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ABSTRACT

Motivation: Unique sequence regions are associated with genetic

function in vertebrate genomes. However, measuring uniqueness, or

absence of long repeats, along a genome is conceptually and com-

putationally difficult. Here we use a previously published variant of

the Lempel-Ziv complexity, the match complexity, Cm, and augment it

by deriving its null distribution for random sequences. We then apply

Cm to the human and mouse genomes to investigate the relationship

between sequence complexity and function.

Results: We implemented Cm in the program macle and show

through simulation that the newly derived null distribution of Cm is

accurate. This allows us to delineate high-complexity regions in the

human and mouse genomes. Using our program macle2go, we find

that these regions are two-fold enriched for genes. Moreover, the

genes contained in these regions are more than 10-fold enriched for

developmental functions.

Availability: Source code for macle and macle2go is available from

www.github.com/evolbioinf/macle and

www.github.com/evolbioinf/macle2go, respectively; Cm

browser tracks from guanine.evolbio.mgp.de/complexity.

Contact: haubold@evolbio.mpg.de

INTRODUCTION

Since the 1960s DNA reassociation kinetics have been used to

quantify the repetitiveness of DNA. In a pioneering study of the

reassociation kinetics of CpG islands, Bird et al. (1985) discov-

ered that the 1% of the mouse genome making up such islands

was unique in the sense that they had no matches elsewhere in the

genome. In subsequent years, CpG islands attracted a huge amount

of interest as they are associated with the promoters of housekeep-

ing genes (Bird, 1986; The ENCODE Project Consortium, 2012)

and influence chromatin structure (Wachter et al., 2014). In addi-

tion, Elango and Yi (2011) found that promoters containing CpG

islands longer than 2 kb were enriched for developmental genes. In

the present study we directly search for unique regions by delineat-

ing intervals where exact matches to other parts of the genome are

short.

Uniqueness and repetitiveness are complementary, and Haubold

and Wiehe (2006) proposed an early measure of genome repetitive-

ness, the Ir. This was based on the lengths of matches starting at

every position in the genome. Regions with similarity elsewhere

in the genome were characterized by long matches, unique re-

gions by short matches. In a sliding window analysis they found

that some regions in the human genome including the Hox clus-

ters were characterized by extremely low Ir. The Hox genes encode

transcriptional regulators that specify the anterior/posterior axis in

all animals (Raff, 1996). Moreover, in the publication of the first

draft of the human genome the Hox clusters had been singled out

as containing very few transposon insertions compared to the rest

of the genome (International Human Genome Sequencing Consor-

tium, 2001). Recent transposon insertions would create long exact

matches and hence increase the Ir.
As a statistic, the Ir has two disadvantages: Its distribution is un-

known, and its implementation too slow for convenient genomics.

When Haubold et al. (2009) derived the null distribution of match

lengths for a random sequence, where all bases are independently

drawn given the GC content, this opened the way for constructing a

match-based statistic with known null distribution.

The classical match-based statistic for strings is the Lempel-Ziv

complexity (Lempel and Ziv, 1976). It is computed from the de-

composition of a string, S, into a set of substrings, S[i...j], where

S[i...j] is the longest substring that has an exact match to the left

of S[i]. The number of such maximal matches divided by the length

of S is the Lempel-Ziv complexity. In a refinement of this mea-

sure, Odenthal-Hesse et al. (2016) proposed the match complexity,

Cm, where maximal matches of S[i...j] can occur to the left and the

right of S[i]. In contrast to the Ir and the Lempel-Ziv complexity,

Cm has known bounds. Its lower bound is 0 for sequences with the

minimum number of two matches and its upper bound is reached in

long random sequences, for which the expectation of Cm is 1.

Here we derive the null distribution of Cm, which allows us to de-

lineate unique genomic regions. These are defined as regions where

the Cm is indistinguishable from that found in random sequences.

The computation of Cm, like that of the Ir and the Lempel-Ziv

complexity, is based on suffix arrays (Ohlebusch, 2013, p. 59ff).

