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Abstract
A number of recent works have studied algorithms for entrywise `p-low rank approxima-

tion, namely algorithms which given an n×d matrix A (with n ≥ d), output a rank-k matrix
B minimizing ‖A−B‖pp =

∑
i,j
|Ai,j−Bi,j |p when p > 0; and ‖A−B‖0 =

∑
i,j

[Ai,j 6= Bi,j ]
for p = 0, where [·] is the Iverson bracket, that is, ‖A−B‖0 denotes the number of entries
(i, j) for which Ai,j 6= Bi,j . For p = 1, this is often considered more robust than the SVD,
while for p = 0 this corresponds to minimizing the number of disagreements, or robust
PCA. This problem is known to be NP-hard for p ∈ {0, 1}, already for k = 1, and while
there are polynomial time approximation algorithms, their approximation factor is at best
poly(k). It was left open if there was a polynomial-time approximation scheme (PTAS) for
`p-approximation for any p ≥ 0. We show the following:

1. On the algorithmic side, for p ∈ (0, 2), we give the first npoly(k/ε) time (1 + ε)-
approximation algorithm. For p = 0, there are various problem formulations, a com-
mon one being the binary setting in which A ∈ {0, 1}n×d and B = U · V , where
U ∈ {0, 1}n×k and V ∈ {0, 1}k×d. There are also various notions of multiplication
U · V , such as a matrix product over the reals, over a finite field, or over a Boolean
semiring. We give the first almost-linear time approximation scheme for what we
call the Generalized Binary `0-Rank-k problem, for which these variants are special
cases. Our algorithm computes (1 + ε)-approximation in time (1/ε)2O(k)/ε2

· nd1+o(1),
where o(1) hides a factor (log log d)1.1 / log d. In addition, for the case of finite fields
of constant size, we obtain an alternate PTAS running in time n · dpoly(k/ε).

2. On the hardness front, for p ∈ (1, 2), we show under the Small Set Expansion Hypoth-
esis and Exponential Time Hypothesis (ETH), there is no constant factor approxi-
mation algorithm running in time 2k

δ

for a constant δ > 0, showing an exponential
dependence on k is necessary. For p = 0, we observe that there is no approximation
algorithm for the Generalized Binary `0-Rank-k problem running in time 22δk for a
constant δ > 0. We also show for finite fields of constant size, under the ETH, that
any fixed constant factor approximation algorithm requires 2k

δ

time for a constant
δ > 0.
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1 Introduction
Low rank approximation is a common way of compressing a matrix via dimensionality reduction.
The goal is to replace a given n× d matrix A by a rank-k matrix A′ that approximates A well,
in the sense that ‖A−A′‖ is small for some measure ‖.‖. Since we can write the rank-k matrix
A′ as U · V , where U is n × k and V is k × d, it suffices to store the k(n + d) entries of U and
V , which is a significant reduction compared to the nd entries of A. Furthermore, computing
A′x = U(V x) takes time O(k(n + d)), which is much less than the time O(nd) for computing
Ax.

Low rank approximation is extremely well studied, see the surveys [36, 46, 71] and the many
references therein. In this paper, we study the following two variants of entrywise `p-low rank
approximation. Given a matrix A and an integer k, one seeks to find a rank-k matrix A′,
minimizing ‖A − A′‖pp =

∑
i,j |Ai,j − A′i,j |p when p > 0; and ‖A − A′‖0 =

∑
i,j [Ai,j 6= A′i,j ] for

p = 0, where [·] is the Iverson bracket, that is, ‖A−A′‖0 denotes the number of entries (i, j) for
which Ai,j 6= A′i,j .

When p = 2, this coincides with the Frobenius norm error measure, which can be solved in
polynomial time using the singular value decomposition (SVD); see also [71] for a survey of more
efficient algorithms based on the technique of linear sketching.

Recently there has been considerable interest in obtaining algorithms for p 6= 2. For 0 ≤
p < 2, this error measure is often considered more robust than the SVD, since one pays less
attention to noisy entries as one does not square the differences, but instead raises the difference
to a smaller power. Conversely, for p > 2, this error measure pays more attention to outliers,
and p = ∞ corresponds to a guarantee on each entry. This problem was shown to be NP-hard
for p ∈ {0, 1} [21, 27, 53].

`p-Low Rank Approximation for p > 0. A number of initial algorithms for `1-low rank
approximation were given in [12–14, 37, 38, 41, 45, 48–51, 58, 75]. There is also related work on
robust PCA [15, 17, 55, 56, 72, 74] and measures which minimize the sum of Euclidean norms of
rows [20, 23–25, 65], though neither directly gives an algorithm for `1-low rank approximation.
Song et al. [67] gave the first approximation algorithms with provable guarantees for entrywise
`p-low rank approximation for p ∈ [1, 2). Their algorithm provides a poly(k logn) approximation
and runs in polynomial time, that is, the algorithm outputs a matrix B for which ‖A− B‖p ≤
poly(k logn) minrank-k A′ ‖A−A′‖p. This was generalized by Chierichetti et al. [18] to `p-low rank
approximation, for every p ≥ 1, where the authors also obtained a poly(k logn) approximation
in polynomial time.

In Song et al. [67] it is also shown that if A has entries bounded by poly(n) then an O(1)
approximation can be achieved, albeit in npoly(k) time. This algorithm depends inherently on
the triangle inequality and as a result the constant factor of approximation is greater than 3.
Improving this constant of approximation requires techniques that break this triangle inequality
barrier. This is a real barrier, since the algorithm of [67] is based on a row subset selection
algorithm, and there exist matrices for which any subset of rows contains at best a 2(1−Θ(1/n))-
approximation (Theorem G.8 of [67]), which we discuss more below.

`0-Low Rank Approximation. When p = 0, one seeks a rank-k matrix A′ for which ‖A−A′‖0
is as small as possible, where for a matrix C, ‖C‖0 denotes the number of non-zero entries of
C. Thus, in this case, we are trying to minimize the number of disagreements between A and
A′. Since A′ has rank k, we can write it as U · V and we seek to minimize ‖A − U · V ‖0. This
was studied by Bringmann et al. [11] when A,U, and V are matrices over the reals and U · V
denotes the standard matrix product, and the work of [11] provides a poly(k logn) bicriteria
approximation algorithm. See also earlier work for k = 1 giving a 2-approximation [34, 64].
`0-low rank approximation is also well-studied when A, U , and V are each required to be binary
matrices. In this case, there are a number of choices for the ground field (or, more generally,
semiring). Specifically, for A′ = U · V we can write the entry A′i,j as the inner product of
the i-th row of U with the j-th column of V – and the specific inner product function 〈., .〉
depends on the ground field. We consider both (1) the ground field is F2 with inner product
〈x, y〉 =

⊕k
i=1 xi·yi ∈ {0, 1} [21, 30, 57, 73], and (2) the Boolean semiring {0, 1,∧,∨} in which the

inner product becomes 〈x, y〉 =
∨k
i=1 xi∧yi = 1−

∏k
i=1(1−xi ·yi) ∈ {0, 1} [8, 21, 54, 63, 66, 70].

Besides the abovementioned upper bounds, which coincide with all of these models when k = 1,
the only other algorithm we are aware of is by Dan et al. [21], who for arbitrary k presented
an nO(k)-time O(k)-approximation over F2, and an nO(k)-time O(2k)-approximation over the
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Boolean semiring.
Although `p-low rank approximation is NP-hard for p ∈ {0, 1}, a central open question is if

(1 + ε)-approximation is possible, namely: Does `p-low rank approximation have a polynomial
time approximation scheme (PTAS) for any constant k and ε?

1.1 Our Results
We give the first PTAS for `p-low rank approximation for 0 ≤ p < 2 in the unit cost RAM
model of computation. For p = 0 our algorithms work for both finite fields and the Boolean
semiring models. We also give time lower bounds, assuming the Exponential Time Hypothesis
(ETH) [33] and in some cases the Small Set Expansion Hypothesis [59], providing evidence that
an exponential dependence on k, for p > 0, and a doubly-exponential dependence on k, for p = 0,
may be necessary.

1.1.1 Algorithms

We first formally define the problem we consider for 0 < p < 2. We may assume w.l.o.g. that
n ≥ d, and thus the input size is O(n).
Definition 1. (Entrywise `p-Rank-k Approximation) Given an n×d matrix A with integer
entries bounded in absolute value by poly(n), and a positive integer k, output matrices U ∈ Rn×k
and V ∈ Rk×d minimizing ‖A−UV ‖pp :=

∑
i=1,...,n,j=1,...,d |Ai,j − (U · V )i,j |p. An algorithm for

Entrywise `p-Rank-k Approximation is an α-approximation if it outputs U and V for which

‖A− UV ‖pp ≤ α · min
U ′∈Rn×k,V ′∈Rk×d

‖A− U ′V ′‖pp.

Our main result for 0 < p < 2 is as follows.
Theorem 1 (PTAS for 0 < p < 2). For any p ∈ (0, 2) and ε ∈ (0, 1), there is a (1 + ε)-
approximation algorithm to Entrywise `p-Rank-k Approximation running in time npoly(k/ε).

For any constants k ∈ N and ε > 0, Theorem 1 computes in polynomial time a (1 + ε)-
approximate solution to Entrywise `p-Rank-k Approximation. This significantly strengthens the
approximation guarantees in [18, 67].

We next consider the case p = 0. In order to study the F2 and Boolean semiring settings in
a unified way, we introduce the following more general problem.
Definition 2. (Generalized Binary `0-Rank-k) Given a matrix A ∈ {0, 1}n×d with n ≥ d,
an integer k, and an inner product function 〈., .〉 : {0, 1}k × {0, 1}k → R, compute matrices
U ∈ {0, 1}n×k and V ∈ {0, 1}k×d minimizing ‖A − UV ‖0, where the product UV uses 〈., .〉.
An algorithm for the Generalized Binary `0-Rank-k problem is an α-approximation, if it outputs
matrices U ∈ {0, 1}n×k and V ∈ {0, 1}k×d such that

‖A− UV ‖0 ≤ α · min
U ′∈{0,1}n×k,V ′∈{0,1}k×d

‖A− U ′V ′‖0.

Our first result for p = 0 is as follows.
Theorem 2 (PTAS for p = 0). For any ε ∈ (0, 1

2 ), there is a (1+ε)-approximation algorithm for
the Generalized Binary `0-Rank-k problem running in time (1/ε)2O(k)/ε2 · nd1+o(1) and succeeds
with constant probability 1, where o(1) hides a factor (log log d)1.1

/ log d.
Hence, we obtain the first almost-linear time approximation scheme for the Generalized

Binary `0-Rank-k problem, for any constant k. In particular, this yields the first polynomial
time (1+ε)-approximation for constant k for `0-low rank approximation of binary matrices when
the underlying field is F2 or the Boolean semiring. Even for k = 1, no PTAS was known before.

Theorem 2 is doubly-exponential in k, and we show below that this is necessary for any
approximation algorithm for Generalized Binary `0-Rank-k. However, in the special case when
the base field is F2, or more generally Fq and A,U, and V have entries belonging to Fq, it is
possible to obtain an algorithm running in time n ·dpoly(k/ε), which is an improvement for certain
super-constant values of k and ε. We formally define the problem and state our result next.

1 The success probability can be further amplified to 1− δ for any δ > 0 by running O(log(1/δ)) independent
trials of the preceding algorithm.
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Definition 3. (Entrywise `0-Rank-k Approximation over Fq) Given an n × d matrix A
with entries that are in Fq for any constant q, and a positive integer k, output matrices U ∈ Fn×kq

and V ∈ Fk×dq minimizing ‖A − UV ‖0. An algorithm for Entrywise `0-Rank-k Approximation
over Fq is an α-approximation if it outputs matrices U and V such that

‖A− UV ‖0 ≤ α · min
U ′∈Fn×kq ,V ′∈Fk×dq

‖A− U ′V ′‖0.

Our main result for Entrywise `0-Rank-k Approximation over Fq is the following:

Theorem 3 (Alternate Fq PTAS for p = 0). For ε ∈ (0, 1) there is a (1 + ε)-approximation
algorithm to Entrywise `0-Rank-k Approximation over Fq running in time n · dpoly(k/ε).

1.1.2 Hardness

We first obtain conditional time lower bounds for Entrywise `p-Rank-k Approximation for p ∈
(1, 2). Our results assume the Small Set Expansion Hypothesis (SSEH). Originally conjectured
by Raghavendra and Stuerer [59], it is still the only assumption that implies strong hardness
results for various graph problems such as Uniform Sparsest Cut [61] and Bipartite Clique [47].
Assuming this hypothesis, we rule out any constant factor approximation α.

Theorem 4 (Hardness for Entrywise `p-Rank-k Approximation). Fix p ∈ (1, 2) and α > 1.
Assuming the Small Set Expansion Hypothesis, there is no α-approximation algorithm for En-
trywise `p-Rank-k Approximation that runs in time poly(n).

Consequently, additionally assuming the Exponential Time Hypothesis, there exists δ :=
δ(p, α) > 0 such that there is no α-approximation algorithm for Entrywise `p-Rank-k Approxi-
mation that runs in time 2kδ .

This shows that assuming the SSEH and the ETH, any constant factor approximation algo-
rithm needs at least a subexponential dependence on k. We also prove hardness of approximation
results for p ∈ (2,∞) (see Theorem 19) without the SSEH. They are the first hardness results
for Entrywise `p-Rank-k Approximation other than p = 0, 1.

We next show that our running time for Generalized Binary `0-Rank-k is close to optimal,
in the sense that the running time of any PTAS for Generalized Binary `0-Rank-k must depend
exponentially on 1/ε and doubly exponentially on k, assuming the Exponential Time Hypothesis.

Theorem 5 (Hardness for Generalized Binary `0-Rank-k). Assuming the Exponential Time Hy-
pothesis, Generalized Binary `0-Rank-k has no (1 + ε)-approximation algorithm in time 21/εo(1) ·
2no(1) . Further, for any ε ≥ 0, Generalized Binary `0-Rank-k has no (1 + ε)-approximation
algorithm in time 22o(k) · 2no(1) .

Next we obtain conditional lower bounds for Entrywise `0-Rank-k Approximation over Fq
for any fixed q:

Theorem 6 (Hardness for Entrywise `0-Rank-k Approximation over Fq). Let Fq be a finite field
and α > 1. Assuming P 6= NP, there is no α-approximation algorithm for Entrywise `0-Rank-k
Approximation over Fq that runs in time poly(n).

Consequently, assuming the Exponential Time Hypothesis, there exists δ := δ(α) > 0 such
that there is no α-approximation algorithm for Entrywise `0-Rank-k Approximation over Fq that
runs in time 2kδ .

This shows that assuming the ETH, any constant factor approximation algorithm needs at
least a subexponential dependence on k.

