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The timely and reliable processing of auditory and vestibular information

within the inner ear requires highly sophisticated sensory transduction path-

ways. On a cellular level, these demands are met by hair cells, which respond

to sound waves – or alterations in body positioning – by releasing glutamate-

filled synaptic vesicles (SVs) from their presynaptic active zones with unprece-

dented speed and exquisite temporal fidelity, thereby initiating the auditory

and vestibular pathways. In order to achieve this, hair cells have developed

anatomical and molecular specializations, such as the characteristic and

name-giving ‘synaptic ribbons’ – presynaptically anchored dense bodies that

tether SVs prior to release – as well as other unique or unconventional synap-

tic proteins. The tightly orchestrated interplay between these molecular com-

ponents enables not only ultrafast exocytosis, but similarly rapid and efficient

compensatory endocytosis. So far, the knowledge of how endocytosis operates

at hair cell ribbon synapses is limited. In this Review, we summarize recent

advances in our understanding of the SV cycle and molecular anatomy of hair

cell ribbon synapses, with a focus on cochlear inner hair cells.
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In the cochlea, synaptic sound encoding occurs at the

monosynaptic connections between sensory inner hair

cells (IHCs) and afferent spiral ganglion neurons

(SGNs). These synapses are designed for exquisitely

high, temporally precise, and indefatigable synaptic

vesicle (SV) release rates that can drive peak action

potential firing rates of hundreds of hertz in the

auditory nerve for prolonged periods of time [1]. This

impressive release capacity is due to the highly

specialized molecular anatomy of IHC ribbon-type

presynaptic active zones (AZs), which allows not only

for ultrafast exocytosis, but also provides the molecu-

lar scaffold for rapid release site clearance, compen-

satory membrane retrieval and vesicular recycling. In

fact, the coordinated and efficient interplay of these

processes is fundamental for hearing as well as precise

sound localization and dysfunction of this tightly

controlled system leads to severe hearing impairment

or deafness.

On the presynaptic side, hair cell synapses are ultra-

structurally characterized by electron-dense proteina-

ceous projections – so-called ‘synaptic ribbons’.

Ribbon synapses cannot only be found in cochlear

hair cells, but also in other sensory and neurosecretory

cell types, such as vestibular hair cells, neuromasts of

the lateral line system of fish, retinal photoreceptors

and bipolar cells, as well as pinealocytes. Synaptic rib-

bons are mainly composed of the structural cytomatrix

protein ‘RIBEYE’ [2]. Despite serving homologous

functions in sensory neurotransmission, it is important

to keep in mind that distinct ribbon types exhibit

partly divergent molecular and structural compositions

to cater for the specific needs of the system they are

operating in. For example, while retinal ribbons exert

a rather plate-like structure, hair cell ribbons are more

compact and rather ovoid to spherical in appearance

[3], indicative of differential regulation and/or expres-

sion patterns of accessory AZ components between

these two systems.

Generally, ribbons are considered to provide molec-

ular scaffolding at the AZ, tether a large complement

of SVs and, hence, are thought to facilitate continuous

vesicular replenishment to the release site. Moreover,

ribbons are important for clustering presynaptic Ca2+

channels [4–7] and may act as physical Ca2+ diffusion

barriers to produce spatially tightly confined Ca2+

hotspots [8]. Over recent years, extensive efforts have

been invested into the molecular characterization of

the exocytic machinery that mediates temporally pre-

cise, ultrafast, and indefatigable SV release at IHC rib-

bon synapses (reviewed in detail in Refs [9–12]). Here,

it is well established that bassoon – a large multi-

domain cytomatrix protein also found at conventional

synapses – plays a critical role in anchoring the ribbon

to the presynaptic density [13–15]. In addition, in IHCs,

bassoon promotes a large complement of presynaptic

Ca2+ channels and facilitates SV replenishment

[4,14,16,17]. Surprisingly, IHCs utilize the unconventional

vesicular glutamate transporter Vglut3 for the loading

of SVs with neurotransmitter molecules [18,19] and do

not express core exocytic proteins such as synapto-

physins, synapsins, or complexins [20,21]. Likewise,

essential neurosecretory soluble N-ethylmaleimide-sen-

sitive factor attachment protein receptor (SNARE)

proteins – including synaptobrevins/VAMPs 1–3, syn-
taxins 1–3 and SNAP25 – are either not expressed or

functionally redundant for SV exocytosis in IHCs, as

evident from cell-physiological analyses of genetic dele-

tion mutants and the lack of obvious effects of clostri-

dial neurotoxins on presynaptic release [22]. Similarly,

SV priming factors of the Munc13 and CAPS families

– evolutionary highly conserved molecules that are

fundamentally required for neurotransmitter release in

various secretory systems of invertebrates and verte-

brates alike – could not be detected in IHCs [23].

Moreover, the neuronal vesicular Ca2+ sensors synap-

totagmins 1 and 2 are only transiently expressed dur-

ing the early developmental stages [24,25]. Finally,

while neurons mainly employ P/Q- and N-type CaV2.1

and 2.2 Ca2+-channels for Ca2+-influx–secretion cou-

pling [26], IHC AZs utilize L-type CaV1.3 channels for

this purpose [27–30]. Recent work revealed that the

number, activation kinetics and open probability of

these channels not only differ based on their tonotopic

position along the cochlear axis [31–34], but also

depend on their subcellular AZ localization [33–35],
thereby suggesting the location-dependent presence of

yet-to-be-identified regulatory proteins. In this context,

CaV1.3 channels have been shown to be regulated by a

number of modulatory proteins, including Gipc3 and

CaBP2 [35,36] (for a recent extensive review on this

topic see Ref. [37]).