A suffix array is essentially an index to some text, in this case the
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Table 1. Enhanced suffix array of S = CGGGCGGGCT

i sa[i] lcp[i] isa[i] suf[i]

1 1 -1 1 CGGGCGGGCT

2 5 5 8 CGGGCT

3 9 1 6 CT

4 4 0 4 GCGGGCT

5 8 2 2 GCT

6 3 1 9 GGCGGGCT

7 7 3 7 GGCT

8 2 2 5 GGGCGGGCT

9 6 4 3 GGGCT

10 10 0 10 T

nucleotide sequence of a genome. A standard method of making

programs based on this technology fast, is to separate index compu-

tation, which may take hours, from index querying, which is often

a matter of seconds. Our implementation of Cm, macle for MAtch

CompLExity, makes use of this separation leading to querying times

for the complete human genome of half a minute or less.

We apply macle to the human and mouse genomes. Since we

are particularly interested in regions unique within these genomes,

we first need to establish by simulation that the newly derived null

distribution of Cm is accurate. Next, we scan the human and mouse

genomes and ask two questions: First, are highly complex regions

enriched for promoters? Second, are the genes with promoters in

high-complexity regions enriched for particular functions? We find

that high-complexity regions are mildly enriched for promoters, but

that these promoters are strongly enriched for developmental genes.

METHODS & DATA

The Match Complexity

The match complexity, Cm, was first described by Odenthal-Hesse

et al. (2016). Consider a string S = S[1...L] and extend it by S[L+
1] = †, where † is a unique character. Given the first match factor

S[1...F1], where F1 = max{k : S[1...k] matches elsewhere in S},
we define recursively the n-th match factor S[Fn−1+1...Fn], which

ends at Fn = max{k : S[Fn−1 + 1...k] matches elsewhere in S}.
We stop with the N -th match factor if FN = L and set NL :=
N . For example, S = CGGGCGGGCT has NL = 3 factors,

CGGGC.GGGC.T.

Following Odenthal-Hesse et al. (2016), the match decomposi-

tion of a string is computed from its sorted suffixes. Table 1 shows

the sorted suffixes of S as column suf[i]. The suffix array, sa[i], ab-

stracts from this the starting positions. It is “enhanced” by the largest

common prefix array, lcp[i], which denotes the length of the longest

prefix match between suf[i] and suf[i − 1]; lcp[1] = −1, as there

is no suffix to compare with (Ohlebusch, 2013, p. 79ff). To decom-

pose S, the lcp array is traversed in the order in which the suffixes

appear in S. The mapping between positions in S and in sa is the

inverse suffix array, isa[sa[i]] = i. As summarized in Algorithm 1,

the longest match starting at position i is determined by looking up

lcp[isa[i]] and lcp[isa[i] + 1]. The greater of these is the length of

the desired match factor. The algorithm reports the factor, skips it,

and repeats until it has traversed the entire sequence.

Algorithm 1 Computing the match factor decomposition

Require: S {input sequence}
Require: lcp {longest common prefix array of S}
Require: isa {inverse suffix array of S}
Require: n {length of S}
Ensure: Match decomposition

1: i← 1 {set index to first position in S}
2: lcp[n+ 1]← 0 {prevent out of bounds error}
3: while i ≤ n do

4: l1 ← lcp[isa[i]]
5: l2 ← lcp[isa[i] + 1]
6: j ← i+max(l1, l2, 1)− 1
7: reportMatchFactor(S[i...j])
8: i← j + 1

If we apply Algorithm 1 to the enhanced suffix array of S in Ta-

ble 1, we first look up lcp[isa[1]] = lcp[1], which is 0, and lcp[2],
which is 5. Hence the first match factor S[1...5] is reported and

the algorithm repeats by looking up lcp[isa[6]] = lcp[9] = 4 and

lcp[10] = 0. The second factor S[6...9] is reported, and so on.

Computation of the lcp array is carried out in time propor-

tional to the length of the corresponding sa by first computing

its isa (Ohlebusch, 2013, p. 79ff). In practice, suffix array con-

struction consumes the bulk of the resources necessary for match

decomposition.

In order to define Cm, we need the following three quantities for

a sequence, S, of length L: First, Co = NL/L is the observed num-

ber of match factors per base; second, Ci = 2/L is the theoretical

minimum; third, Ca is the expected match count per base in a ran-

dom sequence of length L with the same GC-content as S, which

we explain below. With these quantities, we define

Cm =
Co − Ci

Ca − Ci

.

