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1. Introduction

Over the years various schemes have been devised to solve the
electroweak hierarchy problem and thereby to explain the sta-
bility of the electroweak scale with regard to the Planck scale.
Among these, the most prominent proposal is based on low energy
(N =1) supersymmetry. However, in the light of recent LHC results
showing no evidence whatsoever of low energy supersymmetry af-
ter a decade of taking data, there is clearly a need for alternative
ideas. Among these, ansdtze relying on (some variant of) conformal
symmetry have recently received a lot of attention, see [1-10] and
references therein. In one way or another, all these proposals aim
for a ‘minimalistic’ solution of the problem, taking seriously the
possibility that the Standard Model (SM) may well survive mod-
ulo some minor modifications all the way to the Planck scale, for
which there is now accumulating evidence.

Here we follow up on a recent proposal [11] invoking softly bro-
ken conformal symmetry (SBCS) which is equivalent to demanding
the cancellation of quadratic divergences in terms of bare param-
eters at a distinguished and very large scale A. This scale serves
as an effective cutoff: it is a basic assumption that at this scale,
a proper theory of quantum gravity ‘takes over’ so that the cut-
off A gets identified with a physical scale and is never taken to
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infinity. For this reason we usually assume that A ~ Mpy. With
the assumption that the pure matter theory is renormalizable, the
bare couplings are identified with the running couplings evaluated
at this distinguished scale:

A= AP = () (1)
n=A
The key requirement then reads
d
g =0 (2)
where fiCluad are the coefficient functions of the quadratic di-

vergences accompanying the mass renormalizations of the scalar
fields, with one such function for each independent physical scalar
field,

A2 ua
5”"12 = (16712) fiq CI({)»j}) + O(log(A)) (3)

and where {;} is the collection of all couplings of the model under
consideration. We note that for the unmodified SM the possible
vanishing of the quadratic mass divergence as a function of the
running scalar self-coupling was already investigated in [12], with
the result that A ~ 102* GeV, several orders of magnitude above
the Planck scale. More recently, the above criterion was applied in
[11,13] to a slightly extended version of the SM with right-chiral
neutrinos and one extra complex scalar field, demanding A ~ Mp,
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and in such a way that neither Landau poles nor instabilities of the
effective potential appear up to that scale, thus ensuring the sur-
vival of the SM essentially as is up to that scale. The term ‘SBCS’
derives its justification from the fact that, as a consequence of re-
quiring the absence of quadratically divergent contributions in (3)
the physical masses can be kept consistently small in a pertur-
bative treatment as their quantum corrections depend at worst
logarithmically on the cutoff A (we will comment below on the
reformulation of this statement in terms of running masses). Thus,
when viewed from the cutoff scale A, (the matter part of) the
theory looks effectively conformally invariant because ml-2 <« A2
Indeed, our criterion is somewhat similar to softly broken super-
symmetry, where one also allows for explicit symmetry breaking
terms, on condition that these terms do not spoil the cancellation
of quadratic divergences. Our procedure also shows how matter
coupled Einstein gravity can give rise to a (classically) conformally
invariant low energy flat space limit (with the gravitational cou-
pling x — 0) even though Einstein gravity itself is not conformally
invariant (see also [14]).

In this note we wish to show that the above criterion can be
maintained in a self-consistent manner also if perturbative quan-
tum gravitational corrections are taken into account, provided we
assume that at the Planck scale the SM (or rather, some mildly
amended version thereof) merges into a UV complete extension
(see [15-19] and references therein for previous work concern-
ing perturbative quantum gravity corrections to SM processes). The
main point is that with the assumption of hierarchically small
masses the gravitational corrections to the coefficient functions
£ are of order (km)%, where k = My, is the gravitational cou-
pling. That is, we have

£ 150,10 = ) + O(Gem)?) @

hence these corrections are hierarchically smaller than the contri-
bution of the matter couplings (here assumed to be < O(1), as
is the case for all extended SM couplings up to O(Mpr)) over the
whole range of energies up to the Planck scale, and thus com-
pletely negligible. The assumed existence of a UV completion is
necessary, because otherwise the theory will be overwhelmed by
power law divergences involving arbitrarily high powers of kA
which, if present, would effectively render moot the whole issue
of quadratic divergences. We refer readers to [20] for a detailed
discussion of the adverse effects of such divergences.