While our understanding of the exocytic key players

orchestrating stimulus–secretion coupling in IHCs con-

tinues to grow, the molecular machinery governing

compensatory endocytosis at these synapses remains

largely elusive. Hence, this short review aims to pro-

vide a brief update on the current state of knowledge

concerning presynaptic exocytosis at IHC ribbon-type

AZs, before focusing on the molecular machinery facil-

itating release site clearance, endocytic membrane

retrieval, and SV reformation (Fig. 1). While our main

objective is the discussion of cochlear ribbon synapses,

we will also include available information on retinal

3634 FEBS Letters 592 (2018) 3633–3650 ª 2018 Federation of European Biochemical Societies

Balancing exo- and endocytosis in hair cells T. Pangrsic and C. Vogl



Exocytosis and AZ organization
Membrane
 retrieval

Initiation of 
membr. budding

Release site
clearanceSV

fusion
Release

competence

Endocytosis and SV reformation

Synaptotagmins?

SNAREs?

Munc18?

Priming factor(s)?

Actin

Otoferlin

RIM2, RIM-BP2

Adaptor proteins (AP2, AP180?, intersectin?, etc.)

Clathrin

Endophilins?, Amphiphysin?

Dynamins

Synaptojanin (?)

Calmodulin?, Calcineurin?

Bulk endocytosisRibbon

Endosome

CIE? CME

SV reformation

?

?

?

CaV1.3

Release site clearance

Cytoplasm
Synaptic cleftFusion

machinery

SV proteins

Glutamate

Presynaptic
density

Clathrin coat

Scission-related
proteins

Actin
filaments

Exocytosis

Fig. 1. The synaptic vesicle (SV) cycle at inner hair cell (IHC) ribbon synapses. IHC ribbons tether a large number of SVs that undergo

exocytosis upon depolarization and subsequent Ca2+ influx through voltage-gated CaV1.3 channels. After fusion with the plasma membrane,

previously used ‘release slots’ have to be cleared of exocytosed material before they can be re-occupied by new SVs. The exocytosed

phospholipids and proteins of the exocytic machinery are then recycled into the cytosol via endocytosis. In IHCs, there is evidence for the

presence of clathrin-mediated (CME) and bulk endocytosis, whereas the existence of clathrin-independent endocytosis (CIE) has not been

confirmed yet. After membrane retrieval, endocytosed material likely fuses with large endosomal compartments in close proximity of the

ribbons and new SVs may be formed in a clathrin-dependent pathway. The molecular machinery of exocytosis and endocytosis of IHC SVs has

remained largely unknown. The table lists the most important identified and still elusive synaptic proteins potentially operating at IHC AZs and

indicates in which processes of the SV cycle they may be involved. A question mark at the protein name indicates that it has been identified and

described at conventional neuronal synapses, but its presence and/or function at the IHC ribbon synapse are unknown or controversial.
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ribbon synapses wherever deemed appropriate. How-

ever, we would like to highlight here that both systems

have their individual molecular, structural, and func-

tional peculiarities (reviewed in Ref. [3]) and hence,

comparisons remain difficult in the absence of direct

experimental evidence.

The unconventional auditory IHC
synaptic release machinery – an
update

Synaptic ribbons tether a large complement of SVs

[38] and have therefore been suggested to act as ‘con-

veyor belts’ for efficient SV replenishment to the presy-

naptic release site [6,39–42]. Yet, the underlying

molecular mechanisms facilitating SV translocation to

the AZ membrane remain elusive but have been shown

to involve Ca2+ [43,44]. Considering SV trafficking,

several distinct scenarios have been suggested to take

place at retinal ribbons, ranging from passive, diffu-

sional ‘crowd-surfing’ models [45] to active and tar-

geted transport pathways – potentially involving the

cytoskeleton and molecular motors such as KIF3a

[15,46] – but are still lacking definitive experimental

confirmation. In IHCs, these processes are even less

clear and require further in-depth analysis. However, it

is noteworthy that both, actin and tubulin have been

shown to directly associate with RIBEYE in cochlear

and retinal samples [47,48] and, hence, may indeed not

only contribute to the structural integrity of the rib-

bon, but also facilitate SV recruitment and/or move-

ment to the release site.

Apart from SV replenishment, additional structural

and functional roles of the ribbon have been proposed,

including (i) the clustering and functional modulation

of presynaptic CaV1.3 Ca2+ channels at the AZ [4–7],
(ii) SV priming – either directly or via recruitment of

other priming factors – [42], (iii) spatial confinement of

Ca2+ diffusion to ensure tightly localized presynaptic

Ca2+ hotspots [8] – although this hypothesis has

recently been challenged [7,49] – and finally, (iv) the

coordination of multivesicular release and compound

fusion of SVs prior to exocytosis [50–53].
Morphologically, AZ-tethered SVs are usually classi-

fied into two main populations, the membrane-proxi-

mal and the ribbon-associated pool of SVs [38,54].