1.1.3 Additional Results

We obtain several additional results on `p-low rank approximation. We summarize our results
below and defer the details to Section 6.

`p-low rank approximation for p > 2 Let g be a standard Gaussian random variable and
let γp := Eg[|g|p]1/p. We note that γp > 1, for any p > 2. Then, under ETH no (γpp − ε)-
approximation algorithm runs in time O(2kδ). On the algorithmic side, we give a simple (3 + ε)-
approximation algorithm running in time npoly(k/ε).
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Weighted `p-low rank approximation for 0 < p < 2 We also generalize Theorem 1 to the
following weighted setting. Given a matrix A, an integer k and a rank-r matrix W , we seek to
find a rank-k matrix A′ such that

‖W ◦ (A−A′)‖pp ≤ (1 + ε) min
rank-k Ak

‖W ◦ (A−Ak)‖pp.

Our algorithm runs in time nr·poly(k/ε). We defer the details to Theorem 25.

Related Work

Our results, in particular Theorem 2 and Theorem 5, had been in submission as of April 2018.
Shortly after posting this manuscript [6] to arXiv on 16 July 2018, we became aware that in
an unpublished work Fomin et al. have independently obtained a very similar PTAS for Binary
`0-Rank-k. Their manuscript [26] was posted to arXiv on 18 July 2018. Interestingly, [6, 26] have
independently discovered i) a reduction between the Binary `0-Rank-k problem and a clustering
problem with constrained centers; ii) a structural sampling theorem extending [2] which yields
a simple but inefficient deterministic PTAS; and iii) an efficient sampling procedure, building
on ideas from [1, 3, 43], which gives an efficient randomized PTAS. Notably, by establishing an
additional structural result, Fomin et al. [26] design a faster sampling procedure which yields a
randomized PTAS for the Binary `0-Rank-k problem that runs in linear time (1/ε)2O(k)/ε2 · nd.

1.2 Our Techniques
We give an overview of our techniques, separating them into those for our algorithms for 0 <
p < 2, those for our algorithms for p = 0, and those for our hardness proofs.

1.2.1 Algorithms for 0 < p < 2

We illustrate the techniques for p = 1; the algorithms for other p ∈ (0, 2) follow similarly.
Consider a target rank k. One of the surprising aspects of our (1 + ε)-approximation result
is that for p = 1, it breaks a potential lower bound from [67]. Indeed, in Theorem G.8, they
construct (n − 1) × n matrices A such that the closest rank-k matrix B in the row span of A
provides at best a 2(1−Θ(1/n))-approximation to A!

This should be contrasted with p = 2, for which it is well-known that for any A there exists
a subset of k/ε rows of A containing a k-dimensional subspace in its span which is a (1 + ε)-
approximation (these are called column subset selection algorithms; see [71] for a survey). In
fact, for p = 1, all known algorithms [18, 67] find a best k-dimensional subspace in either the span
of the rows or of the columns of A, and thus provably cannot give better than a 2-approximation.
To bypass this, we therefore critically need to leave the row space and column space of A.

Our starting point is the “guess a sketch” technique of [62], which was used in the context of
weighted low rank approximation. Let us consider the optimization problem minV ‖U∗V −A‖1,
where U∗ is a left factor of an optimal `1-low rank approximation for A. Suppose we could choose
a sketching matrix S with a small number r of rows for which ‖SU∗V −SA‖1 = (1±ε)‖U∗V −A‖1
for all V . Then, if we somehow knew U∗, we could optimize for V in the sketched space to find
a good right factor V .

Of course we do not know U∗, but if S had a small number r of rows, then we could consider
instead the ‖ · ‖1,2-norm optimization problem minV ‖SU∗V − SA‖1,2, where for a matrix C,
‖C‖1,2 is defined as

∑d
i=1 ‖C:,i‖2, the sum of the ‖ · ‖2-norms of its columns. The solution V to

minV ‖SU∗V − SA‖1,2 is a
√
r-approximation to the original problem minV ‖SU∗V − SA‖1.

In the ‖ · ‖1,2 norm, the solution V can be written in terms of the so-called normal equations
for regression, namely, V = (SU∗)†SA, where C† denotes the Moore-Penrose pseudoinverse of
C. The key property exploited in [67] is then that although we do not know U∗, (SU∗)†SA is
a k-dimensional subspace in the row span of SA providing a

√
r-approximation, and one does

know SA. This line of reasoning ultimately leads to a poly(k)-approximation.
The approach above fails to give a (1 + ε)-approximation for multiple reasons: (1) we may

not be able to find a (1 + ε)-approximation from the row span of A, and (2) we lose a
√
r factor

when we switch to the ‖ · ‖1,2 norm.
Instead, suppose we were instead just to guess all the values of SU∗. These values might be

arbitrary real numbers, but observe that we can assume there is an optimal solution U∗V ∗ for
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which V ∗ is a so-called `1-well conditioned basis, which loosely speaking means that ‖yV ∗‖1 ≈
‖y‖1 for any row vector y. Also, we can show that if U∗V ∗ 6= A, then ‖U∗V ∗ − A‖1 ≥ n−Θ(k).
Furthermore, we can assume that the entries of A are bounded by poly(n). These three facts
allow us to round the entries of U∗ to an integer multiple of n−Θ(k) of absolute value at most
nO(k). Now suppose we could also discretize the entries of S to multiples of n−Θ(k) and of
absolute value at most nO(k). Then we would actually be able to guess the correct SU∗ after
nΘ(k2r) tries, where recall r is the number of rows of S. We will show below that r can be
poly(k/ε), so this will be within our desired running time.

In general, ifA(Ux) = (1±ε)‖Ux‖ for all x, then we say thatA defines a subspace embedding.
At this point, we can use the triangle inequality to get a constant factor approximation. If S is
a subspace embedding, then

‖U∗V −A‖1 ≤ ‖U∗(V − V ∗)‖1 + ‖U∗V ∗ −A‖1 ≤ (1 +O(ε))‖SU∗(V − V ∗)‖1 + ‖U∗V ∗ −A‖1

and
‖SU∗(V − V ∗)‖1 ≤ ‖SU∗V − SA‖1 + ‖SU∗V ∗ − SA‖1

so by taking V to be a minimizer for ‖SU∗V − SA‖1 we can get an approximation factor close
to 3. The triangle inequality was useful here because S had a small distortion on the subspace
defined by U∗. To improve this result, we would need a mapping that has small distortion on
the affine space defined by U∗V −A, as V varies.

Given SU∗ and SA, if in fact S has the property that ‖SU∗V − SA‖1 = (1± ε)‖U∗V −A‖1
for all V , then we will be in good shape. At this point we can solve for the optimal V to
minV ‖SU∗V − SA‖1 by solving an `1-regression problem using linear programming. Notice
that unlike [62], the approach described above does not create “unknowns” to represent the
entries of SU∗ and set up a polynomial system of inequalities. For Frobenius norm error, this
approach is feasible because ‖SU∗V −SA‖2F =

∑n
i=1 ‖SU∗V:,i−SA:,i‖2F can be minimized over

each column V:,i using the normal equations for regression. However, we do not know how to
set up a polynomial system of inequalities for `1-error (which define V in terms of the SU∗
variables).

Unfortunately the approach above is fatally flawed; there is no known sketching matrix
S with a small number r of rows for which ‖SU∗V − SA‖1 = (1 ± ε)‖U∗V − A‖1 for all
V . Instead, we adapt a “median-based” embedding with a non-standard subspace embedding
analysis that appeared in the context of sparse recovery [5]. In Lemma F.1 of that paper,
it is shown that if L is a d-dimensional subspace of Rn, and S is an r × n matrix of i.i.d.
standard Cauchy random variables for r = O(dε−2 log(d/ε)), then with constant probability,
(1− ε)‖x‖1 ≤ med(Sx) ≤ (1 + ε)‖x‖1 simultaneously for all x ∈ L. Here for a vector y, med(y)
denotes the median of absolute values of its entries. For a matrix M , med(M) denotes the sum
of the medians of its columns

∑
imed(M:,i).

In our context, this gives us that for a fixed column A:,i of A and i-th column V:,i of V ,
if S is an i.i.d. Cauchy matrix with O(kε−2 log(k/ε)) rows, then with constant probability
med(SU∗V:,i−SA:,i) = (1±ε)‖U∗V:,i−A:,i‖1 for all vectors V:,i. Since V:,i is only k-dimensional,
and one can show that its entries can be taken to be integer multiples of n−poly(k) bounded in
absolute value by npoly(k), we can enumerate over all V:,i and find the best solution. We need,
however, to adapt the argument in [5] to argue that if rather than taking the median, we take a
(1/2 ± ε)-quantile, we still obtain a subspace embedding. We do this in Lemma 7 and explain
why this modification is crucial for the argument below.

Unfortunately, this still does not work. The issue is that S succeeds only with constant
probability in achieving med(SU∗V:,i − SA:,i) = (1± ε)‖U∗V:,i −A:,i‖1 for all vectors V:,i. Call
this property, of an index i ∈ [n] := {1, 2, . . . , n}, good. A naïve amplification of the probability
to 1− 1/n would allow us to union bound over all i, but this would require S to have Ω(logn)
rows. At this point though, we would not obtain a PTAS since enumerating the entries of SU∗
would take nΩ(logn) time. Nor can we use different S for different columns of A, since we may
guess different SU∗ for different i and not obtain a consistent solution V .

Before proceeding, we first relax the requirement that med(SU∗V −SA) = (1±ε)‖U∗V −A‖1
for all V . We only need med(SU∗V − SA) ≥ (1− ε)‖U∗V − A‖1 for all V , and med(SU∗V ∗ −
SA) ≤ (1 + ε)‖U∗V ∗ − A‖1 for the fixed optimum U∗V ∗. We can prove med(SU∗V ∗ − SA) ≤
(1+ε) minV ‖U∗V −A‖1 by using tail bounds for a Cauchy random variable; we do so in Lemma
6.
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Moreover, we next argue that it suffices to have the properties: i) a (1− poly(ε/k))-fraction
of columns are good, and ii) the error introduced by bad columns is small. We can achieve (i)
by increasing the number of rows of S by a log(k/ε) factor, which still allows for an enumeration
in time npoly(k/ε). The main issue is to control the error from bad columns. In particular, it
is possible to have a matrix V and a column A:,i such that ‖U∗V:,i − A:,i‖1 is large and yet
med(SU∗V:,i−SA:,i) is small, which results in accepting a bad solution V . While for an average
matrix V , the expected value of

∑
i is bad ‖U∗V:,i − A:,i‖1 is small, we need to argue that this

holds for every matrix V .
In order to control the error from bad columns, we first show that med(SU∗V ∗ − SA) =

(1 ± ε)‖U∗V ∗ − A‖1 for the fixed matrix U∗V ∗ − A, and then we demonstrate that the total
contribution to ‖U∗V ∗ − A‖1 from bad columns, is small. We show the latter using Markov’s
bound for the fixed matrix U∗V ∗ − A. Combining this with the former, yields that the total
contribution of med(SU∗V ∗:,i − SA:,i) to ‖SU∗V ∗ − SA‖1 from bad columns (in the original,
unsketched space) is small.

We convert the preceding argument for bad columns of the fixed matrix U∗V ∗ − A, into an
argument for bad columns of a general matrix U∗V − A. Inspired by ideas for ‖ · ‖1,2 norm,
established in [20], we partition the bad columns of a given matrix V into classes, using the
following measurement, which differs substantially from [20]. We look at quantiles to handle the
median operator, and we say that a bad column A:,i is large if

‖U∗V:,i −A:,i‖1 ≥
1
ε

(
‖U∗V ∗:,i −A:,i‖1 + 1

1−O(ε)q1−ε/2(S(U∗V ∗ −A):,i)
)
, (1)

where q1−ε/2 is the (1 − ε/2)-th quantile of coordinates of column S(U∗V ∗ − A):,i arranged in
order of non-increasing absolute values. Otherwise, a bad column A:,i is small.

We show that small bad columns can be handled by applying the preceding argument for the
fixed matrix U∗V ∗−A, since intuitively, the error they introduce is dominated by the contribution
of the corresponding columns of matrix U∗V ∗ −A, and we can control this contribution.

Our analysis for the large bad columns uses a different approach, which we summarize in
Claim 2. The key insight is to use the additivity of a sketch matrix S, and to write

S(U∗V −A):,i = S(U∗V − U∗V ∗):,i + S(U∗V ∗ −A):,i. (2)

Then, by applying our “robust” version (Lemma 5) of median-based subspace embedding [5], it
follows that at least a (1/2 + ε)-fraction of the entries of column vector S(U∗V −U∗V ∗):,i have
absolute value at least

(1−O(ε)) · ‖U∗(V − V ∗):,i‖1
(a)
≥ (1−O(ε)) ·

(
‖(U∗V −A):,i‖1 − ‖(U∗V ∗ −A):,i‖1

)
(b)
≥ (1−O(ε)) · ‖(U∗V −A):,i‖1 + q1−ε/2(S(U∗V ∗ −A):,i),

where (a) follows by triangle inequality, and (b) by (1) since the bad column A:,i is large. Thus,
at least a (1/2 + ε)-fraction of entries of S(U∗V − U∗V ∗):,i have absolute value at least

(1−O(ε)) · ‖(U∗V −A):,i‖1 + q1−ε/2(S(U∗V ∗ −A):,i). (3)

Since at most an ε/2 fraction of entries of S(U∗V ∗ − A):,i have absolute value at least
q1−ε/2(S(U∗V ∗ − A):,i), by definition of quantile, it follows by (3) that in equation (2) at most
an ε/2-fraction of entries of S(U∗V − A):,i can have their absolute value reduced to less than
(1 − O(ε)) · ‖(U∗V − A):,i‖1. Furthermore, by (3) at least (1/2 + ε/2)-fraction of entries of
S(U∗V −U∗V ∗) have absolute value at least (1−O(ε))‖(U∗V −A):,i‖1. Therefore, the median
of absolute value of the entries of S(U∗V −A):,i) is at least (1−O(ε))‖(U∗V −A):,i‖1, as desired.

Our analysis for 0 < p < 2 uses similar arguments, but in contrast relies on p-stable random
variables. In the case when 0 < p < 1, special care is needed since the triangle inequality does
not hold.
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1.2.2 Algorithms for p = 0

In the case when p = 0 and the entries of matrix A belong to a finite field Fq for constant q, we
use similar arguments as in the case for p = 1. Here, instead of p-stable random variables we
apply a linear sketch for estimating the number of distinct elements, established in [35]. We show
that it suffice to set the number of rows of the sketching matrix S to poly(k/ε) · log d. Further,
since each entry of S has only q possible values, it is possible to guess matrix S by enumeration
in time qpoly(k/ε)·log d = dpoly(k/ε), which will lead to a total running time of n · dpoly(k/ε). This
yields a PTAS for constant q. We defer the details to Section 3.