Let us also emphasize that, in contrast to Veltman’s original
proposal [21], our condition of canceling the quadratic divergences
with fixed and finite A is an RG invariant statement in the effec-
tive field theory; consequently, in terms of running couplings, the
condition (2) itself becomes scale dependent (and can be easily
obtained by expressing the bare couplings in terms of running cou-
plings [11]). The whole scheme becomes well defined by the as-
sumed finiteness of the Planck scale theory. As far as sub-Planckian
physics is concerned, our scheme also bears some similarity with
ideas proposed in the framework of the asymptotic safety program
(see e.g. [4,5,22-25] and references therein) where the UV com-
pleteness would follow from the assumed existence of a non-trivial
UV fixed point. See in particular [22] for a discussion of scalar
mass corrections in the framework of the functional renormaliza-
tion group, where conclusions similar to the ones presented here
are reached.

2. The model: gravity coupled to a set of scalar fields

We consider the Lagrangian

2 1
L= ﬁa/—gR—f-«/—g <§g“”ausf‘a,,s/* — V(S)) (5)

where S# are real scalar fields (A,B,...=1,...,n) with potential
V(S). We can ignore fermions at this stage, because at the one-
loop order considered here their contribution to fiquad, opposite in
sign to the contribution of the bosonic matter fields, remains the
same as in the absence of gravitational couplings. By contrast, for
scalar fields there appear terms mixing them with h, and these
are ones we have to worry about, see below. For the perturba-
tive expansion we split the fields into their background values and
fluctuations

Euv (X)) = Npy +Khyy (%),
1
h;,w =Hyy + Z”uvh (nMVH,uv =0,h Eh'uu)

SAX) = (%) + 51 (%) (6)

with the Minkowski metric 7,, and background scalar fields
gog(x). For establishing the mass renormalization it is in fact suf-
ficient to take a static ¢(x). The full Lagrangian also includes a
gauge fixing term

1(., 1. \?
ng = g (3 h;/.v - 53;}4}1) (7)
We will set & =1 for simplicity (but note that the coefficient func-
tions will depend on the gauge choice). We neglect gravitational
ghost fields as they do not couple to scalar fields at the one-loop
order, and thus make no contribution to the coefficient of quadratic
divergences. The full action is thus

S= /d4x(£ + Lgf) (8)

Our aim then is to perform a perturbative quantization in order
to extract the coefficient of quadratic divergences from both matter
and gravitational perturbations. The effective action is given by

exp (il (¢a)) = / dhds exp (iS (@ +s.m+h)

AT )

POINCRZ)
8‘/)CIA

o,

h,uv) (9)
8&=n

The subtraction removing the linear terms in the fluctuation fields
effectively eliminates tadpoles (see e.g. [26]). Furthermore, at the
relevant order we can exploit the well known fact that I'(¢q) =
S(@c) + O(h) to replace the derivatives of I by derivatives of S.
We stress that it is not necessary to impose the equations of mo-
tion on the background fields ¢;.

At quadratic order the fluctuations are

8=1

2

1 . ke [1
L= —El’llbwpl“)’pa (—D + 7 I:E(au(/)cl)Z - VO:I) hpo' —

1 1
5k h (_BM‘PQ M+ Vo,A> st — ESA [SABIZI + VO,AB]SB

(10)
where
Vo(ga) = V|5=¢d , Voalga) = % ;
S=¢a
Vo,a(@c) = % o (11)
and
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. 1
pHYiPo — 5( ;wnpa

—ntPno —nhonvP). (12)