Functionally, patch-clamp recordings of depolariza-

tion-evoked changes in IHC membrane capacitance

similarly suggest multiple pools of SVs. The fast, expo-

nential component of exocytosis, which is usually

recruited by brief depolarizations, is believed to repre-

sent the fusion of the readily-releasable pool of SVs

(RRP) [55–57]. This RRP might be further subdivided

into two kinetically distinct SV pools according to

postsynaptic recordings of SGN excitatory postsynap-

tic currents (EPSCs) [58]. While the morphological

correlate of the RRP is likely represented by the mem-

brane-proximal SVs, the sustained component of exo-

cytosis or slowly-releasable pool of SVs may reflect

continuous replenishment of ribbon-associated SVs

after initial RRP depletion [4,55–57,59]. Data from

turtle hair cells additionally suggest the presence of

another, superlinear phase of exocytosis occurring

after prolonged stimulation [44]; however, whether this

latter phenomenon also plays a role in cochlear sound

encoding in mammals requires further investigation.

In the following, we want to mainly focus on inte-

grating the most recent findings regarding ribbon func-

tion and the roles of some of its tightly associated

proteins into the current picture of ribbon synapse

morphology and physiology. For a broader discussion

of the molecular anatomy of these synapses as well as

the controversially-debated release mechanism operat-

ing at IHC synapses (i.e., the uni- vs. multivesicular

release hypotheses), we refer the interested reader to

more exhaustive reviews on these topics [9–11,60,61].

RIBEYE

RIBEYE is the main constituent of the ribbon, con-

tributing ~ 67% to the ribbon volume [62] and ~ 10–
15% of the total molar quantity of the ribbon complex

at retinal photoreceptor AZs [48]. Molecularly,

RIBEYE consists of two main functional parts: (i) a

unique amino-terminal A-domain, which does not exhi-

bit any significant sequence homology to other known

genes and (ii) a B-domain that is identical to the tran-

scriptional repressor C-terminal-binding protein 2

(CtBP2), though lacking its initial twenty N-terminal

amino acids [2]. Individual RIBEYE molecules auto-

assemble to form highly organized structural aggregates

that can reach considerable sizes of several hundreds of

nanometers once attached to the presynaptic AZ mem-

brane (reviewed in Ref. [63]). This auto-assembly occurs

via multiple homo- and heterotypic interactions between

proximal A- and B-domains of adjacent RIBEYE mole-

cules [64]. In this framework, the A-domains are

thought to provide structural support, whereas the

B-domains have been shown to be involved in phospha-

tidic acid generation, which might play a role in

facilitating SV fusion and/or retrieval [65].

In zebrafish lateral line neuromast hair cells, loss of

both ribeye genes produces a rather striking phenotype

as presynaptic release sites are characterized by mislo-

calized, electron-translucent ‘ghost ribbons’ of reduced

size that still tether a full set of slightly smaller SVs
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[66]. Here, the authors proposed that low residual

Ribeye expression in these mutants may suffice to

form a basic ribbon-like scaffold. Subsequent func-

tional analysis revealed a significant increase in whole-

cell Ca2+ currents and concomitant exocytosis in the

mutant hair cells; a finding likely attributable to com-

pensatory homeostatic plasticity in response to the

structural AZ perturbation. Strikingly, these functional

impairments did not translate into any detectable

in vivo phenotype in the afferent neurons.

In contrast, genetic deletion of RIBEYE-A in mice

resulted in the complete loss of presynaptic dense bod-

ies from retinal photoreceptors, rod bipolar cells, and

cochlear hair cells [6,7,49]. Interestingly, the functional

consequences differed substantially between the latter

two systems: while retinal neurotransmission was

majorly impaired due to the mislocalization of presy-

naptic Ca2+ channels, loss of membrane-proximal

SVs, and subsequently strongly reduced EPSC ampli-

tudes [6], the cochlear phenotype of these mice was

surprisingly mild. Here, two independent studies [7,49]

thoroughly characterized the presynaptic morphology

and function of cochlear IHCs. Apart from unchanged

synapse counts, Jean and colleagues reported extensive

presynaptic developmental compensation that pro-

duced multiple ‘ribbonless’ AZs at each individual

synaptic contact, thereby maintaining or even increas-

ing the presynaptic complement of releasable SVs [7].

Additionally, both studies consistently reported an

increased size of postsynaptic densities and GluA3

receptor clusters [7,49], indicative of extensive pre- and

postsynaptic homeostatic plasticity mechanisms aiming

to compensate the loss of presynaptic release capacity.

This structural reorganization in the mutants led to a

minor exocytosis deficit in response to mild depolariza-

tions that was lost upon stronger stimulation. How-

ever, single unit recordings from auditory nerve fibers

revealed that, while firing thresholds were increased,

peak as well as adapted firing rates were significantly

reduced [7]. Moreover, the temporal jitter of firing and

the time course of adaptation were increased and the

recovery from adaptation was slowed. Taken together,

these functional alterations indicated a role of the rib-

bon in regulating the voltage-dependence and spatial

organization of Ca2+ channels and confirmed its

importance for efficient vesicle replenishment. How-

ever, given the remarkable capacity for developmental

compensation, the function of the ribbon in IHC

presynaptic release has likely been underestimated in

the constitutional RIBEYE knock-out. Hence, future

studies should employ inducible RIBEYE deletion

mutants to investigate the consequences of acute rib-

bon elimination upon normal synapse formation and

presynaptic development in an otherwise unperturbed

system.

