makes sure that the
shape and position of the plasma is robust against finite-pressure effects. Likewise, the
bootstrap (BS) current was minimised in order to reduce the influence of any internal
currents on the equilibrium. The small currents in W7-X allow the use of an island di-
vertor that relies on the rotational transform at the plasma edge being equal to one of
the “natural” rational values 5/6, 5/5 or 5/4. This need for a stable ι -profile adds to the
necessity to keep the (BS) current as small as possible. This is particularly important
since the global magnetic shear is small, making the location of islands sensitive to small
changes in the toroidal plasma current.

Finally, in stellarators with the ambition of relevance for power plant designs, it is
important to demonstrate that fast ions can be well confined. Stellarators are not intrin-
sically able to confine trapped fast particles (see for instance [1]), and even the W7-X
design exhibits difficulties in this regard, which may lead to severe heat loads on in-vessel
components during neutral-beam injection [6]. In a reactor with W7-X geometry, there
would be “hot spots” on the wall from escaping alpha particles. Several strategies have
been employed to achieve good fast-particle confinement. One approach is to adjust the
magnetic field so that the Fourier spectrum of |B| exhibits a helical or toroidal symmetry
in Boozer coordinates [7], a so-called quasi-symmetry. Examples of quasi-symmetric con-
figurations are the HSX device [8] (quasi-helical symmetry) in Madison, Wisconsin, the
CHS-qa [9] design study, and the NCSX effort [10, 11], both with quasi-axial symmetry.
W7-X, too, is a configuration optimised for enhanced fast particle confinement. It has
drift surfaces that are highly aligned with the flux surfaces of the magnetic field, making
the trapped particles precess poloidally in the region around the magnetic axis. Unfortu-
nately, the optimisation is only effective at high plasma beta close to the magnetic axis
– in practice in a region covering only a portion of the deposition profile of neutral-beam
particles.

The present paper describes a new code, ROSE, which was written for the purpose of
optimising MHD equilibria for stellarators. In addition to a detailed description of the
code itself, two examples are presented to showcase the capabilities of the code in general
and, in particular, to demonstrate the usefulness of two innovations ROSE introduces to
stellarator optimisation.

The remainder of this paper is organised as follows: Section 2 gives a survey of the
general structure and of the most important capabilities of the ROSE code. Sec. 3 explains
in detail how ROSE computes the vacuum field of a finite 〈β〉 equilibrium solution.
Sec. 4 discusses an example of an equilibrium optimised with respect to vacuum-field
properties, and in Sec. 5 the approach for targeting coil complexity is explained. Sec. 6
finally describes an example of a configuration that was optimised for simple coils.

2 The ROSE Code
The purpose of the ROSE (ROSE Optimises Stellarator Equilibria) code is the opti-
misation of stellarator MHD equilibria. It provides a functionality that is similar to
capabilities contained in the STELLOPT package [12], and software of similar charac-
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ter has also been reported in [13]. The code reuses large quantities of code from the
ONSET [14] [15] and EXTENDER [16] packages.

A fixed-boundary VMEC MHD equilibrium [17] is defined by the shape of the plasma
boundary and two flux functions, which are commonly chosen among the plasma pressure
p(s) , the rotational transform ι(s) or the current density I ′(s) as functions of the
normalised toroidal magnetic flux s = Φtor/Φ

boundary
tor . Φ denotes the toroidal flux within

some flux surface. The plasma boundary can be described by a pair of Fourier series:

r(u, v) =
∑

m,n

rmn cos (2π (mu+ nv)) , z(u, v) =
∑

m,n

zmn sin (2π (mu+ nv)) (1)

where u and v are poloidal and toroidal surface coordinates, respectively, chosen to have
a period of unity, so that, e.g., u varies from 0 to 1 over one poloidal revolution around
the surface. The toroidal coordinate v is related to the toroidal angle as v = Npϕ

2π
, where

Np is the number of field periods and ϕ is the true toroidal angle.
The ROSE code uses one of several optimising algorithms to minimise a target function

F ({rmn, zmn}) =
∑

i

wi

(

fi(rmn, zmn)− f target
i

)2
σi(fi) (2)

in the parameter space {rmn, zmn} .
It is interesting to note that the parametrisation (1) of the boundary is not unique in

the poloidal direction. As a consequence, it is probably possible to find a more compact
representation of the plasma boundary that would lead to a reduced parameter set for
the optimisation.

The functions σi are σ ≡ 1 for properties that require a specific target value. An
example would be the rotational transform, which usually is desired to have a specific
target value. On the other hand, there can be σi = 0 for fi < f target

i or fi > f target
i if

fi is a function for which low or high values are desirable.
The coefficient r0,0 , in the following referred to as the major radius, is held constant

during the optimisation. The same can be done for the aspect ratio, defined as

A =
r0,0√
r1,0z1,0

. (3)

ROSE has several optimising algorithms available. The most important one is the
algorithm proposed by Brent [18], which is also amply used in the ONSET package, but
there are in addition several other evolutionary algorithms. These include Particle Swarm
[19], Differential Evolution [20], Harmony Search [21] and regular genetic optimisation
[22]. The software structure for the evolutionary algorithms was inspired by Yedder [23].