Subtraction of Ci ensures that Cm is bounded by 0 and an expecta-

tion of 1.

To compute Ca, we use the distribution of the lengths, Y ∗

i , of

the longest matches starting at position i in a random sequence of

GC-content 2p (Haubold et al., 2009):

P(Y ∗

i < x) ≈
∑

k

(

x

k

)

pk(1− pk)L. (1)

Here, k is the vector of nucleotide counts, k = (kA, kC, kG, kT),
which sum to the threshold length, x = kA + kC + kG + kT; and p
is the vector of nucleotide frequencies, p = (0.5− p, p, p, 0.5− p).

From equation (1) we compute the mean, µ, and variance, σ2, of the

match length distribution:

µ := 1/Ca = E [Y ∗

i ] =
L
∑

x=1

x(P(Y ∗

i < x+ 1)− P(Y ∗

i < x)),

σ2 := V [Y ∗

i ]

=
L
∑

x=1

x2(P(Y ∗

i < x)− P(Y ∗

i < x− 1))− (E [Y ∗

i ] + 1)2.

Given the match decomposition of, say, the human genome, we

wish to compute local values of Cm by sliding a window of length
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W across the decomposition, and computing Co, Ci, and Ca with

respect to the current window: Co = NW /W , Ci = 2/W , and

Ca = 1/µ.

We define highly complex regions as those that are indistinguish-

able from random. In order to detect such regions, we need to

calculate appropriate threshold values, or quantiles, of Cm. For this

purpose we model the null distribution of Cm by a normal distribu-

tion. This is justified by assuming that L ≫ W ≫ 1. Now let Ni

denote the number of factors up to position i. Then (Ni)i=0,1,2,...

is a renewal process, since its increments are—by assumption—

independent and equally distributed according to the distribution of

Y ∗

i . According to the central limit theorem for renewal processes

(Serfozo, 2009, Example 67),

NW ≈
W

µ
+BW ,

where BW is normally distributed with mean 0 and variance

Wσ2/µ3, BW ∼ N(0, σ2W/µ3). This leads to

Cm ≈
µ

W
NW ≈ 1 +

µ

W
BW ∼ N

(

1,
σ2

µW

)

, (2)

which allows us to approximate quantiles for Cm using the quantile

function

F−1(p) = 1 +
√
2
σ2

µW
erf

−1(2p− 1),

where p is the probability covered up to that point, say 5%, and erf
is the error function.

Implementation

We used our program macle to compute Cm in sliding windows

of length 10 kb, which advanced in steps of 1 kb, thus generating

sets of overlapping windows. Macle is written in C++ and calls

the software library libdivsufsort (available from github)

for suffix array computation. This library implements one of the

fastest suffix sorting algorithms known, the divSufSoft algorithm

recently described by Fischer and Kurpicz (2017). Given the human

genome in FASTA format, it is first indexed, and can then be queried

repeatedly.

We wrote the program macle2go to annotate the output of

macle. Macle2go implements three functions, quantile,

annotate, and enrichment.

Quantile implements the quantile computation outlined above.

Annotate first identifies the n windows of a given minimum

Cm. It then finds the go genes whose promoters intersect one or

more of these n windows; we defined the promoter of a gene as

the 4 kb interval centered on its transcription start site (Saxonov

et al., 2006). Annotate also repeatedly draws n random windows

to determine the number of genes expected by chance alone, ge.

In addition, it counts the number of times, f , that n windows are

found containing ≥ go genes in i iterations. Then the P -value of

H0 : go = ge is P = f/i, or P < 1/i, if f = 0.

Enrichment connects the genes found by annotate to the

functional categories of the gene ontology (GO) (The Gene On-

tology Consortium, 2000). The result is a list of GO terms and

the number of genes observed in that category. Enrichment

also carries out a randomization procedure similar to that used by

annotate to test the significance of finding more genes than

expected in a particular GO category.
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Figure 1. The simulated and expected null distribution of Cm. The simu-

lated distribution was computed from a 100 Mb random sequence with a 10

kb sliding window. The expected distribution is given in equation (2).