We now consider the binary setting, where both the input matrix A has entries in {0, 1} and
any solution U, V is restricted to have entries in {0, 1}. In this case, the Generalized Binary
`0-Rank-k problem can be rephrased as a clustering problem with constrained centers, whose
goal is to choose a set of centers satisfying a certain system of linear equations, in order to
minimize the total `0-distance of all columns of A to their closest center. The main difference
to usual clustering problems is that the centers cannot be chosen independently.

We view the choice of matrix U as picking a set of “cluster centers” SU
def= {U ·y | y ∈ {0, 1}k}.

Observe that any column of U ·V is in SU , and thus we view the choice of column V:,j as picking
one of the constrained centers in SU . Formally, we rephrase the Generalized Binary `0-Rank-k
problem as

min
U∈{0,1}n×k,V ∈{0,1}k×d

‖A− U · V ‖0 = min
U∈{0,1}n×k

d∑
j=1

min
V:,j∈{0,1}k

‖A:,j − U · V:,j‖0

= min
U∈{0,1}n×k

d∑
j=1

min
s∈SU

‖A:,j − s‖0. (4)

Any matrix V gives rise to a “clustering” as partitioning CV = (Cy)y∈{0,1}k of the columns
of V with Cy = {j ∈ [d] | V:,j = y}. If we knew an optimal clustering C = CV , for some optimal
matrix V , we could compute an optimal matrix U as the best response to V . Note that

min
U∈{0,1}n×k

∑
y∈{0,1}k

∑
j∈Cy

‖A:,j − U · y‖0 =
n∑
i=1

min
Ui,:∈{0,1}k

∑
y∈{0,1}k

∑
j∈Cy

‖Ai,j − Ui,: · y‖0.

Therefore, given C we can compute independently for each i ∈ [n] the optimal row Ui,: ∈
{0, 1}k, by enumerating over all possible binary vectors of dimension k and selecting the one
that minimizes the summation ∑

y∈{0,1}k

∑
j∈Cy

‖Ai,j − Ui,: · y‖0.

What if instead we could only sample from C? That is, suppose that we are allowed to draw
a constant number t = poly(2k/ε) of samples from each of the optimal clusters Cy uniformly at
random. Denote by C̃y the samples drawn from Cy. A natural approach is to replace the exact
cost above by the following unbiased estimator:

Ẽ
def=

∑
y∈{0,1}k

|Cy|
|C̃y|

·
∑
j∈C̃y

‖A:,j − U · y‖0.

We show that with good probability any matrix U = U(C̃) minimizing the estimated cost Ẽ
is close to an optimal solution. In particular, we prove for any matrix V ∈ {0, 1}k×d that

E
C̃

[‖A− U(C̃) · V ‖0] ≤ (1 + ε) · min
U∈{0,1}n×k

‖A− U · V ‖0. (5)

The biggest issue in proving statement (5) is that the number of samples t = poly(2k/ε) is
independent of the ambient space dimension d. A key prior probabilistic result, established
by Alon and Sudakov [2], gives an additive ±εnd approximation for the maximization version
of a clustering problem with unconstrained centers, known as Hypercube Segmentation. Since
the optimum value of this maximization problem is always at least nd/2, a multiplicative factor
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(1+ε)-approximation is obtained. Our contribution is twofold. First, we generalize their analysis
to clustering problems with constrained centers, and second we prove a multiplicative factor
(1 + ε)-approximation for the minimization version. The proof of (5) takes a significant fraction
of this chapter.

We combine the sampling result (5) with the following observations to obtain a deterministic
polynomial time approximation scheme (PTAS) in time n · dpoly(2k/ε). We later discuss how to
further improve this running time. Let U, V be an optimal solution to the Generalized Binary
`0-Rank-k problem.

(1) To evaluate the estimated cost Ẽ, we need the sizes |Cy| of an optimal clustering C.
We can guess these sizes with an d2k overhead in the running time. In fact, it suffices
to know these cardinalities approximately, see Lemma 23, and thus this overhead 2 can
be reduced to (t+ ε−1 · log d)2k .

(2) Using the (approximate) size |Cy| and the samples C̃y drawn u.a.r. from Cy, for all
y ∈ {0, 1}k, we can compute in time 2O(k)nd a matrix U(C̃) minimizing the estimated
cost Ẽ, since the estimator Ẽ can be split into a sum over the rows of U(C̃) and each row
is chosen independently as a minimizer among all possible binary vectors of dimension
k.

(3) Given U(C̃), we can compute a best response matrix V (C̃) which has cost ‖A−U(C̃) ·
V (C̃)‖0 ≤ ‖A− U(C̃) · V ‖0, and thus by (5) the expected cost at most (1 + ε)OPT.

(4) The only remaining step is to draw samples C̃y from the optimal clustering. However,
in time O(d2kt) = dpoly(2k/ε) we can enumerate all possible families (C̃y)y∈{0,1}k , and
the best such family yields a solution that is at least as good as a random sample. In
total, we obtain a PTAS in time n · dpoly(2k/ε).

The largest part of this chapter is devoted to make the above PTAS efficient, i.e., to re-
duce the running time from n · dpoly(2k/ε) to (2/ε)2O(k)/ε2 · nd1+o(1), where o(1) hides a factor
(log log d)1.1

/ log d. By the preceding outline, it suffices to speed up Steps (1) and (4), i.e., to
design a fast algorithm that guesses approximate cluster sizes and samples from the optimal
clusters.

The standard sampling approach for clustering problems such as k-means [43] is as follows.
At least one of the clusters of the optimal solution is “large”, say |Cy| ≥ d/2k. Sample t columns
uniformly at random from the set [d] of all columns. Then with probability at least (1/2k)t all
samples lie in Cy, and in this case they form a uniform sample from this cluster. In the usual
situation without restrictions on the cluster centers, the samples from Cy allow us to determine
an approximate cluster center s̃(y). Do this as long as large clusters exist (recall that we have
guessed approximate cluster sizes in Step (1), so we know which clusters are large). When all
remaining clusters are small, remove the d/2 columns that are closest to the approximate cluster
centers s̃(y) determined so far, and estimate the cost of these columns using the centers s̃(y).
As there are no restrictions on the cluster centers, this yields a good cost estimation of the
removed columns, and since the `0-distance is additive the algorithm recurses on the remaining
columns, i.e. on an instance of twice smaller size. We continue this process until each cluster is
sampled. This approach has been used to obtain linear time approximation schemes for k-means
and k-median in a variety of ambient spaces [1, 43, 44].

The issue in our situation is that we cannot fix a cluster center s̃(y) by looking only at
the samples C̃y, since we have dependencies among cluster centers. We nevertheless make this
approach work, by showing that a uniformly random column r(y) ∈ [d] is a good “representative”
of the cluster Cy with not-too-small probability. In the case when all remaining clusters are
small, we then simply remove the d/2 columns that are closest to the representatives r(y) of
the clusters that we already sampled from. Although these representatives can be far from the
optimal cluster centers due to the linear restrictions on the latter, we show in Section 4.4 that
nevertheless this algorithm yields samples from the optimal clusters.

We prove that the preceding algorithm succeeds with probability at least (ε/t)2O(k)·t . Further,
we show that the approximate cluster sizes |C̃y| of an optimal clustering can be guessed with

2 In Section 4.4, we establish an efficient sampling procedure, see Algorithm 3, that further reduces the total
overhead for guessing the sizes |Cy | of an optimal clustering to (2k/ε)2O(k) · (log d)(log log d)0.1 .
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an overhead of (2k/ε)2O(k) · (log d)(log log d)0.1 . In contrast to the standard clustering approach,
the representatives r(y) do not yield a good cost estimation of the removed columns. We over-
come this issue by first collecting all samples C̃ from the optimal clusters, and then computing
approximate cluster centers that satisfy certain linear constraints, i.e. a matrix U(C̃) and its
best response matrix V (C̃). The latter computation runs in linear time 2O(k) · nd in the size
of the original instance, and this in combination with the guessing overhead, yields the total
running time of (2/ε)2O(k)/ε2 · nd1+o(1). For further details, we refer the reader to Algorithm 3
in Subsection 4.4.2.

Our algorithm achieves a substantial generalization of the standard clustering approach and
applies to the situation with constrained centers. This yields the first randomized almost-linear
time approximation scheme for the Generalized Binary `0-Rank-k problem.

1.2.3 Hardness

Our hardness results for the `p norm for p ∈ (1, 2) in Theorem 4 and p ∈ (2,∞) in Theorem 19
are established via a connection to the matrix p → q norm problem and its variants. Given a
matrix A ∈ Rn×d, ‖A‖p→q is defined to be ‖A‖p→q := maxx∈Rd,‖x‖p=1‖Ax‖q.

Approximately computing this quantity for various values of p and q has been known to
have applications to the Small Set Expansion Hypothesis [7], quantum information theory [31],
robust optimization [68], and the Grothendieck problem [28]. After active research [7, 9, 10, 32],
it is now known that computing the p→ q norm of a matrix is NP-hard to approximate within
some constant c(p, q) > 1 except when p = q = 2, p = 1, or q = ∞. (Hardness of the case
p < q with 2 ∈ [p, q] is only known under stronger assumptions such as the Small Set Expansion
Hypothesis or the Exponential Time Hypothesis.) See [10] for a survey of recent results on the
approximability of these problems.

We also introduce the problem of computing the following quantity

minp→q(A) := min
x∈Rd,‖x‖p=1

‖Ax‖q

as an intermediate problem. Recall that p∗ = p/(p − 1) is the Hölder conjugate of p for which
1/p + 1/p∗ = 1. The following lemma shows that computing `p-low rank approximation when
k = d− 1 is equivalent to computing minp∗→p(·).

Lemma 1. Let p ∈ (1,∞). Let A ∈ Rn×d with n ≥ d and k = d− 1. Then

min
U∈Rn×k,V ∈Rk×d

‖UV −A‖p = min
x∈Rd,‖x‖p∗=1

‖Ax‖p = minp∗→p(A).

A simple but crucial observation for the above lemma is that if we let a1, . . . , an ∈ Rd be
the rows of A, computing the best (d− 1)-rank approximation of A in the entrywise `p norm is
equivalent to computing the (d− 1)-dimensional subspace S ⊆ Rd (i.e., rowspace(V ) = S) that
minimizes ‖(ρ1, . . . , ρn)‖p, where ρi := miny∈S‖y − ai‖p denotes the `p-distance between S and
ai.

If x ∈ Rd is a vector orthogonal to S, Hölder’s inequality shows that

ρi = min
y∈S
‖y − ai‖p = min

〈x,z+ai〉=0
‖z‖p ≥

|〈x, z〉|
‖x‖p∗

= |〈x, ai〉|
‖x‖p∗

.

Taking z to be the Hölder dual of x, we can show that indeed ρi = |〈x, ai〉|/‖x‖p∗ . Then
‖(ρ1, . . . , ρn)‖p = ‖Ax‖p/‖x‖p∗ , finishing the lemma.

This new connection allows us to prove a number of new hardness results for low rank
approximation problems. Previously, even exact hardness results were known only for p = 0, 1
and there was no APX-hardness result.

`p norm with 1 < p < 2. For p ∈ (1, 2), we reduce computing ‖·‖2→p∗ to computing
minp∗→p(·).

If A is an invertible matrix, then

minp→p∗(A−1) = min
x 6=0

‖A−1x‖p
‖x‖p∗

=
(

max
x 6=0

‖x‖p∗
‖A−1x‖p

)−1
=
(

max
y 6=0

‖Ay‖p∗
‖y‖p

)−1
= 1
‖A‖p→p∗

,
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and thus computing minp∗→p(·) is equivalent to computing ‖·‖p→p∗ .
By appropriately perturbing and padding 0’s, we can show that computing the latter can be

reduced to computing the former modulo arbitrarily small error. Standard facts from Banach
spaces additionally show that ‖AAT ‖p→p∗ = ‖A‖22→p∗ , proving the following lemma.

Lemma 2. For any ε > 0, p ∈ (1,∞), there is an algorithm that runs in poly(n, log(1/ε)) time
and on a non-zero input matrix A, computes a matrix B satisfying

(1− ε)‖A‖−2
2→p∗ ≤ minp∗→p(B) ≤ (1 + ε)‖A‖−2

2→p∗ .

To finish Theorem 4 for `p-low rank approximation for p ∈ (1, 2), we use the hardness of
approximating the 2 → q norm of a matrix proved by Barak et al. [7] assuming the Small Set
Expansion Hypothesis when q = p∗ > 2. Given a d-regular graph G = (V,E) and size bound
δ ∈ (0, 1/2), the Small Set Expansion problem asks to find a subset U ⊆ V with |U |/|V | ≤ δ that
minimizes Φ(U) = |E(U,V \U)|

d|U | = 1− (1U )TA(1U ), where A and 1U are the normalized adjacency
matrix of G and the normalized indicator vector of U , respectively. Consequently, the problem
is equivalent to finding a sparse indicator vector v with high Rayleigh quotient vTAv, and one
natural approach is to find a sparse vector in a subspace corresponding to large eigenvalues of
A. For q > 2, since ‖v‖q/‖v‖2 is maximized when v is supported on only one coordinate and
minimized when all entries of v are equal in magnitude, ‖v‖q/‖v‖2 is a natural analytic notion
of sparsity, so if we let P be the orthogonal projection on to the subspace corresponding to large
eigenvalues, a high ‖P‖2→q seems to indicate that G has a non-expanding small set. Barak et al.
formalized this and proved the following theorem when q ≥ 4 is an even integer, but the same
proof essentially works for q ∈ (2,∞). For completeness, we present the proof in Section 5.

Theorem 7 ([7]). Assuming the Small Set Expansion Hypothesis, for any q ∈ (2,∞) and r > 1,
it is NP-hard to approximate the ‖·‖2→q norm within a factor r.

`p norm with 2 < p. Our hardness results for p ∈ (2,∞) are proved directly from the above
intermediate problem. The following hardness result for minp∗→p(·) implies our hardness result
for p ∈ (2,∞). It follows from a similar result by Guruswami et al. [29], which proves the same
hardness for the min2→p(·) norm, with some modifications that connect the 2 norm and the p∗
norm. Recall that γp := Eg[|g|p]1/p where g is a standard Gaussian, which is strictly greater
than 1 for p > 2.

Theorem 8. For any p ∈ (2,∞) and ε > 0, it is NP-hard to approximate the minp∗→p(·) norm
within a factor γp − ε.

Finite Fields. Our hardness results for finite fields rely on the following lemma.

Lemma 3. Let F be a finite field and A ∈ Fn×d with n ≥ d and k = d− 1. Then, we have

min
U∈Fn×k,V ∈Fk×d

‖UV −A‖0 = min
x∈Fd,x 6=0

‖Ax‖0.