The optimisation campaigns carried out in stellarator design operate on a complex,
non-linear target function in a high-dimensional parameter space. Evidence for the exis-
tence of local optima has been observed. Therefore, it is beneficial to have a selection of
different optimisation strategies available.

The target function F ({rmn, zmn}) is computed along the following steps:
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1. Investigate the plasma boundary for viability. This step discards plasma boundaries
that are considered pathological and so avoids VMEC calculations that have no
chance of ever converging to a useful solution. To be specific, plasma boundaries
are discarded if at any toroidal cross section the plasma boundary intersects itself
or if the number of inflection points exceeds a given threshold.

2. Attempt a fixed-boundary VMEC calculation. This computational step establishes
an equilibrium solution for a given plasma boundary parameterised by coefficients
{rmn, zmn} . After this step (if successful) the magnetic field at the design value of
〈β〉 is known.

3. Attempt calculation of the Bmn Fourier spectrum of the magnetic field strength in
Boozer coordinates from the VMEC solution using the VM2MAG code [24].

4. If requested, the complexity of coils (yet to be designed) is assessed by using the
codes SURFGEN and NESCOIL [25, 26]. This step calculates the surface current
on a surface S exterior to the plasma that would create the required magnetic
field inside the plasma. The surface S should be chosen so as to approximate
the surface on which the coils will lie in order to produce a reliable estimate of
coil complexity which depends on the distance between plasma and coils. The
result of the NESCOIL step is a continuous current distribution. If the latter is
very complicated, the coils are likely to be complicated too. This step is new in
stellarator equilibrium optimisation and will be explained further in Sec. 5.

5. If requested, compute from the plasma currents the corresponding field components
normal to the plasma surface, and use SURFGEN and NESCOIL to obtain the vac-
uum field underlying this equilibrium. This step is also new, and will be described
in due detail in Sec. 3.

6. Use the data produced during the preceding steps to compute all relevant properties
of the equilibrium. A detailed list of these items will be outlined below.

If any of the computational steps (1) to (3) in this sequence fails, the remainder of the
sequence is aborted and the target function is set to a large value. No in-depth calculation
of the detailed properties of the equilibrium is then carried out.

From the files computed during this sequence, individual properties are extracted in
order to evaluate the partial target functions fi . These properties include, for example:

• The integrated maximum absolute value among the principal curvatures (eigenval-
ues of the surface curvature tensor) of the plasma boundary surface: max {|K1| , |K2|} .

• Integrated absolute value of the Gaussian curvature |K| = |K1K2| . Note the
importance of taking the absolute value of |K| . The surface integral (no absolute
value) of K yields a constant that depends on the topology of the surface only
(Gauss–Bonnet theorem).

• Value of magnetic well, d2

ds2
V , at the design value of 〈β〉 , where V (s) denotes

the volume of the magnetic surface enclosing the normalised toroidal flux s . The
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magnetic well can be calculated from the line integral
∫

dl/B , performed over many
turns around the torus [27]. The magnetic well is of importance for MHD stability,
which is discussed further-below.

• Total plasma volume, V (1) .

• Value of rotational transform ι(s) at selected radial positions s .

• Occurrence of regions with undesired sign of the global magnetic shear.

• Field ripple on the magnetic axis, defined in terms of the maximum and minimum
field strengths

R =
Bmax − Bmin

Bmax + Bmin

. (4)

This quantity is expected to be small for quasi-helically and quasi-axially symmetric
stellarators.

• For quasi-isodynamic and for quasi-helically symmetric configurations, the mirror
ratio

M =
B(s, u = 0, v = 0)−B(s, u = 0, v = 1/2)

B(s, u = 0, v = 0) + B(s, u = 0, v = 1/2)
. (5)

Quasi-helically symmetric and quasi-isodynamic configurations have extremal val-
ues of the magnetic field strength at the symmetry planes v = 0 , v = 1/2 . The
mirror ratio is important for fast-particle confinement and for the bootstrap current,
and can assume unfavourable magnitudes if not constrained.

• Deviation of the Bmn spectrum (in Boozer components) from quasi-symmetry.
Keeping this deviation small is important for fast-particle confinement in quasi-
symmetric configurations.

• Ratios between arbitrary Bmn components. These ratios may be used to adjust a
configuration for small bootstrp current.

• Effective helical ripple (as defined in Ref. [28]) on selected magnetic surfaces. This
quantity can be used to target neoclassical confinement.

• Radial drift velocity parameters Γv , Γw (as defined in Ref. [29]) on selected mag-
netic surfaces, as indicators of fast-particle confinement.