Data

Human genome version GRCh38.p2 and mouse genome ver-

sion GRCm38.p3 were used throughout. The RefGene annota-

tion data for both organisms was downloaded from the UCSC

genome browser. To connect genes to GO-terms, we used the files

Homo sapiens.gene info, Mus musculus.gene info,

and gene2go from the NCBI website. In addition, we downloaded

CpG islands from the UCSC genome browser. All the primary data

files mentioned here are posted together with our Cm browser tracks

for human and mouse.

RESULTS

Null Distribution

To check the accuracy of the null distribution in equation (2), we

simulated a random 100 Mb sequence and carried out a sliding win-

dow analysis with 10 kb windows. Figure 1 shows the distribution

of local Cm values compared to equation (2). The fit is not perfect,

but reasonable.

Time and Memory Consumption

We investigated the resource consumption of macle using simu-

lated sequences. Our test computer ran Ubuntu 18.04 on Intel Xeon

2.10 GHz processors with 256 GB RAM. Macle first computes a

permanent index, which can then be queried repeatedly. Figure 2

shows that index construction is slightly more than linear in the

length of the input sequence. Still, 1 Mb per s can be taken as a

rule of thumb. Index traversal, on the other hand, is expected to take

time proportional to index length, which in turn is proportional to

sequence length. Figure 2 shows that querying the index by sliding

3
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Figure 2. Run time of macle as a function of sequence length. Measure-

ments made from single random sequences.

a window across the entire input sequence is indeed linear in se-

quence length and takes 1.15 s for 256 Mb, while the corresponding

index construction takes 302.3 s, that is, over 250 times longer.

Memory consumption of index construction and querying is

strictly linear in the length of the input sequence (not shown). Con-

struction consumes approximately 35 MB per Mb, querying four

times less, 8.4 MB per Mb.

Application to the Human & Mouse Genomes

Indexing the 3.1 Gb of the human genome took 1 h, 19 min, 3 s

and 128.2 GB RAM. Similarly, indexing the 2.7 Gb of the mouse

genome took 1 h, 8 min, 33 s and 111.1 GB RAM. The first thing we

calculated off these indexes was genome-wide Cm, which is 0.8071

in human and 0.7868 in mouse. In other words, the mouse genome

is overall slightly less complex, or more repetitive, than the human

genome. However, these genome-wide values hide a large diver-

sity of chromosome-specific complexity. Figure 3 shows the Cm for

the 19 mouse autosomes, the 22 human autosomes, and their sex

chromosomes. In humans the chromosome-wide complexity varies

between 0.40 in the Y chromosome and 0.85 in chromosome 3.

Interestingly, shorter chromosomes have significantly lower com-

plexity than longer chromosomes with a correlation of r = 0.61
(P = 1.5 × 10−3). In mouse, Cm ranges from an extraordinarily

low Cm = 0.06 in the Y chromosome to Cm = 0.86 in chro-

mosome 11. In contrast to human, there is no correlation between

chromosome length and complexity (r = 0.17, P = 0.45). Notice

also that in mouse the X chromosome (Cm = 0.68) has the second

lowest complexity, while the human X chromosome (Cm = 0.76)

has a complexity similar to that of equally long autosomes.

We now zoom into the genomes by carrying out sliding window

analyses. Figure 4 shows the frequency distribution of Cm in 10

kb sliding windows across the human and mouse genomes. This is

bimodal with a large mode at 0.91 representing the bulk of both

genomes, and a smaller mode at 0.05 for highly repetitive regions.
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Figure 3. Match complexity of human and mouse chromosomes as a func-

tion of their length. Some labels are superimposed, especially human

chromosomes 10, 11, and 12, and mouse chromosomes 8 and 10.
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Figure 4. Histogram of Cm values across the human and mouse genomes

for 10 kb sliding windows.

Notice that mouse has a larger proportion of low-complexity regions

than human, presumably due to the extremely low complexity of its

Y chromosome (Figure 3).

Next, we investigate how the Cm values summarized in Figure 4

are distributed along individual chromosomes. Figure 5 shows Cm

along human chromosome 2, which contains one of the four hu-

man Hox clusters, HoxD, at 176.2 Mb. The green horizontal line

at Cm = 0.9954 is the 5% quantile of the Cm distribution in

random sequences obtained from equation (2) and delineates high-

complexity regions. There are 79 such regions ranging from 10 kb

to 77 kb and totaling 1.2 Mb, or 0.50% of chromosome 2. Figure 5
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Figure 5. Match complexity, Cm, in 10 kb sliding windows along human chromosome 2. The green horizontal line marks the complexity threshold

(equation (2)) and the vertical bars the regions with complexity greater or equal to that threshold. C: centromere; HoxD: location of the HoxD gene cluster.