The proof has a similar structure to Lemma 1 for the `p norm in R. We can still identify a
subspace S ⊆ Fd with codimension 1 with a vector x with 〈v, x〉 = 0 for every v ∈ S. In finite
fields, x can be possibly in S, but it does not affect the proof. Then for each row ai of A, if
〈ai, x〉 = 0, then ai ∈ S and we incur no error on the ith row. If 〈ai, x〉 6= 0, changing one entry
of ai will ensure that it will be contained in S, so the total number of errors given S is exactly
‖Ax‖0.

The quantity in the right-hand side, minx∈Fd,x 6=0‖Ax‖0, is exactly the minimum Hamming
weight of any non-zero codeword of the code that has AT as a generator matrix, or the minimum
distance of the code. Then Theorem 6 above immediately follows from the following theorem by
Austrin and Khot [4].

Theorem 9 ([4]). For any finite field F and r > 1, unless P = NP, there is no r-approximation
algorithm for computing the minimum distance of a given linear code in polynomial time.

Paper Outline: In Section 2 we give preliminaries. In Section 3 we give our algorithms for
`p-low rank approximation, 0 < p < 2, and since it is technically similar, our algorithm for
p = 0 over finite fields. In Section 4 we give our algorithm for Generalized Binary `0-Rank-k. In
Section 5 we give all of our hardness results. In Section 6 we mention various additional results.
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2 Preliminaries
For a matrix A we write Ai,j for its entry at position (i, j), Ai,: for its i-th row, and A:,i for its
i-th column.

For 0 ≤ p ≤ ∞, we will let ‖A‖p denote the entrywise `p-norm of A. That is, ‖A‖0 equals
the number of non-zero entries of A, ‖A‖∞ = maxi,j‖Ai,j‖, and ‖A‖p = (

∑
i,j A

p
i,j)1/p.

For two matrices A,B the value ‖A−B‖0 is a measure of similarity that is sometimes called
their Hamming distance.

We will typically give the dimensions of a matrix A as n× d when A has entries from a field
such as R or Fq. When the entries of A are binary, we will typically give its dimensions as m×n.

We first recall some basic results about Cauchy variables. These have the property that
if x ∈ Rn and Z,Ci are i.i.d standard Cauchy variables (for i = 1, . . . , n) then it holds that∑n
i=1 xiCi ∼ ‖x‖1Z.

Fact 1. If C is a Cauchy variable with scale γ, then

1. For τ > 1, Pr[|C| > τγ] ≤ 1
τ

2. For small ε > 0, Pr[|C| > (1 + ε)γ] < 1
2 −Θ(ε)

3. For small ε > 0, Pr[|C| < (1− ε)γ] < 1
2 −Θ(ε)

The following results are adapted from [5]. We want to analyze the quantiles of the entries
of a vector after a dense Cauchy sketch is applied to it.

Definition 4. Let 0 < α < 1. Let v ∈ Rm. We let qα(v) denote the 1
α -quantile of |v1|, |v2|, . . . , |vm|,

or the minimum value greater than dαne of the values |v1|, |v2|, . . . , |vm|. For M ∈ Rm×n, we let

qα(M) def=
n∑
i=1

qα(M:,i).

We will be particularly interested in the median of the entries of a sketched vector.

Definition 5. For v ∈ Rn, we write med(v) as shorthand for q 1
2
(v). Further, for M ∈ Rm×n,

we let

med(M) def=
n∑
i=1

med(M:,i).

Lemma 4. Let S ∈ Rm×n have entries that are i.i.d. standard Cauchy variables and let x ∈ Rn.
Then

1. Pr[q 1
2−Θ(ε)(Sx) < (1− ε)‖x‖1] < exp(−Θ(ε2)m)

2. Pr[q 1
2 +O(ε)(Sx) > (1 + ε)‖x‖1] < exp(−Θ(ε2)m)

3. For M > 2, Pr[q1− ε2 (Sx) > M
ε ‖x‖1] < exp(−Θ(ε)Mm)

4. For M > 2, Pr[med(Sx) > M‖x‖1] < exp(−Θ(m)M)

Proof. Note that for each 1 ≤ i ≤ m, (Sx)i is distributed as a Cauchy variable with scale ‖x‖1.
By Fact 1, Pr[|(Sx)i| < (1− ε)‖x‖1] < 1

2 −Θ(ε). We want to bound the probability that more
than a 1

2 −Θ(ε) fraction of the (Sx)i’s are smaller than (1− ε)‖x‖1. The desired upper bound
follows from Chernoff’s bound as exp(−Θ(m)( 1

2 −Θ(ε)− ( 1
2 −Θ(ε)))2), from which (i) follows.

We can prove (ii) using a similar argument.
For (iii), we know from Fact 1 that Pr[(Sx)i > M

ε ] < ε
M . Thus a Chernoff bound gives

Pr[q1− ε2 (Sx) > M
ε ‖x‖1] < exp(−Θ(m)( ε2 −

ε
M )2( ε

M )−1)

and the result follows. For (iv), a similar proof holds using Pr[(Sx)i > M‖x‖1] < 1
M .
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Lemma 5. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have O( 1
ε2 k log k

εδ ) rows,
n columns, and i.i.d. Cauchy entries with scale parameter γ = 1. Then with probability at least
1−Θ(δ), for all x ∈ X,

(1−Θ(ε))‖x‖1 ≤ q 1
2−ε

(Sx) ≤ q 1
2 +ε(Sx) ≤ (1 +O(ε))‖x‖1

Proof. LetN be an εδ
k3 -net for the intersection ofX and the unit `1 ball. Then |N | = exp(O(k log k

εδ ))
By Lemma 4, Pr[q 1

2−Θ(ε)(Sy) < (1 − ε)‖y‖1] < exp(−Θ(k log k
εδ )). Thus, for all y ∈ N ,

q 1
2−Θ(ε)(Sy) ≥ 1− ε holds with probability 1−Θ(δ) by a union bound.
Let X ′ be a matrix whose columns form an Auerbach basis ([52]) for the subspace X. That

is, each column of X ′ has `1 norm 1 and ‖z′‖∞ ≤ ‖X ′z′‖1 for all z′. By Fact 1, each entry of
SX ′ is greater than Θ(k

2

δ ) with probability at most O( δk2 ) because each column of X ′ has `1
norm 1. A union bound tells us that ‖SX ′‖∞ ≤ O(k

2

δ ) with probability at least 1− δ
2 .

For arbitrary z ∈ X, we can write z = X ′z′. Thus

‖Sz‖∞ = ‖SX ′z′‖∞ ≤ ‖SX ′‖∞ · ‖z′‖1 ≤ O(k2/δ) · k‖z′‖∞
≤ O(k3/δ) · ‖X ′z′‖1 = O(k3/δ) · ‖z‖1.

Given any x in the intersection of the unit `1 ball and X, we can write x = y + z where
y ∈ N , z ∈ X, and ‖z‖1 ≤ εδ

k3 . By the above argument, we know ‖Sz‖∞ ≤ O
(
k3

δ

)
‖z‖1 ≤ O(ε).

Since Sx = Sy + Sz, then (1 − Θ(ε)) ≤ q 1
2−Θ(ε)(Sx) for any unit x. We can scale x and ε by

the appropriate constants to get the desired statement.
The RHS inequality follows from a similar argument.

We immediately have the following corollary about medians of Cauchy sketches over sub-
spaces.

Corollary 1. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have O( 1
ε2 k log k

εδ )
rows, n columns, and i.i.d. Cauchy entries with scale parameter γ = 1. With probability at least
1−Θ(δ), for all x ∈ X,

(1− ε)‖x‖1 ≤ med(Sx) ≤ (1 + ε)‖x‖1

We can also bound the median and the (1 − ε/2)-quantile of a Cauchy sketch of a fixed
matrix.

Lemma 6. Let S be an m × n matrix (m = Θ(1/poly(ε))) with i.i.d. standard Cauchy entries
and let M be an n× d matrix. For ε > 0, with probability 1− 1/Ω(1),

(1− ε)‖M‖1 ≤ med(SM) ≤ (1 + ε)‖M‖1

Proof. Lemma 4 tells us that we can choose m so that Pr[med(SM:,i) = (1 ± ε)‖M:,i‖1] ≥
1 − Θ(ε) for each i. Say i is good if med(SM:,i) ≥ (1 − ε)‖M:,i‖1 and bad otherwise. Then
E[
∑

bad i‖M:,i‖1] ≤ ε‖M‖1 so Markov’s inequality tells us
∑

bad i‖M:,i‖1 ≤ O(ε)‖M‖1 with
probability 1− 1/Ω(1) and also

∑
good i‖M:,i‖1 ≥ (1−Θ(ε))‖M‖1.

This implies that

med(SM) ≥
∑

good i

med(SM:,i) ≥ (1− ε)
∑

good i

‖M:,i‖1 ≥ (1− ε)(1−Θ(ε))‖M‖1

which gives our first desired inequality.
Now say that column i is small if med(SM:,i) < (1 + ε)‖M:,i‖1 and (for k ≥ 1) k-large if

(k + 1 + ε)‖M:,i‖1 > med(SM:,i) ≥ (k + ε)‖M:,i‖1.

For k ≥ 3, we can bound

E

∑
k≥1

k
∑

k-large i
‖M:,i‖1

 ≤ Θ(ε)‖M‖1 + 2Θ(ε)‖M‖1 +
∑
k≥3

kε exp(−Θ(m)k)‖M‖1

≤ O(ε)‖M‖1
∑
k≥3

k

exp(Θ(m)k) ≤ O(ε)‖M‖1

12



where the second inequality comes from Lemma 4 and the third inequality comes from choosing
m = Θ(1/poly(ε)).

For k = 1 or k = 2, note that if i is k-large, then med(SM:,i) ≥ (1 + ε)‖M:,i‖1 which occurs
with probability at most Θ(ε) as mentioned earlier.

This lets us bound

E

∑
k≥1

k
∑

k-large i
‖M:,i‖1

 ≤ Θ(ε)‖M‖1 + 2Θ(ε)‖M‖1 +
∑
k≥3

kε exp(−Θ(m)k)‖M‖1

≤ O(ε)‖M‖1
∑
k≥3

k

exp(Θ(m)k) ≤ O(ε)‖M‖1

where the last inequality occurs because the given infinite series converges by the ratio test.
Therefore

med(SM) =
∑

small i
med(SM:,i) +

∑
k≥1

∑
k-large i

med(SM:,i)

≤ (1 + ε)‖M‖1 +
∑
k≥1

(k + 1 + ε)
∑

k-large i
‖M:,i‖1

≤ (1 + ε)‖M‖1 +
∑
k≥1

3k
∑

k-large i
‖M:,i‖1

≤ (1 +O(ε)) · ‖M‖1

where the first inequality holds by the definition of k-large and the third inequality holds with
probability 1− 1/Ω(1) by Markov’s inequality.

Lemma 7. When S is an m×n matrix with i.i.d Cauchy entries, m = Θ(1/poly(ε)), and M is
n× d, then with probability 1− 1/Ω(1),

q1−ε/2(SM) ≤ O
(

1
ε

)
‖M‖1

Proof. Say that column i is small if q1−ε/2(SM:,i) < 3
ε‖M:,i‖1 and (for k ≥ 3) k-large if

k + 1
ε
‖M:,i‖1 > q1−ε/2(SM:,i) ≥

k

ε
‖M:,i‖1.

We can bound

Pr[i is k-large] ≤ Pr[q1−ε/2(SM:,i) ≥
k

ε
‖M:,i‖1]

< exp(−Θ(ε)k
ε
m) < exp(−Θ(m)k),

where the second inequality comes from Lemma 4.
This lets us bound

E

∑
k≥3

k

ε

∑
k-large i

‖M:,i‖1

 ≤∑
k≥3

k

ε
exp(−Θ(m)k)‖M‖1

≤ 1
ε
‖M‖1

∑
k≥3

k

exp(Θ(m)k)

≤ O
(

1
ε

)
‖M‖1

where the last inequality occurs because the given infinite series converges by the ratio test.
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Therefore

q1−ε/2(SM) =
∑

small i
q1−ε/2(SM:,i) +

∑
k≥3

∑
k-large i

q1−ε/2(SM:,i)

≤ 3
ε
‖M‖1 +

∑
k≥3

k + 1
ε

∑
k-large i

‖M:,i‖1

≤ 3
ε
‖M‖1 +

∑
k≥3

2k
ε

∑
k-large i

‖M:,i‖1

≤ O
(

1
ε

)
‖M‖1

where the first inequality holds by the definition of k-large and the third inequality holds with
probability 1− 1/Ω(1) by Markov’s inequality.

Chebyshev’s inequality. We record some basic facts. Let Z1, . . . , Zn be independent Bernoulli
random variables, with Zi ∼ Ber(pi). Let Z := Z1 + . . .+ Zn and µ := E[Z].

Lemma 8. For any ∆ > 0, we have Pr[|Z − µ| > ∆] ≤ µ/∆2.

Proof. By independence, we have

Var(Z) =
n∑
i=1

Var(Zi) =
n∑
i=1

pi(1− pi) ≤
n∑
i=1

pi = µ.

By Chebyshev’s inequality, for any ∆ > 0 we have

Pr[|Z − µ| > ∆] ≤ Var(Z)/∆2.

With Var(Z) ≤ µ we thus obtain the claim.

Lemma 9. For any ∆ > 0, we have Pr[|Z − µ| > ∆] ≤
√
n/∆.

Proof. As in the previous lemma’s proof, we have

Pr[|Z − µ| > ∆] ≤ Var(Z)/∆2,

where Var(Z) ≤ µ ≤ n, and thus

Pr[|Z − µ| > ∆] ≤ n/∆2.

The statement follows since if
√
n/∆ < 1 we have n/∆2 ≤

√
n/∆, and otherwise the inequality

is trivial.
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3 `p-Approximation Algorithms

Recall that in the Entrywise `p-Rank-k Approximation problem (for 0 < p < 2) we are given
an n× d matrix A with integer entries bounded in absolute value by poly(n), a positive integer
k, and we want to output matrices U ∈ Rn×k and V ∈ Rk×d minimizing ‖A − UV ‖pp :=∑
i=1,...,n,j=1,...,d |Ai,j − (U · V )i,j |p. In this section, we prove Theorem 1, restated here for

convenience.

Theorem 1 (PTAS for 0 < p < 2). Let p ∈ (0, 2) and ε ∈ (0, 1). There is a (1+ε)-approximation
algorithm to Entrywise `p-Rank-k Approximation running in npoly(k/ε) time.

In Subsections 3.1, we prove in Corollary 2 our core algorithm result which solves the En-
trywise `p-Rank-k Approximation problem for p = 1. In Subsection 3.2, we give an algorithm
for the case when 1 < p < 2, and we prove its correctness in Corollary 4. In Subsection 3.3, we
prove in Corollary 6 the correctness of our algorithm for 0 < p < 1. Then, we conclude the proof
of Theorem 1 by combining Corollary 2, Corollary 4 and Corollary 6.