• The variance var(B) of the field strength on the contours of maximum and mini-
mum B . These contours lie within flux surfaces and close toroidally in the case of
a quasi-axially symmetric (QA) configuration, helically for a quasi-helically sym-
metric (QH) configuration and poloidally for a quasi-isodynamic design. See Fig. 1
for illustration.

• Monotonicity of |B| on a flux surface in a direction orthogonal to a symmetry
direction. See Fig. 1 for illustration. This monotonicity of the field strength is
important for the confinement of fast particles.
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• Variance of the second adiabatic invariant J(B0) =
∫

B(l)<B0

√

B0 − B(l) dl on a

flux surface. The code computes J for the confinement region of adjacent field
lines covering the entire unit square in u, v . The variance is taken from the set of
J values obtained.

• Properties involving the vacuum field:

– Vacuum rotational transform on the axis

– Vacuum magnetic well

– Shafranov shift, defined as the horizontal distance between the magnetic axes
in the vacuum field and that at the design value of 〈β〉 .

• Properties related to coil complexity, see Sec. 5 for a detailed discussion.

• Average orbit loss rates, with the drift orbits calculated along the lines of Ref. [30].

The items related to the curvatures in this list require additional clarification. The
curvature of the plasma boundary is not in itself a good indicator of the suitability of
the final configuration. Nevertheless, it is useful when an optimisation “from scratch” is
attempted. In this case, meaningful configurations are usually so distant in parameter
space from the staring point that the optimisers tested in the framewoek of ROSE fail
to find a path to a viable stellarator, and instead get lost in poor local optima often
characterised by strong shaping of the boundary. Imposing a penalty on strong curvatures
helps the optimisation to avoid these local minima. The penalty for the curvature should
be dropped at an intermediate stage of the campaign and eventually be replaced by
penalties targeting coil complexity.

3 Optimisation for Properties of the Vacuum Field
For many configuration properties, it is desirable to carry out the optimisation at finite
plasma pressure. This is particularly the case for qualities related to fast-particle confine-
ment, the accuracy of quasi-symmetries, or the effective ripple. These properties depend
on the plasma pressure, and it is their value at finite 〈β〉 that is decisive for the perfor-
mance of the stellarator in question. However, important properties of the vacuum field
can become difficult to discern or assume unfavourable values. For instance, due to the
diamagnetic property of the plasma, the magnetic well can be positive [corresponding to
negative V ′′(s) ] at finite 〈β〉 but turn into a magnetic hill (V ′′ > 0 ) when the vacuum
field is analysed. Similar considerations apply to the rotational transform ι(s) . In low-
shear configurations, magnetic islands can be avoided by tailoring the ι -profile to avoid
low-order rational numbers, but one must then take care to ensure that this property
is not lost as 〈β〉 is varied. In order to be able to address these difficulties, ROSE has
been given the ability to compute the vacuum magnetic field directly from the VMEC
solution.

Analyses of vacuum field properties have been done before in the scope of the NCSX
design effort [31]. There, the vacuum field was evaluated using a virtual casing (VC)
directly on the plasma boundary. The drawback of this approach is that the VC field
close to the plasma boundary becomes subject to a severe discretisation error if the VC
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Figure 1: Structure of the magnetic field in the case of W7-X. Shown is the magnitude of
the magnetic field and the location of the extremal contours of the magnetic field. The
slopes between high and low field regions are monotonic.
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current (Biot Savart) is integrated on a grid with fixed mesh size. If the Biot-Savart
integration is done adaptively, any desired degree of accuracy can be maintained but the
computational effort increases. Moreover, no vacuum field estimate beyond the plasma
boundary is possible.

The approach chosen for ROSE proceeds along three major steps as follows:

1. calculate the normal magnetic field from plasma currents on the plasma boundary

2. compute a current sheet generating the true vacuum field using SURFGEN and
NESCOIL

3. evaluate vacuum field properties using the vacuum field computed from the current
sheet using the Biot-Savart formula

The details of these steps will be outlined in the following sections.

3.1 Calculating the normal magnetic field

The naive approach for obtaining the vacuum field would be to just rerun VMEC (in fixed-
boundary mode) with the same boundary but with vanishing plasma pressure. However,
this approach has a number of serious shortcomings:

1. It is inaccurate because it assumes identical plasma boundaries at vacuum and finite
〈β〉 . In reality, the two are different, and especially for cases with large PS currents
this difference may be significant.

2. It is slow because it requires another full VMEC computation.

For these reasons, an approach was chosen that relies on the virtual-casing principle
to obtain the normal field from plasma currents or external coils exactly on the plasma
boundary, and then carrying out a NESCOIL run to compute the field in the entire
plasma domain.

To explain this procedure in greater detail, let us divide R
3 into 2 disjoint domains

V1 and V2 , with current distributions J1 and J2 in each of these. The current densities
J1 and J2 generate contributions B1 and B2 to the magnetic field so that B1(x) +
B2(x) = B(x) Assume, finally, that the boundary δV between V1 and V2 is located so
that B · n = 0 .

