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Abstract
Advances in renewable and sustainable energy technologies critically depend on our ability to 
design and realize materials with optimal properties. Materials discovery and design efforts 
ideally involve close coupling between materials prediction, synthesis and characterization. 
The increased use of computational tools, the generation of materials databases, and advances 
in experimental methods have substantially accelerated these activities. It is therefore an 
opportune time to consider future prospects for materials by design approaches. The purpose 
of this Roadmap is to present an overview of the current state of computational materials 
prediction, synthesis and characterization approaches, materials design needs for various 
technologies, and future challenges and opportunities that must be addressed. The various 
perspectives cover topics on computational techniques, validation, materials databases, 
materials informatics, high-throughput combinatorial methods, advanced characterization 
approaches, and materials design issues in thermoelectrics, photovoltaics, solid state lighting, 
catalysts, batteries, metal alloys, complex oxides and transparent conducting materials. It is 
our hope that this Roadmap will guide researchers and funding agencies in identifying new 
prospects for materials design.

Keywords: density functional theory, materials genome initative, materials design,  
high-throughput methods, energy applications
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1. Introduction

Kirstin Alberi1, Marco Buongiorno Nardelli2  
and Andriy Zakutayev1

1  National Renewable Energy Laboratory, Golden, CO 80401, 
United States of America
2  University of North Texas, Denton, TX, United States of 
America

Advances in renewable and sustainable energy technolo-
gies critically depend on our ability to design materials 
with the optimal properties for each individual application. 
Computational methods have accelerated materials design 
efforts through rapid and comprehensive prediction of mat-
erials stability and properties. A very simplistic metric for 
assessing the rise of computational materials efforts is the 
total number of mat erials that have been ‘predicted’ (which 
does not capture the extent or diversity of the calculated prop-
erties). As schematically shown in figure 1(a), the number of 
theoretically predicted materials in computational materials 
property databases, including AFLOW, the Open Quantum 
Materials Database and the Materials Project (104–106), 
is now comparable to the number of experimental entries 
in crystallographic databases (~ 105). Perhaps even more 
importantly, increased accessibility to the computed proper-
ties has also sped up exper imental research and development 
of new functional materials for a wide range of applications. 
Acceleration of materials by design research is evidenced 
by the nearly exponential growth in the number of publica-
tions on materials design, shown in figure 1(b), where break-
throughs were facilitated by the development of user friendly 
ab initio codes (mid-90s) and automation of these codes to run 
high-throughput computations (>2010). Yet, for all its recent 
successes, the materials by design concept is relatively new 
and has the potential for further expansion and impact.

The purpose of this Roadmap is to present an overview 
of the current state of computational materials prediction 
approaches, corresponding advanced synthesis and charac-
terization methods, and the application of these computa-
tional and experimental techniques to various energy relevant 
technologies. Future challenges and opportunities that must 
be addressed to improve materials by design approaches are 
also discussed. We have asked leading researchers in each 
of these areas to weigh in on these issues and provide their 
perspectives and visions for the advancement of the mat erials 
by design field. The covered topics include computational 
techniques, validation of the results, materials databases, mat-
erials informatics, high-throughput combinatorial methods, 
advanced characterization approaches, as well as materials 
design issues in thermoelectrics, photovoltaics, solid state 
lighting, batteries, metal alloys, complex oxides and transpar-
ent conducting materials.

A unifying theme of many of the contributions to this collec-
tion is the need for high-throughput computational and exper-
imental techniques as a foundation for the materials by design 
paradigm, as well as methods to exploit synthesis and manu-
facturing processes for new materials. Nowadays, we possess 

the ability to efficiently generate and manage large amounts of 
computational data in open repositories, facilitating access to 
a plethora of calculated properties and functions of millions of 
different materials. Computational efforts that go beyond pre-
dicting the thermodynamic stability of a material and provide 
additional calculations of electronic structure, properties and 
even optical spectra of diverse material systems are becom-
ing increasingly important and valuable. Similar large data 
repositories of exper imentally measured properties are less 
common but would be needed to benchmark and supplement 
the computations. From here, we envision innovative ways to 
interrogate the big data space through data mining, machine 
learning, autonomous systems and artificial intelligence tech-
niques. We emphasize that all of these techniques must work 
together to realize the full potential of the materials by design 
approach. Another common theme of several contrib utions to 
this Roadmap is the need for in situ and operando measure-
ment techniques to derive deeper scientific insight into mat-
erial synthesis processes.

A simplified example of a materials design process that 
can be used to accelerate materials transfer from computer 
simulations to lab bench and consumer products is illus-
trated in figure 2. Theoretical challenges range from intelli-
gent optim ization algorithms that predict candidate material 
compositions and structures to the exploitation of the appro-
priate descriptors of functional properties. Experimental 
needs include accelerated synthesis of the most promising 
candidates and advanced characterization of these materials. 
Finally, application requirements involve validation of the 
measured or calculated properties, improved synthesis routes, 

Figure 1. (a) Total number of compounds contained within the 
Inorganic Crystal Structure Database (ICSD) and computational 
databases. These values do not reflect the extent of the information 
in each entry. (b) The number of publications returned in from 
a Scopus search using query terms ‘materials design’ and 
constraining the search to exclude irrelevant results (e.g. furniture, 
textiles, bridges, etc).

J. Phys. D: Appl. Phys. 52 (2019) 013001
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testing of the materials in devices, and the clear articulation 
of desired materials properties needed for prediction of next 
generation materials candidates in the next cycle.

The resulting Roadmap is broadly divided in two main 
sections on Methods and Applications. In the Methods sec-
tion, we review advances and challenges in three areas: com-
putation of materials properties beyond the current standard, 
novel experimental techniques for materials design and 
discovery, and the curation and use of digital data. In the 
Applications section, we provide a snapshot of the current 
issues and trends in materials design in areas ranging from 

semiconductors to batteries to structural materials. Each 
application may present its own specific material design 
challenges to overcome, but the general materials design 
approach is expected to be germane to all of them. Another 
relevant issue is how to rapidly and efficiently implement 
such material design approaches at laboratory prototyping 
and even industrial manufacturing scales.

We hope that this Roadmap will provide a concise yet com-
prehensive review of a fast-growing field of materials design, 
one that has the potential to shape the global economy and 
human well-being for years to come.

Figure 2. Schematic of the materials by design approach.

J. Phys. D: Appl. Phys. 52 (2019) 013001
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2. Data generation beyond standard DFT  
for high-throughput applications

Marco Buongiorno Nardelli1 and Lubos Mitas2

1  University of North Texas, Denton, TX, United States of 
America
2  North Carolina State University, Raleigh, NC, United States 
of America

Status. The last decade has established that a combination 
of first principles theoretical computations in synergy with 
experimental investigation is a powerful foundation for the 
discovery of new materials, new functions, and new design 
concepts in a multi-disciplinary effort that encompasses the 
development of transformative computational tools, unprec-
edented data analysis approaches, and systematic interaction 
with experimental discovery and validation.

All the existing materials property databases derived from 
computation are based on density functional theory (DFT) 
in the local density (LDA) or generalized gradient (GGA) 
approximations. Although the reproducibility of results in 
density functional calculations of solids has by now been 
an established fact [1], much less documented at the scale 
of large materials databases is the veracity of the quanti-
ties that are calculated. Accurate prediction of the electronic 
properties of materials at a low computational cost has been 
a major challenge in ab initio computational materials sci-
ence from the first applications of DFT in the early 80s to 
the current advanced high-throughput frameworks. Despite 
the enormous success of DFT in describing many physical 
properties of real systems, the method is crippled by the 
presence of a correlation term that represents the differ-
ence between the true energy of the many-body system of 
the electrons (only formally known) and the approximate 
energy that we can compute. The next step beyond DFT is 
based on GW theory that provides perturbational improve-
ments, in particular for band gaps that are crucial for many 
applications [2].

At present, many-body approaches, such as quantum Monte 
Carlo (QMC) methods, are becoming used more broadly for 
many key energy differences, such as fundamental and opti-
cal gaps, cohesions, energy orderings of various structures 
and defect energetics [3–5]. Very recently, QMC has reached 
even finer energy scales, such as differences between differ-
ent magn etic states or dissociations of non-covalently bonded 
systems with subchemical accuracy (0.1 kcal mol−1) [3, 6]. For 
reliable description of spectral properties and response func-
tions, the methods of choice are based on dynamical mean 
field theory (DMFT) that offers insights beyond perturbative 
corrections and enables one to also study electronic phase 
changes, such as metal–insulator and magnetic transitions. 
Finite temper ature effects that are crucial for functions of real 
materials are often studied by a combination of DFT electronic 
structure and molecular dynamics approaches. Many-body 
alternatives, such as path integral Monte Carlo, are still under 
development and so far have been applied mostly to systems 
with light elements. Despite all of these promising advances, 

databases of tools and calculations from many-body methods 
are basically non-existent at present, as a result of still very 
intense developments and the diversity of ideas that are being 
pursued (see below for very recent progress in this direction).

Current and future challenges. The key to achieving signifi-
cant breakthroughs rests on our ability to efficiently integrate 
all the components in a seamless constructive cycle and in 
particular one development of innovative theoretical meth-
ods and tools beyond the state-of-the-art DFT approaches, 
which are fast, robust and amenable to high-throughput (HT) 
computation.

In this respect, we see many distinct but parallel 
requirements:

 1.  The development and validation of novel functionals 
to improve accuracy of traditional DFT; verification of 
data for complex materials systems with strong electron 
localization and correlation; development of novel com-
putational algorithms to evaluate exchange energy in 
hybrid density functional for HT applications.

 2.  The inclusion of methodologies beyond DFT for the 
generation of materials data towards chemical and 
subchemical accuracy, such as QMC and DMFT, which 
are crucial for increasing the accuracy of calculations for 
energetics, as well as spectral properties that are needed 
for building significantly more accurate data sets for both 
equilibrium and non-equilibrium conformations.

 3.  The development of procedures for fast computational 
characterization of materials properties, such as: 
calcul ation of transport (both regular and anomalous) 
properties; development of efficient methodologies 
for the simulation of theoretical spectroscopies in the 
broadest energy range and with maximum accuracy and 
high computational efficiency.

Figure 3. Performance of ACBN0 for a number of transition 
metal oxides and chalcogenides. In the figure, we compare the 
experimental band gap with the one obtained by PBE (red), ACBN0 
(green) and HSE or GW (blue). For a complete discussion, see [7].

J. Phys. D: Appl. Phys. 52 (2019) 013001
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 4.  The development of materials modelling and prediction 
software to match the scaling challenges posed by the 
ever-evolving hardware architectures and accelerated 
hybrid computer systems. This effort requires a substanti al 
redesign of software and algorithms to efficiently take 
advantage of the increased hardware power.

 5.  Another important direction is expansions of calcul-
ations to nonzero temperatures both by DFT+  molecular 
dynamics approaches, as well as by many-body treat-
ments based on thermal density matrices, such as path 
integral Monte Carlo.

 6.  A further important goal is the many-body treatment of 
spin, spin–orbit effects and relativity in general for heavy 
element materials, including fast characterization of 
phases with topological properties.

Advances in science and technology to meet challenges. A 
key challenge for current DFT is the accurate description of 
materials with strong electron localization and correlation. 
Work to address this challenge and at the same time maintain a 
competitive computational cost must continue beyond the exist-
ing efforts (see, for instance, figure 3 [7, 8]). There are impor-
tant developments in many-body methods, such as the new 
generation of pseudopotentials from correlated treatments [9], 
second-quantized QMC approaches based on auxiliary fields 
and/or stochastically sampled excited state expansions, as well 
as finite temperature many-body calculations [4, 5]. Another 
direction of intense study is the use of stochastic methods for 
responses and time-dependent phenomena both in DMFT and 
QMC approaches. The databases for many-body methods as 
well as for the storage of results from many-body calculations 
have been getting significant attention very recently and several 
initiatives have been formed that aim to establish such reposito-
ries in a systematic open source/open data framework for both 
many-body codes and data for broad use [9].

Concluding remarks. The next leap in building reliable data 
will encompass several important aspects. There is a continuing 
effort to push the limits of accuracy for materials in key direc-
tions: energy differences for systems in equilibrium and non-
equilibrium atomic conformations; explorations of non-ideal 
or composite systems, such as imperfect crystals with defects 
and impurities; 1D and 2D systems on substrates; organic–
inorganic and cluster-based structures. Much better quality of 
data and the inclusion of spin-dependent interactions in many-
body methods is highly important for finer energy scales, such 
as magnetic, topological or exotic electronic phases and heavy 
atom systems. Materials functions at nonzero temperatures and 
therefore better and more accurate description of many quanti-
ties at finite temperatures are highly desirable. Almost all 
materials operate in some type of response regime and there-
fore a better understanding of responses and time-dependent 
phenomena is another important goal—systematic description 
of such phenomena for materials is still very difficult in gen-
eral. Since materials research is a vast ‘universe’ of phenomena 
and spans a huge range of observed quantities, the diversity of 
approaches is of paramount importance to address all of these 
important challenges.
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3. Computational infrastructures for data 
generation

Anubhav Jain1 and Stefano Curtarolo2,3

1  Energy Storage and Distributed Resources Department, 
Lawrence Berkeley National Laboratory, Berkeley, CA, 
United States of America
2  Duke University, Durham, NC, United States of America
3  Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 
Germany

Status. New materials have historically been designed 
through intuition and experimentation. However, the high 
cost, long times, and manual effort required for experimental 
study have always served as major barriers to this process. 
In the last two decades, however, advancements in theory, 
computing hardware, and numerical algorithms have conv-
erged to provide new simulation-based methods for investi-
gating materials that are fast, cost-efficient, and scalable to 
millions of materials. In particular, density functional theory 
(DFT) calculations, which solve the electronic structure of a 
material with few adjustable parameters, are now routinely 
run in a ‘high-throughput’ mode [10] in which researchers 
are able to evaluate thousands or even millions of materials 
on supercomp uters with little intervention (figure 4). Today, 
there exist several examples in which such computational 
techniques have identified new functional materials that have 
subsequently been confirmed by experiments [11].

Furthermore, computational data sets can be shared through 
one of several online databases [12], such as the Materials 
Project (www.materialsproject.org) or AFLOWlib (www.
aflow.org). These resources contain millions of computational 
‘measurements’ of materials properties, such as formation 
enthalpy, electronic band structure, and elastic moduli, that 
can be systematically searched and that are constantly expand-
ing in scope. The ability to rapidly generate reliable materials 
data in this manner improves every year as computing costs 
decrease, theoretical methods to study materials become more 
accurate, and the software to apply these techniques becomes 
more powerful and accessible to a larger audience.

Today, many research groups regularly employ high-
throughput computing to screen materials libraries for func-
tional applications. However, a major opportunity for the 
future is to incorporate techniques from the fields of data min-
ing and statistical learning to the analysis of materials data. 
The arrival of large-scale computational data generation infra-
structures has created the potential to develop a new science 
of ‘materials informatics’ [13]. It is possible that entirely new 
ways of developing chemical rules and thinking about mat-
erials behaviour will result from the marriage of simulation 
data with machine learning advancements, thereby adding a 
new dimension to the traditional methods of materials design.

Current and future challenges. There exist both fundamental 
and practical challenges in data generation through simula-
tion. For example, developing physical theories that are ame-
nable to computation and that achieve high accuracy across 

mat erials with very diverse electronic structures (such as met-
als, semiconductors, ceramics) is an extremely difficult task. In 
this regard, the DFT approach, pioneered by Kohn and Sham, 
and for which Kohn would later receive a Nobel prize, serves 
as a very good starting point. Even simple approximations 
to DFT can produce accurate results across many materials 
classes, with discrepancies in accuracy between computation 
and experiment being as low as a few percent. However, cer-
tain materials classes (such as strongly-correlated systems) and 
certain materials properties (such as excited-state properties, 
e.g. band gap or optical spectrum) are poorly model led with the 
typical DFT approaches. Thus, major research efforts world-
wide are being devoted to developing methods that improve 
the accuracy of the method. For example, frameworks to auto-
mate the QMC method (despite its very high computational 
cost) are now actively being developed and tested [14, 15].

A second fundamental challenge relates to the scaling of 
the computational effort needed for the computation in rela-
tion to the system size in electrons. Today, it is routine to calcu-
late the properties of systems with unit cells of a few hundred 
atoms, but the poor N3 scaling of DFT methods with system 
size means that systems with thousands or tens of thousands of 
atoms are either inaccessible or require specialized treatment. 
DFT methods today are largely limited to systems of low or 
intermediate complexity and approaches to either improve the 
scaling of DFT methods or to ‘glue together’ different model-
ling techniques through multiscale modelling also form a cur-
rent major research topic.

Figure 4. High-throughput computational analysis of binary alloy 
formation as compared with known experimental data. This serves 
an example of how computational data generation can rapidly 
‘map’ a chemical space. Reprinted by permission from Macmillan 
Publishers Ltd: Nature Materials [10], Copyright 2013.