In Subsection 3.4, we give a (3 + ε)-approximation algorithm for the Entrywise `p-Rank-k
Approximation problem in the case when p > 2.

Recall that in the Entrywise `0-Rank-k Approximation over Fq problem we are given an n×d
matrix A with entries in Fq, a positive integer k, and we want to output matrices U ∈ Fn×kq

and V ∈ Fk×dq minimizing ‖A− UV ‖0. In Subsection 3.5, we prove Theorem 3 and for reader’s
convenience we restate here our result.

Theorem 3 (Alternate Fq PTAS for p = 0). For ε ∈ (0, 1) there is a (1 + ε)-approximation
algorithm to Entrywise `0-Rank-k Approximation over Fq running in n · dpoly(k/ε) time.

3.1 `1-Approximation Algorithm

In this subsection, Ak will denote the rank k matrix closest to A in the entrywise `1-norm. We
will need a claim adapted from [19].

Claim 1. If A is n by d and has integer entries bounded by γ = poly(n) and rank r > k, then
we have

min
rank k Ak

‖A−Ak‖1 ≥
1

poly(n)k

Proof. Note that it suffices to lower bound σk+1, the kth singular value of A, because ‖A−Ak‖1 ≥
‖A−Ak‖F ≥ σk+1.

Since A has integer entries, then so does ATA and its characteristic polynomial has integer
coefficients. Now ATA has eigenvalues σ2

i so its characteristic polynomial’s last term is
∏r
i=1 σ

2
i

which is at least 1 because it is a positive integer. For any j, σ2
j ≤ ‖A‖2F ≤ ndγ2.

We have

σr−kk+1 ≥
∏

k<i≤r

σ2
i ≥

∏
1≤i≤r σ

2
i

(ndγ2)k ≥ 1
(ndγ2)k

so σk+1 ≥ 1
(ndγ2)k because r − k ≥ 1.

We can now describe our (1 + ε)-approximation algorithm. For the rest of this section, let
U∗ and V ∗ be minimizers for ‖UV − A‖1 with OPT = ‖U∗V ∗ − A‖1. The quantities θ, ψ will
be bounded above by poly(n). The quantity q will be bounded above by poly(k). The specifics
of how these values are chosen will be described in the algorithm’s proof of correctness. The
validity of the specific sampling described in Step 1 of Algorithm 1 will be proved in Corollary 2.
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Algorithm 1 (1 + ε)-`1 low rank approximation
Input: A n× d matrix A with integer entries bounded by γ = poly(n). An integer k ∈ [d] and
a real ε ∈ (0, 1).
Output: Matrices U ∈ Rn×k and V ∈ Rk×d satisfying ‖UV −A‖1 ≤ (1 + ε)OPT .
1. If A has rank at most k, then return a rank k decomposition U, V of A.
2. Sample an m × n matrix S satisfying the conditions of Theorem 10 (e.g. by taking m =
poly(k/ε) and sampling each entry of S from a standard Cauchy distribution).
3. Round the entries of S to the nearest multiple of ε2

(θψ)k where θ, ψ ≤ poly(n) are chosen as
described in the proof of Theorem 10.
4. Set U and V to be zero matrices as a default.
5. Exhaustively guess all possible values of SU∗ with entries rounded to the nearest multiple
of ε

qnkθk
ε2

(θψ)k , where q ≤ poly(k) is chosen as described in the proof of Theorem 10.

6. For each guessed SU∗, set Ṽ = arg minV med(SU∗V − SA) s.t. ‖V ‖∞ ≤ 2ndγqnkθk
ε .

7. For each Ṽ , set Ũ = arg minU‖UṼ −A‖1.
8. If ‖Ũ Ṽ −A‖1 < ‖UV −A‖1, then set U = Ũ , V = Ṽ .

9. Return U, V .

Theorem 10. Let A be an n × d matrix with integer entries such that ‖A‖∞ is bounded by
γ = poly(n). Suppose S is an m × n random matrix such that with probability 1 − 1/Ω(1),
med(SU∗V − SA) ≥ (1 − ε)‖U∗V − A‖1 for all V and for a fixed V ∗, med(SU∗V ∗ − SA) ≤
(1 + ε)‖U∗V ∗ − A‖1 with probability 1 − 1/Ω(1). Suppose further that ‖S‖∞ ≤ poly(n). Then
Algorithm 1 is a (1 + ε)-approximation algorithm for rank k low rank approximation in the
entrywise `1 norm and runs in time poly(n)mk.

Proof. First, if A has rank at most k, then we can just use Gaussian elimination to deduce that
its optimal low rank approximation has value 0. We will assume its rank is greater than k.

We can assume V ∗ is an `1 well-conditioned basis since we can replace U∗ and V ∗ with U∗R
and V ∗R−1 respectively for an invertible R. Thus for all x we have ‖x‖1

q′ ≤ ‖x
TV ∗‖1 ≤ q‖x‖1

where q′, q = poly(k). Using this well-conditioned basis property we see that each entry of U∗
is at most 2ndγq′ ≤ poly(n) because otherwise ‖U∗V ∗ − A‖1 ≥ 2ndγ − ‖A‖1 ≥ ‖A‖1 and we
could improve the `1 error by taking U∗ = 0.

Claim 1 says that there exists θ ≤ poly(n) such that OPT ≥ 1
θk
. By using the well-

conditioned basis property of V ∗ and Claim 1, we can also assume that each entry of U∗ is
rounded to nearest multiple of ε

qnkθk
as this will incur an additive error of at most εOPT . Thus

U∗ has discretized and bounded entries. Note that there are at most ε−1poly(n)k possible values
for each entry of U∗.

Since the entries of U∗ are discretized by ε
qnkθk

, then the entries of V ∗ can be bounded above
by 2ndγqnkθk

ε because otherwise ‖U∗V ∗−A‖1 ≥ 2ndγ−‖A‖1 ≥ ‖A‖1 and we might as well have
set V ∗ = 0.

Let V be arbitrary with ‖V ‖∞ ≤ 2ndγqnkθk
ε . Then ‖U∗V −A‖1 ≤ ε−1ψk where ψ ≤ poly(n).

We will round each entry of S to the nearest multiple of ε2

(θψ)k , so we can write S = S̃+ ∆ where
S̃ is discretized and ‖∆‖∞ ≤ ε2

(θψ)k . Note that ‖∆(U∗V −A)‖1 ≤ ε
θk
≤ εOPT .

Now we will prove the correctness of our algorithm. We can sample S = S̃ + ∆. Note that
S̃U∗ will have entries that are multiples of ε

qnkθk
ε2

(θψ)k ≥ poly( εn )k and bounded by poly(nε )k

because S̃ is discretized and bounded. Since S̃U∗ is m × n, then in poly(nε )k time we can
exhaustively search through all possible values of S̃U∗ and one of them will be correct.

For each guess of S̃U∗ and each i we minimize med(S̃U∗V:,i−S̃A:,i) over ‖V:,i‖∞ ≤ 2ndγqnkθk
ε

3 to get Ṽ:,i. We have med(S̃U∗Ṽ − S̃A) ≤ med(S̃U∗V ∗ − S̃A).

3Observe that there are at most m! orderings of the entries of S̃U∗V:,i − S̃A:,i and we are minimizing a linear
function over V:,i subject to a linear constraint. This can be solved with linear programming, so it will be done
within the poly(n)mk runtime.
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Now

med(S̃U∗V ∗ − S̃A) = med(S(U∗V ∗ −A)−∆(U∗V ∗ −A))
≤ med(S(U∗V ∗ −A)) + εOPT

≤ (1 + ε)‖U∗V ∗ −A‖1 + εOPT

≤ (1 +O(ε))OPT.

We choose Ũ to minimize ‖Ũ Ṽ −A‖1, so

med(S̃U∗Ṽ − S̃A) = med(S(U∗Ṽ −A)−∆(U∗Ṽ −A))
≥ med(S(U∗Ṽ −A))− εOPT
≥ (1− ε)‖U∗Ṽ −A‖1 − εOPT
≥ (1− ε)‖Ũ Ṽ −A‖1 − εOPT

It follows that the best Ũ and Ṽ will satisfy ‖Ũ Ṽ −A‖1 ≤ (1 +O(ε))OPT .

Note that if m = Θ(poly(k log d
ε )), then the above algorithm is a quasipolynomial time (1+ε)-

approximation scheme (treating k like a constant). This is because we can use Corollary 1 (with
δ = poly(1/d)) to see that

med(S
[
U∗ A:,i] [V:,i 1]T

]
) = (1± ε)‖[U∗ A:,i] [V:,i 1]T ‖1

(when V:,i is arbitrary) with probability at least 1 − poly(1/d) for each i. By a union bound,
med(S(U∗V −A)) = (1±ε)‖U∗V −A‖1 for arbitrary V with probability 1−1/Ω(1). Furthermore,
Fact 1 tells us that Pr[Si,j ≥ poly(n)] ≤ poly(n)−1 so by a union bound, all entries of S are
bounded by poly(n) with probability 1− 1/Ω(1).

Of course, if we could reduce m to Θ(poly(kε )), then we would have a PTAS. With the target
bound for m, we would still have a (1± ε)-embedding for each column index i with probability
1 − 1/Ω(1), but we need all d embeddings to be valid at once. We accomplish this in the next
result which is a variant of Lemma 27 from [20].

Theorem 11. Let U ∈ Rn×k, A ∈ Rn×d. Let V ∗ be chosen to minimize ‖UV ∗ − A‖1. Suppose
S is an m× n matrix satisfying

(i) q 1
2−ε

(SUx) ≥ (1−Θ(ε))‖Ux‖1

(ii) For each i with probability at least 1− ε3, med(S[U A:,i]x) ≥ (1− ε3)‖[U A:,i]x‖1 for all x

(iii) med(SUV ∗ − SA) ≤ (1 + ε3)‖UV ∗ −A‖1

(iv) q1−ε/2(S(UV ∗ −A))) ≤ O
( 1
ε

)
‖UV ∗ −A‖1

Then med(SUV − SA) ≥ (1−O(ε))‖UV −A‖1 for arbitrary V .

Proof. We say a column index i is good if

med(S([U A:,i]y)) ≥ (1− ε3)‖[UA:,i]y‖1

for all y ∈ Rk+1, and bad otherwise. We say a bad column index is large if

ε‖(UV −A):,i‖1 ≥
1

1− εq1−ε/2(S(UV ∗ −A):,i) + ‖(UV ∗ −A):,i‖1

and small otherwise.
By (ii), we know that E[

∑
bad i‖(UV ∗ − A):,i‖1] ≤ ε3‖UV ∗ − A‖1. By Markov’s inequality,

we know that with probability 1− 1/Ω(1),∑
bad i

‖(UV ∗ −A):,i‖1 ≤ O(ε3‖UV ∗ −A‖1). (6)
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Since we were only using the probability that a column i was bad in the bound above, then
by a similar Markov’s inequality argument we know that with probability 1− 1/Ω(1),∑

bad i

q1−ε/2(S(UV ∗ −A):,i) ≤ O(ε3)q1−ε/2(S(UV ∗ −A)). (7)

By (iii)

(1 + ε3)‖UV ∗ −A‖1 ≥ med(S(UV ∗ −A))

≥ (1− ε3)
∑

good i

‖(UV ∗ −A):,i‖1 +
∑
bad i

med(S(UV ∗ −A):,i)

≥ (1− ε3)(1−Θ(ε3))‖UV ∗ −A‖1 +
∑
bad i

med(S(UV ∗ −A):,i),

where the second inequality comes from the definition of good, and the third inequality comes
from (6).

Thus ∑
bad i

med(S(UV ∗ −A):,i) ≤ O(ε3)‖UV ∗ −A‖1 (8)

We also have∑
small i

‖(UV −A):,i‖1 ≤
1

ε(1− ε)
∑

small i
q1−ε/2(S(UV ∗ −A):,i) + 1

ε

∑
small i

‖(UV ∗ −A):,i‖1

≤ 1
ε(1− ε)

∑
bad i

q1−ε/2(S(UV ∗ −A):,i) +O(ε2)‖UV ∗ −A‖1

≤ O
(
ε2) q1−ε/2(S(UV ∗ −A)) +O(ε2)‖UV ∗ −A‖1

≤ O(ε)‖UV ∗ −A‖1 +O(ε2)‖UV ∗ −A‖1
≤ O(ε)‖UV ∗ −A‖1 (9)

where the first inequality comes from the definition of small, the second inequality comes from
(6) and the fact that small columns are bad columns, the third inequality comes from (7), and
the fourth inequality comes from (iv).

Claim 2. ∑
large i

med(S(UV −A):,i) ≥ (1−O(ε))
∑

large i
‖(UV −A):,i‖1

Proof. Let i be large. We can write S(UV −A):,i = SU(V − V ∗):,i + S(UV ∗ −A):,i.
By (i), we know at least 1

2 +ε entries of SU(V −V ∗):,i are larger than (1−O(ε))‖U(V −V ∗):,i‖1
which is at least

(1−O(ε))(‖(UV −A):,i‖1 − ‖(UV ∗ −A):,i‖1)

by the triangle inequality. By the definition of large, this is at least

(1−O(ε))((1− ε)‖(UV −A):,i‖1 +
(

1
1− ε

)
q1−ε/2(S(UV ∗ −A):,i))

or
(1−O(ε))2‖(UV −A):,i‖1 + q1−ε/2(S(UV ∗ −A):,i).

By definition, less than an ε/2 fraction of the entries of S(UV ∗ − A):,i are greater than
q1−ε/2(S(UV ∗ − A):,i) so at least half of the entries of S(UV − A):,i are greater than (1 −
O(ε))2‖(UV −A):,i‖1. The result follows.
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Finally

med(S(UV −A)) ≥
∑

good i

med(S(UV −A):,i) +
∑

large i
med(S(UV −A):,i)

≥ (1− ε3)
∑

good i

‖(UV −A):,i‖1 + (1−O(ε))
∑

large i
‖(UV −A):,i‖1

≥ (1−O(ε))‖UV −A‖1 − (1−O(ε))
∑

small i
‖(UV −A):,i‖1

≥ (1−O(ε))‖UV −A‖1 − (1−O(ε))O(ε)‖UV ∗ −A‖1
≥ (1−O(ε))‖UV −A‖1

where the first inequality occurs because large i are bad i, the second inequality comes from
the definition of good and Claim 2, the third inequality comes from the definition of small, the
fourth inequality comes from (9), and the last inequality holds because V ∗ is a minimizer.

Corollary 2. Let A be an n× d matrix with integer entries bounded by poly(n) and let k be a
constant. There is a PTAS for finding the closest rank k matrix to A in the entrywise `1 norm.