If V1 , V2 are chosen as the domains inside and outside the plasma boundary, then B1

and B2 are the magnetic field contributions from inner and outer currents respectively.
B · n = 0 on the plasma boundary implies that B1 · n and B2 · n have the same
magnitude.

In the following, let p(u, v) or p̃(u, v) denote points on the boundary surface and

pu = dp
du

, pv = dp
dv

, so that n = (pu×pv)
‖pu×pv‖

denotes the normalised normal vector. The

virtual-casing principle [32] as stated by Shafranov and Zakharov states that a image
current density on δV defined by

Jimage(p) = −B(p)× n(p) (6)
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creates a magnetic field,

Bimage(x) =
µ0

4π

∫

δV

J(p̃)× (x− p̃)dA

‖x− p̃‖3
, (7)

such that

Bimage(x) =

{

B2(x) x ∈ V1

−B1(x) x ∈ V2
(8)

For a mathematically rigorous treatment of the virtual-casing principle the reader is
encouraged to consult Ref. [33].

It should be noted that there are extensions of the virtual-casing principle that drop
the requirement of n · B = 0 and introduce monopole sources in order to deal with
the normal field component [16]. In such a case, the magnetic field on the boundary
would be discontinuous. In the context of the application considered here, however, the
condition B · n = 0 implies that the normal field on the plasma boundary from the
interior currents and those from exterior currents are identical except for an opposing
sign. Therefore, while the tangential magnetic field created by the image current sheet is
discontinuous on δV , the normal field is well-defined.

The evaluation of equation (7) needs to deal with a singularity in the Biot-Savart rule
and requires a little sleight of hand. A similar calculation has been implemented in the
BNORM code by Merkel [34]. The calculation starts by seeking the Biot-Savart integral
for the vector potential:

Aimage(p) =
µ0

4π

∫ Np

0

∫ 1

0

Jimage(p̃) ‖p̃u × p̃v‖
‖p− p̃‖ dudv

An explicit encounter with the singularity is avoided by computing Aimage(p) on
integer points p(i/Nu, Npj/Nv) (Nu , Nv denoting the number of mesh lines in the
angular directions) using an open Newton-Cotes formula evaluating the integrand at
half-integer points p̃((i+ 1

2
)/Nu, Np(j +

1
2
)/Nv) . The code also allows a refined mesh for

the Newton-Cotes integration using more than one point, spaced equidistantly between
the integer mesh points, for the integration.

In addition to using the dual mesh, the numerical integration is simplified (and hence
accelerated) by eliminating the singular part from the integrand. This is achieved by
writing

Aimage(p) =
µ0

4π

∫ v+Np/2

v−Np/2

∫ u+1/2

u−1/2

[

Jimage(p̃) ‖p̃u × p̃v‖
‖p− p̃‖

− Jimage(p) ‖pu × pv‖
√

û2p2
u(u, v) + 2ûv̂pu(u, v)pv(u, v) + v̂2p2

v(u, v)

]

dũdṽ

+
µ0

4π

∫ v+Np/2

v−Np/2

∫ u+1/2

u−1/2

Jimage(p) ‖pu × pv‖
√

û2p2
u(u, v) + 2ûv̂pu(u, v)pv(u, v) + v̂2p2

v(u, v)
dũdṽ (9)

with û = ũ− u , v̂ = ṽ − v
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The first of these integrals has the singularity removed and yields directly to numerical
integration. The second part of (9) can be integrated analytically in one of the coordinates
according to

∫ Np/2

−Np/2

∫ 1/2

−1/2

dûdv̂
√

û2p2
u(u, v) + 2ûv̂pu(u, v)pu(u, v) + v̂2p2

v(u, v)
=

1
√

p2u

∫ Np/2

−Np/2

ln
2
√

p2u

√

1
4
p2
u + pupvv + p2

vv
2 + p2

u + 2pupvv

2
√

p2
u

√

1
4
p2
u − pupvv + p2

vv
2 + p2

u − 2pupvv
dv̂ (10)

=
1

‖pu(u, v)‖

∫ Np/2

−Np/2

L(v̂)dv̂

Again, this integral can be split into a non-singular part and a singular one by adding
and subtracting a singularity of the same type:

∫

L(∆v)d∆v =

∫
(

L(v̂)− ln
p2
u

p2
vv̂

2

)

dv̂ +

∫

ln
p2
u

p2
vv̂

2
dv̂

The first integral is readily evaluated numerically using a Gauss-Kronrod rule while
the second is calculated analytically.

Once Aimage has been computed on the integer mesh on the plasma boundary, the tan-
gential components are interpolated using a 2d spline with periodic boundary conditions.
The normal component n ·Bplasma is then obtained by taking the normal component of
curl Aimage , i.e. from the tangential derivatives of the tangential components of Aimage .