J. Phys. D: Appl. Phys. 52 (2019) 013001
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There also exist important practical considerations that 
must be addressed when generating large amounts of simula-
tion data. For example, one must evaluate the various trade-
offs in computational cost, complexity, and accuracy when 
determining the level of theory at which to perform calcul-
ations. Each simulation that is executed must undergo a 
complex sequence of steps (figure 5) including generation of 
input files, execution on specialized supercomputing centers, 
and error handling. Furthermore, many materials properties 
require chaining together dozens of such simulations in work-
flows with complex dependencies. One must be able to track 
millions of simulations and files and be able to quickly access 
any result. Here, advancements in software have greatly pro-
gressed in the last decade such that these practical aspects of 
data generation, once a large undertaking, can be handled by 
individual researchers.

Advances in science and technology to meet challenges. A 
summary of the fundamental challenges for DFT calculations 
has been previously covered [16]. Here, we summarize some 
of the major active worldwide efforts in developing computa-
tional data generation frameworks.

The Automated Interactive Infrastructure and Database for 
Computational Science (AiiDA) platform [17], developed by 
the European NCCR-MARVEL collaboration and written in 
Python, is available to researchers as open-source and aims to 
assist researchers with the ADES (automation, data, environ-
ment, sharing) components of data generation. A major bene-
fit of the AiiDA platform is that one can perform rich searches 
over a database of calculation workflows, thus introspecting 
many features of the computations both programmatically and 
visually.

The Automatic Flow (AFLOW) platform [18], devel-
oped by the AFLOW.org consortium and written in C++ 
and python is available as a free download. AFLOW assists 

users in many aspects of simulations, from generating mat-
erials models (e.g. from common prototypes) to performing 
simulation sequences and correcting errors that occur. This 
all-in-one nature makes many powerful tools and analyses 
available to users and can be used either alone or in combi-
nation with other tools. The AFLOW platform has been used 
to create the AFLOW database accessible at www.aflow.
org. Several interface libraries are available for using the 
framework in python workflows. Among them are the sym-
metry analysis (AFLOW-SYM), phonon and thermal trans-
port (AFLOW-APL), disordered analysis (AFLOW-POCC), 
and machine learning automation (AFLOW-ML, aflow.org/
aflow-ml). The consortium has also standardized a cloud-
language for complex data analysis and retrieval (AFLUX).

The Atomic Simulation Environment (ASE) library [19], 
first developed at Denmark Technical University and written 
in Python, is available to researchers as open-source. It was 
one of the first high-level interfaces to simulation software 
and has since expanded to include a host of useful capabili-
ties. ASE can for example help build complex models, such 
as surfaces, and is unique in that it allows interchanging the 
specific DFT theory calculator (software) used to perform the 
calculation.

The atomate library [20], developed by the Materials 
Project collaboration and written in Python, is available 
as open-source. The atomate library uses several underly-
ing libraries also developed by the same collaboration (e.g. 
pymatgen, FireWorks, and custodian) to perform a range of 
actions, such as creating sophisticated materials models, man-
aging workflows on supercomputing centers, and providing 
error correction. Atomate implements many common mat-
erials workflows and was used to create the Materials Project 
database, available at www.materialsproject.org.

Collectively, these frameworks are greatly expanding the 
audience for computational data generation.

Figure 5. Schematic of some of the steps needed to execute a simulation (top route). Today, the existence of computational data generation 
frameworks essentially makes this process as simple as clicking a button or calling a single function (bottom route).

J. Phys. D: Appl. Phys. 52 (2019) 013001
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Concluding remarks. Advancements in computational data 
generation have provided researchers with a new toolkit and a 
new avenue with which to address materials design problems. 
With a few exceptions, these high-throughput techniques have 
only been applied for about a decade or so and it is likely 
that some of the most important advancements in the field are 
yet to come. In particular, addressing fundamental challenges 
in achieving high accuracy and in modelling large, realistic 
systems remain formidable topics for future work. Similarly, 
extracting knowledge from large materials data sets through 
machine learning techniques is still in its infancy. Neverthe-
less, the ability to quickly generate data on a library of mat-
erials of interest and to share these results with collaborators 
worldwide has already changed the way in which many 

researchers, experimentalists and theories alike, are conduct-
ing materials design studies and has led to a new collective, 
collaborative method for applying theory to materials.

Acknowledgments

A J acknowledges funding from the Materials Project Center 
through Grant No. KC23MP through the US Department of 
Energy, Office of Basic Energy Sciences, Materials Sciences 
and Engineering Division, under Contract No. DE-AC02 
05CH11231. S C acknowledges funding from DOD-ONR 
(N00014-15-1-2863, N00014-17-1-2090, N00014-16-1-
2583, N00014-17-1-2876).

J. Phys. D: Appl. Phys. 52 (2019) 013001



Topical Review

10

4. Verification and validation for electronic-  
structure databases

Marco Fornari1 and Nicola Marzari2

1  Department of Physics, Central Michigan University,  
Mt. Pleasant, MI 48859, United States of America
2  Theory and Simulation of Materials, École Polytechnique 
Fédérale de Lausanne, 1015 Lausanne, Switzerland

Status. Electronic-structure calculations have had a profound 
influence on the development of computational materials sci-
ence, especially thanks to the relative efficiency and accuracy 
of density-functional theory (DFT). The ‘Materials Genome 
Initiative’, launched by President Obama in 2011, has given 
worldwide visibility to this effort, and the task of developing 
novel materials has started to leverage queryable databases 
whose content is exploited to accelerate the discovery process. 
Large sets of experimental and theoretical data, built on the 
continuous effort of selected research groups, are now being 
curated, organized, and reconsidered for purposes beyond per-
sonal repositories. Because of their homogeneity in terms of 
format, results from DFT calculations were among the first 
data made publicly available to complement or expand exist-
ing databases of experimental crystal structures, such as those 
collected in the Inorganic Crystal Structure Database (ICSD), 
the Crystallographic Open Database (COD), and the Pauling 
File.

To the best of our knowledge, a list of electronic-structure 
databases includes the Materials Project (materialsproject.
org), the Computational Materials Repository (cmr.fysik.
dtu.dk), the Open Quantum Materials Database (oqmd.org), 
the Open Materials Database (httk.openmaterialsdb.se), the 
Theoretical Crystallographic Open Database (www.crystal-
lography.net/tcod), the Materials Mine (www.materials-mine.
com), the NREL Materials Database (materials.nrel.gov), the 
Automatic FLOW repository (aflow.org), the Materials Cloud 
(materialscloud.org), and the Novel Materials Discovery 
Repository (nomad-repository.eu); these allow, with differ-
ent licenses, to download selected records, or in some cases 
even the entire repository. The records that are accessible are 
usually generated with standard plane-wave pseudo-potential 
electronic structure codes; mostly with VASP (www.vasp.at)  
[21], or more recently with Quantum ESPRESSO (www.
quantum-espresso.org) [22] and other electronic-structure 
codes. They usually include input files to establish some 
amount of reproducibility for the calculations. Typical quanti-
ties that are reported in the databases are relaxed geometries 
of crystal structures, together with total energies, band struc-
tures, and densities of states.

In most cases, data generation has been performed for 
specific projects and the properties included in the mat erials 
records may vary greatly, even within the same repository. 
In addition, due to the specific research goals that drove 
the calcul ations, the overall quality of the data has not been 
extensively assessed. It is thus assumed that the data are ‘good 
enough’ for the specific research goal, although this approach 
hinders the ability to further use the data in unrelated data 

driven research, and often even the same calculations for the 
same structure performed with the same code can have signifi-
cant discrepancies. In order to force consistent quality among 
the records within a repository, several groups have opted 
to establish what the calculation parameters are that should 
guarantee reliable results across structural and chemical vari-
ations [23]. Other groups have performed systematic testing 
on selected systems aiming to provide stricter transferability 
criteria and improve, for example, the quality of the pseudo-
potential calculations against all-electron data ([1, 24] and 
http://materialscloud.org/sssp/).

In this Roadmap, we touch upon the efforts toward the 
concepts of verification and validation assuming the follow-
ing definitions:

 •  Verification efforts are aimed at assessing that the calcul-
ations have been performed correctly, and provide the 
theoretical results that are expected—e.g. there is one 
single theoretical value for the lattice constant of crystal-
line silicon within the LDA approximation to DFT, even 
if no one knows what it is with an accuracy greater than a 
few parts per thousand. This effort comprises establishing 
and assessing the quality of the calculations in terms of 
the input parameters, from energy cutoffs to k-point 
sampling to the convergence thresholds, the presence of 
bugs, approximate numerical methods, and so on. In this 
context, the major and most difficult challenges involve 
hidden bugs, and the use of the pseudo-potential approx-
imation.

 •  Validation involves comparing the theoretical calculations 
and experimental measurements in order to quantify the 
predictive value of the theory—for this, one needs also to 
carefully assess, for example, the condition at which the 
comparisons are made (environmental conditions, such as 
temperature, degree of imperfections in the experimental 
sample, the role of quantum nuclear effects not consid-
ered in the theory, etc.).

Current and future challenges. Two main aspects must be 
stressed when discussing the path toward verification: the 
first one involves the definition of quality standards for the 
calculated quantities, the second focuses on tools needed to 
verify the records already available in the electronic-structure 
databases.

The first systematic effort of verification in the world of 
solid-state calculations has been performed by Lejaeghere 
et al [1], which assessed the reproducibility of DFT calcul-
ations of elemental solids across a variety of electronic-struc-
ture codes and different libraries of pseudo-potentials. It is 
noteworthy that this was done more than 50 years after the 
introduction of DFT; the computational chemistry community 
started such an effort much earlier. The variety of the com-
puted properties available in electronic structure databases, 
however, complicates this task. The total energy is the least 
sensitive quantity to numerical errors, thanks to the variational 
principles, and it has already been pointed out that, for exam-
ple, verified band structures may not translate to agreement 
on vibrational properties [25] and that a more careful analysis 
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must be conducted at least when using density-functional per-
turbation theory [26].

Tools to retrieve/compare/assess records in selected elec-
tronic structure data repositories are often available as a dedi-
cated REST application program interface (API); however, 
only recently were search APIs made available to perform 
preliminary verification tasks on a large set of data. Rose et al 
[27] have used their search API to analyse the convergence of 
variable cell relaxation for all the structures contained in the 
ICSD.

Validating theoretical predictions requires synergy with 
experimental databases and, although it has been commonly 
done on single materials, only a few examples of systematic 
comparison are available. Aiming to validate DFT forma-
tion energies, Kirklin et  al [28] have found agreement in 
86% of the 89 cases considered. Toher et  al [29] investi-
gated thermo-mechanical properties, such as bulk and 
shear moduli, Debye temperatures, and Gruneisen param-
eters and assessed the reliability of different computational 
approaches compared with 74 experimentally characterized 
systems (see figure 6).

Advances in science and technology to meet challenges. Sev-
eral major issues remain: (1) establishing transferable standards 
and protocols to assess the predictive value of electronic-
structure data, (2) further development and implementation of 
software tools for automatic verification, (3) establishing com-
munity test cases ([30] and https://galligroup.uchicago.edu/
Research/hybrid_functionals.php#tables) that contribute to 
develop high-quality standard datasets, (4) building synergies 
between theoretical and experimental databases for validation, 

(5) expanding the number of computed quantities in order to 
facilitate direct comparison with experiments, (6) defining and 
computing universally ‘reliability scores’ to provide direct 
information regarding data quality to database users.

A recent and notable effort has been that of the OptiMade 
API, which intends to add a compatibility layer to access data 
from different repositories. Such an effort is still in progress 
but could potentially help to address some of the difficulties 
in verifying electronic-structure data. The definition of valida-
tion protocols is even more difficult, since it involves a much 
more diverse universe of techniques, formats, and details.

Concluding remarks. Several independent repositories of 
electronic structure data based on DFT are currently publicly 
accessible. The data contains millions of computed properties 
that can be used for machine learning and more. Verification 
standards, however, are missing, with limited curation of data; 
validation has been rarely addressed and typically on very 
small subsets. This rapidly growing area of research dedi-
cated to verification and validation must be expanded, aiming 
at community definitions of accepted standards for accuracy, 
and well-defined protocols and tools for the calculations.
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Figure 6. Validation study of the AGL computational method [27] applied to the lattice thermal conductivity and the Debye temperature. 
Theoretical predictions of simpler harmonic properties, such as the Debye temperature, have larger predictive values. The calculations 
of thermal transport coefficients that must include accurate treatment of the anharmonic contribution provide more scattered results. 
Reproduced with permission from Cormac Toher.
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Status. The high-throughput (combinatorial) approach to 
materials discovery enables synthesis and screening of a large 
number of different alloys or compounds simultaneously. Early 
incarnations of the high-throughput strategy appeared in the 
1960s where co-deposition of thin films was used to generate 
composition spreads of ternary metallic alloys and functional 
materials, such as ferromagnets and luminescent materials. 
Despite some success, early efforts did not lead to widespread 
adoption largely because of the lack of tools for rapid charac-
terization, as well as computers and automated measurement 
techniques. High-throughput materials exploration truly came 
of age in the early 1990s following the advent of combinato-
rial chemistry in biochemical fields and in the pharmaceutical 
arena [31]. The early 90s was also the era when the need for 
rapid, systematic investigation of new materials was first rec-
ognized by the materials science community, following the 
discovery of high temperature superconductors. Since then, 
the combinatorial approach has become an accepted method-
ology in almost all areas of materials science [32]. Combi-
natorial catalysis is a large field practiced by academic and 
industrial labs alike in tackling a variety of homogeneous and 
heterogeneous catalytic reactions with applications in produc-
tion of chemicals, refinery operations and environmental pro-
tection [33]. Polymeric materials also represent a vast target, 
including formulations for coating, tissue engineering, and 
polymerization catalysts [34]. While stoichiometric control 
and the search for new compositions with enhanced physical 
properties is the most common mode of combinatorial invest-
igation, microstructure and processing control through fine-
tuning of myriad synthesis parameters is equally important. 
In the arena of functional materials, the investigation has been 
increasingly focused on energy-related materials, such as bat-
tery electrodes, fuel cell electrolytes, photovoltaic materials, 
and thermoelectric materials [35].

Recent advances in computational materials science and 
data science are an exciting development. Integration of com-
putational and theoretical predictions of materials with the 
experimental combinatorial approach can signal a new chap-
ter in materials discovery, and such efforts are underway in 
multiple fronts.

Current and future challenges. The history of the combinato-
rial approach is paved with a series of technical challenges that 
the community has endured over the years. In the early days, 
the synthesis posed the initial test: is it really possible to make 
hundreds to thousands of compositionally varying samples in a 
single experiment in a controlled manner? The answer depends 

on the topic, synthesis technique, and the extent of composi-
tion variation one attempts to map on a given library. While it 
is enticing to apply the approach to the latest exotic and excit-
ing topics, the cardinal rule is that one needs to be able to reli-
ably synthesize the correct benchmark composition on a corner 
of the combinatorial library. To this end, one needs to criti-
cally evaluate the library design taking into account simultane-
ously achievable ranges of synthesis parameters (composition, 
temper ature, atmosphere, etc) on a library.

The second set of challenges was in the form of high-
throughput screening tools [36]. Because the  high-throughput 
methodology presented a new way to measure materials 
properties, it often required a major instrumentation effort to 
develop new tools for local, rapid and accurate characteriza-
tion on libraries comprised of small quantities of materials. 
Techniques based on scanning probe microscopy (SPM) have 
been effective, and MEMS and electronic device array con-
figurations have also proven to be powerful platforms [37]. 
For instance, SPM techniques have been used to measure fer-
roelectric properties, magnetic properties, and piezoelectric 
properties. Micromachined cantilever arrays have been used 
for high-throughput detection of martensitic transformation 
for shape memory alloys, hydrogen storage materials, and 
magnetostrictive materials. While some properties, such as 
electrochemical catalysis and the latent heat in caloric mat-
erials, are inherently difficult to quantitatively capture by 
high-throughput experimentation, researchers have made 
great strides in streamlining the screening techniques of virtu-
ally all physical and chemical properties [35].

Various types of measurement data, generated from library 
characterization in large quantities, have always presented a 
challenge for the community. In recent years, the issue of how 
to manage (curate and analyze) large, heterogeneous data sets 
has come to the fore. Some national laboratories have taken on 
this challenge and have successfully set up curated databases 
for high-throughput experimentation. Good examples are the 
online data handling systems developed at NIST (https://mgi.
nist.gov/materials-data-curation-system) and NREL (https://
htem.nrel.gov/). Given that there are also now enormous 
amounts of computed materials properties available from 
theor etical work, the situation calls for an integrated approach 
to designing theory-guided combinatorial experiments and 
performing holistic data processing and mining.