Figure 6. High-complexity regions and Cm in sliding windows (red), CpG islands (green), condensed genes (blue), and RepeatMasker annotations around

the human HoxD cluster, chr2:176,000,000–176,300,000, rendered in the UCSC genome browser.

depicts these regions as vertical lines. At the other extreme of the

Cm distribution is the centromere, which is characterized by 4 Mb

of very low Cm.

In order to visualize how Cm highlights genes, Figure 6 shows

our Cm results integrated with the UCSC genome browser in the

HoxD region. Notice the two 100 kb-spanning regions of high com-

plexity. These overlap a large portion of the HoxD genes shown as

the “GENCODE” track. They also correspond to a high density of

CpG islands and a low density of RepeatMasker elements.

In total, the human genome contains 1234 high-complexity inter-

vals constructed by merging the overlapping elements among 5867

high Cm windows (Table S1). They range in length from 10 kb

to 77 kb, totaling 17.3 Mb or 0.56% of the genome. The three

longest regions, chr2:176,066,579–176,143,578, chr7:27,135,698–

27,208,697, and chr12:53,948,018–54,010,017 are centered on

HoxD, HoxA, and HoxC, respectively. The remaining Hox cluster,

HoxB, is covered by two intervals, chr17:48,573,129–48,608,128

and chr17:48,609,129–48,634,128. The 1234 intervals contain 1443

genes, while the expected number of genes based on repeatedly

drawing 5867 random windows is 876.55. This 1.65-fold gene

enrichment is highly significant (P < 10−4).

In mouse there are 2908 high-complexity windows that merge

into 772 distinct intervals (Table S2). These range in length from 10

to 56 kb totaling 10.1 Mb or 0.37% of the mouse genome. We were

surprised to find that the 56 kb interval chr2:76,703,660–76,759,659

contains no promoter. It does, however, intersect the gene encoding

titin, Ttn, a component of muscles (chr2:76,703,983–76,982,547).

Homozygous mutations in Ttn lead to developmental defects and

premature death (www.informatics.jacx.org). In total, the

promoters of 958 genes are found in these intervals, compared to an

expectation of 401.94. This amounts to a 2.38-fold enrichment of

genes, which include members of HoxA, HoxB, and HoxD; HoxC is

missing, as its Cm remains slightly below the cutoff.

Functional Enrichment

The 1443 human promoters in high-complexity regions cluster

in 211 biological processes with at least 10 members. We ran

our Monte-Carlo procedure to test whether the observed number

of genes in a particular GO category is larger than expected by

chance alone with 108 iterations. This resulted in 45 categories

enriched with maximal significance (P < 10−8). When Bonferroni-

corrected for the 211 tests, this amounts to P < 2.1×10−6. The de-

gree of enrichment ranged from 18.7 to 2.1 (Table S3). The enriched

categories are involved in cell differentiation, morphogenesis, and

organ development. Table 2 lists the top 10 enriched categories.

The genes underlying these functional categories contain many

well-known transcription factors, including Lhx in the category

“spinal cord association neuron differentiation”, Fox in “dopamin-

ergic neuron differentiation”, and Hox in “anterior/posterior pattern

specification” (Table S3).

The 958 mouse genes in high-complexity regions cluster in 173

processes with at least 10 members, of which 51 are maximally sig-

nificant (P < 10−8 × 173 = 1.7× 10−6) with enrichment factors
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Table 2. Functional enrichment in human high-complexity regions, P <

2.1× 10
−6

# Process C O E O/E

1 spinal cord association neuron diff. 13 11 0.6 18.7

2 dopaminergic neuron diff. 21 14 1.0 14.0

3 neuron fate spec. 15 11 0.8 13.8

4 cell fate determination 17 12 0.9 13.4

5 middle ear morph. 20 10 1.0 10.5

6 anterior/posterior pattern spec. 80 41 4.0 10.2

7 embryonic skeletal system morph. 38 20 2.0 10.1

8 thyroid gland dev. 24 13 1.3 10.1

9 ...branching...in ureteric bud morph. 19 10 1.0 10.1

10 branching...in ureteric bud morph. 43 21 2.2 9.7

C: count of genes in genome; O: observed number of genes; E:

expected number of genes; diff.: differentiation; spec.: specification;

morph.: morphogenesis; dev.: development.