Note that the method outlined assumes that the tangential magnetic field is contin-
uous at the plasma boundary. This neccessitates a continuous pressure profile, so the
pressure must go to zero.

Moreover, strict rigour also requires the rotational transform on the plasma boundary
to be irrational to prevent the presence of magnetic islands [36] [37]. The distinction
between regions with closed flux surfaces, islands and chaotic field lines is beyond the
computational scope of the VMEC code.

3.2 Calculating the external field

Once the normal magnetic field from the plasma currents on the plasma boundary is
available, a NESCOIL run is performed that is corrected for the normal magnetic field.

Generally, NESCOIL computes a current distribution on a given toroidal current-
carrying surface (CCS) so as to minimise the normal magnetic field on another, inner,
surface. The latter usually is a desired plasma boundary, and minimising the normal field
on that surface leads to a field that has a flux surface at this location.

The numerical approach used by NESCOIL assumes a current distribution on the
CCS described by

J = n×∇Φ, Φ = cuu+ cvv +
∑

k,l

skl sin (2π (ku+ lv)) , (11)
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where n now denotes the unit normal vector to this surface. NESCOIL then uses a
least-squares method to solve for the coefficients skl so that

∫

(n ·BNESC + n ·Bplasma) dA
!
= min. (12)

This correction of the current sheet for the normal field from plasma currents was orig-
inally proposed and applied in the context of coil design for devices with large plasma
currents [38].

The coefficients cu, cv are fixed and describe the total toroidal and poloidal currents
supplied by the coil set. For the applications treated in this context, it is consistently
assumed that the configuration uses a modular coil set. This means that cu = 0 while
cv must be matched to the poloidal current underlying the optimised equilibrium.

After the coefficients skl of the current potential have been computed, the current
density is computed on a mesh on the current surface. The magnetic vacuum field is
then obtained directly from a discrete Biot-Savart formula on that current sheet. The
current sheet is not cut into discrete coils since such an approach would not result in any
computational benefit but add the difficulty of creating and handling coils of different
topological nature. For instance, if the current potential contains local extrema, the cor-
responding equipotential lines would constitute local islands on the CCS that do not close
poloidally. This would then result in the appearance of saddle coils among the “desired”
modular coils. Fig 2 shows an example of a current potential and the associated current
lines on a current surface located 60cm from the plasma boundary for the configuration
discussed in Sec. 6. Note that this current potential was computed at an elevated distance
from the plasma boundary in order to illustrate different types of current lines. A CCS
closer to the plasma will result in a much more benign current distribution.

Unlike the NESCOIL calculation used to assess the coil complexity (see Sec. 5), the
current sheet for the vacuum field is not located in a region where the coils are expected,
but in a region that is favourable for a benign NESCOIL solution and an efficient and
accurate calculation of the Biot-Savart law. This is usually significantly closer to the
plasma boundary than the coil set is.

4 Example: HELIAS
Our first example of an optimisation using ROSE is a HELIAS-type (i.e. W7-X-like)
configuration aiming at improved confinement of trapped fast particles compared with
W7-X. Specifically, the aim was to improve the confinement of such particles away from
the magnetic axis whilst, at the same time, keeping the bootstrap current low, in order
to facilitate an island divertor of the type used in W7-X. In the original design of W7-X,
particle confinement was optimised at a quarter minor radius ( s = 1/16 ), leaving the
confinement at larger radii insufficient for a future reactor.

In order to improve the situation, a configuration was sought that exhibits minimal
effective ripple ǫeff over most of the radial range s while keeping the magnetic mirror,
measured by M (5), within the range 10%< M < 15%. The optimisation is carried out
at a plasma pressure of 〈β〉 ∼ 5% since it is at this pressure that a reactor would need
to exhibit its best confinement properties. As in the case of W7-X, a configuration with
NP = 5 periods was chosen, but the aspect ratio was set to A = 12.2 , which is slightly
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larger than in W7-X. This choice was motivated by the need for having enough room for
a blanket and neutron shielding in a reactor [35]. For the rotational transform a profile
approaching unity at the plasma boundary was targeted so as to facilitate the use of an
island divertor like in W7-X. ι = 0.98 at s = 0.97 was explicitly included in the target
function.

The optimisation at finite 〈β〉 makes it difficult to ensure the existence of a vacuum
magnetic well. For the finite- β field, the existence of a well, created by the plasma
currents, is virtually certain. However, its magnitude allows no reliable estimate of the
existence and magnitude of any well in the vacuum field. Therefore, the vacuum well as
outlined in Sec. 3 was explicitly included in the optimisation.

Fig. 3 shows a set of toroidal cuts of the plasma boundary of the VMEC solution of the
optimised equilibrium. It can be seen that the plasma shape retains the general features
seen in other optimised configurations [4] [8] [5]. The pronounced bean-like shape and
the triangular cross section at the opposing symmetry plane are typical of configurations
exhibiting a vacuum magnetic well.