Advances in science and technology to meet chal-
lenges. Effective integration of experimental and computa-
tional high-throughput approaches can serve as an engine to 
drive materials discovery in a variety of fields. In order for 
the integration to be seamless, frequent feedback loops are 
needed between theory and experiment (figure 7). Combina-
torial experiments can be used to rapidly validate theor etical 
predictions of new compounds within targeted yet broad com-
position ranges. Experimental data, systematically generated 
from libraries, can in turn be used to build new theoretical 
models for further predictions. It would be ideal to have such 
an integrated engine on a flexible data-handling platform, 
which includes a repository containing both experimental and 
computational data. It is also important that the data-handling 
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Figure 8. Combinatorial experimentation and data analysis flow. (a) X-ray diffraction data are taken from a thin-film composition spread 
wafer mapping a ternary (A–B–C) compositional phase diagram created by co-sputtering. The diffraction data are then analyzed using 
cluster analysis to produce a potential structural phase distribution diagram, identifying separated phase regions. (b) The mean shift theory 
(MST) as the machine learning algorithm is applied here: feature vectors are produced for each sample on a combinatorial library. Each 
sample is projected into the feature vector space—shown here as 2D and unitless for ease of visualization, and the feature vector density 
is correlated to an underlying probability density function (PDF) for each ‘hidden’ classification, which in this case are assumed to be two 
separated different phase regions R1 and R2. PDF analysis is performed using MST-based mode detection, and all samples from the same 
PDF are clustered together. Reprinted by permission from Macmillan Publishers Ltd: Scientific Reports [39], Copyright 2014.

Figure 7. Integration of high-throughput experimentation and theory. Effective coupling of the experimental and theoretical tracks, both 
carried out in high-throughput manners, can facilitate materials discovery. The key is to have as many connection points between the two 
tracks as possible. We call this coordinated effort the ‘Integrated Materials Discovery Engine’.
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platform has access to a variety of existing literature data-
bases. The goal is to carry out datamining on such legacy 
databases to help delineate composition-structure-property 
relationships, as well as to derive models for predicting new 
compounds which can serve as the basis for designing new 
library experiments [38].

As discussed elsewhere in this article, it is increasingly 
becoming clear that machine learning can play a major role 
in several aspects of this endeavour. Because combinatorial 
experimentation can generate a large amount of data from a 
single library, researchers have been relying on machine learn-
ing to quickly decipher the underlying trends in complex sets 
of data. For instance, unsupervised machine learning can be 
used to rapidly separate a large number of diffraction patterns 
into different clusters (figure 8). For a composition spread 
library, the clusters nominally correspond to regions of the 
same crystal structures [39]. Machine learning is also actively 
used to streamline the efforts in computational materials sci-
ence. Here, the goal is to quickly identify proxy descriptors 
to simplify the calculations and minimize computational time 
and resources. In this manner, machine learning can be used to 
curtail the amount of expensive and time-consuming ab initio 
simulations, which need to be carried out for a project. There 
are also proposed efforts to use machine reading and machine 

vision to comb through volumes of journal articles in order 
to automatically build databases based on previous literature. 
Proper threading of the results of the various data-centric tasks 
is then crucial for effective operation of the integrated engine 
for materials discovery.

Concluding remarks. High throughput (combinatorial) mat-
erials science started as a natural extension of developments in 
the pharmaceutical industry, but it has evolved into a versatile 
approach applicable to a wide variety of materials systems. 
Because any materials design project requires actual mat erials 
synthesis and validation, high-throughput experimentation 
serves as a sine qua non of any systematic materials discov-
ery and development effort [40]. Moving forward, the key to 
continued success of the integration of the high-throughput 
experimentation and theory is to close the gap through data-
driven activities.
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Status. Exploratory synthesis has been a key strategy in the 
past several decades that has yielded many of the important 
new materials we study and use today. The level of predict-
ability in this admittedly highly successful approach is gener-
ally low because the reaction mechanisms, as well as how and 
when phases form, is not known and are challenging to predict 
within the present theoretical frameworks. In this successful 
‘Edisonian’ paradigm, one predetermines a given set of reac-
tion conditions (e.g. time, temperature, heating, cooling rates) 
and waits for completion to isolate and identify any formed 
compounds. There is a general lack of awareness (‘blind syn-
thesis’) of what has occurred during the reaction and when 
phases form and this hinders our ability to identify and make 
new materials or to devise successful synthetic processes for 
desired and targeted materials. This is particularly pronounced 
for synthesis of metastable compounds which often have very 
desirable functionality, since such phases often appear tran-
siently and unpredictably during a synthesis. As a result, the 
design and synthesis of metastable materials remains largely 
empirical.

Current and future challenges. Recently, a number of new  
in situ based approaches that allow us to ‘see’ all forming 
phases in the course of a variety of synthesis reactions have 
become of interest. The in situ approach uses x-ray diffraction 
to monitor the reaction to capture signatures of new phases as 
they form even when they are transient and short lived. The 
results published so far are very encouraging because entire 
new phases have been observed to form on reactions which 
had been missed in previous investigations on the same sys-
tem. Because all crystalline phases are revealed during the 
reaction in this approach, we call it ‘panoramic synthesis’. For 
example, this approach has been used for flux reactions, hydro-
thermal growth, and nanoparticle formation [41, 42]. Along 
with these experimental developments, the theory is making 
rapid progress in advancing computationally-driven predic-
tive synthesis of inorganic materials, through concepts such as 
remnant metastability (i.e. during synthesis, metastable phases 
that form as end products are remnants of phases that were 
thermodynamically stable during particle growth) [43].

In the future, it will be a crucial challenge to implement 
complementary panoramic synthesis experimental probes 
(such as Raman spectroscopy, total x-ray scattering and x-ray 
absorption spectroscopy) that can ‘see’ amorphous phases 
which can form important intermediates during synthe-
sis. Likewise, it will be important to augment the structure-
based (diffraction) measurements with local imaging, such 
as electron microscopies (see [44] for an example). These 
efforts should be carefully compared and integrated into 

computationally-driven predictive synthesis both to test and 
refine these theories. Finally, expanding panoramic synthesis 
into other spaces (e.g. electrodeposition, hydro- and solvento-
thermal synthesis [45, 46], high pressure synthesis, and rapid 
thermal processing [47]) will broaden the applicability.

Advances in science and technology to meet chal-
lenges. Here, we give two short examples of recent advances 
in the application of panoramic synthesis to illustrate the 
advances that can address the challenges for advanced exper-
imental methods for materials discovery and design.

The first illustration of the power of panoramic synthesis 
was in the systems K–Cu–S and K–Sn–S. A schematic of 
the in situ capillary furnace we designed to investigate phase 
formation during flux reactions is shown in figure  9. This 
experiment generates x-ray diffraction maps that reveal the 
complex real-time phase relationships in the reaction [48]. 
These experiments revealed surprisingly more phases that had 
been found in conventional reactions. The diffraction patterns 
collected while heating and cooling during this reaction are 
given in figure 9(a). The panoramic synthesis showed addi-
tional crystalline phases that formed and then disappeared by 
the end of the reaction [48, 49].

First, we see the signatures of the reagent metal and poly-
sulfide phases, but upon heating, low-2θ peaks appear in 
the diffraction data (red region). This real-time information 
(prior to any analysis) clearly shows that ternary K–Cu–S 
phases form early in the reaction, as observed in figure 9(a). 
Continued heating leads to the disappearance of all Bragg 
peaks (the black region in figure  9(a)). At this point, the 
formed ternary sulfides have dissolved completely into the 
molten polysulfide salt. After cooling, low angle Bragg peaks 
again showed the presence of ternary phases (green region in 
figure 9(a)). The structures of the occurring phases are closely 
related and shown in figure 9(b).

The in-situ monitoring in the reactions of Cu with K2S3 and 
Cu with K2S5 produced not only different phases K3Cu8S6, 
KCu3S2 and K3Cu4S4, but also generated key information of 
when they formed during the course of the reaction, how long 
they lasted and what the final product was. If this reaction 
were to be performed ex-situ, no evidence of the formation 
of KCu3S2 and K3Cu4S4 would exist—only K3Cu8S6 would 
remain [50].

Another successful example is the new phases discovered 
using in-situ synchrotron x-ray diffraction studies in the Cs/
Sn/P/Se system [50]. The diffraction data was translated into 
phase fraction versus temperature. Seven known crystalline 
phases were observed to form on warming in the experi-
ment: Sn, Cs2Se3, Cs4Se16, Cs2Se5, Cs2Sn2Se6, Cs4P2Se9, and 
Cs2P2Se8. Six unknown phases were also detected; using the 
in-situ x-ray data as a guide, three of them were isolated and 
characterized ex-situ. These are Cs4Sn(P2Se6)2, α-Cs2SnP2Se6, 
and Cs4(Sn3Se8)[Sn(P2Se6)]2. Cs4(Sn3Se8)[Sn(P2Se6)]2 is 
a 2D compound that behaves as an n-type doped semicon-
ductor below 50 K and acts more like a semimetal at higher 
temperatures.

A second illustration relates to the development of Pt 
nanostructures and shows the power of complementary 
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techniques [44]. The synthesis involved thermal decomposi-
tion of a Pt precursor under a hydrogen atmosphere in the 
presence of a stabilizing agent (at low and high concentra-
tions). Figure 10(a) shows the development of the Pt(1 1 1) 
x-ray diffraction peak area with growth time; for the low 
concentration reaction, this increases approximately lin-
early. However, for the higher concentration these data are 
more complex and allow for the identification of four distinct 
growth regimes (labeled I–IV). Ex-situ transmission electron 

microscopy (TEM) of Pt nanoparticles allow identification 
of the nanoparticles shapes and size, showing a fascinating 
evolution from a compact cubic morphology (I) to quasi-
octapods (II), etched-octapods (III) to porous nanocrys-
tals (IV). From the diffraction and TEM, a detailed growth 
model is developed as illustrated in figure 10(c). This exam-
ple demonstrates the utility and complementarity of TEM 
and XRD for revealing nanostructure growth mech anisms. 
A future challenge is to develop a predictive capability for 

Figure 9. (a) Phase formation revealed in during in situ reaction monitoring using x-ray diffraction. These data maps of the molten and 
crystalline regions can be constructed to show all crystalline phases formed. (b) Panoramic map of the Cu-K2S3 reaction. New phases form 
on heating, with different phases forming upon cooling. Similarities between phases imply the ability to tailor linkages and topology.

Figure 10. In-situ synthesis of Pt nanostructures (70 °C, 200 kPa H2) at low and high concentrations of stabilizing agent. (a) Time-resolved 
x-ray diffraction; (b) time evolution of area under the Pt(1 1 1) peak with growth stages I–IV denoted. (c) Schematic illustration of proposed 
Pt nanoparticle growth mechanism for stages (I–III). Pt monomers first nucleate into cuboctahedral nuclei (I), and then grow into single-
crystalline quasi-octapods (II). Growth of the arms of the quasi-octapods, coupled with selective etching on the edges and centers of facets, 
leads to the formation of etched-octapods (II). These processes continue and transform the nanocrystals to porous nanocrystals.
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nanostructure synthesis—not only phase but also particle 
shape and size.

Concluding remarks. Progress has been made over the past 
decade in developing a rational, predictive understanding of 
exploratory synthesis, but much remains to be accomplished to 
enable extensive applications of this approach. The challenge 
of accelerated and predictable materials discovery will be met 
with increasing success if we can achieve the organization of 
new knowledge coming from these new approaches so it can 
be more effectively taken advantage of. For example, reactivity 
patterns under specific reactions conditions may have a gen-
eral scope and could be used to classify reaction and reaction 
types so that they can be used as synthetic tools for materials 
discovery. We have described an in-situ, ‘panoramic synthesis’ 

approach that, when coupled with progress in computational 
predictive synthesis, will help enable the widespread adapta-
tion of predictive synthesis. This will profoundly accelerate the 
discovery and development of new functional materials.
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Status. The objective of materials informatics [51], or 
data-driven materials science, is to use a set of power-
ful tools from data mining, machine learning, and math-
ematical optimization to systematically reveal materials 
 processing-structure-property-performance (PSPP) relations. 
Once uncovered, these PSPP relations can drive the predictive 
discovery and design of novel materials and optimized manu-
facturing processes.

The shift toward data-driven discovery is becoming broadly 
prevalent in modern research and is referred to as the fourth 
paradigm of science [52]. This term, coined by Jim Gray in 
2007, reflects the historical developments in scientific meth-
ods, beginning with empirical science (first paradigm), giving 
a rise to theoretical science (second paradigm), enabling com-
putational science (third paradigm), and ultimately paving the 
way for data-driven science. While fields such as biology have 
embraced the fourth paradigm for some time, it is a compara-
tively new concept in materials science [53].

The rapid ascent of materials informatics coincides with 
the 2011 launch of the US Materials Genome Initiative 
(MGI) [54], which explicitly elevated the role of digital data 
and related software tools in the materials research enter-
prise. Since the MGI announcement, materials informatics 
have driven a series of laboratory discoveries of materials 
and processing routes, in areas ranging from thermoelectrics 
[55] to hydrothermal synthesis [56]. Further, the community 
has seen a rapid increase in research articles wherein vari-
ous materials informatics-based models of PSPP relations are 
constructed.

A generic materials informatics workflow is shown in 
 figure 11. The analysis starts with data extraction and preproc-
essing, which is used to identify and select the key comp onents 
of the data set. The reduced data set is further examined for 
relationships between the components of interest. The discov-
ered relationships are utilized to generate the so-called inverse 
and forward models, the former of which can be used to design 
materials with desired properties, whereas the latter are used 
for predictive analytics [53]. Experiments and computer simu-
lations based on theoretical models are used to generate new 
data for the materials databases, thus closing the loop.

Current and future challenges. Below, we describe five 
key challenges that hinder broader application of materials 
informatics.
Data heterogeneity and siloing. The datasets characterizing 
materials and their properties are of a diverse nature, come 
from a wide variety of sources (e.g. myriad different exper-
imental and simulation techniques) with different levels of 
accessibility, and are stored in many formats. Materials data 

tend to exist across many scattered ‘small data’ silos, making 
systematic mining more difficult.
Lack of consistent metadata. The generation and collection 
of materials data are associated with numerous uncertainties 
and sources of error that may not be easily detectable, making 
the quality of data difficult to verify. This issue is frequently 
exacerbated by a lack of metadata necessary for precisely rep-
licating the experiment or a simulation used to obtain the data 
[57].
Inverse materials PSPP models to search materials design 
space. Forward models try to predict the structure of a 
material based on the processing used, properties based on the 
structure, and performance based on properties. On the other 
hand, inverse models aim to determine the material design 
parameters that would yield materials with desired properties 
and performance. In general, the forward modelling problem 
is easier than the inverse problem, yet the inverse problem is 
more relevant for materials discovery.
Novel representations of materials for informatics applica-
tions. Representing materials concepts (e.g. crystal structure, 
chemical composition, or microstructure) as computational 
objects for input to analysis algorithms is an essential prereq-
uisite for materials informatics. An example emerging repre-
sentation strategy is describing materials as networks, which 
could reveal relationships and connections between materials 
and potentially identify multiple materials that have the same 
or similar properties or are otherwise related according to 
some criteria.

Advances in science and technology to meet chal-
lenges. Below, we highlight two particular science and tech-
nology development goals that promise to be fruitful areas of 
exploration for the materials informatics community.
Explicit integration of experimental data, computational data, 
and materials theory to enable multiscale modelling. In the 
well-established integrated computational materials engineer-
ing framework, powerful individual PSPP models have been 
developed over time, but deep integration is lacking between 
these models, experimental results, and established theory. 
Materials informatics are a promising integrator of these var-
ied sources of ‘signal’ on the behavior of materials. This capa-
bility is especially important given the distribution of materials 
data across many small, isolated data silos as described above.
Similarity metrics for materials. One of the central scientific 
questions arising in materials informatics is a systematic way 
of determining quantitative metrics characterizing the level of 
similarity between pairs of materials. Addressing this question 
would help advancing methods for understanding PSPP rela-
tions and would enable the use of network analysis techniques 
for exploring both local and global properties of systems of 
materials. The metrics of interest could potentially be derived 
from first-principles computations, e.g. based on electronic 
density of states or projections of localized basis sets [58, 59], 
or atomic coordination environments [60]. Then one could rep-
resent the entire space of materials as an extended network of 
interacting entities, where the connections between individual 
materials are based on pairwise similarities in their properties 
derived from first principles. This would allow us to take advan-
tage of powerful network analysis methods, which exploit the 
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use of graphs or networks as a convenient tool for modelling 
relations in large datasets. In this general framework, certain 
elements of a dataset of interest are thought of as vertices, and 
the pairwise relations between different elements are described 
by edges, yielding a network representation of the underlying 
complex system. With respect to the materials databases, sev-
eral conceptually different network representations could be 
utilized, which would provide alternative vantage points for 
exploring myriad materials data from a systems perspective. For 
example, clusters in these networks would correspond to mat-
erials with similar properties. Furthermore, one could develop 
optimization models aiming to find the best subsets of materials 
according to a given objective function (see figure 12).