Table 3. Functional enrichment in mouse high-complexity regions, P <

1.7× 10
−6

# Process C O E O/E

1 cell fate determination 18 10 0.7 14.4

2 dopaminergic neuron diff. 29 13 1.1 11.8

3 tissue dev. 27 11 1.0 11.3

4 anatomical structure formation... 27 12 1.1 11.3

5 ventricular septum morph. 38 16 1.4 11.1

6 branching...in blood vessel morph. 40 16 1.5 10.8

7 embryonic forelimb morph. 36 15 1.4 10.5

8 embryonic skeletal system dev. 43 17 1.7 10.2

9 embryonic skeletal system morph. 56 20 2.0 9.9

10 metanephros dev. 37 13 1.3 9.8

C: count of genes in genome; O: observed number of genes; E:

expected number of genes; diff.: differentiation; morph.: morpho-

genesis; dev.: development.

ranging from 14.4 to 2.8 (Table S4). Again, they are involved in

a broad range of developmental processes. Table 3 lists the top 10

enriched categories. As in the case of human, the genes underlying

these functional categories contain numerous widely studied tran-

scription factors, such as Pax in “cell fate determination”, Gata

in “tissue development”, and Hox in “embryonic skeletal system

morphogenesis”.

Elango and Yi (2011) reported that CpG islands longer than 2 kb

are also associated with developmental genes. So we asked, whether

our high-complexity regions coincided with CpG islands in general,

and specifically with long CpG islands. In human, 88% of high-

complexity regions intersect one or more of the 30,477 CpG islands.

In mouse almost the same proportion, 87%, of high-complexity

regions intersect one or more of its 16,023 CpG islands. This propor-

tion drops if we restrict the analysis to long CpG islands, of which

the human genome contains 1426. Only 35% of high-complexity re-

gions intersect a member of this class of CpG islands. Similarly, in

mouse only 19% of high-complexity regions intersect a long CpG

island.

DISCUSSION

The relationship between raw nucleotide sequence and its biological

function has been at the center of molecular biology since the dis-

covery of the double helix. An early insight was that the genomes

of eukaryotes are riddled with non-functional sequences, especially

transposons. Devising fast methods for finding repetitive elements

has been a major concern of bioinformatics, as genomes are rou-

tinely delivered with repeats annotated (Figure 6) or masked (Bao

et al., 2015). In human, approximately half the genome is masked.

Instead of identifying repeats, we have concentrated on finding

repeat-free regions, because uniqueness as defined by reassocia-

tion kinetics has been linked to CpG islands for decades (Bird

et al., 1985), and CpG islands are functional markers in vertebrate

genomes. We measure uniqueness using the match complexity, Cm

(Odenthal-Hesse et al., 2016), thereby effectively carrying out an

in silico reassociation experiment. Cm is calculated by augmenting

suffix array techniques (Algorithm 1) with the mathematics of the

match length distribution summarized in equation (2). This equa-

tion is based on the assumption that the number of factors in a long

window is approximately normally distributed, which fits the simu-

lations (Figure 1). Equipped with this formalism we computed Cm

across the human and mouse genomes, and connected the results

with genes and their functions.

Our program macle is designed for efficiency. The enhanced

suffix array it computes is written to disk in binary form to allow

querying of arbitrary regions hundreds of times more quickly than

the one-off index construction (Figure 2). However, further speedup

of index computation might be forthcoming due to the recent pub-

lication of a parallel version of the divSufSort algorithm on which

macle is based (Labeit et al., 2016). In contrast, the hypothesis

testing in macle2go already runs in parallel, as the problem of re-

peatedly drawing sets of windows easily lends itself to this type of

optimization.

