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Introduction

Kinetic modeling has recently been presented [1, 2] for predicting the penetration of resonant
magnetic perturbations (RMPs) into a tokamak plasma. A substantial reduction in computation
time would be possible if part of the full kinetic problem could be solved by a less complex
model. One candidate for such a method would be the reduction to ideal magnetohydrodynamics
(MHD) that is expected to be valid away from resonant surfaces. Before this can be realized,
it is necessary to cross-validate both models in their common range of applicability. Here the
comparison between kinetic and MHD modeling of the plasma pressure response to a test field
representing the non-resonant part of a resonant magnetic perturbation (RMP) is presented as
well as a computation for the actual ELM mitigation coils in ASDEX Upgrade.

Plasma models

A linear ideal MHD model has been chosen in such a way that it can be used as a drop-in
replacement for the gyrokinetic equation solver presented in [2] and is defined on the same
field-aligned triangular grid in the poloidal plane in cylindrical coordinates (R,ϕ,Z). Based on
an equilibrium c∇p0 = j0×B0 for pressure p0, current density j0 and magnetic field B0, toroidal
harmonics pn, jn and Bn are introduced for a linear order perturbation. Perturbed quantities
fulfill the linearized force balance equation and current divergence-freeness,

c(∇pn + inpn∇ϕ) = j0×Bn− jn×B0, (1)

∇ · jpol
n + in jϕ

n = 0. (2)

From those equations pn and jn can be computed for a given Bn, corresponding to half an
iteration step in [2]. Projecting Eq. (1) towards B0 and inserting the unperturbed force balance,
pn is computed first by solving the resulting magnetic differential equation in the poloidal plane
along each edge loop on a field-aligned mesh in a finite difference scheme. Eq. (2) has the form
of a conservation law for jpol

n that is solved on a face loop between two edge loops by a finite
volume scheme. There the toroidal current perturbation jϕ

n is expressed via jpol
n and the already

known pn by projection of Eq. (1) to element edges in the poloidal plane.

For kinetic computations a linear δ f Monte Carlo model using a geometric integrator [2, 3, 4]
is applied in its “collisionless” form, computing orbits for only one bounce period with a Krook
collision operator. Such a simplification of the collision model can be done in most plasma
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Figure 1: Ideal MHD re-
sponse pressure pn to non-
resonant field. Left: real part,
right: imaginary part.

volume except for the narrow resonant layers around rational flux surfaces where the parallel
wavelength of the perturbation field strongly increases and becomes comparable or larger than
the mean free path. Both, parallel p‖ and perpendicular component p⊥ of the Chew-Goldberger-
Low pressure tensor are computed directly from the time-averaged test particle distribution.

Results

Computations have been performed in the typical parameter range of ASDEX Upgrade (see [5])
and a perturbation with toroidal harmonic n = 2. All parameter profiles were linear functions of
poloidal flux with central density 5 ·1013 cm−3, temperature of 3keV and electrostatic potential
of 2kV. Results are shown as contour plots of n = 2 toroidal mode Fourier amplitudes for the
single-iteration plasma pressure response pn, p‖n, p⊥n in arbitrary units and lengths in cm.

Figs. 1-4 show the response to an artificial fully non-resonant perturbation field defined by
Bψ ∝ R−2. Parallel pressures from kinetic computations for both, electrons and ions in Fig. 2
agree well to the MHD scalar pressure in Fig. 1. However, the perpendicular kinetic pressure
response in Fig. 3 shows structures of different amplitude and phase. Increasing the equilibrium
radial electric field Er by factor 10 (Fig. 4) restores an ideal MHD-like response for electrons,
but not for ions, where the banana-orbit-like shape of the response becomes even more apparent.

It has been shown [5] that for a reactor-relevant low-collisionality shot in ASDEX Upgrade non-
ambipolar transport and neoclassical toroidal viscosity (NTV) for ions was mainly governed by
“collisionless” resonant transport regimes [6]. Such regimes are divided into the superbanana
plateau regime, occuring for a radial electric field Er close to zero, and the remaining resonant
plateau regime due to drift-orbit resonances that strongly affect ion NTV in a wide range of
values for Er [7]. The resonant plateau is much weaker for electrons due to their higher bounce
and collision frequencies. An increase in Er moves the superbanana resonance to the high energy
tail of the distribution function thus making it irrelevant, while keeping and even enhancing a
resonant plateau for ions.

Fig. 5 shows the real part of the pressure response to a resonant magnetic perturbation in the
ASDEX Upgrade tokamak with ELM mitigation coils for MHD and kinetic model. Here the
resonant structure of the parallel pressure response p‖ agrees well between ideal MHD and
electron kinetics, where the latter is slightly damped due to collisions. However, the resonant
response of p‖ for ions, having a substantially larger orbit width, shows visible differences in
the distribution of structures around resonant surfaces. Results for the imaginary part are similar
and as in the non-resonant case p⊥ is affected more strongly, which is not plotted here.
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Figure 2: Kinetic parallel re-
sponse pressure p‖n to non-
resonant field. Left: real part,
right: imaginary part, top:
electrons, bottom: ions.

Figure 3: Kinetic perpendic-
ular response pressure p⊥n

to non-resonant field. Left:
real part, right: imaginary
part, top: electrons, bottom:
ions, structures visible for
both.

Figure 4: Kinetic perpendic-
ular response pressure p⊥n

to non-resonant field, ra-
dial electric field increased
by factor 10. Left: real
part, right: imaginary part,
top: electrons, bottom: ions.
Orbit-like structures disap-
pear for electrons but remain
for ions.
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Figure 5: Real part of response pressure to resonant field of ELM mitigation coils in ASDEX
Upgrade. Left: MHD, middle: kinetic electron p‖ right: kinetic ion p‖ with visible structure.

Conclusion

A comparison between the pressure response due to external magnetic perturbations has been
performed between low-collisional kinetics and ideal MHD. The presented results show that the
parallel part of the kinetic pressure response due to a non-resonant perturbation agrees well with
the ideal MHD pressure response. The perpendicular pressure response, which determines per-
turbation of diamagnetic currents, is however affected by kinetic effects that are interpreted to
result from orbital resonances. This is supported by the disappearance of the effect for electrons
by increasing the radial electric field, thereby removing the superbanana resonance. Structures
specific to the kinetic model are also visible in the response to a resonant magnetic perturbation
and in contrast to the non-resonant case appear also in the parallel ion pressure. This is most
likely linked to the larger orbit width of ions. Further investigations on a fully iterated solution
are required to verify the differences between ideal MHD and kinetic plasma response.
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