We also note the simplification
1 . K2
—Eth’”"’“ (—D + 7£0> hpo
1 K2 1 K2
:—gh (—D+7ﬁo)h+5Huv <—D+7£0> H*Y  (13)

where Ly = %(ampcl)z — V. Path integration in quadratic fluctua-
tions leads to the functional determinant

9
2

K2\~
M =det (—D + 7£0>

L (—0upBot + Vop) )
8ap0 + Vo, aB

=

K2
det ( O+ 5 Lo

L (—0u980" + Vo a)

(14)

where the components are split into 9 traceless modes H,, (giv-
ing the first factor), the trace h and the n scalar fields s# (the
contribution of ghosts at this stage would only supply trivial extra
factors of det(—0)). Specializing to static backgrounds <pg = const

and Fourier transforming (O = —p?) the last determinant is a de-
gree n+ 1 polynomial in p2

2

Voa  —8asDp?+ Vo.as
= (P> - )" (

n+1

=[]w* - M}) (15)

Vo+ Z Vo AA> +0(»H"H

A=1

from which we learn that Z”“ M? = [ Vo + Y a—1 Vo.aa. The
effective action in cutoff regularlzatlon then follows after Wick ro-
tating as

il'(¢c) =log M

A d DE 2 n+1
2
o J Gt (9 og(p — —Vo) + ;mg(pE — M; )) (16)

where the subscript E indicates that the integral is to be per-
formed in Euclidean signature. We first subtract out the zero point
energy using

4

3272

A
d*pe
(m)4

1
lnp%: (logAz—E). (17)

0

In the general case this quartic divergence is multiplied by
(ng —np), the difference in the number of bosonic and fermionic
degrees of freedom. As we assume that the UV completion will
involve (Planck scale) supersymmetry in one way or another, this
divergence can be ignored. For the determination of quadratic di-
vergences the central integral reads

d4 2
pE4 log (1 — m_2>
(2m) p%

1, omt A%\ 1 o
__16712Am ~ 3572 |:10g<—ﬁ —3 + O(AT). (18)

A

Hence the quadratically divergent contributions to the effective ac-
tion emerging from log M are given by’

n+1
W (@) = A2 S +) M7 | +Odog A)
Pcl =322\ 2 0 i g
i=1

A2 "
= 5n7 <5K2V0 + Z vo,AA> + O(log A). (19)
A=1

Here we are only interested in the mass renormalization (3), so we
need only keep the terms quadratic in the background fields ¢.
We also note that the correction term in the second factor of (19)
gives only a logarithmically divergent contribution, and can there-
fore be neglected for our purposes of establishing the quadratically
divergent contributions.

Concretely for a general potential

1
V(S) = —mABSASB + 4 —apcpSASBSESP + O ?) (20)

the relevant divergent contributions to the mass matrix read

) A? 500 1 .
mis=—( 15215 mAB+§ZAcCAB +0(log A) (21)
c=1

From this matrix we can extract the coefficient functions fiq“élGl
simply by diagonalization. The main point now is that, after the
inclusion of fermionic contributions and with the assumed ab-
sence of quadratic divergences, the initial condition miB < A?
implies km <« O(1), whence the initial condition remains consis-
tent with the quantum gravitational corrections. We thus conclude
that the conditions on f; quad 5ra effectively the same as in the flat
space theory, as the grav1tat10na1 contribution is hierarchically sup-
pressed.

There appears to be no consensus in the literature whether
these statements can or cannot be consistently rephrased in terms
of running masses. Recall that running coupling parameters are
merely an auxiliary, though very convenient, device to parametrize
the scaling behavior of n-point correlation functions in renormal-
izable quantum field theory, but it is arguable whether the very
notion of a running coupling continues to make sense in the con-
text of non-renormalizable theories [17]. Indeed, while there ap-
pears to be no unambiguous way to obtain for the running masses
m?(u) a quadratic dependence on the scale parameter p in the
context of renormalized perturbation theory (the subtraction of a
quadratic divergence always leaves ambiguous a finite contribu-
tion), such a dependence can arise in a Wilsonian treatment, where
one integrates out modes with momenta % < p% < A2 (this is the
point of view adopted in asymptotic safety scenarios, see [22-25]
and references therein). In the latter view our condition (2) would
eliminate the quadratic dependence of the running masses on f,
and thus ensure a logarithmic running of m?(u), keeping the so
defined running masses consistently small over the whole range of
energies 1 < A, in accord with the SBCS hypothesis.