When querying individual chromosomes, the Cm values for hu-

man in Figure 3 are more widely scattered than for mouse. The one

exception to this rule is the mouse Y chromosome, which is a true

outlier among the chromosomes studied with Cm = 0.06. Corre-

spondingly, the sliding window graph of this chromosome contains

long stretches of low Cm and looks different from all other chromo-

somes (see online browser tracks). This might come as a surprise

since the male-specific region of the Y chromosome is 99.9% eu-

chromatic and contains approximately 700 protein-coding genes

(Soh et al., 2014). However, these genes form an “ampliconic”

structure consisting of recently duplicated copies of genes involved

in spermatogenesis.

The mouse Y chromosome illustrates a peculiarity of the Cm: Re-

gions with low complexity are usually assumed to be gene-poor and

heterhochromatic. The mouse Y chromosome shows that this need

not be the case. A low Cm merely indicates a recent duplication,

regardless of the length of the region involved, or its copy number.

In contrast, high Cm, the focus of this study, has an unambiguous

interpretation: It indicates the absence of recent duplication, perhaps

due to selection against it. Approximately 0.50% of chromosome 2

is high-complexity (Figure 5), which is close to the 0.56% high-

complexity across the entire human genome. Haubold and Wiehe

(2006) had previously observed in a less systematic fashion that

such regions contained developmental genes such as members of

the four Hox clusters.
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We carried out a comprehensive sliding window analysis to study

this rigorously. Its most basic parameter is window length, which

we arbitrarily set to 10 kb, as the enrichment for developmental

genes remains highly significant in mouse and human regardless

of whether windows of 5 kb, 10 kb, or 20 kb are analyzed: In

humans the most highly enriched categories for 5 kb and 20 kb

windows are “spinal cord association neuron differentiation”, and

“proximal/distal pattern formation”, respectively (Tables S5 and

S6), which fits with the top category for 10 kb windows, which

like for 5 kb windows is “spinal cord association neuron differen-

tiation” (Table 2). Similarly, in mouse the most highly enriched

category detected with 5 kb windows is “embryonic skeletal system

development”, and with 20 kb windows “anterior/posterior pattern

specification” (Tables S7 and S8). These developmental categories

fit the category most highly enriched using 10 kb windows, “cell

fate determination” (Table 3).

However, with increasing window length the high-complexity

fraction of the genome decreases. In human, 5 kb windows cover

63.8 Mb, 10 kb windows 17.3 Mb, and 20 kb windows cover merely

4.7 Mb (for raw data see Tables S9, S1, and S10). Similarly, in

mouse, 5 kb windows cover 47.8 Mb, 10 kb windows 10.1 Mb, and

20 kb windows cover merely 1.0 Mb (Tables S11, S2, and S12). So

the numerical details of our analysis depend strongly on the window

size, but not the general conclusion that high-complexity regions in

human and mouse are enriched for developmental genes.

Another potential issue with our analysis is our decision to

count promoters intersecting the high-complexity regions rather

than whole genes. However, we have programmed our annotation

tool, macle2go, such that it can also use whole genes as the unit

of comparison. Again, the choice makes no qualitative difference

(not shown).

Finally, we investigated the relationship between high-complexity

regions and CpG islands. Over 85% of high-complexity regions

in human and mouse contain CpG islands. The preponderance of

high-complexity regions in GC-rich regions is perhaps not surpris-

ing, because fewer matches are found in regions where the local GC

content is significantly higher than the global GC content, as is the

case in CpG islands. “General” CpG islands are not enriched in de-

velopmental genes, while CpG islands longer than 2 kb are (Elango

and Yi, 2011). However, only between one fifth and one third of

our high-complexity regions intersect long CpG islands, and the

high-complexity region in mouse Ttn contains neither short nor long

CpG islands. Still, we suspect that both attributes, high-complexity

and CpG enrichment, are tied to the same phenomenon, biological

function; the difference being that high match complexity captures a

particular subset of functions, those sensitive to transposon insertion

and copy number variation.

We conclude that the match complexity can be used to identify ge-

nomic regions highly enriched in developmental genes. The type of

analysis established in this study is applicable to any genome with

complete sequence and reasonably comprehensive annotation. We

therefore plan to analyze the high-complexity regions in other mam-

mals and then across the vertebrates. Genomes with less complete

annotations than human or mouse are likely to result in more regions

lacking annotation. Among these, those with the highest complex-

ity would be the most promising candidates for further, functional

study.
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