Concluding remarks. Materials informatics are a key enabler 
of the MGI, as well as related international efforts such as 
Japan’s Materials Research by Information Integration Initia-
tive (MI2I), and the faster development of higher-performance 

materials. The focus of this emerging field is on algorith-
mic approaches that would advance our understanding of 
processing-structure-property-performance relations. Devel-
oping a cross-disciplinary collaborative culture that would 
allow integrating the experimental, computational and applied 
sides of materials science in developing advanced data min-
ing solutions is essential. Defining reasonable quantitative 
similarity metrics for pairs of materials could lead to signifi-
cant advances in classification of materials and navigating the 
ever-expanding search space for new materials. The reader is 
referred to recent survey articles [51, 61] for further informa-
tion on advances and challenges in materials informatics.
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Figure 11. Generic materials informatics workflow.

Figure 12. Network analysis approach in materials informatics. DoS functional are used to define a similarity metric (left), a network is 
constructed based on the considered similarity metric (top right), and structural properties of the resulting network are analysed (bottom 
right).
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realization of new materials

A Zakutayev and S Lany

National Renewable Energy Laboratory, Golden, CO 80401, 
United States of America

Status. The discovery of novel materials and the control of 
their properties are key drivers for technological innovations. 
This observation is particularly true for electronic and opto-
electronic materials, which have fueled the information tech-
nology revolution, and on which the hopes for the advanced 
energy revolution rest. Historically, materials discovery has 
been a serendipitous endeavor. For the past century, mat erials 
chemists have been synthesizing numerous solid-state com-
pounds for different reasons and at different times. Their find-
ings are documented in crystallographic databases such as the 
Inorganic Crystal Structure Database (ICSD), and that of the 
International Centre for Diffraction Data (ICDD). While the 
entries in these databases count in the hundreds of thousands, 
surprisingly little other than the crystal structure is known for 
most of these materials. Starting from the crystal structures 
as input, high-throughput first principles calcul ations based 
on density functional theory (DFT) and post-DFT methods 
provide an ever-increasing number of calculated properties, 
made available in online databases like https://materialspro-
ject.org/, http://www.aflowlib.org/, http://oqmd.org/, https://
materials.nrel.gov/, and others. High throughout exper-
imental mat erials property databases are also emerging (e.g. 
http://htem.nrel.gov/)

While extensive, the crystallographic databases are by no 
means complete. The availability of synthesis methods and 
preferences of researchers and funding agencies have empha-
sized some chemical spaces over the others, leaving white 
spots where plausible materials may exist but are not presently 
reported. To unearth these ‘missing materials’, computational 
searches are now being performed to predict their structure, 
and accompanying experimental efforts are underway to 
either verify or falsify their stability. Several broad conclu-
sions can be drawn from such studies. First, there is no doubt 
that the search space is vast, considering the combinatorial 
explosion of candidate materials with the number of involved 
elements and their possible ratios. This is especially true when 
including metastable structures and non-stoichiometric com-
positions in materials search. Taking into account this sec-
ond point, it also becomes increasingly clear that the ‘convex 
hull’ criterion (thermodynamic stability with respect to other 
structures and compositions made of the same elements) is 
too narrow to judge whether a potential new material would 
be possible to synthesize. These conclusions reflect the chal-
lenges faced by materials discovery discussed next.

Current and future challenges. The biggest current challenge 
in systematic materials discovery is the vastness of chemical 
space where materials can occur. In general, a ‘material’ is 
defined by its constituent chemical elements, their relative 
composition (stoichiometry), and the atomic structure, which 

can be depicted in 3D as shown in figure  13. Numerous 
approaches and tools to predict crystal structures from first 
principles are available [62], but they are often limited to the 
materials with a small number of elements, to formula units 
with small integer indices, and to unit cells with a small num-
ber of formula units. In fact, stability and properties of real 
materials often depend on the non-ideal structures that can-
not be described by their primitive cells, such as defects or 
disorder, and, ultimately, the meso- and microstructure. One 
theor etical approach to screen for many possible elements is 
to constrain the search to one or a few chemical stoichiom-
etries (e.g. ABX, ABX3, A2BX4, and so forth), and restrict the 
possible structures to all known prototypes (e.g. spinel, oliv-
ine, etc, for A2BX4) [63]. An alternative approach is to select 
a constrained number of elements and structures, and then 
screen many possible low index stoichiometries [64]. To aid 
both of these approaches, simplified stability descriptors [65] 
can help to identify search spaces where new materials are 
likely to be discovered.

One of the biggest future challenges in materials discov-
ery is to go beyond the search for thermodynamic ground 
state compounds. Metastability [43] comes in many flavors, 
including polymorphs, thermochemically unstable materials, 
solid solutions, non-stoichiometric compounds, hierarchical 
and low-dimensional materials. Unlike the case of ground 
states, which are universally defined by free energy minimi-
zation, computational discovery of metastable materials can 
no longer be agnostic to the synthesis approach (figure 14). 
Thus, the synthesizability of the predicted candidate materials 
would have to be emphasized more; alternatively, materials 
searches should be tailored to the capabilities of specific syn-
thesis approaches. For example, non-equilibrium synthesis of 
metastable heterostructural semiconductor alloys using physi-
cal vapor deposition methods can be enabled by novel phase 
diagram behavior that is not observed in conventional solid 
solutions [66]. Such materials discovery on a continuous com-
position scale is distinct from the more common search for 

Figure 13. Simplified illustration of the vast multi-dimensional 
materials discovery space, showing different possible elements, 
stoichiometries, and structures.

J. Phys. D: Appl. Phys. 52 (2019) 013001

https://materialsproject.org/
https://materialsproject.org/
http://www.aflowlib.org/
http://oqmd.org/
https://materials.nrel.gov/
https://materials.nrel.gov/
http://htem.nrel.gov/


Topical Review

21

discrete stoichiometric compounds, and poses new challenges 
to computational prediction and experimental realization of 
new materials.

Advances in science and technology to meet chal-
lenges. High-throughput experimentation methods can be 
used to quickly cover both chemical space and process param-
eters. For example, the growth of sample libraries with contin-
uous composition spreads and temperature gradients provide 
large amounts of synthesis data from a single deposition. In 
order to connect computational materials predictions to such 
non-equilibrium synthesis techniques, it may be possible to 
map process parameters onto ‘effective’ thermodynamic vari-
ables. For example, effective non-equilibrium chemical poten-
tials accessible during the synthesis can be used to describe 
the formation of thermochemically metastable materials 
[67]. Also, finite temperature effects must be reconsidered 
in metastable materials. Atomic disorder induced by kinetic 
limitations during growth can be converted into an effective 
temperature [68], which can be much higher than the actual 
temperature. Therefore, such an effective temperature influ-
ence can be vastly stronger than the free energy contributions, 
e.g. due to atomic vibrations in the thermodynamic equilib-
rium state. Advancing the understanding of how these descrip-
tors vary between different materials and synthesis parameters 
will enable the computational prediction of materials within 
their accessible range of effective thermodynamic variables.

The next step is to define effective kinetic variables that facil-
itate a predictive atomistic modelling of synthesis processes. 

Since metastable materials result from the inhibition of the 
equilibration of certain processes, modelling of synthesis 
requires identification of variables that describe appropriate 
kinetic constraints. For example, it is exper imentally known 
that surface diffusion is usually faster than bulk diffusion 
for thin film growth. Creating the corresponding theor etical 
models tailored to this synthesis constraint is facilitated by 
developing problem-specific model Hamiltonians with simi-
lar (or ideally higher) accuracy as DFT, allowing an efficient 
Monte-Carlo or molecular dynamics sampling for specified 
non-equilibrium descriptors [69]. Experimentally, the devel-
opment of new in situ techniques for monitoring synthesis and 
processing of materials would be an important advance for 
validation of computational models. Using synchrotron radia-
tion, it can be shown that many new metastable phases can be 
present as reaction intermediates and absent from the reaction 
products [48]. The adoption of such in situ techniques on a 
smaller scale in research labs would therefore help to acceler-
ate the discovery of metastable materials.

Concluding remarks. Materials discovery is branching out to 
capture the opportunities of a wide range of different synthesis 
approaches and their capabilities to access a spectrum of meta-
stable materials. The definition of ‘materials’ being discovered 
is generalized beyond the Daltonian compositions and the 
corre sponding crystallographic primitive cells. Future material 
discoveries will include metastable compounds, solid solutions, 
defect- and disorder-enabled materials, and low-dimensional 
structures. Furthermore, it remains a great challenge to concur-
rently discover new materials and design their properties. Pre-
dicting and synthesizing new materials is difficult enough that 
property calculations and measurements for the discovered 
new materials often come as an afterthought. The truly simul-
taneous search for new materials and their properties may be 
enabled by genetic algorithms and machine learning, if it is 
possible to train them to significant accuracy, and scale them to 
the vast chemical space of mat erials discovery.
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Status. Advancements in multiscale multi-physics computa-
tional materials design have led to the accelerated discovery 
of advanced materials for energy, electronics and engineering 
applications [70]. For many common bulk materials, synthe-
sizing and processing procedures are reasonably well estab-
lished. This also applies to modelling tools that can be utilized 
for the understanding of phenomena occurring in these pro-
cedures. However, theoretical approaches have limited ana-
lytical power for predicting viable synthetic routes towards 
making entirely new materials. The knowledge about growth 
mechanisms, free-energy landscape and dynamics of chemi-
cal and physical processes during synthesis is quite limited. 
This uncertainty is exemplified in figure  15(a) by showing 
multiple pathways for crystallization from the solution, where 
a mechanism of forming bulk crystal depends on the interplay 
between thermodynamic and kinetic factors [71]. Therefore, 
the state-of-the-art in materials design needs to be comple-
mented with substantial efforts in advancing the field of  
synthesis design. To increase the predictive ability of material 
synthesizability, it is necessary to define both equilibrium and 
out-of-equilibrium descriptors that control synthetic routes 
and outcomes. The key metrics include free-energy surfaces 
in multidimensional reaction variables space (e.g. activation 
energies for nucleation and formation of stable and metastable 
phases in figures 15(b) and (c)), composition, size and struc-
ture of the initial and emerging reactants, and various kinetic 
factors, such as diffusion rates of reactive species and the 
dynamics of their collision and aggregation.

Current and future challenges. To identify and quantify key 
descriptors towards predictable synthesis design, it is essential 
to integrate (i) exploratory synthesis and (ii) in-situ process 
monitoring with (iii) computational design of synthetic routes.

 (i)  Challenges of experimental exploratory synthesis are 
associated with the complexity of chemistries and reaction 
routes that depend on the interplay between equilibrium 
and out-of-equilibrium processes. Crystalline material 
growth methods, which span from condensed matter 
synthesis (all-solid-state synthesis and crystallization 
from melt or solution) to physical or chemical deposition 
from vapour (sputtering, e-beam deposition, pulsed laser 
deposition, atomic layer deposition, chemical vapour 
deposition), often proceed at non-equilibrium conditions, 
e.g. in highly supersaturated media, at ultra-high pressure, 
or at low temperature with suppressed species diffusion. 
Identification of chemical evolution reactions and the 
associated physical processes followed by their ‘equi-
librium versus metastable’ classification is extremely 
difficult but is an essential step towards assessing material 

synthesizability. An illustration of possible reaction path-
ways to realize stable and metastable states of material is 
illustrated in figure 15(c), where highly non-equilibrium 
synthetic routes are superimposed on a generalized phase 
diagram [72].

 (ii)  Developing in-situ multi-probe measurements to capture 
important steps along the synthetic route is critical to make 
the synthesis design and its validation more efficient. 
For all-solid-state synthesis, it is important to develop 
high spatial and temporal resolution 3D tomographic 
mapping of phase evolution. The same applies for devel-
oping in-line diagnostics for solid growth under extreme 
environ ments, including synthesis in supercritical fluids, 
at extreme pressures, temperatures, photon/radiation 
fluxes or electromagnetic fields. This is noteworthy since 
real-time multi-probe diagnostics generating massive sets 
of data, which need to be promptly utilized in a closed-
loop-feedback with synthesis, data curation protocols and 
machine learning techniques, need to be advanced.

 (iii)  On the modelling side, the idea of extending computa-
tional material discovery to in-silico synthesis design is 
still in its nascent state. Assessment of equilibrium and 
dynamic key variables for predicting the lowest activa-
tion energies and fastest routes for fabricating targeted 
material remains to be exceptionally challenging. The 
availability of data needed for modelling of new materials 
and processes poses another challenge.

Advances in science and technology to meet chal-
lenges. The challenge of operating in the multidimensional 
space of material fabrication can be addressed by integrating 
exploratory synthesis with multimode dynamic process moni-
toring to define key growth process parameters. Experimental 
synthesis and in-situ measurements should be further inte-
grated with computational tools to enable robust predictive 
synthesis of materials with tailored properties. This unified 
‘experimental/in-situ/in-silico’ synthesis concept is empha-
sized in the Department of Energy report [73] with a focus on 
materials for energy, including experimentally verified design 
of novel thermoelectric and battery mat erials, metal nanopar-
ticle catalysts, and transparent conducting oxides.

To address emerging materials needs, exploratory synthesis 
is focusing more and more on metastable, hybrid, and hierar-
chical structures, such as thin film heterostructures, nanoparti-
cle superlattices, and core–shell nanostructures. For example, 
the core–shell nanowire in figure  16(a) demonstrates how 
thermodynamically favoured phase separation in a GaAsSb 
alloy can be suppressed by strain from the GaAs shell layer 
[74]. Similarly, a metastable rock-salt structure in the SnSe 
thin film in figure 16(b) can be stabilized by depositing it epi-
taxially on a suitable substrate [75].

Advances in in-situ diagnostics include the application of 
multi-probe optical spectroscopies and neutron/x-ray scatter-
ing and diffraction for real-time process monitoring, e.g. for 
crystal growth from melt [42], roll-to-roll solution drying of 
organic photovoltaic films, solvothermal synthesis of metal-
organic frameworks, etc. In addition, in-situ scanning probes 
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Figure 15. (a) Crystal growth model, ‘Crystallization by Particle Attachment’ (CPA), shows multiple pathways of crystal growth from 
solution. Unlike a classical monomer-by-monomer growth model (gray curve), CPA operates with higher-order species (black curves) 
and involves the interplay between thermodynamic factors and reaction dynamics. From [71]. Reprinted with permission from AAAS. (b) 
Potential energy profile from reactants X and Y to product Z with and without catalyst C. (X…Y)* is high-energy transition state, X...Y is a 
metastable product; ΔGr is the Gibbs energy for the X  +  Y  →  Z reaction; ∆GC

a  and ΔGa are energies for activating transition states with 
and without catalyst C, respectively. (c) Generalized free-energy—pressure phase diagram with superimposed synthetic routes (bold green 
arrows) for obtaining metastable phases. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials [72], Copyright 2002.

Figure 16. (a) GaAsSb semiconductor nanowire with (left) and without (right) GaAs shell. GaAs shell suppresses GaAsSb phase 
segregation, while the alloy without shell decomposes into GaSb-rich (red) and GaAs-rich (light blue) alternating segments. Reprinted 
from [74], Copyright 2017, with permission from Elsevier. (b) Crystal structure of topological insulator SnSe in its metastable rock-salt 
structure, stabilized by low-temperature molecular beam epitaxy on a GaAs substrate. Reproduced from [75]. CC BY 4.0. (c) (Top) The 
energies of the growing nuclei versus the number of atoms, E(n), show how the substrate steers the synthesis from the 3D towards 2D route 
by suppressing the nucleation barrier; (bottom) computed charge density shows how the Ag substrate donates electrons (from pink to blue) 
to the boron layer to stabilize its 2D structure. Reprinted by permission from Macmillan Publishers Ltd: Nature Chemistry [78], Copyright 
2016.
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and electron microscopies can provide direct insight into 
synth etic phenomena with atomic scale resolution [76].

Theory-guided data science has shown great potential for 
discovery and design in diverse scientific disciplines [77]. 
A recent example of theory-guided synthesis is shown in  
figure 16(c): ab initio modelling has predicted a new metasta-
ble allotrope of 2D boron, a.k.a. ‘borophene’, and suggested 
a synthetic route via epitaxial deposition on a metal substrate, 
which was subsequently validated by the experiment [78]. 
Efficient in silico synthesis of new materials requires the 
availability of data. A need for reliable data makes the integra-
tion of experiments, computation and theory imperative and 
machine learning and artificial intelligence methodologies 
will be needed to fill modelling and data gaps.