Piccolo/aczonin

Piccolo/aczonin is the largest (~ 550 kDa) multi-

domain scaffold protein expressed at conventional

AZs [67,68]. Here, in concert with bassoon and

Rab3-interacting molecules (RIMs), it acts as a key

organizer in the assembly and maintenance of the

cytomatrix at the AZ (CAZ). In addition, piccolo/ac-

zonin facilitates presynaptic SV clustering, exocytosis,

and replenishment [69–72], presumably through its

direct interactions with core CAZ proteins, such as

Munc13, RIMs, bassoon, and CAST/ELKS [73–75].
Moreover, piccolo/aczonin regulates activity-induced

F-actin assembly at the presynapse [76,77], likely via

its established interactions with various actin-binding

proteins including Abp1, GIT1, profilins, and Daam1

[67,77–79].
Classically, the long isoforms of piccolo/aczonin

have been considered to form an integral part of

sensory ribbon complexes [13–15,80]; however, recent

work challenges this idea and rather suggests that

ribbons solely express a short (~350 kDa) C-termin-

ally truncated piccolo/aczonin splice variant termed

‘piccolino’ [81]. Piccolino lacks most common CAZ–
protein interaction domains but, interestingly,

appears to retain all functional domains contributing

to actin interaction [81]. AAV-mediated knockdown

of Piccolino in retinal photoreceptors resulted in

striking morphological alterations of ribbon shape: at

the expense of the normally plate-shaped ribbons,

predominantly spherical ribbons – reminiscent of rib-

bon precursor spheres and hence, indicative of either

majorly delayed development or synapse degeneration

– could be observed residing at the AZs [82]. It is

therefore conceivable that piccolino still serves a

multifunctional role at ribbon synapses by not only

providing molecular scaffolding, but – analogous to

its function at conventional synapses – also regulat-

ing presynaptic actin dynamics and dynamin-depen-

dent SV recycling via its putative interactions with

GIT1 and Abp1 [83–85]. Yet, the definitive func-

tional role of piccolino at ribbon-type AZs remains

elusive.

Rab3-interacting molecules (RIMs) and RIM-

binding proteins (RIM-BPs)

RIMs are a family of multi-domain proteins that serve

as key regulators of presynaptic release and Ca2+

channel density at conventional AZs [86–89]. In
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addition, recent data suggest RIMs to further mediate

SV tethering to the presynaptic density [90] and facili-

tate SV priming via the formation of a tripartite Rab3/

RIM/Munc13 complex and subsequent activation of

Munc13. This latter function is an essential prerequi-

site to establish SV fusion competence [91,92].

At retinal photoreceptors, RIM1 and RIM2 have

classically been assumed to both be expressed, but

have been suggested to exert distinct expression pat-

terns at the ribbon and arciform density, respectively

[2,15]; however, a recent study casts doubt on the

expression of RIM1 and rather argues for a RIM1/

Munc13-1-independent priming mechanism that exclu-

sively utilizes RIM2 [93]. Similarly, at IHC ribbon-type

AZs, recent work conclusively confirmed the absence

of RIM1 from these synapses and identified RIM2a
and RIM2b as the dominant RIM isoforms operating

at IHC AZs [94]. Here, RIM2s localize to the presy-

naptic density at the base of the ribbon, where they

regulate presynaptic Ca2+ channel clustering and addi-

tionally participate in tethering SVs to the AZ mem-

brane. Apart from RIM2a/b, IHCs have also been

shown to express RIM2c and the two shorter RIM

isoforms RIM3b and RIM3c. Analogous to RIM2a,
RIM3c physically interacts with CaV1.3 channels and

boosted its membrane insertion in a heterologous

expression system; however, biophysical analysis of

IHCs from RIM3c-KO mouse mutants did not iden-

tify any obvious roles of RIM3c in the regulation of

IHC presynaptic Ca2+-channel abundance, SV exocy-

tosis, or hearing [95]. The apparent absence of RIM1

from sensory ribbon synapses is consistent with previ-

ous work suggesting a Munc13-independent SV prim-

ing mechanism to take place at photoreceptor synapses

[96,97] and the complete lack of all currently described

Munc13s and CAPS1/2 vesicular priming factors from

IHCs AZs [23]. Taken together, these data suggest an

unconventional and unique SV priming mechanism

that remains to be identified, but may involve the rib-

bon itself [42] and/or otoferlin, a Ca2+-binding, multi-

C2-domain protein essential for IHC exocytosis

[59,98,99].

Finally, the synaptic function of deletion mutants

for RIM-binding protein 2 (RIM-BP2) and RIM-BP1/

2 have recently been analyzed in IHCs and photore-

ceptors, respectively [100,101]. Both studies reported a

contribution of RIM-BPs to presynaptic Ca2+ channel

clustering at the AZ – likely by acting as a molecular

linker between RIM, bassoon, and voltage-gated Ca2+

channels [102]. Additionally, RIM-BP2 appears to pro-

mote SV recruitment to the release site during ongoing

stimulation in IHCs and its absence causes a mild

auditory synaptopathy [100].