Fig. 4 compares the magnetic well of the vacuum field and that at finite 〈β〉 . The
finite- 〈β〉 field has a specific magnetic volume that decreases rapidly in the radial direc-
tion, corresponding to a positive well. The magnetic well of the vacuum field is much
smaller, but remains positive.

In Fig. 5 a comparison of the effective ripple between W7-X and the new HELIAS
configuration is shown. The W7-X configuration used here is an early reference design
[39], which has a mirror term of M ∼ 13% directly built into the equilibrium. It can be
seen that by directly targeting ǫeff in the optimisation a further reduction of neoclassical
transport relative to W7-X is possible. For future optimisations it is expected that an
effective ripple up to ∼ 1% will be sufficient.

Fig. 6 shows a plot of the magnetic field strength on the flux surface at s = 1/2 .
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coordinates u , v on the flux surface located at s = 1/2 .

The field structure resembles the one found in [6], where the coil currents of W7-X were
adjusted so as to optimise the confinement of fast particles. Specifically, the plot exhibits
a flat valley of low field around the triangular symmetry plane at v = 1/2 , surrounded
by a peaked maximum in the bean-shaped symmetry plane (v = 0/v = 1) . While it is
conceivable that this field structure would have been found using optimisation criteria
more closely linked to fast particle confinement, this optimisation campaign explicitly
sought to minimise the variation var(B) in the regions of largest and smallest field
strength whilst

keeping |B| monotonic in the toroidal direction between these regions.
The losses of fusion α -particles of the new configuration are compared with those

of the high-mirror reference W7-X equilibrium. The calculations were carried out using
the ANTS code [6]. The equilibria were scaled up to reactor size (1900m3 , B=5T)
and the α -particles were launched on individiual flux surfaces and with a realistic pitch
angle distribution. The particle losses were calculated without collisions. The comparison
between the two cases is shown in Fig. 7.

Generally, it can be seen that for the new configuration the particle losses are reduced
compared with the reference W7-X equilibrium. Only for particles launched at s ≥ 0.8
is the confinement somewhat lower than in W7-X. This is of little relevance since the
production of α -particles in this region is expected to be small.

The temporal evolution of the particle losses highlights the existence of two different
loss channels. Rapid losses are observed for times of typically 1ms. These losses are
caused by deeply trapped particles. The rapid losses are followed by a slow rise of the
loss fraction, sometimes accelerating at t = 0.01s . . . 0.1s. These slow losses are primarily
caused by barely reflected particles. The comparison sows that especially this class of
losses is significantly reduced in the new equilibrium compared with W7-X.

Finally, it deserves to be pointed out that the reduction of fast-particle losses is
strongest in regions with s ≤ 0.6 . This is desirable as it is expected that in this region
the production of α -particles will be highest. Nevertheless, it would be interesting if, as
a result of future optimisations, losses of particles born at greater radii could be reduced,
too.
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5 Optimisation for Simple Coils
Coil complexity is an issue with the potential of deciding the technological feasibility
of a stellarator configuration. In W7-X, for example, the curvature radii of the central
filament of the coils are, in some places, comparable to the lateral dimension of the coil
casing. Curvature radii equal to or smaller than this value would pose a serious obstacle
to the construction of a device. Similar considerations apply to inhomogeneities of the
current distribution required to create a given magnetic configuration. If this current
distribution peaks too strongly in individual locations, the resulting clearances between
coil filaments could become too small to accommodate a finite-size coil cross-section.

Much effort has been made to address this difficulty. Coil optimisation tools like
ONSET, COILOPT [40], FOCUS [41] [42] or REGCOIL [43] are able to seek coil sets
with optimised curvature radii and filament clearances. However, the optimisation of
these properties may impair other peoperties of the resulting magnetic field. Boozer
and Ku have proposed methods to include the response of relevant plasma properties to
slight modifications of the configuration in order to extend the potential for easing coil
construction in directions that do not compromise plasma performance [44] [45] [46].

Questions related to finite coils (actual coil filaments as opposed to a continuous
current distribution) have also been addressed in the past in the scope of the NCSX
design, albeit with a different intention [47] [3]. There, a set of finite coils was included
in the optimisation loop in order to address issues related to flux surface integrity. The
resulting computational process was an integrated optimisation of coils and equilibrium.
While this approach offers a very comprehensive optimisation scope, the computational
effort is enhanced as an optimisation including free boundary equilibrium calculations is
extended over the parameter space of a coil set, which usually is considerably larger than
that of an equilibrium.