Concluding remarks. Even though the prediction of material 
synthesizability is an extremely challenging task, advances in 
modelling, in-situ measurements and increasing computational 

power will pave the way for it to become a reality. In-silico 
design of advanced materials will have to combine theory 
guided data science with statistical and theoretical computa-
tional methods. However, it is an open question whether it 
will be possible even with the most advanced modelling and 
simulation techniques to predict completely unknown path-
ways for synthesizability. For example, is an additional crystal 
growth route possible other than those shown in figure 15(a)? 
The development of techniques and tools to propose the most 
efficient synthetic pathways will remain one of the major chal-
lenges for predicting new material synthesizability.
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10. Thermoelectric materials discovery
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Status. Achieving the widespread use of thermoelectric 
generators for direct heat-to-electricity power conversion 
critically relies on novel, better performing, and less costly 
thermoelectric materials [79, 80]. The vital role that new 
materials play is best witnessed by a recent, nearly three-fold 
improvement in the efficiency of thermoelectric generators 
spawned exclusively by the discovery of new materials classes 
(see figure  17) [81]. As a result, a new research paradigm 
emerged about a decade ago: computational screening of large 
chemical spaces in searching for new and even better thermo-
electric materials. Following the pioneering work of Madsen 
[82], several groups made significant contributions to devel-
oping and applying computational tools to assess the transport 
properties of solids, both charge carrier and heat transport, in 
a manner amenable to high-throughput computational screen-
ing [83–86].

If judged by the number of new and experimentally valid ated 
candidate materials, the success of high-throughput searches 
has been limited so far. This is largely due to (i) the challenges 
associated with predicting transport properties of materials and 
(ii) the slow, serial nature of experimental validation. However, 
a few materials and material classes that have been successfully 
experimentally validated [79, 80] demonstrate the potential of 
computationally guided searches in advancing thermoelectric 
material discovery. These include materials previously not 
anticipated for thermoelectric performance (e.g. n-type Zintl 
compounds), suggesting the power of computation to lift us 
away from our assumptions. Calculations have also passed a 
critical milestone: we are now consistently able to retrospec-
tively discover known materials without explicit exper imental 
input. This success likely stems from the development of com-
bined experimental and computational learning sets that are 
complementary in the properties they address.

To date, computational searches have predominantly 
considered known, previously synthesized materials (i.e. 
Inorganic Crystal Structure Database) with unknown charge 
carrier and phonon transport properties. Venturing into com-
pletely new material systems, including stoichiometric com-
pounds and their alloys as well as the metastable structures, 
has yet to be done on a large scale, but the potential return on 
investment may be worth the effort.

Current and future challenges and opportunities. Similar to 
other material searches, the large search space size, coupled 
with the desire to accurately predict material properties, rep-
resents a significant challenge. As an illustration, figure  18 
shows how only a very small fraction out of tens of thousands 
of known compounds have actually been experimentally char-
acterized for thermoelectric performance. In combination 
with the complexity of the theory of transport phenomena and 
the required computational resources to quantitatively predict 

the potential for the thermoelectric performance of a single 
material (orders of magnitude more expensive than density 
functional theory), computationally guided searches for new 
thermoelectrics may at first seem intractable.

However, the size of the search space also represents the 
biggest opportunity! The vastness of possible chemistries, 
both known and unknown, practically ensures the existence 

Figure 17. Time evolution of the efficiency of thermoelectric 
generators (TEG). Recent discoveries of new thermoelectric 
materials have resulted in an almost threefold increase in TEG 
efficiency after a 30 year long period of stagnation. [81] 2014 © 
TMS 2014. With permission of Springer.

Figure 18. Relatively few materials have been characterized for 
their thermoelectric performance. About 44 systems (shown in 
color) out of the ~40 000 crystalline, stoichiometric and ordered 
metal–nonmetal compounds (gray) from the inorganic crystal 
structure database (ICSD) have their thermoelectric figure of merit 
zT reported in the literature (color coded). Reprinted by permission 
from Macmillan Publishers Ltd: Nature Reviews Materials [80], 
Copyright 2017.
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of new, game-changing materials for any given application. 
The problem is then reduced to how to find the ‘needle in 
the haystack’ and not whether ‘the needle is in the haystack’, 
which is an important simplification. Second, it is critical to 
note that for the purpose of identification of new promising 
materials, it is sufficient to estimate relevant properties instead 
of accurately predict their absolute values. Although ideally 
one would prefer the latter, as long as the chemical trends are 
correctly reproduced, the ranking of different materials and 
identification of promising candidates can be reliable. This is 
what actually allows the screening of large chemical spaces 
and is the basis for a number of approaches and/or approx-
imations that have been devised and employed in computa-
tional searches for new thermoelectrics. As a result, a number 
of databases providing predictions of transport properties of 
materials have emerged in the last decade (see [79, 80] and 
the references therein).

The main weakness of all these approaches is the focus on 
intrinsic materials properties and the assumption that semi-
conductors can be doped to a given charge carrier type (n or p)  
and carrier concentration. Many systems are not dopable at 
all and/or exhibit strong doping asymmetry favoring only 
one charge carrier type; thus, incorporating dopability assess-
ment into computational searches is critical. Concerning 
experiments, the serial nature of material synthesis and char-
acterization is another big challenge limiting accelerated 
materials discovery. As the reliability of computational pre-
dictions is largely probabilistic, high-throughput experiments 
are required to accurately assess the success rate of various 
approaches and provide the feedback loop to the theory about 
the feasibility of different approximations that are employed.

Advances in science and technology to meet challenges. In 
relation to predicting/assessing the dopability of materials, the 
good news is that the theory of defects in semiconductors and 
its computational implementations have evolved to a point 
where it is possible to accurately predict both the intrinsic and 
extrinsic defect chemistry and associated doping levels [87]. 
This includes advances in predicting materials stability and 
phase equilibria, which are an integral part of defect calcul-
ations. Moreover, recent successful automation of defect 
calculations [88] demonstrates the maturity of defect theory 
and its potential for large-scale applications. Yet, predicting 
the dopability of semiconductors is still far away from being 
‘black boxed’; it is a relatively tedious process requiring an in 
depth domain knowledge. The solution to these obstacles is in 
revealing deeper relationships between the defect chemistry 
and dopability on one side, and the chemical composition and 

crystal structure on the other. These relationships are pres-
ently either unknown or fairly qualitative.

Concerning the high-throughput experimentation, syn-
thesis techniques are required that yield near-equilibrium 
samples with a form factor appropriate for accurate high 
throughput measurements. Jointly satisfying these require-
ments is presently not achievable with combinatorial thin 
film growth; advances in the high throughput synthesis of 
free-standing, dense monoliths would be enabling. Such a 
development would have cross-cutting implications for other 
bulk functional material searches. Given a high throughput 
experimental synthesis infrastructure, challenges remain in 
linking the computational descriptors with the experimental 
observables. For example, defects and dopants that may drive 
electronic and thermal properties are challenging to character-
ize robustly due to their low concentrations. Likewise, scat-
tering sources and strengths are difficult to deconvolute from 
transport measurements. Strategies to proceed with while in 
an information-limited regime will thus be critical.

Concluding remarks. Thermoelectric materials discovery 
has come a long way in the last decade, from being guided 
predominantly by intuition and serendipity to the point where 
guidance is complemented by high-throughput calcul ations. 
At this point in time, it is safe to say that the computational 
challenges associated with assessing the potential of semi-
conductors for thermoelectric applications from the intrinsic 
(bulk) materials properties have largely been overcome. The 
remaining (grand) challenge that is still obstructing computa-
tional identification of truly game-changing new thermoelec-
trics is the assessment of dopability of candidate materials. 
Given the maturity and previous success of the defect theory 
and its computational implementations, there is, in our mind, 
little doubt that the dopability of semiconductors will be con-
quered and the true potential of computations in guiding ther-
moelectric materials discovery will be fully realized. More 
nascent is the development of high throughput bulk synthe-
ses to complement these advances in computation. Given an 
effective computational framework coupled to such a high 
throughput synthesis, there is the opportunity for active learn-
ing within a machine learning context to further accelerate 
materials discovery.

Acknowledgments

Writing this article was supported by the NSF DMR program 
under award 1729594.

J. Phys. D: Appl. Phys. 52 (2019) 013001



Topical Review

27

11. Perovskite photovoltaics

Aron Walsh1,2 and Nam-Gyu Park3

1  Department of Materials, Imperial College London, 
Exhibition Road, London SW7 2AZ, United Kingdom
2  Department of Materials Science and Engineering, Yonsei 
University, Seoul 03722, Republic of Korea
3  School of Chemical Engineering, Sungkyunkwan University 
(SKKU), Suwon 440-746, Republic of Korea

Status. Metal halide perovskites form a large family of 
compounds ranging from small bandgap semiconductors to 
wide bandgap dielectrics [89]. The light-to-electricity conver-
sion efficiency of metal halide solar cells now exceeds 22% 
for champion laboratory-scale devices [90]—following pio-
neering efforts on perovskite-sensitized [93, 94] and durable 
solid-state perovskite solar cells [93, 94]—that is comparable 
to mature thin-film photovoltaic technologies.

The compositional flexibility of the perovskite ABX3 struc-
ture type allows for the control of chemical and physical prop-
erties over a wide range, including lattice constants, phase 
stability, optical bandgaps, charge carrier confinement, and 
defect processes. While the prototype hybrid organic-inorganic 
perovskite is methylammonium lead iodide (CH3NH3PbI3), 
the highest performing compounds are multi-component mix-
tures, e.g. (CH3NH3)1−x(CH(NH2)2)xPbI3−yBry [90]. As our 
understanding of the fundamental structure-property relation-
ships of halide perovskites increases, many opportunities arise 
to design novel materials and composites with enhanced prop-
erties, new device architectures with improved performance, 
and to explore alternative application domains including light 
emission, heat conversion, chemical sensing, information 
storage, spintronics, and radiation (γ and x-ray) detectors. The 
halide perovskites represent a vast playground for functional 
materials discovery (see figure 19 for some examples).

Current and future challenges. The science and technology 
of halide perovskite solar cells has developed rapidly over the 
past decade. These compounds were first treated as photoac-
tive dyes deposited on a scaffold of TiO2 [91, 92]. It took time 
to recognise that the materials were themselves semiconduc-
tors with the ability to conduct photogenerated electrons and 
holes. It was then found that they could also conduct ions, 
giving rise to slow hysteresis in the current–voltage response 
of solar cells [95, 96]. Despite a vast literature of thousands 
of publications concerning halide perovskites, there is still a 
large number of outstanding challenges, ranging from under-
standing the fundamental materials properties to physical pro-
cesses on a device scale. These include:

 •  Local crystal structure—there is evidence that the local 
structure of halide perovskites has lower symmetry 
than the average spacegroup symmetry measured using 
standard Bragg diffraction techniques [97]. What is not 
known is the correlation lengths and lifetimes of local 
domains and how they interact with mobile carriers in 
operating solar cells.

 •  Role of ferroelectricity—there is substantial debate 
around the presence of polarisation domains in halide 
perovskites, in part because it is hard to separate lattice 
polarisation from effects due to mobile charges (electrons 
and ions). The literature currently contains many con-
flicting reports.

 •  Point defect engineering—all current solar cells are based 
on an intrinsic (undoped—low carrier concentration) 
perovskite layer with selective electron and hole elec-
trical contacts. There have been no convincing reports of 
(robust) p- or n-doped halide perovskites, which would 
open a wide application space in optoelectronic technolo-
gies.

 •  Extended lattice defects—very little is known about the 
atomic configurations and electronic structure of grain 
boundaries, dislocations, interfaces, and surfaces of 
perovskites. Effective passivation of extended defects, 
in particular suppressing interface recombination events, 
could enhance device performance towards the theoretical 
limit of ~30% for bandgap of about 1.6 eV.

 •  Chemical stability and breakdown—many halide per-
ovskites react with oxygen and water. Progress has been 
made with surface treatments [98] and physical encapsu-
lation, but low-cost and robust approaches to achieving 
perovskite devices with long-term stability under realistic 
environments would represent a major breakthrough.

 •  Pb-free compositions—although Pb is a low cost and rela-
tively abundant element, there is motivation for exploring 
element substitution, while maintaining beneficial pho-
tovoltaic properties. The isoelectronic replacement of Pb 
by Sn or Ge is problematic (reactive M2+ ions), so a route 
of active current investigation is double (mixed metal) 
perovskites, which have stability and electronic issues 
that need to be overcome.

 •  Photophysics of solar cells—in halide perovskites, pho-
togenerated electrons and holes recombine slowly and 
hot states have anomalously long lifetimes. There are cur-
rently conflicting experiments and models, but control of 

Figure 19. Illustration of the materials and device innovation space 
for the halide perovskite family.
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these processes could be used to realise hot carrier solar 
cells with efficiencies beyond the single-junction limit of 
~30% light to electricity.

Advances in science and technology to meet chal-
lenges. For materials synthesis, the thin-film deposition 
of halide perovskites is dominated by solution-processing, 
with a growing number of vapour-processing studies being 
reported. The growth of higher quality thin-films on a wider 
range of substrates could enable better materials charac-
terisation. In particular, epitaxial hetero-interfaces and 
perovskite homo-interfaces would allow a number of the 
challenges outlined above to be addressed, and the testing of 
new device architectures including all-perovskite p-n junc-
tions, high-efficiency tandem solar cells, quantum wells and 
field-effect transistors.

Materials theory and simulation have played an important 
role in the understanding of perovskite technologies. The limi-
tations of static band structure calculations on small unit cell 
representations is now recognised. Multi-scale methods are 
required to span the range of length and time scales necessary 
to describe the connection between structural disorder and 
dynamics with electron–hole generation, transport and recom-
bination in solar cells. Furthermore, relativistic effects and 

electron–phonon coupling cannot be ignored; more research 
is required to understand the role of spin–orbit coupling and 
associated Rashba–Dresselhaus effects on the macroscopic 
physical and device behaviour.

Concluding remarks. Halide perovskites represent fertile 
ground for materials exploration. Now that high-efficiency 
photovoltaic devices have been realised, there is an opportu-
nity to revisit the intriguing materials science of these com-
pounds. Solving the challenges outlined in this section  will 
require reliable and quantitative data on well-defined mat-
erials, with the close collaboration between theory, simulation 
and experiment. An improved understanding of the chemistry 
and physics of halide perovskites is essential to enable ratio-
nal design of new functional materials that can provide similar 
technological breakthroughs.
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Status. Organic semiconductor materials have been the sub-
ject of intense research over more than 20 years because of 
their potentially tuneable properties, ease of processing, abun-
dance and low cost. Many optoelectronic applications are 
based on inorganic semiconductors, but the range of stable 
crystalline semiconductors is limited and the ab initio design 
of new ones is limited by the strong dependence of properties 
on crystal structure and the difficulty in predicting new crys-
talline materials from an atomistic level. Design of organic 
functional materials, however, can be reduced to consideration 
of the molecular (or monomeric) level and the intermolecular 
interactions. Although the latter do influence material behav-
iour, the key optoelectronic properties are typically captured 
by examination of a single molecular unit or pairs of neigh-
bouring units. Organic molecules can be thought of as com-
prised of building blocks that have clear structure-property 
relationships, making rational inverse design possible.

Here, we focus first on two applications: organic photo-
voltaics (OPVs) and organic light-emitting diodes (OLEDs). 
Each of these employs π-conjugated molecules, and depends 
on the intermolecular transport and transfer of charge carriers 
and the absorption or emission of light. OPVs are an appeal-
ing alternative to the dominant silicon technology because 
of straightforward fabrication, low cost, low weight, choice 
of colour and device flexibility. Due to these advantages, 
research accelerated during the 2000s (figure 20); the current 
record for conversion efficiency for a single junction OPV is 
over 13% [99], enabled by the recent development of high-
performance organic acceptor materials other than fullerene 
derivatives. OLED research began in the late 1970s and poly-
mer OLED research accelerated in the 1990s after the discov-
ery of electroluminescence from conjugated polymers [100]. 
Blue OLEDs have surged due to the discovery of thermally-
assisted delayed fluorescence, which gives access to higher 
luminescent efficiency by allowing both singlet and triplet 
excitons to emit light [101]. OLEDs have recently entered 
consumer markets as energy-efficient, high-contrast ratio dis-
play materials. Further advances could lead to cheaper dis-
plays with longer lifetimes. In this Roadmap, we will review 
the experience gained in materials development for OPVs 
and OLEDs and consider how this can assist the design of 
other organic functional materials, including organic redox 
flow battery (ORFB) electrolytes, organic photocatalysts, and 
organic thermoelectrics.

Current and future challenges. Device efficiency (power 
conversion efficiency of solar cells and luminous efficacy of 
OLEDs) remains a challenge. With OPVs, whilst the design 
rules concerning the energetics of component materials are 

well known, the precise role of and means to control film 
microstructure are still poorly understood. Processability of 
organic semiconductors comes at the cost of structural dis-
order and associated disorder in site energies and charge 
transfer rates, penalising efficiency [102]. Local ordering can 
benefit charge transport and pair separation, but can also intro-
duce traps. Phase segregation in binary systems in OPVs is 
critical to performance but is still challenging to control by 
design.