Actin

Actin is one of the most abundant proteins at neu-

ronal presynaptic AZs, where it colocalizes with the

SV cluster and has been suggested to serve a multi-

functional role including (i) functional scaffolding

[103–105], (ii) the restriction of SV mobility within the

terminal [106], (iii) the formation of a SV fusion bar-

rier [107,108], (iv) a contribution to SV loading of

release sites, docking and priming [103,109–112], (v)

the promotion of SV fusion [113] and finally (vi) SV

endocytosis and recycling [114–118].
Proteome analysis of ribbon complexes indicates the

presence of actin in the core ribbon complex, sugges-

tive of an involvement in ribbon structure and –
potentially – release site-directed SV movement

[47,48]. In support of this latter hypothesis, the actin-

based motor protein myosin 6 has been shown to

localize to IHC synaptic ribbons and other AZ sub-

structures, where it physically interacts with the puta-

tive Ca2+-sensor and SV priming factor otoferlin

[119]. Hence, analogous to its suggested role in neu-

rons [120], myosin 6 may play an extended – either

direct or indirect – role in SV replenishment, release

site clearance, and/or SV reformation at IHC AZs

that relies on the presence of the presynaptic actin

meshwork. Ribbons of Myo6-mutant Snell’s Waltzer

mice [121] display morphological and functional defi-

cits that are indicative of delayed developmental matu-

ration [119]; thus, it is tempting to speculate that

myosin 6-dependent transport of ribbon material (or

accessory proteins) along actin filaments is crucial for

ribbon assembly and/or maintenance. Yet, in this con-

text, it is important to consider that myosin 6 is not

exclusively expressed within the IHC presynaptic com-

partment, but also mediates cargo transport of stere-

ociliar components within the pericuticular necklace

[122]. Hence, the developmental phenotype observed

on the synaptic level might be of secondary nature

and – at least partly – result from the severe stereocil-

iar abnormalities described for Snell’s Waltzer

mutants [123].

Recently, two independent studies have investigated

the functional role of presynaptic actin in neurotrans-

mitter release at auditory ribbon synapses [124,125].

Here, pharmacological disruption of the actin

cytoskeleton led to an apparent increase in the Ca2+-

efficiency of SV fusion for depolarizations exceeding

the amplitude of the RRP. This observation is consis-

tent with the previously proposed ‘SV fusion barrier’

hypothesis, where actin destabilization would relieve

the spatial restriction imposed by the cortical actin

meshwork. Indeed, actin has been suggested to form
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‘cages’ around individual presynaptic AZs in IHCs

and appears to support the tight association of Ca2+-

channel clusters and synaptic ribbons [124]. Actin

disruption led to an increase in the distance between

ribbons and CaV1.3-immunoreactive patches, but did

not result in an attenuation of Ca2+-influx [124,125].

Alternatively, the observed increase in the SV fusion

rate could also result from an additional molecular

priming mechanism enabling the recruitment of so far

unavailable SVs [110,111], but further in-depth analy-

sis is required to clarify this issue.

Otoferlin

Otoferlin plays an essential role in the late steps of

IHC exocytosis, where it has been proposed to act as

a priming factor and Ca2+ sensor for exocytosis

[59,99,126–129]. This latter hypothesis is supported by

the findings that at least four to five of otoferlin’s C2-

domains bind Ca2+ and/or phospholipids [59,130–
132]. In addition, various lines of evidence suggest a

direct interaction of otoferlin with neuronal SNAREs

[131,133,134]; however, considering that neither the

genetic ablation of various SNAREs, nor clostridial

neurotoxin application produced any measurable detri-

mental effect on IHC exocytosis [22], the physiological

role of these interactions will have to be determined in

future studies.

Apart from its role in exocytosis, recent evidence

further suggests a prominent involvement of otoferlin

in efficient release site clearance and SV reformation

[59,126–128,135]. Interestingly, a point mutation in the

otoferlin C2C domain renders this protein instable and

highly temperature-sensitive (an increase of core body

temperature of 1 °C suffices to induce temporary deaf-

ness in humans [136]). In mice, this mutation signifi-

cantly reduces otoferlin abundance in the plasma

membrane [126]. Indeed, IHC exocytosis seems to scale

with the plasma membrane abundance of otoferlin,

but it is not clear whether this is an essential require-

ment for its function or merely a consequence of it.

Additionally, otoferlin may aid the formation of short

tethers connecting SVs to the plasma membrane,

thereby likely promoting SV priming [23]; however, it

does not represent their main constituent as tethers

still do form even in the absence of otoferlin [23].

Thus, the molecular composition of these filaments still

awaits identification.

Otoferlin belongs to a family of tail-anchored pro-

teins, which contain their transmembrane domain at

the COOH-terminus. Therefore, otoferlin can only be

inserted into the endoplasmic reticulum (ER) post-

translationally (for review see Ref. [137]). The main

post-translational membrane insertion pathway that is

required for proper insertion of otoferlin into the

membrane employs the transmembrane recognition

complex 40 (TRC40) and tryptophan-rich basic pro-

tein (WRB) [127], which – in concert with calcium-

modulating cyclophilin ligand – constitutes the TRC40

ER receptor [138,139]. The absence of WRB from

IHCs results in significantly reduced intracellular levels

of otoferlin, thus causing a hair cell synaptic disrup-

tion and hearing impairment, which mimics the pheno-

type of some otoferlin mutations [127]. Likewise,

human pathogenic mutations in the otoferlin trans-

membrane domain have been identified that likely

impair posttranslational ER targeting of otoferlin and

cause hearing impairment [127]. Despite the presence

of a number of tail-anchored proteins whose biogene-

sis is likely also affected by the lack of WRB, the

synaptic malfunction is the first obvious cellular defect

observed in WRB-deficient IHCs. This may suggest a

high turnover rate of otoferlin, which would thus be

most strongly affected by the dysfunctional membrane

insertion pathway. Alternatively, otoferlin may be less

capable of utilizing alternative pathways as compared

to other tail-anchored proteins, making it more vulner-

able to the loss of the TRC40-dependent pathway.