Proof. Let U∗ ∈ Rn×k, V ∗ ∈ Rk×d be minimizers for ‖U∗V ∗ − A‖1. It suffices to prove that an
m × n (m = Θ(poly(kε ))) matrix S with i.i.d. standard Cauchy entries satisfies the conditions
of Theorem 11 with U = U∗, then use Theorem 10.

Indeed, S satisfies (i) through Lemma 5 and (ii) with probability 1−1/Ω(1) through Corollary
1. S satisfies (iii) with probability 1− 1/Ω(1) via Lemma 6 and (iv) with probability 1− 1/Ω(1)
via Lemma 7.

3.2 1 < p < 2
We can extend these `1 results to `p for 1 < p < 2 by using p-stable variables (with scale 1)
instead of Cauchy variables (or 1-stable variables). These have the property that if x ∈ Rn and
Z,Zi are i.i.d p-stable variables (for i = 1, . . . , n) then

∑n
i=1 xiZi ∼ ‖x‖pZ.

Definition 6. We let medp denote the median of the absolute value of a p-stable variable.

There is no convenient closed form expression for medp unless p = 1, in which case med1 = 1.
However, in Appendix A.2 of [35] it is shown that a 1 ± ε approximation of medp can be
computed efficiently. Since we are only interested in ε approximations, then this will suffice for
our purposes. Our main sketch will be med

(
(Sx)
medp

)
(S has i.i.d p-stable entries with scale 1)

which will concentrate around (1± ε)‖x‖p.
We can cite similar concentration / tail bounds for p-stable variables like the ones we used

for Cauchy variables. We can also state a series of claims analagous to the ones we used in the
`1 case.

Fact 2. If Z is a p-stable variable with scale γ, then

1. For τ > 1, Pr[|Z| > τγmedp] ≤ Θ( 1
τp )

2. For small ε > 0, Pr[|Z| > (1 + ε)γmedp] < 1
2 −Θ(ε)

3. For small ε > 0, Pr[|Z| < (1− ε)γmedp] < 1
2 −Θ(ε)

Lemma 10. Let S ∈ Rm×n have entries that are i.i.d. p-stable variables with scale 1 and let
x ∈ Rn. Then

1. Pr[q 1
2−Θ(ε)(Sx) < (1− ε)‖x‖pmedp] < exp(−Θ(ε2)m)

2. Pr[q 1
2 +O(ε)(Sx) > (1 + ε)‖x‖pmedp] < exp(−Θ(ε2)m)

3. For M > 3, Pr[q1− ε2 (Sx) > M
ε ‖x‖pmedp] < exp(−Θ(ε)Mm)

4. For M > 3, Pr[med(Sx) > M‖x‖pmedp] < exp(−Θ(m)M)
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Proof. The proof follows the same structure as the proof for Lemma 4. We use Fact 2 in
combination with Chernoff bounds.

Since 1 < p, then we can take advantage of Minkowski’s inequality and use the triangle
inequality with ‖·‖p.

Lemma 11. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have O( 1
ε2 k log k

εδ ) rows,
n columns, and i.i.d. p-stable entries with scale 1. Then with probability at least 1 − Θ(δ), for
all x ∈ X,

(1−Θ(ε))‖x‖p ≤ q 1
2−ε

(Sx/medp) ≤ q 1
2 +ε(Sx/medp) ≤ (1 +O(ε))‖x‖p

Proof. The proof follows the same structure as the proof for Lemma 5 except we use Fact 2 and
p-well conditioned bases ([22]) to bound ‖(Sz)/medp‖∞ for any z ∈ X. We also use the `p ball
(which is still convex) instead of the `1 ball.

This automatically gives us the following corollary.

Corollary 3. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have O( 1
ε2 k log k

εδ )
rows, n columns, and i.i.d. p-stable entries with scale 1. With probability at least 1−Θ(δ), for
all x ∈ X,

(1− ε)‖x‖p ≤ med(Sx/medp) ≤ (1 + ε)‖x‖p

We also have analogous versions of our bounds on fixed matrices. The proof structures are
the same as those of Lemmas 6 and 7.

Lemma 12. Let S be an m× n matrix (m = Θ(1/poly(ε))) with i.i.d. standard p-stable entries
and let M be an n× d matrix. For ε > 0, with probability 1− 1/Ω(1),

(1− ε)
∑
i

‖M‖p ≤

(∑
i

med(SM:,i)p
)1/p/

medp ≤ (1 + ε)
∑
i

‖M‖p

Lemma 13. When S is an m×n matrix with i.i.d standard p-stable entries, m = Θ(1/poly(ε)),
and M is n× d, then with probability 1− 1/Ω(1),(∑

i

q1−ε/2(SM:,i)p
)1/p/

medp ≤ O
(

1
ε

)∑
i

‖M‖p

Finally, we have an `p form of Theorem 11 and it is proved analogously.

Theorem 12. Let U ∈ Rn×k, A ∈ Rn×d. Let V ∗ be chosen to minimize ‖UV ∗ − A‖p. Suppose
S is an m× n matrix satisfying

1. q 1
2−ε

(SUx/medp) ≥ (1−Θ(ε))‖Ux‖p

2. For each i with probability at least 1 − ε3, med(S[U A:,i]x/medp) ≥ (1 − ε3)‖[U A:,i]x‖p
for all x

3. (
∑
imed(SUV ∗:,i − SA:,i)p)1/p/medp ≤ (1 + ε3)‖UV ∗ −A‖p

4. (
∑
i q1−ε/2(S(UV ∗ −A):,i)p)1/p/medp ≤ O

( 1
ε

)
‖UV ∗ −A‖p

Then (
∑
imed(SUV:,i − SA:,i)p)1/p/medp ≥ (1−O(ε))

∑
i‖UV −A‖p for arbitrary V .

It follows that we have a PTAS for rank k `p low rank approximation.

Corollary 4. Let A be an n× d matrix with entries bounded by poly(n) and let k be a constant.
There is a PTAS for finding the closest rank k matrix to A in entrywise `p norm for 1 < p < 2.

Proof. The algorithm is analogous to Algorithm 1. Correctness follows from the fact that there
exist `p well-conditioned bases and that `p regression is a convex optimization problem.

Indeed, if p > 1 then ‖UV:,i −A:,i‖p is convex over vectors V:,i and we can calculate minima
in polynomial time.
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3.3 0 < p < 1
For v ∈ Rn we will denote vp to mean we raise each entry of v to the pth power, i.e. (vp)i = vpi .

We can extend these results to `p for 0 < p < 1 as well, but more care needs to be taken for
this range of p because among other issues, ‖·‖p is no longer a norm. However, ‖·‖pp satisfies the
triangle inequality which will be enough for our purposes. We will prove that med

(
(Sx)p
medpp

)
(S

has i.i.d p-stable entries) will concentrate around (1± ε)‖x‖pp.

Lemma 14. Let S ∈ Rm×n have entries that are i.i.d. p-stable variables with scale 1 and let
x ∈ Rn. Then

1. Pr[q 1
2−Θ(ε)(Sx)p < (1− ε)‖x‖ppmedpp] < exp(−Θ(ε2)m)

2. Pr[q 1
2 +O(ε)(Sx)p > (1 + ε)‖x‖ppmedpp] < exp(−Θ(ε2)m)

3. For M > 3, Pr[q1− ε2 (Sx)p > M
ε ‖x‖

p
pmedpp] < exp(−Θ(ε)Mm)

4. For M > 3, Pr[med(Sx)p > M‖x‖ppmedpp] < exp(−Θ(m)M)

Proof. These results follow from Lemma 10 and the fact that for 0 < p < 1, we have (1− ε)p >
1− ε and (1 + ε)p < 1 + ε.

Using the above quantile results we can prove an embedding result similar to Lemma 11 by
using the fact that ‖·‖pp satisfies the triangle inequality.

Lemma 15. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have O( 1
ε2 k log k

εδ ) rows,
n columns, and i.i.d. p-stable entries with scale 1. Then with probability at least 1 − Θ(δ), for
all x ∈ X,

(1−Θ(ε))‖x‖pp ≤ q 1
2−ε

((Sx)p/medpp) ≤ q 1
2 +ε((Sx)p/medpp) ≤ (1 +O(ε))‖x‖pp

This automatically gives us the following corollary.

Corollary 5. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have O( 1
ε2 k log k

εδ )
rows, n columns, and i.i.d. p-stable entries with scale 1. With probability at least 1−Θ(δ), for
all x ∈ X,

(1− ε)‖x‖pp ≤ med((Sx)p/medpp) ≤ (1 + ε)‖x‖pp

We also have analogous versions of our bounds on fixed matrices. Again, the proof structures
are the same as those of Lemmas 6 and 7.

Lemma 16. Let S be an m× n matrix (m = Θ(1/poly(ε))) with i.i.d. standard p-stable entries
and let M be an n× d matrix. For ε > 0, with probability 1−O(1),

(1− ε)‖M‖pp ≤
∑
i

med((SM:,i)p/medpp) ≤ (1 + ε)‖M‖pp

Lemma 17. When S is an m×n matrix with i.i.d standard p-stable entries, m = Θ(1/poly(ε)),
and M is n× d, then with probability 1−O(1),∑

i

q1−ε/2((SM:,i)p/medpp) ≤ O
(

1
ε

)∑
i

‖M:,i‖pp

As expected, we have an `p form of Theorem 11 and it is proved analogously.

Theorem 13. Let U ∈ Rn×k, A ∈ Rn×d. Let V ∗ be chosen to minimize ‖UV ∗ − A‖pp. Suppose
S is an m× n matrix satisfying

1. q 1
2−ε

((SUx)p/medpp) ≥ (1−Θ(ε))‖Ux‖pp

2. For each i with probability at least 1− ε3, med((S[U A:,i]x)p/medpp) ≥ (1− ε3)‖[U A:,i]x‖pp
for all x

3.
∑
imed((SUV ∗ − SA)p:,i/medpp) ≤ (1 + ε3)

∑
i‖(UV ∗ −A):,i‖pp

21



4.
∑
i q1−ε/2(S(UV ∗ −A)pi /medpp) ≤ O

( 1
ε

)∑
i‖(UV ∗ −A)i‖pp)

Then
∑
imed((SUV − SA)p:,i/medpp) ≥ (1−O(ε))‖(UV −A)‖pp for arbitrary V .

The results above can give us the desired PTAS.

Corollary 6. Let A be an n× d matrix with entries bounded by poly(n) and let k be a constant.
There is a PTAS for finding the closest rank k matrix to A in entrywise `p norm when 0 < p < 1.

Proof. The algorithm is slightly different from Algorithm 1, because `p regression is no longer
a convex optimization problem when 0 < p < 1. Thus after sketching to find a minimizing V ,
we need a different approach to find a minimizing U . We accomplish this by sketching UV −A
again, but from the right and guessing the sketched V . We use the guessed V to solve for U .

Besides the above modification, we rely on the fact that ‖·‖pp satisfies the triangle inequality.
We also note that for 0 < p < 1, we may not have a well-conditioned basis. However, we
know that an `1 well-conditioned basis exists so there exist q, r = poly(k) such that ‖x‖1

q ≤
‖xTV ∗‖1 ≤ r‖x‖1. By Holder’s inequality, we know ‖xTV ∗‖pp ≤ d1−p‖xTV ∗‖p1 ≤ d1−prp‖x‖pp
and ‖xTV ∗‖pp ≥ ‖xTV ∗‖

p
1 ≥ ‖x‖

p
1/q

p ≥ dp−1‖x‖pp/qp so we can get a similar well-conditioned
basis result saying there exist q̃, r̃ = poly(d) such that ‖x‖pq̃ ≤ ‖xTV ∗‖p ≤ r̃‖x‖p which will
suffice for our proof.

3.4 p > 2

There are no p-stable random variables when p > 2 so any `p-approximation algorithms in this
setting will need to rely on a different technique. Our sketch will be lifted from [22]. Rather
than a matrix of p-stable random variables, we use a sampling matrix that samples m rows of A
with each row i having some probability pi of being sampled. Furthermore, each sampled row
is reweighted by 1/pi. The following claim (adapted from Theorem 5 of [22]) says we can get a
subspace embedding from the right sampling matrix.

Claim 3. Suppose U is an n × k matrix. Then there exists a m × n sampling matrix S with
m = poly(k/ε) such that ‖SUx‖p = (1± ε)‖Ux‖p for all x.

Theorem 14. If A is an n× d matrix with entries bounded by poly(n), then there is a (3 + ε)-
approximation algorithm running in time npoly(k/ε) for finding the closest rank k matrix to A in
the entrywise `p norm for p > 2.

Proof. Let S be the sampling matrix of the above claim. Let V̂ be a minimizer for the expression
‖SU∗V̂ −SA‖p. Again, by a similar argument as that of the proof of Theorem 10, we can guess
SU∗ using poly(n) tries. We can round the sampling probabilities and the entries of U∗ to the
nearest 1/poly(n) value.

We know that

‖U∗V̂ −A‖p ≤ ‖U∗(V̂ − V ∗)‖p + ‖U∗V ∗ −A‖p
≤ (1 +O(ε))‖SU∗(V̂ − V ∗)‖p + ‖U∗V ∗ −A‖p
≤ (1 +O(ε))‖SU∗V̂ − SA‖p + (1 +O(ε))‖SU∗V ∗ − SA‖p + ‖U∗V ∗ −A‖p
≤ 2(1 +O(ε))‖SU∗V ∗ − SA‖p + ‖U∗V ∗ −A‖p
≤ (3 + ε)‖U∗V ∗ −A‖p

where the second inequality follows from the embedding property of S and the fourth inequality
comes from the definition of V̂ as a minimizer.

The final inequality comes from a Markov bound on S. More specifically, since S is a sampling
matrix, then for an arbitrary matrix M , E[SM ] = ‖M‖p. Thus Markov’s Inequality says that
with probability 1−O(1), we have SM ≤ O(1)‖M‖p. This concludes the proof.
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3.5 Finite Fields
We can also study low rank approximation over finite fields. The `p metrics are not defined over
finite fields for p > 0, but we can look at low rank approximation over the entrywise `0 metric
(where ‖M‖0 = |{(i, j) : Mi,j 6= 0}|). For the rest of this section we will work over a finite field
Fq, for some prime power q.

The structure of the algorithm will be similar to that of the case 0 < p < 2 but our sketch
will be based on hashing rather than p-stable random variables. Furthermore, we will be able to
sketch in the dimension d row space rather than the dimension n column space and get a running
time better than that of the 0 < p < 2 algorithms. We now describe a (1 + ε)-approximation
sketch for the `0 metric, where ε will be sufficiently small. This sketch is inspired by the L0
streaming algorithm in [35]. Throughout this section, we will refer to constants C and C ′ that
are sufficiently large.