Another persistent challenge in organic semiconductors 
is the operational stability of the device. For instance, OPVs 
have substantially shorter lifetimes than silicon-based photo-
voltaic devices [103]. Instabilities can come from a variety 
of sources, including photo-oxidation, electrochemical stress 
and morphological instabilities of thin films (via phase segre-
gation and heterogeneous crystallisation). Samsung cited long 
term stability as a reason for their shift from OLED to QLED 
(quantum dot LED) development for televisions. Stability is 
also an issue in ORFBs, so a strategy that solves the stability 
problem for organic semiconductors may shed light and allow 
for similar methodologies to emerge in related mat erials. 
Overall, stability has been relatively under-researched to date 
compared to other properties and a detailed understanding of 
structure-stability relationships is lacking.

Additionally, scientists and engineers in these fields need 
to learn more about the nature of chemical space of these mat-
erials. Without constraints, chemical space is massive, esti-
mated to be 1080 for organic molecules. By determining the 
minimum number of starting materials that are needed to cover 
all of the relevant parts of functional materials space, materials 
development efforts can be further focused. By analogy, it has 
been demonstrated that only about 5000 building blocks are 
needed to synthesize ~70% of small-molecule natural prod-
ucts [104]. Researchers in organic functional mat erials need to 
discover the corresponding number for their field and the most 
relevant degrees of freedom for their particular properties of 
interest. Determining these properties of chemical space will 
assist in the accelerated, rational development of new mat-
erials that are competitive with inorganic materials.

Advances in science and technology to meet chal-
lenges. Nearly all of the above challenges can be met via 
the efficient, rational exploration of chemical space, both 
theor etically and experimentally. We will focus on the case 
of OPVs, but these principles translate to other materials. 
With hindsight, the necessary structural features for some 
OPV properties would have been straightforward to calculate; 
theory is an excellent tool for calculating donor–acceptor (or 
push–pull) structures for low optical gap, electron-poor or 
electron-rich units to control ionization potential and electron 
affinity, side chain structure and positioning and backbone tor-
sion to control crystallinity, and searching for molecules with 
low conformational phase space to limit energetic disorder.

Other properties, such as mobility or phase separation, 
are harder to predict because of more complex dependence 
of properties on multiple degrees of freedom. Here, mat erials 
identification can be accelerated by identifying intermedi-
ate properties, for example, isotropy in electronic coupling 
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(considering both sign and amplitude) is beneficial for high 
charge carrier mobilities [105]; calculated solubility param-
eters or molecular-dynamics simulations of binaries [106] 
could help predict phase behaviour. Although such approaches 
could not predict new materials, calculating these more acces-
sible quantities can reduce the design effort by screening 
potential winners from losers. Similarly, identifying the most 
important structural degrees of freedom for a given property 
can reduce the conformational phase space.

Virtual screening methods for organic materials have become 
increasingly useful over the past decade, with large-scale stud-
ies conducted to discover new molecules for OLEDs, OPVs, 
photocatalysts, thermoelectrics and ORFBs [101, 107]. From 
an experimental perspective, accelerating the synthesis and 
characterization can be done through adoption of high-through-
put methods and robotics. Similar to theory, exper imental meth-
ods can also employ advances in machine learning. A platform 
was recently used to optim ize carbon nanotube growth based 
on on-the-fly characterization via Raman spectroscopy [108] 
and highly porous organic materials have been discovered 
aided by computational design [109]. The stability problem, 
in par ticular, needs significantly more characterization data to 
identify decomposition pathways. With this information, such 
pathways could be also screened for virtually. All of these 
advances also need to be underpinned by the adoption of better 

data management standards, where negative results are made 
available to virtual and experimental screening systems.

Concluding remarks. Research in organic semiconductors 
has moved into an era where principles learned from years of 
experiments can be employed by theorists to rationally design 
new materials. Going forward, theorists need to devise new 
techniques to compute more complex properties of organic 
semiconductors. Tighter feedback between experimentalists 
and theorists, aided by the continued development of machine 
learning methods, can accelerate the inverse design of the next 
generation of materials. The lessons learned from research in 
OPVs and OLEDs could also be used in other organic func-
tional materials, including electrolytes for organic redox flow 
batteries, organic photocatalysts, and organic thermoelectrics.
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Figure 20. A timeline depicting the strategies used in materials development for OPV. As understanding of the relationships between 
material properties and device performance developed, increasingly sophisticated strategies were used to improve device performance. The 
results of years of studies, mostly by trial and error, have produced a set of design principles, many of which are relatively straightforward 
to implement using calculations and which can be used in screening to accelerate the discovery of new materials.
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Status. Solid-state lighting (SSL) exploits electrolumines-
cence processes from semiconductors to produce light more 
efficiently than heated filament or gas sources. White light is 
typically produced by pairing a blue LED with a down-con-
version material, which re-emits absorbed blue photons across 
the rest of the visible spectrum (see figure  21). Advanced 
approaches can also mix emission from individual red, green, 
blue and amber LEDs [110]. The LEDs and down conversion 
materials must be as efficient as possible to maximize energy 
savings, while their emission spectra must be carefully tai-
lored to achieve the desired color temperature of white light, 
as well as render colors suitably based upon the application

Blue and green LEDs are fabricated from InxGa1−xN alloys, 
where indium is added to shift the emission to longer wave-
lengths [110]. InxGa1−xN is a better blue light-emitter compared 
to other semiconductors with similar direct band gap energies, 
as it is relatively tolerant to extended defects. This allows sin-
gle crystal InxGa1−xN device layers to be epitaxially grown on 
substrates with different lattice constants, despite strain-driven 
dislocation formation. Yet, there are drawbacks to this material 
system [111]. When grown on SiC or sapphire substrates, the 
polar axis of InxGa1−xN is aligned along the direction of elec-
tron and hole injection. The resulting piezoelectric fields set 
up by polarity and strain reduce electron and hole wavefunc-
tion overlap and lower radiative recombination. The addition 
of more indium to InxGa1−xN increases strain, which further 
aggravates these losses and contributes to the low efficiencies of 
green InxGa1−xN LEDs. These loss mechanisms can be partially 
suppressed through quantum confinement (e.g. quantum wells 
or nanowires) or by growing on the non-polar crystal faces of 
bulk GaN substrates. However, such approaches have yielded 
insufficient efficiency increases at green wavelengths, are too 
costly, or are less practical for mass production.

Commercial red and amber LEDs are fabricated from 
(AlxGa1−x)0.5In0.5P alloys. Since LED efficiency is strongly 
affected by dislocations, the In concentration is selected for 
strain-free growth on conventional GaAs substrates. The emis-
sion wavelength is tuned by adjusting the ratio of Al and Ga. 
(AlxGa1−x)0.5In0.5P undergoes a transition between a direct 
and indirect band gap semiconductor at ~2.25 eV (550 nm). 
(AlxGa1−x)0.5In0.5P LEDs with emission wavelengths of 590 nm 
or less have electrons lost to the indirect conduction bands at 
room temperature [112]. These losses extend to longer emis-
sion wavelengths LEDs at higher operation temperatures.

Typical LED down-converting materials are inorganic phos-
phors; insulating hosts that are doped with activator ions whose 
basic properties (e.g. absorption, emission, efficiency) are 
defined by how the atomic transitions of the activator are modi-
fied by the interaction with the host lattice. Currently, three 
main activator ions, Ce3+, Eu2+, and Mn4+ are used the most 

often in typical LED phosphors (table 1). The quantum efficien-
cies (QEs) of these phosphors are often above 90% across the 
visible color spectrum for blue LED excitation. However, the 
peak wavelengths and linewidths of their emission as well as 
their stability are still factors that can be further improved.

Current and future challenges. InxGa1−xN and 
(AlxGa1−x)0.5In0.5P alloys are the semiconductors of choice 
for visible LEDs in part because they have properties that are 
amenable to both light emission and manufacturing. They are 
highly developed direct band gap semiconductors with tunable 
band gaps, are relatively robust against defect-induced degra-
dation, and are grown on readily available substrates. However, 
the emission efficiencies of green, amber and red LEDs remain 
well below that of blue LEDs (see figure 21) and are limited 
by the fundamental properties of those materials. Small adjust-
ments in material quality, structure or composition alone are 
unlikely to lead to substantial improvements. One path forward 
is to identify alternative semiconductors with properties that 
are better suited to green, amber or red emission and that meet 
several design criteria. The semiconductor must have a high 
emission efficiency under high injection or elevated operating 
temperatures. Device layers should be grown on conventional, 
cost-effective substrates with low defect densities using scal-
able deposition techniques. Finally, they should be resilient 
against degradation for extended LED lifetimes.

Semiconductors that have recently been considered for 
LEDs include direct band gap AlxIn1−xP, II–IV–N alloys, hal-
ide perovskites and GaN1−xAsx [113–116]. These materials 
are in various stages of development, ranging from theor etical 
predictions to full device demonstrations, and it is not yet 
known if any will offer performance breakthroughs. Materials 
discovery and synthesis efforts should focus on understanding 
the advantages and disadvantages of different classes of semi-
conductors in the context of the design criteria outlined above.

Current phosphors have enabled sufficient efficacy and 
color quality for the widespread acceptance of LEDs for 
lighting and displays. Increasing luminaire efficacy to  >200 

Figure 21. Emission spectra for phosphor-converted (pc) and color-
mixed (cm) LEDs. The wallplug efficiencies of blue, green, amber 
and red LEDs (dotted lines) and luminous eye response curve 
(shaded area) are also shown.
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lumens per watt (lm W−1) requires the development of high-
efficiency, stable, narrow linewidth down-converter mat-
erials that emit at specific red, amber and green wavelengths  
[117, 118]. Semiconductor quantum dots offer narrow band 
emission that may be tuned to desired wavelengths to improve 
efficacy, but reliability and European Union Regulation on 
Hazardous Substances (RoHS) compliance have been barriers 
to adoption. Continued efficacy improvements for high color 
rendering LEDs therefore require new phosphor composition 
development for ions (i.e. Eu2+, Mn4+) that could give narrow 
linewidth emission. Narrow band emission from the red phos-
phor in particular minimizes spillover into longer wavelengths 
where the human eye response falls off rapidly. There is some 
correlation of crystal structures and luminescence properties to 
phenomenological understanding of phosphor properties [119, 
120], but these phenomenological models have limitations in 
their application to new phosphor discovery. Commercial imple-
mentation of new LED phosphors also needs to meet multiple 
requirements beyond absorption and emission. New phosphors 
require QEs greater than 90%, and their efficiency and color 
cannot change significantly over system life. This optimization 
requires additional composition and process steps including 
choosing appropriate starting materials, determining nominal 
stoichiometry, and optimizing processing conditions. Trial-and-
error screening experiments are followed by optimization using 
designed experiments once the key factors have been determined. 
The success of these optimization steps is usually the difference 
between successful and unsuccessful phosphor development, 
and takes up the largest portion of time and cost for phosphor 
development [121]. As an example, figure 22 shows reliability 
improvements through process optimization in K2SiF6:Mn+4, a 
narrow line-width, red emitting LED phosphor (GE TriGain™). 
These results illustrate the importance of the development phase 
after simply identifying a promising material candidate.

Advances in science and technology to meet challenges.  
Tools for high-throughput computational screening have and will 
continue to aid in the search for new light-emitting and down-
conversion materials. Semiconductor crystal structures and 
electronic band structures can already be calculated with a high 
degree of accuracy, but advances are still needed in our ability 
to predict tolerances to defects, Auger recombination rates and 
other parameters that affect radiative recombination efficiency. 
This will be enabled by improvements in our understanding of 
radiative loss mechanisms. On the phosphor side, advances are 
needed in the computation of phosphor crystal structures, excited 
states in heavy lanthanide ions and defect chemistries. Improved 
understanding in these areas will help to categorize basic phos-
phor properties and pinpoint new phase space in which to search 
for promising materials. Identification of loss and degrada-
tion mechanisms in phosphors will also help to guide material 

development and optimization strategies to improve performance 
and reliability. Once the most promising LED and phosphor can-
didates are identified, it will likely require substantial resources 
to fully develop and evaluate their potential experimentally. Syn-
thesizing new materials can be challenging, particularly if it must 
involve non-standard epitaxial growth conditions or new reaction 
routes. Advances in tools for materials fabrication and character-
ization will therefore also be important to this effort.

Concluding remarks. While commercial white SSL solutions 
are approaching efficacies of 200 lm W−1, opportunities exist 
to improve the efficiency of SSL through improved material 
design and optimization. Identification of new emitting mat-
erials, either active semiconductors or down-converters for 
blue LEDs, offer a direct route to realizing maximal efficiency 
gains. A combined approach of theoretical prediction and 
exper imental development could accelerate materials discov-
ery and optim ization for implementation into future lighting 
systems and displays. This acceleration can be further enhanced 
in combination with the current trend towards lower drive cur-
rent densities in LED packages to produce more efficient, high 
color quality SSL solutions with improved reliability.

Acknowledgments

K A acknowledges the support of the US Department of 
Energy, Office of Basic Energy Sciences under contract 
DE-AC36-08GO28308.

Figure 22. Accelerated reliability testing of phosphors using 
high intensity blue excitation. The industry standard green-
emitting Y3Al5O12:Ce3+ (YAG:Ce) is compared to a GE TriGain™ 
K2SiF6:Mn4+ red-emitting phosphor whose synthesis and 
composition have been optimized relative to a typical K2SiF6:Mn4+ 
phosphor. The timescale for these accelerated measurements is 
proprietary information, however, these tests can accelerate phosphor 
degradation by  >100  ×  versus typical medium-power LEDs.

Table 1. Typical activator ions, their relevant transitions, and representative compositions for phosphors used in blue LEDs.

Activator  
ion

Absorption transition 
for blue light Emission transition

Representative compositions  
and emission color

Ce3+ 4f1 (2F5/2)  →  5d1 5d1  →  4f1(2F7/2,2F5/2) Y3Al5O12:Ce3+ (green–yellow)
Eu2+ 4f7  →  4f65d1 4f65d1  →  4f7 (Sr,Ca)AlSiN3:Eu2+ (orange and red) β-SiAlON:Eu2+ (green)
Mn4+ 3d3 (4A2)  →  3d3 (4T2) 3d3 (2E)  →  3d3 (4A2) K2SiF6:Mn4+ (red)
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Status. Tailoring the design of a material for a specific func-
tion is particularly important in catalysis, including thermal, 
electro-, and photo-catalysis. For the present discussion on 
materials design, as opposed to reaction design, we focus 
on heterogeneous catalysts, for which the most universally 
important fundamental properties are the binding energy of 
reactant, intermediate, and product molecules on the catalyst 
surface along with the respective reaction barriers. Advances 
in computational chemistry and computing have made calcul-
ations of the binding energies rather automated [122], with 
recent advancements in machine learning-based error correc-
tion making even computationally-inexpensive algorithms 
sufficiently accurate to design catalysts. Modern theory-based 
computational algorithms have been tailored for specific reac-
tions and operating conditions, in particular where binding 
energies and reaction barriers can be modulated via multi-
body interactions, dynamic variations in the reaction environ-
ment, and catalyst surface dynamics under operation [124]. 
Broadening the catalyst design framework from a binding 
site to a catalyst system will enable materials to achieve the 
activity of the ultimate catalysts, enzymes, while providing 
the longevity required for deployment in energy, commodity 
chemical, etc, industries [125].

Current and future challenges. A primary challenge in the 
improvement of catalyst design lies in the traditional dis-
connect between computational chemistry and catalysis 
experiments, where the former excels at a molecule-level 
understanding but struggles to model the full catalyst system 
and the latter typically produces a net reaction rate with lim-
ited ability to decompose it into elementary steps. Catalysts 
that perform multi-step reactions, such as oxygen evolution 
and reduction, CO2 reduction to hydrocarbons and oxygen-
ates, and N2 reduction to ammonia, comprise some of the 
most widely designed catalysts now and in the foreseeable 
future. The recent proliferation of so-called scaling relation-
ship theory for such reactions predicts that catalysts with a 
single active site will generally be limited in their catalytic 
activity [126], which is troubling given that traditional cata-
lyst design focuses on identification and optimization of such 
a site. The resulting stagnation in identification of transfor-
mative catalysts further motivates the expansion of catalyst 
design to consider more complex and dynamic catalysts, for 
example, through incorporation of variability in computa-
tional modelling (figure 23) [123].

The biggest future challenge in catalyst design lies in 
the integration of data science, machine learning, and artifi-
cial intelligence in computational and experimental catalyst 
exploration. As noted above, machine learning has emerged in 
catalyst design primarily as an accelerator for computational 
work [127], and while challenges remain in deeper integration 

of machine learning and theory, the grander challenge lies 
in the utilization of machine learning to provide data-driven 
identification of the underlying catalyst properties that give 
rise to an observed reaction rate. That is, a given catalyst 
performance measurement, even when combined with thor-
ough compositional and structural characterization, typically 
cannot identify a reaction mechanism or design principle 
for improving the catalyst. By consolidating a broad collec-
tion of composition-structure-activity relationships in a data 
model, new catalyst understanding and design avenues may 
be unveiled. In the present ‘big data’ era where loads of data 
are used to provide a black box prediction tool, the relatively 
small adoption of machine learning in catalyst design is some-
what understandable as the community neither has the requi-
site data to train such models nor the appetite for data models 
that cannot ‘explain’ the underlying science. As artificial 

Figure 23. (Left) Generalized coordination numbers of ontop sites 
on a truncated octahedron and (right) and CO oxidation activity 
of a 2.8 nm Pt particle used in Monte Carlo modelling of catalytic 
activity, which highlights the complexity of identifying and 
designing catalytic sites. Reprinted with permission from [123]. 
Copyright 2017 American Chemical Society.