We now turn our attention to a new way of reducing coil complexity, with the aim of
doing so not only at the coil design stage when the MHD equilibrium has already been
selected, but to consider coil simplicity already during the design of the equilibrium.
This can be achieved without actually having to design the coils simultaneously with the
MHD equilbrium, but by adding adequate indicators for coil complexity to the equilibrium
target function. A good “guess” for coil complexity can be obtained from NESCOIL by
computing the current sheet on a current-carrying surface (CCS) located at a specified
distance from the plasma boundary. In coil optimisation, the distance between plasma
and coils usually is a compromise between two factors. On the one hand, the ability of
the coil set to impose field components with high Fourier mode numbers on the plasma
is reduced as the distance is increased. On the other hand, the modular ripple caused
by discrete coils gets worse when the coils are located closer to the plasma. This means
that coil complexity, and also the nature of this complexity, in general depends on the
number of independent coil types that are allowed. A design with more coil types will
result in a smaller modular ripple and hence in coils located more closely to the plasma
boundary. This, in turn, implies smaller coil curvatures but, at the same time, smaller
clearances between coils.

In the design of a power plant, sufficient space between coils and plasma must be
provided to accommodate a breeding blanket and neutron shielding. In practice, this
imposes a limit on the minimum clearance between coils and plasma exceeding one metre.
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Because of these considerations, when evaluating coil complexity as described above,
the clearance between this CCS and the plasma boundary should be chosen to be similar
to the distance expected in the final machine design. The resulting approach to assessing
coil complexity proceeds along the following steps:

1. Use SURFGEN to generate a suitable current-carrying surface. This surface should
have a shape resembling that of the plasma boundary and be situated at roughly
constant distance from it. Experience shows that the current distribution found
with NESCOIL then becomes simpler when the shape of the current surface con-
forms with the shape of the plasma boundary, compared with a surface for which
simply the r10, z10 coefficients are increased.

2. Use NESCOIL to compute the current distribution Jc on the current surface.

3. Assess the complexity of this current distribution by evaluating the following prop-
erties:

• Harmonic content of the current potential. This quantity, defined by

H =

√

∑

k,l s
2
kl(k

2 + l2)

c2u + c2v
, (13)

establishes a measure of the higher-order mode content of the current distri-
bution required to reproduce a plasma equilibrium.

• Current compression. Strong peaks in the current density correspond to loca-
tions in the coil set where the clearance between central filaments is particu-
larly small. In order to obtain an indication of these density peaks, the current
compression is defined as

C =
max(Jc)−min(Jc)

max(Jc) + min(Jc)
(14)

• Geodesic and 3d curvature. The geodesic and 3d curvature, κgandκ , of the
current lines are evaluated from the first and second derivatives of the surface
point (r (u, v) , z (u, v)) and of the current potential Φ(u, v) with respect to
the surface coordinates u, v . Using these curvatures, the following quantities
are computed as an indicator of coil curvature:

K = Rmaj

√

∫

A
κ2J2

c dA

I2
(15)

and

Kg = Rmaj

√

∫

A
κ2
gJ

2
c dA

I2
(16)

where Rmaj is the major radius of the configuration.

The normalising factor

I =
√

(I2tor + I2pol) (17)
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represents the total magnitude of the external currents. In this implemen-
tation, Ipol is the external poloidal current (coils) in one machine period.
Likewise, Itor is the external toroidal current.

• Current islands. In a modular coil set, all current lines of the current sheet
should close poloidally. However, the current potential may exhibit local ex-
trema which lead to current lines that close locally around the respective ex-
tremum instead of poloidally. These sets of locally closed current lines are
referred to as “current islands”. If such a current sheet is discretised to form
coils, these current islands would translate into saddle coils. if the construction
of a modular coil set is intended, the presence of islands in the current sheet
is undesirable.

The detection of current islands is carried out by investigating the current
potential for local extrema. These can be detected by seeking locations where
the gradient ∇u,vΦ(u, v) of the current potential becomes opposite to the
regular gradient established by the total external current (cu, cv) .

I =
1

c2u + c2v

∫ ∫

T

(

−
(

∇u,vΦ(u, v) ·
(

cu
cv

))

+ γt

)

dudv (18)

T (x) =

{

0 x < 0
x else

(19)

The parameter γt is a threshold parameter that facilitates detection and sup-
pression of marginal current islands or helps the optimiser avoid that the cur-
rent distribution starts developing island-like features.

6 Example: ESTELL
In this section a quasi-axially symmetric stellarator is presented that was explicitly de-
signed for easy construction, suitable for a university experiment [48, 49]. The intention
is not to design a device located on a scaling path leading to a viable fusion power plant,
but rather to propose a configuration suitable for basic plasma research, including an
exploration of the properties of QA configurations. The configuration is characterised by
the following basic parameters:

• major radius Rmaj = 1.4m

• Np = 2 machine periods

• rotational transform 1/5 < ι(s) < 1/4

• aspect ratio A ∼ 5.3

• plasma volume V = 1.9m

• B = 0.5T

• 〈β〉 ∼ 0.5%
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In order to arrive at a solution with simple coils, the criteria outlined in Sec. 5 were
included in the target function for the equilibrium.