Let Si denote a n×n matrix where column i is the standard basis column ei with probability
pi = min( 1

2i , 1) or the all zeroes column otherwise. In other words, Si is a sampling matrix that
takes x and preserves each coordinate with probability pi and otherwise maps the coordinate to
0. Note that p0 = 1. We can generate our matrices Si by uniformly sampling n integers between
0 to n and sampling column j in Si if the leading 1 in the jth integer (written in binary, with
indexing starting from 1) is before the ith position. Observe that under this procedure, our
subsampling is nested so that if Si does not sample entry j, then neither will Si′ for any i′ > i.

Note that by this nestedness property, we have ‖x‖0 = ‖S0x‖0 ≥ ‖S1x‖0 ≥ ‖S2x‖0 ≥ · · · ≥

‖Slogn−1x‖0. Let S denote the n logn× n block matrix


S0
S1
S2
...

Slogn−1

.
Let h be a pairwise independent hashing function from [n] to [C

′

ε8 ] and let H0 denote a C′

ε8 ×n
hashing matrix where each column equals eh(i). Let H denote the C′

ε8 logn × n block matrix
H0S0
H0S1
H0S2

...
H0Slogn−1

 with H(i) = H0Si.

Suppose that x =


x(0)

x(1)

...
x(logn−1)

 is a block vector. Then we let ñnz(x) denote


‖x(0)‖0
‖x(1)‖0

...
‖x(logn−1)‖0

.
We will abuse notation and let CS(x) = ñnz(Sx) and C(x) = ñnz(HSx) with the understand-

ing that HSx and Sx are of different dimensions but have the same number of blocks.
The main idea of the sketch is that if ‖x‖0 is less than a small constant and the coordinates of

x are hashed into a number of buckets that is a large constant, then with high probability it will
be a perfect hash. Thus the number of non-zero buckets will equal ‖x‖0. If x is subsampled with
a low enough probability, then the subsampled vector will have an `0 value that is sufficiently
small and it can be hashed as we described.

We should note that the hash is needed for dimensionality reduction, not for the sketch to
be an accurate estimator. For certain proofs we will analyze properties of the sketch without
the hashing step (as in CS(x)).

So S will sample x with different subsampling probabilities and we will expect that one will
be small enough. We can then hash that subsampled vector, count the number of non-zero
entries, and rescale by the sampling probability to approximate ‖x‖0. It then suffices to identify
a suitably subsampled vector.

To do so, we will let τ := C
ε4 and define estimation functions estj : Rlogn → R, where

estj(v) = vj
pj
. If j∗ denotes the maximum index such that vj∗ > γ then est(v, γ) = estj∗(v).

If such an index does not exist, then est(v, γ) = est0(v). We let E(x, γ) = est(C(x), γ) and
Ej(x, γ) = estj(C(x), γ). We will also let ES(x, γ) = est(CS(x), γ) and ESj (x, γ) = estj(CS(x), γ).

Note that we can replace all instances of n in the above definitions with d and our algorithm
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will just sketch the row space rather than the column space. We use n in our discussion just
to keep the exposition similar to the case of 0 < p < 2 and to emphasize the similarities in
technique.

For ease of notation in our proofs, we will omit the parameter γ in E(x), ES(x), Ei(x), ESi (x)
if it is clear that γ = τ .

The idea is that past j∗ we can be confident that we are subsampling x with too small of
a probability and if all subsampled values are too small, then we can be confident that it ‖x‖0
itself was small.

To sketch a vector it is enough to show that at the index j∗, a pj∗ fraction of x is sampled
up to a relative error of ε. For the purposes of our low rank approximation algorithm, we will
want a slightly stronger condition that the indices around j∗ will be sampled "as expected" and
that the value of j∗ will be approximately log(‖x‖0/γ) as expected.

Definition 7. Given a threshold γ, let j = max(0, blog2(‖x‖0/γ)c), so γ ≤ ‖x‖0
2j < 2γ. Let j∗

be the maximum index such that C(x)j∗ ≥ γ, or 0 if none exists.
We say that E(x, γ) is a well-behaved sampling if

1. j∗ = j − 1, j, or j + 1

2. If ‖x‖0 ≥ γ, then Ei(x, γ) = (1±Θ(ε))‖x‖0 for i = j − 1, j, j + 1, and j + 2

3. If ‖x‖0 < γ, then L1 < 3γ/4

To prove the correctness of our sketch, it will suffice to prove that with high probability our
samplings are well-behaved samplings. We will need a folklore fact about pairwise independent
hashing (the proof is included for completeness).

Fact 3. If h : [n] → [m] is a pairwise independent hash function and m ≥ Ω(n2/ε), then with
probability at least 1−Θ(ε), h will perfectly hash [n].

Proof. For i 6= j ∈ [n] let Ii,j be an indicator variable for the event h(i) = h(j). Then I =∑
i 6=j Ii,j is the total number of collisions. We have E[I] =

∑
i6=j E[Ii,j ] =

∑
i 6=j

1
m ≤

n2

m ≤ O(ε).
By Markov’s Inequality, Pr

[
I ≥ 1

]
≤ O(ε) and the result follows.

To make use of this fact we will set C ′ >> C2. These hash sizes are chosen such that they
are at least Ω(γ2). Thus any subsampling past level j∗ will likely result in a perfect hashing.

Throughout this section, we will let Lj denote ‖Sjx‖0 so

E[Lj ] = pj‖x‖0 and Var[Lj ] = pj(1− pj)‖x‖0 ≤ E[Lj ].

Lemma 18. If O(1/ε3) > γ > Ω(1/ε2), then with probability at least 1−Θ(ε) over the random-
ness of S and H, E(x, γ) is a well-behaved sampling.

In particular, this holds when γ = τ or γ = ετ .

Proof. We let j∗ and v be as given in the definition of well-behaved. First we consider the case
when ‖x‖0 ≥ γ.

Note that for i = j − 1, j, j + 1, or j + 2, we have E[Li] ≥ ‖x‖0/2j+2 ≥ γ/4. Since Var[Li] ≤
E[Li], then by Chebyshev’s Inequality, we know

Pr
[
Li /∈ (1± ε)E[Li]

]
≤

(√
Var[Li]
εE[Li]

)2

≤ 1
ε2E[Li]

≤ 4
ε2γ
≤ O(ε).

For the given values of i, we have E[Li] ≤ ‖x‖0/2j−1 ≤ 4γ. Since H0 hashes to a range of
size C ′/ε6 > (4γ)2, then by Fact 3, H0 will perfectly hash the non-zero entries of Six for the
given values of i with probability at least 1−Θ(ε).

By a union bound, C(x):,i = (1 ± ε)E[Li] for i = j − 1, j, j + 1, or j + 2 with probability at
least 1−Θ(ε). Thus

Pr
[
Ei(x) = (1± ε)‖x‖0

]
= Pr

[
C(x):,i = (1± ε)Li

]
≥ 1−Θ(ε)

which satisfies (ii).
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As we argued above, with probability at least 1−Θ(ε) both C(x)j−1 ≥ (1−ε)E[Lj−1] ≥ 3γ/2
and C(x)j+2 ≤ (1 + ε)E[Lj+2] ≤ 3γ/4 hold. By the nestedness of our sampling procedure, for
any i > j + 2 we have C(x):,i ≤ 3γ/4. Thus j∗ = j − 1, j, or j + 1 which satisfies (i).

Now suppose ‖x‖0 < γ. This implies j = 0 and j∗ = 0 by definition which satisfies (i). If
‖x‖0 ≥ γ/2, then by our reasoning above, L1 < 3γ/4 with probability at least 1 − Θ(ε). If
‖x‖0 < γ/2, then L1 < γ/2 by the nestedness property of our sampling procedure. Therefore
(iii) is satisfied.

It follows that for a given x, with probability at least 1−Θ(ε), E(x) = (1± ε)‖x‖0.
We can also get tail bounds for Ej(x) (j = 1, . . . , logn) and E(x).

Lemma 19. Let M > 1. Then Pr
[
Ej(x) > M‖x‖0

]
≤ 1

M and Pr
[
E(x) > M‖x‖0

]
≤ 1

M .

Furthermore, Pr
[
ESj (x) > M‖x‖0

]
≤ 1

M and Pr
[
ES(x) > M‖x‖0

]
≤ 1

M .

Proof. Let j∗ be chosen so that E(x) = Cj∗ (x)
pj∗

.
By Markov’s Inequality, we have

Pr
[
Ej(x) > M‖x‖0

]
= Pr

[
Cj(x)/pj > M‖x‖0

]
≤ Pr

[
Lj/pj > M‖x‖0

]
≤ E[Lj ]
pjM‖x‖0

= 1
M

as desired. This implies that

Pr
[
E(x) > M‖x‖0

]
=
∑
i

Pr
[
Ci(x)/pi > M‖x‖0

]
Pr
[
j∗ = i

]
≤ 1
M

∑
i

Pr
[
j∗ = i

]
= 1
M

and the result follows.

Let K = poly(k, 1/δ, 1/ε) for some δ > 0 and E(1), . . . , E(K) be independent instances of the

sketching procedure E . Let A(x) =

 E
(1)(x)
...

E(K)(x)

.
For a matrix M , we let A(M) denote the matrix whose ith column is A(M:,i).
We can also define AS(M) the natural way.
We can study medians and quantiles of A(M) like we did the medians and quantiles of our

sketches based on p-stable variables.

Lemma 20. 1. Pr[q 1
2−Θ(ε)(A(x)) < (1− ε)‖x‖0] < exp(−Θ(ε2)K)

2. Pr[q 1
2 +O(ε)(A(x)) > (1 + ε)‖x‖0] < exp(−Θ(ε2)K)

3. For T > 2, Pr[q1− ε2 (A(x)) > T
ε ‖x‖0] < exp(−Θ(ε)TK)

4. For T > 2, Pr[med(A(x)) > T‖x‖0] < exp(−Θ(T )K)
The analagous bounds for AS(x) also hold.

Proof. We can use Chernoff bounds, Lemma 18, and Lemma 19 to prove this in a similar way to
how the proof of Lemma 4 used Chernoff bounds and the tail bounds on Cauchy sketches.

We can now deduce a finite field subspace embedding result.
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Corollary 7. Let X ⊂ Fnq be a k-dimensional space. With probability at least 1−Θ(δ), for all
x ∈ X,

(1− ε)‖x‖0 ≤ q 1
2−Θ(ε)(A(x)) ≤ q 1

2 +O(ε)(A(x)) ≤ (1 + ε)‖x‖0
and

(1− ε)‖x‖0 ≤ q 1
2−Θ(ε)(AS(x)) ≤ q 1

2 +O(ε)(AS(x)) ≤ (1 + ε)‖x‖0

Proof. We can use Lemma 20 and the fact that |X| = qk to deduce the result with a union
bound.

We can also bound the median of an `0 sketch of a fixed matrix.

Lemma 21. Let M be an n× d matrix. For ε > 0, with probability 1− 1/Ω(1),

(1− ε)‖M‖0 ≤ med(A(M)) ≤ (1 + ε)‖M‖0

and
(1− ε)‖M‖0 ≤ med(AS(M)) ≤ (1 + ε)‖M‖0

Proof. The proof follows the same structure as the proof of Lemma 6 where we bound the
expected sum of med(A(M:,i)) over values of i where med(A(M:,i)) is large and conclude with
Markov’s Inequality. Instead of Fact 1 and Lemma 4, we use Lemma 18 and Lemma 20.

We can also bound the (1 − ε/2)-quantile of an `0 sketch and we can bound the (1 − ε/2)-
quantile of a fixed index `0 sketch of a fixed matrix.

Lemma 22. Let M be an n× d matrix. Let J be a set of indices with |J | = d. With probability
1− 1/Ω(1),

q1−ε/2(A(M)) ≤ O
(

1
ε

)
‖M‖0

and
q1−ε/2(AS(M)) ≤ O

(
1
ε

)
‖M‖0

Proof. These inequalities can be proved using the same argument that was used to prove Lemma
7, but using Lemma 20 instead of Lemma 4.

Theorem 15. Let U ∈ Fn×kq , A ∈ Fn×dq . With probability 1− 1/Ω(1),

med(A(UV −A)) ≥ (1−O(ε))‖UV −A‖0

for arbitrary V .

Proof. Let V ∗ be chosen to minimize ‖UV ∗ −A‖0.
For column indices i, let Ji = max(0, log(‖(UV ∗ −A):,i‖0/γ))
By Lemmas 18, 21, and 22, the following statements hold with probability 1− 1/Ω(1):

1. E is well-behaved on Ux for all x

2. For each i with probability at least 1 − ε3, med(A([U A:,i]x)) ≥ (1 − ε3)‖[U A:,i]x‖0 for
all x

3. med(A(UV ∗ −A)) ≤ (1 + ε3)‖UV ∗ −A‖0

4. q1−ε/2(AS(UV ∗ −A, ετ)) ≤ O
( 1
ε

)
‖UV ∗ −A‖0

We say a column index i is good if

med(A([U A:,i]y)) ≥ (1− ε3)‖[UA:,i]y‖0

for all y ∈ Rk+1, and bad otherwise. Let Qi = q1−ε/2(AS(UV ∗ − A, εγ):,i)). We say a bad
column index is large if

ε‖(UV −A):,i‖0 ≥
2

1− εQi + ‖(UV ∗ −A):,i‖0.
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By (ii), we know that E[
∑

bad i‖(UV ∗ − A):,i‖0] ≤ ε3‖UV ∗ − A‖0. By Markov’s inequality,
we know that with probability 1− 1/Ω(1),∑

bad i

‖(UV ∗ −A):,i‖0 ≤ O(ε3)‖UV ∗ −A‖0 (10)

By (iii)

(1 + ε3)‖UV ∗ −A‖0 ≥ med(A(UV ∗ −A))

≥ (1− ε3)
∑

good i

‖(UV ∗ −A):,i‖0 +
∑
bad i

med(A(UV ∗ −A):,i)

≥ (1− ε3)(1−Θ(ε3))‖UV ∗ −A‖0 +
∑
bad i

med(A(UV ∗ −A):,i),

where the second inequality comes from the definition of good, and the third inequality comes
from (10).

Thus ∑
bad i

med(A(UV ∗ −A):,i) ≤ O(ε3)‖UV ∗ −A‖0 (11)

We also have∑
small i

‖(UV −A):,i‖0 ≤
2

ε(1− ε)
∑

small i
Qi + 1

ε

∑
small i

‖(UV ∗ −A):,i‖0

≤ O
(

1
ε2(1− ε)

)( ∑
small i

‖(UV ∗ −A):,i‖0

)
+O(ε2)‖UV ∗ −A‖0

≤ O(ε)‖UV ∗ −A‖0 (12)

where the first inequality comes from the definition of small, the second inequality comes from
(iv) and (10) and the third inequality comes from (11).