Figure 24. Atomic resolution in-situ scanning tunneling 
microscope image of CO dissociation on a Co catalyst, which 
highlights the complexity and evolution (even on the 1 h time scale) 
of heterogeneous catalysts. Reprinted with permission from [122]. 
Copyright 2015 American Chemical Society.
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intelligence research begins to dissect the big data black box 
and as new algorithms are designed to utilize known proper-
ties of materials, the power of machine learning in catalyst 
design can be fully realized.

Advances in science and technology to meet challenges. The 
recent advent of in-situ and operando techniques has greatly 
enhanced experiment-driven catalyst understanding, which 
largely provides additional characterization of the catalyst 
surface or near-surface under operating conditions (figure 24) 
[128]. Such data helps relate the computer models of mat erials 
to the experimental catalyst but does not sufficiently bridge 
the gap between molecular-level calculations and reaction 
rates. Approaches for further bridging the theory-experiment 
gap include atomic resolution scanning probe characteriza-
tion that does not alter the catalysis, computational modelling 
techniques that simulate experimental observables to enable 
more direct comparison, and multi-scale computational tech-
niques that provide quantum mechanics-level accuracy in 
many-atom systems. The detection of partial-monolayer reac-
tion intermediates offers perhaps the best means of (in)vali-
dating a computational model, and continued development of 
the associated spectroscopic techniques, in particular, infrared 
spectroscopy and synchrotron-based electron spectroscopy 
techniques, are needed to realize this goal in both thermal and 
electro-catalysis. These experimental advancements indirectly 
enhance materials design by providing the requisite data from 
which hypothesis-driven catalyst modifications or new catalyst 
designs can be derived. To enable direct, more ab initio cata-
lyst design, computational modelling must incorporate new 
strategies for bridging time and space scales. Single crystals 
transforming absolutely pure reactants are useful model sys-
tems, and extending design to deployable catalysts requires 
modelling of materials defects, chemical impurities, and the 
evolution of catalysts over years of operation, which typically 
implies on the order of 108 ‘turnovers’ or catalyst cycles.

For the emerging challenge of integrating machine learning 
in catalyst design, the road to success is less well defined, with 

one certainty being that new algorithms will need to combine 
the state of the art in machine learning with the constraints and 
concepts of catalysis science. To enable algorithm develop-
ment and deploy such algorithms, substantial advancements to 
the catalyst community’s data infrastructure are also needed, 
as well as experimental methods that can rapidly respond to 
new catalyst predictions [129]. On both of these fronts, the 
combinatorial and high throughput materials science com-
munity as well as the small molecule and biological chem-
istry communities offer a wealth of best practices that can be 
adapted as necessary to accelerate the adoption of machine 
learning in materials design for catalysis [40].

Concluding remarks. Transformative advancements in 
materials design for catalysis hinge upon further integra-
tion of theory and experiment as well as interdisciplinary 
engagement of artificial intelligence and the data science 
community. The combination of techniques can enable a sort 
of divide and conquer approach to creatively adapt existing 
capabilities into new materials design paradigms that harness 
the complexity of catalyst systems for multi-step reactions. 
A recent illustrative example in photoelectrocatalyst design 
involves integration of several theory and experiment steps 
to discover classes of materials that respond to new design 
concepts [130]. Here, the proficiency of theoretical model-
ling of a materials’ bulk electronic structure was combined 
with efficient experimental assessment, with the more gen-
eral concept being that different approaches can tackle dif-
ferent aspects of catalyst design as long as the compilation 
of techniques appropriately captures the complexity of the 
multi-step catalytic processes that are increasingly important 
to industry and society.
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Status. Advanced battery technology has become one of the 
core technologies to support a mobile, clean and sustainable 
society in the next few decades. Lithium batteries have been used 
widely in portable electronic products, electrical vehicles and 
energy storage devices for wind and solar power, because of their 
high voltage, high specific energy density, rapid recharge capa-
bility, and wide working temperature range [131]. The advances 
of battery techniques are always going to go with the develop-
ment of new materials. For example, lithium-rich layered oxide 
materials have been considered as an ideal positive electrode in 
high-energy-density lithium-ion batteries [132], and the nano 
silicon-based anodes as alternative materials show reversible 
capacities of 380–2000 mAh g−1 [133]. The indisputable fact is 
that the discovery of advanced materials and rational design play 
key roles in battery research. To speed up the upgrading of the 
chemical materials in lithium batteries, high-throughput tech-
niques, including high-throughput simulations, synthesis and 
measurement, have been applied to the discovery of new battery 
materials. Data mining and machine learning have been intro-
duced to benefit the understanding of the big data obtained from 
high-throughput techniques, which provide opportunities for 
further exploration of the structure-property relationship of bat-
tery materials and to discover new materials. On the other hand, 
by comparing the theoretical results or model predictions with 
the myriad experimental data, the sources of error and uncer-
tainty in battery research can be captured, which in turn help us 
to build better theor etical models or investigating apparatus. The 
mutual promotion of the above aspects shown in figure 25 is 
expected to accelerate the discovery of candidate compounds in 
the future and shorten the invested time and money, not only for 
lithium batteries, but also for other new types of energy storage 
devices, like Na, Zn, Mg, Al batteries, etc.

Current and future challenges. The high-throughput calcul-
ation work flow has been established based on density func-
tional theory simulations [134, 135], and the combination of 
calculation methods in different accuracy levels [136] has been 
proposed to speed up the scanning process of new materials. 
The former has been applied to scanning the inorganic crystal 
structure database for candidate electrode materials with high 
voltage and capacitance [137]. Using ideas originating from the 
latter method, a new superionic conductor has been proposed 
[138]. To achieve battery devices with higher energy density 
and safety, inorganic solid electrolytes are expected to replace 
liquid electrolytes in the next generation lithium batteries [139]. 
The application of solid electrolytes may avoid problems of 
leakage, vaporization, decomposition and side reactions found 
in the conventional lithium-ion batteries. However, finding 
solid electrolytes with excellent performance is still a demand-
ing task, since the comprehensive physical description between 
structures and ionic conductivity is still not easy to grasp. 

Similar problems exist in the discovery of other battery mat-
erials. For example, suitable electrode materials with long-term 
stability require a small volume change ratio during lithium ion 
insertion and extraction [140]. However, the percentage of the 
volume change varies from material to material because of the 
complicated origins of the cell variation, which leaves huge 
obstacles for us to discover low-strain electrodes. As an inte-
grated system, the performance of the battery not only relates to 
the properties of the individual components but also is strongly 
affected by the interactions among them. One typical case is 
that the interface between the electrode and electrolyte seri-
ously impacts the stability, rate and cycle-life of the batteries. 
Therefore, looking for favorable combinations of the comp-
onents in the battery is extremely crucial. The details and key 
factors in optimizing these interactions are still in development 
and remain a major challenge for the design and matching of 
battery materials. In general, extending the understanding of the 
basic scientific problems in battery systems is the main research 
issue on the way to discovery new lithium battery materials.

Advances in science and technology to meet challenges. To 
meet the above-mentioned challenges, advances in both sci-
ence and technology are urgent. Figure  26 exhibits the goal 
of battery techniques and the methods that need to be devel-
oped in the near future. On the one hand, designing delicate 
prototypes to understand the basic scientific phenomena in 
batteries by high-throughput experiments and simulations 
is a conventional but efficient research mode. With the help 
of advanced measurement and analytical tools, more exqui-
site microstructures and evolution processes can be revealed, 
which will clarify the failure mechanism of lithium batteries 
and direct the discovery of new battery materials. On the other 
hand, designing an automatic screening and prediction work-
flow with sufficient accuracy and efficiency is essential. For 
each part of the battery, the electrode, electrolyte, additive, col-
lector, etc, it is necessary to meet more than one requirement 
to ensure the excellent performance of the whole device. It is 
better for a high-voltage cathode to show high-capacitance and 
good conductivity. Similarly, fast ionic conductivity and a wide 
electrochemical window are both necessary prerequisites for 
electrolyte materials. Thus, screening and predicting tools for 
multiple objectives must be created. Aside from the advances 
addressed above, data science and technology also have to be 
developed for material design. It is recognized that machine 
learning techniques and big data methods will play an increas-
ingly important role in solving the relationships between mat-
erial properties and complex physical factors in a statistical 
way, which builds the basis for material design, and vice versa. 
However, material informatics is still an emerging field with 
problems like the lack of data standards, the diversity of mat-
erial types, and even the conflict of research culture, etc. Data 
management specific to battery materials should be developed 
and the descriptors suitable for them should be explored.

Concluding remarks. Rational design of lithium battery mat-
erials is highly desirable in the near future. Because of the 
complex structure-property relationships of ionic conductivity, 
volume change, electrode/electrolyte interfaces, etc, successful 
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cases of designing new battery materials are still scarce. Advances 
in the development of high-throughput techniques and material 
informatics will bring more efficient research and provide new 
opportunities to solve the above problems, which will deepen our 
understanding of the basic scientific questions in battery fields 
and accelerate the discovery of materials for lithium batteries and 
other new types of energy conservation devices.
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Figure 25. The development mode of new material design in lithium batteries by means of high-throughput techniques and data sciences.

Figure 26. The developing roadmap of lithium batteries in the near future.

J. Phys. D: Appl. Phys. 52 (2019) 013001



Topical Review

37

16. Multifunctional metallic alloys

Alfred Ludwig

MEMS Materials, Institute for Materials, Ruhr-University 
Bochum, Germany

Status. Metallic alloys have been of crucial importance 
to humankind since the bronze age and will continue to be 
a critical material class, enabling new capabilities, applica-
tions and products. The advantages of metallic alloys are their 
frequently good mechanical properties like high strength and 
plasticity (ductility, toughness), which are hard to achieve in 
other material classes. In multifunctional alloys, these favor-
able mechanical properties are combined with additional 
functional properties (electrical, magnetic, optical, etc.). 
Multifunctionality is frequently related to reversible phase 
transformations. Compositional complexity of alloys has usu-
ally increased from binary to multinary systems, often cur-
rently involving more than 10 elements, with compositions 
finely tuned to specific applications. Examples of such com-
positionally complex alloys are steels, superalloys and metal-
lic glasses. Whereas these alloys are typically based on one 
element (Fe, Ni, Co, Al, Mg, …), recently multi-principal 
element alloys (MPEA) have also attracted interest, as they 
promise a mostly unexplored search space for the discovery 
of new alloys with interesting properties [141]. Whereas a sin-
gle-phase constitution is crucial for semiconductors, metallic 
alloys are typically multiphase materials, and the properties of 
the alloys can be tailored by controlling microstructure using 
processing. The phase constitutions, their distribution and vol-
ume fractions in the alloy can be used to adjust properties (e.g. 
a tough matrix phase with a strengthening precipitate phase). 
Further advances in metallic alloys are gained by developing 
alloys which combine good mechanical properties with fur-
ther functionalities. For high-temperature alloys, for example, 
the formation of a protective oxide scale can lead to a func-
tional property: resistance against corrosion. New or improved 
(multi)functionalities need to be developed to realize metallic 
materials for future applications. Whereas in bulk applications 
of metals, mechanical properties are dominant, in thin film 
applications, they are less important, i.e. even materials which 
would be too brittle for bulk applications can be used in thin 
films. This opens up the field of intermetallic compounds with 
(multi)functional properties, which are frequently not ductile, 
into the scope of new thin film mat erials. Such materials com-
prise magnetic alloys, shape memory alloys, magnetic shape 
memory alloys, thermoelectric alloys, magneto- and elasto-
caloric alloys, etc. Such classes of (multi)functional metallic 
materials can be explored by combinatorial and high-through-
put thin film methods to enable the design, discovery and 
optim ization of materials based on the acquired knowledge.

Current and future challenges. A current and future challenge 
is the design and discovery of new compositionally complex 
metallic alloys, i.e. ternary to quinary systems and beyond, 
either based on a principal element or as MPEA, with inter-
esting mechanical and functional properties. Additionally, the 

influence of impurity elements on the properties of multinary 
alloys should be studied. Complex metallic alloys, character-
ized by extraordinary large unit cells, is another area for new 
discoveries [142]. Generally, it is necessary to overcome reli-
ance on serendipitous discoveries (e.g. NiTi) and use com-
binatorial and high-throughput methods, both computational 
and experimental, to identify, verify and then optim ize new 
metallic alloys in a more efficient way. However, this is chal-
lenging, as the largest fraction of elements in the periodic 
table  are metals, which leads to an almost unlimited search 
space, even if the selected elements are restricted to those 
which are earth abundant and sustainable. Computational 
approaches [143, 10] for the high-throughput prediction of 
possibly (meta)stable alloys with interesting properties can 
help in this regard to select a few ten to hundred appealing 
candidates out of hundreds of thousands of possibilities, 
which then can be assessed (verification/falsification of pre-
dictions) with high-throughput experimental methods. How-
ever, these calculations are frequently limited to the intrinsic 
properties and sufficiently precise and validated exper imental 
data for the calculations are often lacking. A further chal-
lenge, next to principal stability and the possibility to fabri-
cate new materials, is to master extrinsic properties such as the 
microstructural diversity. For an identical composition, many 
microstructures are often possible, e.g. from nanocrystalline 
to microcrystalline, from amorphous to single- or multi-phase 
crystalline structure, all of which influence the properties of 
the alloy. Another challenge is to screen thin film libraries 
for ductility and, what is more, how findings from large scale 
thin film materials library explorations could be transferred to 
the bulk scale, i.e. how new ductile (multi)functional metallic 
alloys could be efficiently identified. Examples of correlative 
thin film-bulk studies can be found in [144–146].

Advances in science and technology to meet challenges. For 
the advancement of the discovery and design of multinary 
alloys, several technologies need to be further developed. 
Whereas combinatorial deposition methods for thin film mat-
erials libraries are now well-established, the further automa-
tization and speed advances of high-quality characterization 
methods need to be continued to enable better high-through-
put characterization. An important methodology to be devel-
oped is ‘combinatorial processing’ to address the challenge of 
microstructural complexity. For this, gradient and step heater 
concepts for both the formation and annealing of thin films 
have been introduced [147]. A high-throughput processing 
approach for the identification of new metallic glasses with 
thermoplastic formability was performed by parallel blow 
forming of co-deposited thin-film libraries on micromachined 
substrates [148]. Furthermore, it would be worthwhile to 
develop schemes where materials libraries would not be only 
characterized for one property, but rather comprehensively for 
‘all’ functional properties. Another necessary advancement 
is related to the development of materials in systems. This is 
because it is not sufficient to only develop a material by itself; 
rather it has to be developed in a system, which means it has 
to provide functionality in connection with adjacent materials 
and environments. Here, interface properties play a key role. 
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Furthermore, if the fabrication and characterization of mat-
erials libraries leads to the discovery of new phases, the chal-
lenge arises for an accelerated identification of these phases. 
Here, advanced electron diffraction methods in transmission 
electron microscopy (TEM) (combination of automated dif-
fraction tomography with precession electron diffraction) 
could help, if the materials of interest can be grown to a suf-
ficiently large grain size [149]. A novel accelerated explora-
tion approach for temperature- and environment-dependent 
phase evolution in compositionally complex materials has 
been introduced by Li et al [150]: combinatorial processing 
platforms are created by co-deposition of multinary thin films 
on nanoscale tip arrays forming many identical nanoscale 
‘reactor volumes’ allowing for fast diffusion and reaction and 
immediate observation of the product phases by the atomic-
scale analysis methods atom-probe tomography and TEM. 
This allows for an accelerated mapping of the phase space of 
multinary metallic alloys. Another challenge is the develop-
ment of materials data science, research data management, and 
materials informatics, e.g. machine learning for data-guided 
experimentation. Finally, visualization of compositions and 

properties in complex multinary materials systems is difficult 
but necessary. Thus, new software tools have to be developed 
which will lead to the establishment of functional phase or 
existence diagrams (including metastable phases) for multi-
nary alloys for the future design of materials.