Despite extensive experimental efforts, the exact role

(s) of otoferlin have not been entirely clarified yet, par-

tially due to its large size and structural complexity:

otoferlin contains 6–7 C2 domains as well as a Fer and

a coiled-coil domain (for review see Ref. [9]), whose

individual functions and interaction partners remain

largely elusive to date. To clarify these issues, extensive

site-directed mutagenesis studies with complete bio-

chemical and physiological analysis will be required.

This however has remained challenging due to various

methodological limitations. For example, the size of

Otof cDNA exceeds the maximum packaging size of

commonly used AAV vectors that reliably transduce

IHCs, hence hindering largescale in situ analysis of

knock-in mutations. Otoferlin interaction analysis in

heterologous expression systems is difficult to interpret

without the context of the native cytoplasmic environ-

ment. Moreover, there are several technical challenges

connected with the structural and biochemical analysis

of otoferlin’s functional domains (i.e., difficult purifica-

tion, crystallization, etc. of individual C2 domains).

Endocytosis at IHC ribbon synapses

Modes of endocytosis at IHC ribbon synapses

Regulated exocytosis at single IHC AZs can sustain

exceedingly high rates for prolonged periods of time
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[4,59]. In fact, SV release at this synapse occurs toni-

cally, as we rarely experience complete silence. In

order to preserve structural integrity of the AZ and

assure unperturbed release capacity, endocytosis must

quantitatively – and rapidly – balance exocytosis,

either by matching rate or engulfing larger pieces of

membrane at a time (the so-called ‘bulk endocytosis’).

Using electrophysiological membrane capacitance mea-

surements upon cell depolarization, a fast exponential

and a slow linear phase of endocytosis could be identi-

fied in IHCs [128,135,140]. These phases may represent

clathrin-mediated endocytosis (CME; for review see

Ref. [141]) and bulk endocytosis, respectively (Fig. 1).

Recently, ‘flash and freeze electron microscopy’

enabled detection and description of ultrafast endocy-

tosis in mammalian neurons and at C. elegans neuro-

muscular junctions [116,142]. In this system, ultrafast

endocytosis occurred within 50–100 ms after cell depo-

larization and is mediated by actin and dynamin. In

IHCs, this mode of endocytosis still awaits to be

demonstrated.

Consistent with the findings from other tissues (re-

viewed in Refs [143,144]), brief depolarizations that

predominantly recruit the RRP, activate a slow

mode of endocytosis, which declines linearly with a

rate of approximately 1–2 fF/s and is limited in

speed [140]. In IHCs, this component of endocytosis

can be selectively targeted (but not completely inhib-

ited) by pharmacological inhibitors of CME and a

missense mutation in dynamin1. Prolonged depolar-

izations additionally activate a faster mode of endo-

cytosis – likely a rapid form of bulk membrane

retrieval – that results in an exponential decay of

DCm with a tau of approximately 6 s and an ampli-

tude that scales with the amplitude of the preceding

exocytosis. Apart from IHCs, bulk retrieval has also

been described for ribbon synapses of retinal bipolar

cells and frog saccular hair cells, where cisterna-like

structures could be observed that were slowly disas-

sembled into small SVs [145–147]. Moreover, based

on the findings from (i) electron microscopy (EM

[38,135,140,147]), (ii) pHluorin as well as mCLING

imaging [135,140,148] and (iii) EM analysis of

labeled endocytic structures after photo-oxidation of

the styryl dye FM1-43 [149], both modes of endocy-

tosis appear to predominantly occur in close proxim-

ity to the AZs.

How are SVs reformed from endocytosed material?

It seems that SVs do not derive directly from clathrin-

coated vesicles, as these were found to be larger than

SVs [i.e., approx. 50–60 nm vs 30–40 nm (using con-

ventional fixation) [140,147]]. More likely, endocytosed

vesicles fuse into larger endocytic compartments (e.g.,

endosomes), from which new SVs then pinch off.

Alternatively, SVs could be reformed from membrane

invaginations and cisterns in a distinct but complemen-

tary pathway. In this context, it is interesting to con-

sider a potential role of the ribbon in SV reformation:

endosomes often reside in close proximity to the rib-

bon [135,140] and the RIBEYE B domain has been

shown to exert enzymatic activity to convert lysophos-

phatidic acid into phosphatidic acid in an NADH-

dependent process [65]. Both of these phospholipids

are known to affect membrane curvature [150,151];

hence, it is tempting to speculate that this spatial prox-

imity is not coincidental. Moreover, RIBEYE B may

also provide a physical link between the ribbon and

SVs, as suggested in a recent study [152].

Is ‘kiss-and-run’ exo- and accompanying endocytosis

(reviewed in Ref. [153]) taking place at the IHC AZ?

Analysis of spontaneous EPSCs measured at synaptic

boutons of SGNs contacting immature or mature

IHCs revealed that ~ 30–50% of the events have com-

plex shapes (as compared to transient events with sin-

gle exponential decay times) [154–156]. Consistent with
the kiss-and-run hypothesis and based on the results

from mathematical modeling of these events, one study

argued that these bizarre, multiphasic EPSCs, which

are usually characterized by a lower amplitude, but

similar charge to that of simple EPSCs, might stem

from fusion-pore-flickering of a transiently fusing sin-

gle SV [154]. Although compelling, this is difficult to

prove experimentally: SVs of cochlear IHCs are small

in size, measuring ~ 30–50 nm in diameter, depending

on the fixation method [7,140,154], which equates to

approximately 45 aF in membrane capacitance [157].