The optimisation was carried out at 〈β〉 = 0 as is it expected the device will be
equipped with little heating power. As β increases, almost any QA configuration will
exhibit an appreciable bootstrap current, which will exert a considerable influence on
the equilibrium. In a final design of this device, these effects will have to be addressed
by additional coils, in particular a set of PF coils to counteract the outward Shafranov
shift of the plasma. This design step is, however, beyond the scope of this paper and is
not important for, or directly related to, the general methodology presented here. The
Fourier coefficients of the optimised plasma boundary are listed in Table 1.

Figure 8 shows a set of cross sections of the equilibrium at toroidal coordinates v =
0/0.25/0.5 . It can be seen that the stellarator shaping of this configuration is modest,
which is essentially due to the relatively small rotational transform per period.

Fig. 9 shows the ι -profile of the configuration at 〈β〉 = 0 . The resonance at ι = 2/10
is avoided.

Fig. 10 shows the Fourier spectrum in Boozer coordinates of the magnetic field
strength. It can be seen that the configuration approximates quasi-axisymmetry with
very good accuracy. The largest non-QA component only reaches a value of B2,1 ∼ 2%
at the plasma boundary and drops, like all Bmn except for B1,0 , to a very small level
inside the plasma.

After the optimised equilibrium had been produced, a coil design was carried out
using the ONSET suite of codes as described in the previous section. A design with
6 coil types was chosen since in Ref. [49] it had been shown that, for a very similar
design, the effective ripple improves noticeably up to 6 coil types while showing only
little improvement beyond 6 coils. Fig. 11 shows a view of the coil set obtained. The
maximum curvature of any central filament is κ = 4.15m−1 , which is modest for a
machine of this size. The smallest clearance between any two filaments is d ∼ 13.6cm .

Fig. 12 compares the effective ripple of the fixed-boundary equilibrium obtained from
the optimisation with that of the field produced by the coil set. It can be seen that ǫeff
for finite coils is typically a factor 2 larger than for the fixed-boundary VMEC solution.
Nevertheless, it remains small in comparison with the effective ripple reported for many
other stellarator configurations [50].

7 Conclusions
Stellarator designs viable for a power plant need to be refined beyond the state of many
current devices. The methods presented in this paper address two issues that are of prac-
tical relevance for the required optimisation procedures. The simultaneous optimisation
of vacuum and finite- 〈β〉 fields yields an efficient way to keep track of the behaviour
of the configuration under different plasma conditions. More importantly, the vacuum
magnetic well offers a proxy for Mercier stability of the configuration.

The inclusion of coil complexity addresses one of the most important difficulties in
the design of stellarators. Targeting this aspect early during the design of the equilib-
rium allows the optimiser the most comprehensive degree of information while seeking a
favourable balance between coils complexity and other parameters.
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Figure 11: Birds eye view of the optimised coil set.
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m n rmn / m zmn / m
0 0 1.4e+00 0.0
0 -1 -1.2545e-01 9.4567e-02
0 -2 8.3293e-03 -1.3073e-03
0 -3 -9.7246e-05 5.5650e-04
0 -4 -6.5443e-05 5.9706e-05
1 2 -8.1374e-05 2.6490e-05
1 1 -1.0004e-02 -4.3852e-03
1 0 2.6098e-01 2.9895e-01
1 -1 9.8954e-02 -9.9384e-02
1 -2 -4.1320e-03 3.6010e-03
1 -3 -7.8717e-04 1.4219e-04
1 -4 -9.5298e-06 -5.9671e-06
2 3 -3.2841e-06 -1.2213e-06
2 2 -2.5256e-03 -3.8920e-03
2 1 6.6229e-03 7.2629e-03
2 0 1.0945e-02 -3.1021e-03
2 -1 -2.1751e-02 -1.5862e-02
2 -2 9.6671e-03 -8.5811e-03
2 -3 3.7590e-03 -2.3013e-03
2 -4 -1.0702e-04 3.4083e-04
3 1 -2.2935e-04 1.0566e-04
3 0 -1.7837e-02 -1.3451e-02
3 -1 -4.9713e-04 -1.3688e-03
3 -2 2.0095e-04 -7.7560e-03
3 -3 1.8512e-03 -2.5299e-03
4 -2 8.5552e-04 -1.3627e-03

Table 1: Fourier coefficients of the plasma boundary of ESTELL.
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The code, ROSE, used to implement these improvements and to carry out the opti-
misations requires further extensions to be able to carry out more comprehensive optimi-
sations. The immediate goal is the addition of a full MHD stability analysis, including a
ballooning analysis, to the target function. It should however be noted that linear MHD
stability is perhaps not strictly necessary for good plasma performance in stellarators.
There are plenty of experimental results suggesting that other optimisation criteria may
be more important [1].

The configurations presented above, finally, need to receive a more comprehensive
optimisation. This holds in particular for the QI configuration for which. in addition to
improved fast-particle confinement, the complexity of the coil set needs to be included.
Finally, quasi-helically symmetric configurations deserve a through exploration.
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