Let us also point out that the existence of quadratic (and
higher power) divergences in other parts of the effective action
follows directly from the above formulas. For instance, to pick
out the quadratic divergences in the wave function renormaliza-
tion one only needs to expand the above effective action up to
quadratic order in the derivatives 9,¢, and the same goes for
power law divergences in the fermionic sector. Secondly, possible
non-renormalizable interactions (with or without derivatives) not

T We note that in a general gauge (7) one has 5k2 — (3 +2&)«?2 in the above.
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written explicitly in the formulas above, i.e. the O(k?) terms in
(20), will likewise pick up power law divergences. However, these
will not modify our condition (2), but instead affect higher order
operators, as already pointed out in [17-19].

3. Conclusions

We have shown that the novel mechanism proposed in [11] to
avoid the hierarchy problem of the effective quantum field theory
below the Planck scale can be maintained self-consistently in the
presence of perturbative quantum gravitational corrections. The
main advantage of this proposal is that, unlike low energy super-
symmetry, it can make do without the extra baggage of numerous
new, and so far unseen, degrees of freedom and the concomitant
plethora of new couplings (not to mention the fact that N =1 mat-
ter coupled supergravities are just as non-renormalizable as pure
gravity, and therefore may eventually also run into the problem
of power law divergences, again suggesting that low energy super-
symmetry offers no extra advantages). Finally, as already pointed
out in [11], and assuming a minimal extension of the SM along
the lines proposed here can be validated and the corresponding
couplings can be determined, the condition (2) can be subjected
to experimental tests.

Acknowledgements

K.A.M. thanks the AEI for hospitality and financial support; he
was partially supported by the Polish National Science Centre grant
DEC-2017/25/B/ST2/00165. ].P. thanks the AEI for hospitality, his
work is supported through funds of Humboldt-University Berlin in
the framework of the German excellency initiative. H.N. would like
to thank J. Donoghue, R. Percacci and A. Smilga for correspondence.

References

[1] W.A. Bardeen, On naturalness in the standard model, preprint FERMILAB-CONF-
95-391-T; Mechanisms of electroweak symmetry breaking and the role of a
heavy top quark, preprint FERMILAB-CONF-95-377-T.