Monitoring the flickering of such small SVs requires

cell-attached patch-clamp recordings, amperometry or

in vivo fluorescent imaging of single SVs, which are all

technically extremely challenging methods – in particu-

lar when applied within a tightly-structured and dense

tissue such as the organ of Corti. Future use of these

approaches as well as flash-and-freeze EM should

assist in providing answers to some of the above-men-

tioned critical questions.

Molecular components of the endocytic

machinery operating at IHC AZs

Whereas the mechanisms underlying exocytosis at IHC

ribbon synapses have been studied extensively in recent

decades, the processes determining regulated endocyto-

sis and membrane recycling are far from clear, mainly

due to the fact that experimental analysis of endocytic

events at this synapse is technically highly challenging.

For example, FM dyes [149,158,159] and imaging of
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pHluorin-expressing SVs [140] have limited usability at

the IHC ribbon synapse, capacitance recordings

required for endocytic measurements are difficult to

achieve due to the required long-term stability and

have a limited resolution, etc.

Moreover, CME operates via the coordinated and

sequential interplay of more than 50 distinct proteins,

which makes the individual contribution of a given

protein to the process particularly difficult to identify.

In addition, developmental compensation and func-

tional redundancy within this network can render

experimental outcomes difficult to interpret at times.

Several of the ‘classical’ endocytosis mutants (e.g., en-

dophilin triple knock-out, synaptojanin 1 knock-out

etc.) are not viable, thus only very few of them could

be analyzed with regard to their hearing or vestibular

phenotypes to date. In agreement with a functional

role for CME in IHC endocytosis, immunohistochemi-

cal analysis revealed the expression of several endo-

cytic proteins in IHCs of hearing mice [140], including

(i) the scaffold protein clathrin, (ii) the scission-related

proteins dynamin (a large GTPase), and (iii) amphi-

physin, which recruits dynamin to sites of CME (for

review see Refs [141,160]).

Studies from zebrafish mutants indicate that synap-

tojanin 1, a lipid phosphatase, is required for the

maintenance of SV pools and proper SV recycling in

zebrafish neuromast hair cells, especially during sus-

tained stimulation, which might activate bulk endocy-

tosis [161]. Synaptojanin 1 regulates the turnover of

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) [162]

– the main binding partner of endocytic adaptor pro-

teins [163] – and thus enables the shedding of the cla-

thrin coat from internalized endocytic vesicles [164].

Synaptojanin 1 is recruited by endophilin [165,166]

and the latter seems also to be relevant to endocytosis

in mammalian IHCs (J. Kroll, L.M.J. Tob�on, C.

Vogl, J. Neef, I. Kondratiuk, M. K€onig, N. Strenzke,

C. Wichmann, I. Milosevic & T. Moser, unpublished

observations). In neurons, both, amphiphysin and

endophilins, mediate the constriction of the invagina-

tion neck and recruitment of dynamin to the site of

scission, which is finally governed by all three proteins

(for review see Ref. [141]). Recently, synaptojanin 1

together with endophilin A has additionally been sug-

gested to be required for the rapid constriction of the

neck of endocytic pits during ultrafast endocytosis

[167]. Constitutive deletion of synaptojanin 1 in mice

is lethal, thereby hampering studies of the role of this

protein in mammalian IHCs.

Hearing is moderately perturbed in fitful mutant

mice, which carry a missense mutation in the region of

dynamin 1 that is responsible for its oligomerization

and thus proper vesicle scission [168]. In IHCs, the fit-

ful mutation significantly reduces the linear – presum-

ably clathrin-mediated – component of endocytosis

[140]. Unlike complete deletion of dynamin 1 in cul-

tured cortical neurons [169], the fitful mutation does

not result in massive endocytic vesicle arborizations

(i.e., accumulation of interconnected clathrin-coated

buds) in IHCs [140]. Hence, it is likely that other

dynamin isoforms (potentially dynamins 2 and 3) or

other proteins may be involved in pinching off endo-

cytic structures from the plasma membrane and com-

pensate impaired dynamin 1 function.

Finally, the heterotetrameric clathrin-adaptor pro-

tein complex AP-2 has also been detected in IHCs

[135,170], where it may be responsible for lateral clear-

ance of synaptic proteins from the AZ and clathrin-

dependent SV reformation ([135]; see next chapter).

Exocytosis–endocytosis coupling at
IHC ribbon synapses

The amount of membrane retrieval must match the

extent of exocytosed membrane to keep the plasma

membrane area constant in size and avoid cell swelling

during ongoing SV fusion. Hence, compensatory endo-

cytosis must follow exocytosis in a timely and highly

efficient manner to clear vesicular release sites of exo-

cytosed material and prevent larger presynaptic struc-

tural changes that may inhibit continuous exocytosis.

This may be a particularly challenging task at the

high-throughput ribbon synapses of auditory IHCs.

How this is achieved is one of the crucial unresolved

questions at synapses in general. It has been proposed

that the presynaptic Ca2+ signal that triggers exocyto-

sis may also control the timing of compensatory endo-

cytosis, as increased [Ca2+] accelerates endocytosis

[171–174]. The identity of the Ca2+ sensor for endocy-

tosis is not entirely clear. At neuronal synapses, this

role may be fulfilled by calmodulin ([172], but a rather

modulatory role in endocytosis has been reported as

well [175]). One of the calmodulin targets is cal-

cineurin, which may activate endocytosis by dephos-

phorylating a number of endocytic proteins [176–178].
However, the involvement of calcineurin in the activa-

tion of endocytosis remains controversial [179–182].
Calmodulin may further regulate the activity of the

bin-amphiphysin-rvs domains in endocytic accessory

proteins (including endophilins and amphiphysins;

[183]), which promote membrane curvature before the

final constriction and scission (for review see Refs

[141,160]). Moreover, a role for synaptotagmins in

triggering endocytosis has also been implied from

studies on human fibroblasts, the fly neuromuscular
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junction, and mouse cortical neurons [184–187]; how-
ever, synaptotagmins 1 and 2 are absent from mature

IHCs [24,25]. Whereas, the kinetics of endocytosis are

influenced by the amplitude of the intracellular [Ca2+]

increase, the amplitude of endocytosis seems indepen-

dent of the levels of intracellular [Ca2+] [173], suggest-

ing that other mechanisms must be involved in

controlling the amount of compensatory endocytosis.