Concluding remarks. The success story of metallic alloys 
will be continued by applying computational and experimental 
combinatorial and high-throughput methods for the discovery 
and optimization of new multinary compositions. If the new 
materials are developed from the start with regards to their 
functionality within a system, i.e. with regards to the inter-
faces which are formed between materials in a system, faster 
development of materials from their discovery over optim-
ization to incorporation into a product could be achieved.
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Status. Over the last few decades, complex oxides (materials 
with multiple cations and oxygen) have been a central research 
focus because of their wide range of properties and applica-
tions. Leveraging an ability to manipulate the charge, lattice, 
orbital, and spin degrees of freedom, scientists have explored 
a range of exotic, and potentially useful, phenomena including 
superconductivity, magnetism, colossal magnetoresistance, 
ferroelectricity, multiferroism, relaxor behaviour, ionic con-
ductivity, piezoelectricity, and many more. Such ‘functional’ 
materials (i.e. materials that can transmit or convert energy 
(e.g. electrical, thermal, mechanical, etc) for useful purposes 
(e.g. information transfer, sensing, energy production, posi-
tioning, etc)) [151, 152], underpin our ability to address a range 
of salient technological challenges, including how we process 
and store information, sense and understand the world around 
us, produce energy, and more [153]. Ferroic mat erials, includ-
ing those which are ferroelectric, magnetic, ferroelastic, and/
or multiferroic, continue to receive considerable interest due 
to their field-switchable stable spontaneous order param eters 
(electric polarization, magnetic moment, strain), which are 
strongly coupled to the thermal and mechanical responses of 
the material (figure 27). The search for, discovery of, and utili-
zation of these materials has been made possible by important 
advances in theoretical and computational approaches, mat-
erials synthesis, and characterization techniques. Functional-
oxide research has enabled the realization of new materials 
and the development of new functionality in existing materials. 
These research insights are fed back into the design process, 
including massively parallel design of new oxide materials and 
heterostructures. The advanced state of synthesis and charac-
terization confers unprecedented control of materials chemis-
try and structure, and this will ultimately lead to the creation 
of new states of matter and phenomena. Recent innovations 
include new single-phase materials, close juxtapositions of 
competing or complementary functionalities, and orchestra-
tion of emergent responses on many length and time scales. 
Here, we highlight some of the most important recent advances 
in terms of materials design and discovery, understanding, and 
characterization for functional materials while looking to the 
future for what might lie on the horizon for this community.

Current and future challenges.
Advanced computation and data storage.  There is great 
interest in moving beyond field-effect transistors and Bool-
ean operation, and functional oxides can lead that revolution 
by providing negative capacitance, piezotronics, tunnel junc-
tions, and spintronics. In addition, neuromorphic computing 
architectures (designed to emulate neuron function) require 

materials exhibiting multiple and addressable microstates 
and the ability to evolve continuously in response to voltage-
current stimuli [154]. Ferroic materials are promising because 
of their intrinsic non-volatility and fast switching, but limited 
progress has been made towards deterministic multi-state 
functions. There is likely to be growing interest in designing 
and controlling ferroics in ways that will enable low-power 
and multi-state operation in this regard.

Energy conversion and efficiency. Societal energy needs 
make the development of more efficient energy conversion 
a compelling research challenge. Ferroic systems have great 
potential in this field. For example, ferroelectric photovoltaics 
host the bulk photovoltaic effect, where a ‘shift current’ [155] 
and asymmetrically scattered ‘ballistic current’ [156] cause 
excited carriers to move in a specific direction determined by 
the polarization; it can even give rise to photovoltages that 
exceed the bandgap and break Shockley–Queisser limits for 
efficiency. Others explore ferroic materials for novel waste-
heat energy conversion as thermoelectrics or via pyroelectric 
energy conversion, for low-power, solid-state cooling via the 
electro- and magneto-caloric effects [157], vibrational energy 
conversion applications, and much more, and as active or sup-
porting materials for catalysts.

Sensing and communications. The Internet of Things (IoT) 
and its acquisition of ever-increasing datasets drives a need for 
new abilities to sense, communicate, and interact with comp-
onents in many aspects of life. Functional materials will play 
vital roles in sensors, energy harvesting/remote power genera-
tion, data storage and transmission, and much more. Materials 
that are compatible with advanced healthcare monitoring (in 
and ex vivo) will be of particular interest. Ferroic materials 
provide a foundation for such applications, since one mat erials 
class provides all these functions—sensing, energy genera-
tion, energy storage, communications, etc—while being both 
chemically inert and stable. The future of communications—in 
particular, the advent of higher-frequency 5G technologies—
will also likely drive materials innovation to achieve aggres-
sive design requirements. Microwave communication bands 
are becoming increasing congested; agile, tunable materials 
with high quality factors will be essential to meeting the needs 
of commerce, defence, and other applications.

Advances in science and technology to meet challenges.
High-throughput materials discovery.  The Materials 
Genome Initiative [158] ignited high-throughput discovery of 
functional materials [159]. A central driver is the optimization 
of descriptors that can be rapidly calculated to identify novel 
materials and phenomena. Experimentalists must also develop 
ways to rapidly produce and characterize an ever-widening set 
of candidate materials. Advances in the discovery of complex 
oxides portend the dramatic expansion of known or predicted 
functional materials (figure 28) [160].

The materials-data nexus. Modern computational and exper-
imental probes have led to orders-of-magnitude increases in 
the volume, variety, veracity, and velocity of materials research 
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Figure 27. Adapted Heckmann diagram showing a range of functional responses possible in ferroic materials together with a table of 
excitations, responses, and the named effects. The figure explores connections between purturbations stress (σ), electric field (E), 
temperature (T), and magnetic field (H) and responses strain (ε), polarization (P), entropy (S), and magnetization (M). Reproduced with 
permission from [153]. © Materials Research Society 2016.

Figure 28. Combining high-throughput computation (in this case, density-functional theory approaches) with tools of advanced synthesis 
(epitaxial strain on a range of substrate orientations), researchers are now able to explore not only many materials in equilibrium, but 
increasingly large design-parameter spaces in the search for high-performance functional materials. This work shows predictions of the 
evolution of polarization in known and candidate polar materials with strain and film orientation. Such approaches can provide novel routes 
to the identification of not only novel new materials, but also new phases and features of interest in existing or known materials. In this 
way, the field can greatly expand the range of materials of use for a variety of applications. Reproduced figure with permission from [160], 
Copyright 2017 by the American Physical Society.
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data. High-dimensional, high-resolution data sets make direct 
extraction of physically-relevant information challenging. 
Brute-force approaches, wherein models or fitting functions 
are used to extract parameters of predetermined significance, 
fail when the data have unknown variety, veracity, or arrive 
with high velocity. Addressing data challenges will require 
the adoption of statistical tools including machine learning 
to identify data correlations, trends, clusters, and anomalies. 
Melding traditional physical sciences with new data-intensive 
approaches offers transformational opportunities to simplify 
the transition from data to scientific insight.

Managing emergent behaviours. A driver of new functional-
ity will be the harnessing of phenomena on length scales other 
than the material dimensions. Prominent examples include 
polar nanoregions in relaxor ferroelectric alloys and topological 
defects, such as magnetic or electric skyrmions. These phenom-
ena break conventional relationships between order parameters 
and stimuli, and the acquisition of a deep understanding of 
these may hold the key to a new generation of smart materials.

New modes of synthesis. A key to advancing material func-
tionality will be new strategies for controlling chemistry and 
structure. In particular, ‘defect’ control—deterministic pro-
duction of specific types, concentrations, and locations—
could enable a watershed in the design and discovery of new 
physics and emergent function. This new approach posits that 
defects, long considered deleterious to properties, can now be 
viewed positively as a tool to enable elegant manipulation of 
the local balance of charge, lattice, orbital, and spin degrees of 
freedom. This could induce new properties and effects. Such 
routes are particularly amenable to complex oxides, which 
naturally host larger defect concentrations. Recasting the role 
of defects will provide a pathway to new emergent properties 
and could lead to unprecedented material responses.

Concluding remarks. Modern functional ceramics are a 
critical part of everyday life. In the near future, their roles in 

advanced electronics, sensing, energy transduction, commu-
nications, and other areas seem poised for strong growth. The 
key to this impact lies in the multi-functional and agile nature 
of the responses of these materials and their ability to accom-
plish in one material what might otherwise require many. It is 
envisioned that these materials will continue to be explored in 
non-traditional communities and as replacements for traditional 
materials because of the multi-functionality, adaptability, and 
robustness to operation in harsh environ ments. At the same 
time, this added function comes at the cost of added complexity 
in controlling those materials to elicit the desired properties. 
Advances in computational and experimental methodologies 
are now poised to revolutionize our understanding of these 
materials and their deployment in breakthrough applications.
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Status. Transparent conducting materials (TCMs) are defined 
by high electrical conductivity approaching that of a metal-
lic compound (conductivity σ  >  104 S cm−1), with the high 
transmission of photons in the visible or near infrared range 
of the electromagnetic spectrum (transmission T  >  80%). The 
unique combination of these two features makes TCMs essen-
tial components of modern optoelectronic devices [161], such 
as (a) transparent electrodes for flat panel displays includ-
ing touch screens, (b) transparent electrodes for photovoltaic 
cells, (c) smart windows, (d) transparent thin films transistors, 
and (e) light emitting diodes and lasers. The first TCM thin 
film was reported by Badeker [162] in 1907, more than 100 
years ago, and was based on CdO. Afterwards, more TCOs, 
such as SnO2, In2O3, ZnO, and their alloys, including amor-
phous alloys, have been discovered and are utilized in our 
daily life [163, 164]. All of these materials can be thought 
of as very-heavily-doped wide-band-gap n-type semiconduc-
tors. Figure 29 shows characteristic reflection (R), transmis-
sion and absorption (A) spectra for a TCO thin film where the 
transmission is cut off on the short wavelength side by the 
intrinsic band gap absorption and on the long wavelength side 
by the carrier-concentration-dependent onset of absorption, 
due to conduction-band-electron plasma oscillations. We will 
refer to such materials, where the material itself is both trans-
parent and conducting, simply as TCMs. In contrast, a second 
very different class of transparent conductors has emerged 
where porous nanoscale networks or grids of highly conduct-
ing wires yield an overall low sheet resistance on a macro-
scopic scale, along with high optical transmission due to the 
large openings between the wires [165]. Such transparent con-
ducting networks have been made using both carbon nano-
tubes or metal nanowires, with silver nanowires versions now 
seeing limited commercialization for touch screen displays. 
Often, the nanoscale conducting network is embedded in a 
metal oxide or other matrix to improve both opto-electronic 
functionality and mechanical strength. Accordingly, we will 
refer to this second class as composite transparent conductors 
(c-TCs). Figure 30 compares the optical transmission spectra 
for a silver nanowire-based c-TC with that for a conventional 
n-type TCO.

At present, the vast majority of TCMs are still n-type TCOs. 
The most important n-TCO used today is tin doped indium 
oxide, In2O3:Sn [166, 167], typically called indium-tin-oxide 
or ITO. ITO along with high-indium content amorphous In–
Zn–O are the dominant transparent electrode materials for flat 
panel displays, the application which represents the largest 
annual value for the TCO thin film industry, but also greatly 
contributes to the rising cost of In metal. Therefore, it is still 
significant to improve the conductivity–transmission (C/T) 

performance of the existing TCOs, or develop the new TCMs 
or c-TCs that are less expensive (i.e. indium free), non-toxic, 
have easily-tailored interface and high C/T properties and are 
easily fabricated.

Current and future challenges. To improve the σ/T perfor-
mance of TCOs, it is essential to simultaneously maximize 
the conductivity σ and optical transmission in the visible 
(VIS) spectrum. Achieving the high electrical conductivity 
(σ  =  neµ where e is the elementary charge) asks for increas-
ing the carrier concentration n (electrons or holes), or carrier 
mobility µ as much as possible. Stoichiometrically perfect 
TCOs (In2O3, SnO2, …) basically have no free carriers due 
to the large band gap (Eg  ⩾  3 eV). Therefore, unintentional or 
intentional defects along with extrinsic dopants have a critical 
role in optimizing the carrier concentration. To achieve the 
high VIS transmission (T  =  1  −  R  −  A), one should reduce 
the reflection (R) and absorption (A). The low VIS absorption 
requires TCMs have a large optical band gap (Eopt

g   >  3 eV), 
which is related to the materials with large and direct funda-
mental band gaps or forbidden dipole transition near the band 
edges [168].

Nowadays, all the commercial TCOs are of the n-type 
because it is easy to achieve the high concentration (n ~ 1021) 
by the substitutional doping, such as Sn doped In2O3 (ITO), Al 
doped ZnO (AZO), F doped SnO2 (FTO), and so on. Further, 
the conduction band minimum of TCOs derives from delo-
calized cation s orbitals, which ensures n-type TCOs have a 
relatively high mobility. However, so far there are no com-
mercial p-type TCOs, which seriously hinders the applica-
tions of transparent semiconductors because of the absence 
of the bipolar transistors and diodes without the p-n junctions. 
Achieving high-conductivity p-type TCOs is a big challenge 
for the oxides, because the valence band maximum of oxides 
is dominated by the very low-energy and localized oxygen p 
orbital, which causes the formation of deep acceptor level and 
poor hole mobility. Experimentally, beyond equilibrium hole 

Figure 29. Optical reflection, transmission and absorption spectra 
for an Al-doped ZnO TCO film. The plasma wavelength (λp) which 
varies with carrier concentration is indicated with an arrow.
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doping levels approaching 1021/cm−3 have been achieved in 
p-type TCOs using non-equilibrium growth methods, such as 
sputtering. However, the conductivity remains low (σ of order 
102 S cm−1 or less) due to low mobility and the materials are 
generally not very transparent. In the space of amorphous 
materials, the key challenge for n-type a-TCMs is to find 
high-conductivity indium-free materials, whereas for p-type 
materials, it is still just to find high-conductivity materials. For 
c-TC materials, there are challenges in the area of using metal 
nanowires beyond just silver to reduce reactivity, including 
the use of alloy compositions or protective layers as well as 
wide open opportunities to tune the application specific func-
tionality of c-TCs through the choice of the matrix materials.

Advances in science and technology to meet challenges. As 
discussed before, to improve the conductivity of the TCMs, 
one should either increase the carrier concentration or the 
mobility, especially for the p-type TCMs, of which both 
quantities are far below the standard for commercial applica-
tions. To achieve this, the following strategies may be valu-
ably considered: (i) increase defect solubility by ‘defeating’ 
bulk defect thermodynamics using non-equilibrium growth 
methods, such as extending the achievable chemical poten-
tial through molecular doping or raising the host energy using 
surfactant; (ii) reduce the defect ionization energy level by 
designing shallow dopants or dopant complexes, including 
transition metal doping, co-doping, multivalence-impurity 
doping, etc, and (iii) increase the carrier mobility by modi-
fying the host band structure near the band edges. Because 
increasing the carrier density can also lead to an increase in the 
visible absorption and possible reflection, whereas increasing 
the mobility has less bad effects, one of the best strategies is 
relying on the band structure engineering to increase carrier 
mobility without affecting the optical properties much to real-
ize high performance TCMs.

At present, ITO is one of the best TCM materials with 
both high conductivity and excellent optical transmission. 
However, due to the scarcity and high price of In, develop-
ing and searching new TCMs that are cheap, non-toxic, and 
have a similar conductivity or even higher than that of ITO has 
been in great demand in recent years. A practical and feasible 
strategy is that based on the established general guidelines, 
we can use materials by design to search new materials with 
high transparency and low carrier effective mass, thus good 
conductivity, including p-type transparent conductors and 
non-oxide transparent conductors [169]. The effective appli-
cation of materials by design approaches to the discovery and 
development of improved amorphous materials remains a big 
challenge due largely to both the underlying challenges in 
computational physics for amorphous materials and the exper-
imental challenges in adequately characterizing amorphous 
materials to provide the feedback to theory that is so critical 
for materials by design. To advance the composite transparent 
conductors through the use of materials by design will require 
the bridging of length scales to couple materials by design 
with integrated computational materials science and engineer-
ing approaches to develop a functional predictive capability 
for topologically complex multi-component systems. Finally, 
to actually impact real world technologies and needs, the pre-
dicted target materials must be able to be made, which leads 
to the newly emerging challenge of theory-guided predictive 
synthesis [170].

Concluding remarks. With the expected increasing use of 
TCM reliant consumer electronics and energy technolo-
gies, there will continue to be a need for TCMs with ever 
increasing performance and decreasing cost made using 
sustainable materials. Specific materials development needs 
include high performance indium-free n-type TCOs and 
p-type TCMs with qualitatively better performance than are 
currently available. There is likely to be great opportunities 
for materials development in non-oxide and mixed anion 
material systems as well as amorphous materials. Finally, 
the alternative approach of c-TCs based on porous nanoscale 
conducting networks is wide open for further development. 
Materials by design methods can accelerate this materials 
advancement and, likewise, the relevance here of amorphous 
materials and composite materials will push the advance-
ment of materials by design.
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Figure 30. Comparison of transmission spectra for a Al-doped ZnO 
thin film TCO with that of a Ag-NW/ZnO composite transparent 
conductor (c-TC). Insets: left—schematic electronic structure of a 
n-type TCO; right—image of a AgNW/ZnO c-TC.
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