[2] K.A. Meissner, H. Nicolai, Phys. Lett. B 648 (2007) 312;
K.A. Meissner, H. Nicolai, Phys. Lett. B 660 (2008) 260.
[3] M. Holthausen, M. Lindner, M.A. Schmidt, Phys. Rev. D 82 (2010) 055002.
[4] M. Shaposhnikov, C. Wetterich, Phys. Lett. B 683 (2010) 196.
[5] O. Antipin, M. Mojaza, F. Sannino, arXiv:1310.0957 [hep-ph].
[6] M. Lindner, S. Schmidt, ]. Smirnov, J. High Energy Phys. 1410 (2014) 177.
[7] M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann, K. Tuominen, Mod. Phys.
Lett. A 29 (2014) 1450077.
[8] S. Oda, N. Okada, D. Takahashi, Phys. Rev. D 92 (2015) 015026;
A. Das, S. Oda, N. Okada, D. Takahashi, Phys. Rev. D 93 (2016) 115038.
[9] C. Wetterich, M. Yamada, Phys. Lett. B 770 (2017) 268.
[10] AJ. Helmboldt, P. Humbert, M. Lindner, J. Smirnov, ]. High Energy Phys. 07
(2017) 113;
V. Brdar, Y. Emonds, A.J. Helmboldt, M. Lindner, arXiv:1807.11490 [hep-ph].
[11] PH. Chankowski, A. Lewandowski, K.A. Meissner, H. Nicolai, Mod. Phys. Lett. A
30 (2015) 1550006.
[12] Y. Hamada, H. Kawai, K. Oda, Phys. Rev. D 87 (2013) 053009.
[13] A. Lewandowski, K.A. Meissner, H. Nicolai, Phys. Rev. D 97 (2018) 035024.
[14] K.A. Meissner, H. Nicolai, Phys. Rev. D 80 (2009) 086005.
[15] G. 't Hooft, M.J.G. Veltman, Ann. Inst. Henri Poincaré. Phys. Théor. A20 (1974)
69;
S. Deser, P. van Nieuwenhuizen, Phys. Rev. D 10 (1974) 401;
J.E. Donoghue, Phys. Rev. D 50 (1994) 3874;
S. Sannan, Phys. Rev. D 34 (1986) 1749.
[16] S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 96 (2006) 231601;
D. Ebert, ]. Plefka, A. Rodigast, Phys. Lett. B 660 (2008) 579;
A. Rodigast, T. Schuster, Phys. Rev. Lett. 104 (2010) 081301;
J.E. Daum, U. Harst, M. Reuter, J. High Energy Phys. 1001 (2010) 084;
D.J. Toms, Nature 468 (2010) 56.
[17] M.M. Anber, J.F. Donoghue, M. El-Houssieny, Phys. Rev. D 83 (2011) 124003.
[18] M.M. Anber, ].F. Donoghue, Phys. Rev. D 85 (2012) 104016.
[19] F. Loebbert, J. Plefka, Mod. Phys. Lett. A 30 (34) (2015).
[20] A. Smilga, Phys. Part. Nucl. Lett. 14 (2017) 245.
[21] M. Veltman, Acta Phys. Pol. B 12 (1981) 437.
[22] A. Codello, R. Percacci, L. Rachwal, A. Tonero, Eur. Phys. J. C 76 (2016) 226.
[23] A. Eichhorn, arXiv:1810.07615 [hep-th].
[24] O. Lauscher, M. Reuter, in: B. Fauser, et al. (Eds.), Quantum Gravity, 2007,
pp. 293-313, arXiv:hep-th/0511260;
N. Christiansen, D.F. Litim, J.M. Pawlowski, M. Reichert, Phys. Rev. D 97 (10)
(2018) 106012.
[25] E. Grabowski, J.H. Kwapisz, K.A. Meissner, arXiv:1810.08461 [hep-ph].
[26] M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge Uni-
versity Press, 2014.


http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4D4E30s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4D4E30s2
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4C696E646E6572s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib5357s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib414D53s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4C696E646E657231s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib6E6F43577979s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib6E6F43577979s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4F4F54s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4F4F54s2
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib5759s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4C696E646E657232s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4C696E646E657232s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4C696E646E657232s2
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib434C4D4Es1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib434C4D4Es1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib484B4Fs1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4C4D4Es1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4D4E31s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667331s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667331s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667331s2
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667331s3
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667331s4
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667332s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667332s2
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667332s3
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667332s4
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib51477265667332s5
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib446F6E31s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib446F6E32s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4C6F6562626572743A32303135656561s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib534D494C4741s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib56656C746D616Es1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib5065726361636369s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib45696368686F726Es1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4173796D7074536166657479s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4173796D7074536166657479s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4173796D7074536166657479s2
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib4173796D7074536166657479s2
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib474B4Ds1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib536368776172747A3A32303133706C61s1
http://refhub.elsevier.com/S0370-2693(19)30102-9/bib536368776172747A3A32303133706C61s1

	Softly broken conformal symmetry with quantum gravitational corrections
	1 Introduction
	2 The model: gravity coupled to a set of scalar ﬁelds
	3 Conclusions
	Acknowledgements
	References