Furthermore, the Ca2+ signal does not activate endo-

cytosis in the absence of preceding exocytosis

[188,189], implying that this requires additional – so

far unidentified – factors. In this context, recycling

exocytic proteins or membrane lipids, such as PIP2,

which are required for both, exo- and endocytosis,

may regulate the amount of endocytosis (for recent

reviews see Refs [190,191]). After SV fusion, exocytic

(vesicular) proteins in the plasma membrane may

attract endocytic adaptor proteins and thus initiate

assembly of the clathrin coat components. Alterna-

tively, by binding endocytic proteins, they may acti-

vate or simply bring them closer to retrieval sites.

Moreover, some exocytic proteins with their ‘curved

shape’ might even facilitate membrane bending [150].

How exactly any of these mechanisms contribute to

regulating exo–endocytosis coupling at IHC ribbon

synapses and which exocytic proteins may be involved

remains to be addressed in the future. Neuronal

SNAREs may fulfil the task of binding and attracting

endocytic components to the membrane to be

retrieved at conventional synapses [171,192–195], but

their apparent absence from IHC ribbon synapses [22]

suggests the involvement of different proteins in this

process here.

Otoferlin, as a central exocytic protein at IHC

AZs, is an obvious candidate for regulating endocy-

tosis and/or exo–endocytosis coupling. This large

multi-C2-domain protein may harbor binding sites

for several endocytic proteins and has previously

been shown to directly interact with the endocytic

adaptor protein AP-2 at multiple sites [135,170]. AP-

2 complexes bind PI(4,5)P2, protein cargo and cla-

thrin, and thus are likely involved in the initiation

of vesicle budding from the plasma membrane or

endosomal vacuoles (for review see for example

[141]). Recent data from conventional synapses sug-

gests that endocytic membrane retrieval per se does

not absolutely require AP-2 or clathrin, which how-

ever are both critically required for SV reformation

from endosome-like vacuoles [196]. In line with

results obtained in AP-2l-deficient hippocampal neu-

rons, disruption of AP-2 does not significantly per-

turb membrane retrieval at IHC ribbon synapses

[135]. Upon strong stimulation, loss of AP-2 leads to

the accumulation of endosome-like vacuoles, which –
together with fewer clathrin-coated pits as well as

reduced counts of ribbon-attached SVs (i.e., at the

distal part of the ribbon) – indicates a requirement

of AP-2 for SV reformation. Intriguingly, upon pro-

longed stimulation, the number of membrane-proxi-

mal SVs is unaltered; however, the speed of

exocytosis decreases significantly in the mutants, sug-

gesting impaired release site clearance that prevents

the membrane-proximal SVs to reach fusion compe-

tence [135]. Otoferlin levels in AP-2-deficient IHCs

are dramatically reduced and there is an indication

that the remaining otoferlin might be more strongly

present on the plasma membrane. Thus, it has been

suggested that AP-2 acts as a sorting factor for

otoferlin, mediating assembly and lateral clearance of

used otoferlin from release sites. Thereby, AP-2

enables re-occupation of these sites with ‘fresh’

release-competent SVs [135]. Yet, a potential active

role of otoferlin in AP-2 recruitment to the AZ

needs to be further addressed. However, since per-

turbations of otoferlin structure usually lead to rela-

tively strong impairment of exocytosis

[59,99,126,128], this latter point remains difficult to

address. In IHCs of otoferlin mutants that show par-

tially preserved RRP exocytosis in vitro, the kinetics

of endocytosis (membrane retrieval) upon cell depo-

larization or Ca2+ uncaging seems remarkably unaf-

fected [59,140]. Thus, there is so far no evidence for

otoferlin involvement in endocytic membrane retrie-

val, but further work with novel otoferlin mutations

is required to fully address this question.

Perspectives

In the last decades, we have learned a lot about the

SV cycle at IHC ribbon synapses; however, some criti-

cal basic knowledge is still missing. For example, what

is the exact role of the ribbon in IHC exocytosis?

Answering this question will require acute ribbon abla-

tion in an otherwise completely undisturbed system.

Which SNAREs – if any – are expressed and facilitate

SV fusion at these synapses? Here, inner ear gene

expression databases, such as the Shared Harvard

Inner-Ear Laboratory Database (https://shield.hms.ha

rvard.edu) [197], have been made publicly available in

recent years and offer a wealth of gene expression data

that currently await in-depth functional and morpho-

logical analyses. Hence, such data repositories should

be used as guidelines for future projects aiming to

identify key molecules in IHC exo–endocytosis cou-

pling, membrane retrieval, and SV reformation. More-

over, it will be of great interest to elucidate the role of
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otoferlin in these processes and determine which of its

functional domains as well as molecular interactors

may be involved in this framework.
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