Claim 4. ∑
large i

med(A(UV −A):,i) ≥ (1−O(ε))
∑

large i
‖(UV −A):,i‖0

Proof. Let column i be large. We have H(UV −A):,i = HU(V − V ∗):,i +H(UV ∗ −A):,i.
By the triangle inequality, we have

(1−Θ(ε))‖U(V − V ∗):,i‖0
≥(1−Θ(ε))(‖(UV −A):,i‖0 − ‖(UV ∗ −A):,i‖0)

≥(1−Θ(ε))((1− ε)‖(UV −A):,i‖0 + 2
1− εQi)

≥(1−Θ(ε))‖(UV −A):,i‖0 +Qi

≥(1−Θ(ε))‖(UV −A):,i‖0

where the second inequality follows from the definition of large.
Since ‖U(V − V ∗):,i‖0 ≥ (1−Θ(ε))‖(UV − A):,i‖0 and ε‖(UV − A):,i‖0 ≥ Qi, then Qi/ε ≤

‖U(V − V ∗):,i‖0.
If we run K independent instances of H, then by (i), we know that at least 1

2 + ε of those
instances will have estimations E(U(V − V ∗):,i) that are well-behaved and satisfy E(U(V −
V ∗):,i) ≥ (1−Θ(ε))‖U(V − V ∗):,i‖0.

At least 1− ε/2 of those instances will satisfy Qi > estS((UV ∗ − A):,i, ετ). In each of these
instances, there is some index t which is the maximum index where CS((UV ∗−A):,i) > ετ . This
index t satisfies est((UV ∗ −A):,i, ετ) ≥ 2tετ which implies that

t ≤ log2

(
estS((UV ∗ −A):,i, ετ)

ετ

)
< log2

(
Qi
ετ

)
≤ log2

(
‖U(V − V ∗):,i‖0

τ

)
≤ Ji

27



and by the nestedness property of S, for every index l ≥ Ji− 1 we have CS((UV ∗−A):,i)l < ετ .
Furthermore, C((UV ∗ −A):,i)l < ετ because ‖H0y‖0 ≤ ‖y‖0 for all y.

Thus, for at least 1
2 + ε/2 instances of H, it is true that E(U(V − V ∗):,i) is well-behaved

and for every index l ≥ Ji − 1 we have C((UV ∗ − A):,i)l < ετ . We first consider the case that
‖U(V − V ∗):,i‖0 > τ .

We know that for l = Ji − 1, Ji, or Ji + 1, one of those values will be the maximum value
such that the lth block of HU(V −V ∗):,i has at least τ non-zero entries, and all the later blocks
will have at most 3τ/4 non-zero entries. Each block of H(UV ∗ − A):,i after the Ji − 1th one
will have fewer than ετ non-zero entries. By well-behavedness, it follows that E(UV − A):,i =
E(U(V − V ∗):,i + (UV ∗ − A):,i) ≥ (1 − Θ(ε))‖U(V − V ∗):,i‖0 because the salient blocks of
H(UV −A):,i will have a number of non-zero entries differing from those blocks of HU(V −V ∗):,i
by an additive Θ(ε) error.

If ‖U(V − V ∗):,i‖0 ≤ τ , then by well-behavedness we know that block 1 of HU(V − V ∗):,i
will have fewer than 3τ/4 non-zero entries. In this case all blocks of H(UV ∗ − A):,i will have
fewer than ετ non-zero entries so all blocks of H(UV − A):,i besides the zeroth block will have
fewer than τ non-zero entries. Thus, E(UV −A):,i ≥ (1−Θ(ε)) ≥ ‖U(V − V ∗):,i‖0.

Therefore in a majority of the instances of H, we have E(UV − A):,i ≥ (1 − Θ(ε))‖U(V −
V ∗):,i‖0 ≥ (1−Θ(ε))‖(UV −A):,i‖0 and the result follows.

Finally

med(A(UV −A)) ≥
∑

good i

med(A(UV −A):,i) +
∑

large i
med(A(UV −A):,i)

≥ (1− ε3)
∑

good i

‖(UV −A):,i‖0 + (1−O(ε))
∑

large i
‖(UV −A):,i‖0

≥ (1−O(ε))‖UV −A‖0 − (1−O(ε))
∑

small i
‖(UV −A):,i‖0

≥ (1−O(ε))‖UV −A‖0 − (1−O(ε))O(ε)‖UV ∗ −A‖0
≥ (1−O(ε))‖UV −A‖0

where the first inequality occurs because large i are bad i, the second inequality comes from
the definition of good and Claim 4, the third inequality comes from the definition of small, the
fourth inequality comes from (12), and the last inequality holds because V ∗ is a minimizer.

Theorem 3 (Alternate Fq PTAS for p = 0). For ε ∈ (0, 1) there is a (1 + ε)-approximation
algorithm to Entrywise `0-Rank-k Approximation over Fq running in n · dpoly(k/ε) time.

Proof. Suppose U∗ and V ∗ (n × k and k × d respectively) are minimizers for ‖UV − A‖0. By
Theorem 15, med(A(U∗V − A)) = (1± ε)‖U∗V − A‖0. Since H is a C′

ε4 logn× n block matrix,
then HU∗ has C′

ε4 k · logn entries and we need K instances of HU∗ for a total of (logn) ·poly(k/ε)
entries each having q possible values. Thus we can exhaustively guess all possible values of HU∗
in npoly(k/ε) time.

For each guess of HU∗ and each column i, we can try all qk possible vectors Vi and choose
the minimizer. Once a V has been identified, we can solve for its optimal U and throughout this
whole process keep the best U and V that minimize ‖UV − A‖0. Since there are d rows, the
algorithm will have a total runtime of d · npoly(k/ε).

As we stated in the opening exposition of this section, we could have sketched over the
dimension d row space instead. In this case we would be guessing values forH(V ∗)T , a C′

ε4 log d×k
matrix, which would take dpoly(k/ε) time. We would then minimize over each of the n rows of U
for a total runtime of n · dpoly(k/ε).
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4 Generalized Binary Approximation
Given a matrix A ∈ {0, 1}n×d with n ≥ d, an integer k, and an inner product function
〈., .〉 : {0, 1}k × {0, 1}k → R, the Generalized Binary `0-Rank-k problem asks to find matrices
U ∈ {0, 1}n×k and V ∈ {0, 1}k×d minimizing ‖A−U · V ‖0, where the product U · V is the n× d
matrix B with Bi,j = 〈Ui,:, V:,j〉. An algorithm for the Generalized Binary `0-Rank-k problem
is an α-approximation, if it outputs matrices U ∈ {0, 1}n×k and V ∈ {0, 1}k×d satisfying

‖A− U · V ‖0 ≤ α · min
U ′∈{0,1}n×k,V ′∈{0,1}k×d

‖A− U ′ · V ′‖0.

Choosing an appropriate inner product function 〈., .〉 which also runs in time O(k), we obtain
the Binary `0-Rank-k problem over the reals, F2, and the Boolean semiring. We assume that
the function 〈., .〉 can be evaluated in time 2O(k), in order to simplify our running time bounds.

In this section, we prove Theorem 2, restated here for convenience.

Theorem 2 (PTAS for p = 0). For any ε ∈ (0, 1
2 ), there is a (1+ε)-approximation algorithm for

the Generalized Binary `0-Rank-k problem running in time (2/ε)2O(k)/ε2 · nd1+o(1) and succeeds
with constant probability 4, where o(1) hides a factor (log log d)1.1

/ log d.

Our algorithm achieves a substantial generalization of the standard clustering approach and
applies to the situation with constrained centers. This yields the first randomized almost-linear
time approximation scheme (PTAS) for the Generalized Binary `0-Rank-k problem. The time
complexity of the algorithm in Theorem 2 is close to optimal, in the sense that the running
time of any PTAS for the Generalized Binary `0-Rank-k problem must depend exponentially on
1/ε and doubly exponentially on k, assuming the Exponential Time Hypothesis. For reader’s
convenience, we restate our result.

Theorem 5 (Hardness for Generalized Binary `0-Rank-k). Assuming the Exponential Time Hy-
pothesis, Generalized Binary `0-Rank-k has no (1 + ε)-approximation algorithm in time 21/εo(1) ·
2no(1) . Further, for any ε ≥ 0, Generalized Binary `0-Rank-k has no (1 + ε)-approximation
algorithm in time 22o(k) · 2no(1) .

Regarding the dependence on ε, assume w.l.o.g. that n ≥ d, and thus the input size is O(n).
Even for k = 1 the problem is known to be NP-hard [21, 27]. Under ETH, no NP-hard problem
has a 2no(1)-time algorithm 5. We can restrict to ε ≥ 1/n2, since any better approximation
already yields an optimal solution. It follows for k = 1 that the Generalized Binary `0-Rank-k
problem has no (1 + ε)-approximation algorithm in time 21/εo(1) · 2no(1) . In other words, in order
to improve our exponential dependence on 1/ε to subexponential, we would need to pay an
exponential factor in n.

Regarding the dependence on k, note that for any ε a (1 + ε)-approximation algorithm for
our problem decides whether the answer is 0 or larger. In particular, over the Boolean semiring
it solves the problem whether a given bipartite graph can be covered with k bicliques. For
this problem, Chandran et al. [16] proved that even for k = O(logn) there is no 22o(k)-time
algorithm, unless ETH fails. It follows that for any ε ≥ 0, Generalized Binary `0-Rank-k has no
(1 + ε)-approximation algorithm in time 22o(k) · 2o(n). In other words, in order to improve our
doubly exponential dependence on k, we would need to pay an exponential factor in n.

Organization In Subsection 4.1, we state our core sampling result. In Subsection 4.2, we
give a simple but inefficient deterministic PTAS for the Generalized Binary `0-Rank-k problem,
which serves as a blueprint for our efficient randomized PTAS. We present first the deterministic
PTAS as it is conceptually simple and exhibits the main algorithmic challenge, namely, to
design an efficient sampling procedure. In Subsection 4.3, we prove our core sampling result by
extending the analysis of Alon and Sudakov [2] to clustering problems with constrained centers,
and by further strengthening an additive ±εmn approximation guarantee to a multiplicative

4 The success probability can be further amplified to 1− δ for any δ > 0 by running O(log(1/δ)) independent
trials of the preceding algorithm.

5 ETH postulates that 3-SAT is not in time 2o(n). Here we only need the weaker hypothesis that 3-SAT is
not in time 2no(1) .
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factor (1 + ε)-approximation. In Subsection 4.4, we design an efficient sampling procedure, and
this yields our efficient randomized PTAS. Our approach uses ideas from clustering algorithms
pioneered by Kumar et al. [43] and refined in [1, 44].

4.1 Setup - A Sampling Theorem
We denote the optimal value of Generalized Binary `0-Rank-k by

OPT = OPTk
def= min

U∈{0,1}n×k, V ∈{0,1}k×d
‖A− U · V ‖0.

Further, for a fixed matrix V ∈ {0, 1}k×d we let

OPTVk
def= min

U∈{0,1}n×k
‖A− U · V ‖0,

and we say that a matrix U ∈ {0, 1}n×k is a best response to V , if ‖A− U · V ‖0 = OPTVk .
Given a matrixA ∈ {0, 1}n×d, a positive integer k, and an inner product function 〈., .〉 : {0, 1}k×

{0, 1}k → R, let V ∈ {0, 1}k×d be arbitrary and U ∈ {0, 1}n×k be a best response to V . Partition
the columns of V (equivalently the columns of A) into

CVy := {j | V:,j = y},

for y ∈ {0, 1}k. For any row i, vector y ∈ {0, 1}k, and c ∈ {0, 1} we consider

Zi,y,c := |{j ∈ CVy |Aij = c}| and Zi,y,6=c := |{j ∈ CVy |Aij 6= c}|.

We define the exact cost of a row i for any vector x ∈ {0, 1}k as

Ei,x := ‖Ai,: − xT · V ‖0 =
∑

y∈{0,1}k
Zi,y,6=〈x,y〉. (13)

Observe that Ui,: ∈ {0, 1}k is a vector x minimizing Ei,x (this follows from U being a best
response to V ), and let Ei := Ei,Ui,: .

We do not know the partitioning CVy , however, as we will see later we can assume that (1)
we can sample elements from each CVy and (2) we know approximations of the sizes |CVy |.

For (1), to set up notation let C̃ = (C̃y)y∈{0,1}k be a family, where C̃y is a random multiset
with elements from CVy . Specifically, we will work with the following distribution DV,t for some
t ∈ N: For any y ∈ {0, 1}k, if |CVy | < t let C̃y = CVy , otherwise sample t elements from CVy with
replacement and let the resulting multiset be C̃y.

For (2), we say that a sequence α = (αy)y∈{0,1}k is a sequence of δ-approximate cluster sizes
if for any y ∈ {0, 1}k with |CVy | < t we have αy = |CVy |, and for the remaining y ∈ {0, 1}k we
have

|CVy | ≤ αy ≤ (1 + δ)|CVy |.
Then corresponding to Zi,y,c and Zi,y,6=c we have random variables

Z̃i,y,c := |{j ∈ C̃y | Ai,j = c}| and Z̃i,y,6=c := |{j ∈ C̃y | Ai,j 6= c}|.

Given C̃ and α, we define the estimated cost of row i and vector x ∈ {0, 1}k as

Ẽi,x :=
∑

y∈{0,1}k

αy

|C̃y|
Z̃i,y,6=〈x,y〉. (14)

If CVy = ∅ for some y ∈ {0, 1}k, then Z̃i,y,6=〈x,y〉 = 0 and we define the corresponding summand
in (14) to be 0. Observe that if the approximation αy is exact, i.e., αy = |CVy |, then Ẽi,x is an
unbiased estimator for the exact cost Ei,x.

We now simplify the problem to optimizing the estimated cost instead of the exact cost.
Specifically, we construct a matrix Ũ ∈ {0, 1}n×k by picking for each row i any

Ũi,: ∈ argmin{Ẽi,x | x ∈ {0, 1}k}.
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Note that matrix Ũ depends on the input (A, k, 〈., .〉), on the sequence α, and on the sampled
multisets C̃ = (C̃y)y∈{0,1}k . When it is clear from the context, we suppress the dependence on
A, k, 〈., .〉, and write Ũ = Ũ(C̃, α). We show that this matrix yields a good approximation to
the optimal cost.

Theorem 16. For any matrix V ∈ {0, 1}k×d, let α be a sequence of ε6 -approximate cluster sizes
and draw C̃ according to distribution DV,t for t = t(k, ε) := 24k+14/ε2. Then we have

E
C̃

[
‖A− Ũ(C̃, α) · V ‖0

]
≤ (1 + ε)OPTVk .

We defer the proof of Theorem 16 to Section 4.3, and first show how it yields a simple but
inefficient deterministic PTAS for the Generalized Binary `0-Rank-k problem running in time
n·dpoly(2k/ε), see Section 4.2. Then, in Section 4.4, we design a sampling procedure that improves
the running time to (2/ε)2O(k)/ε2 ·mn1+o(1), where o(1) hides a factor (log log d)1.1

/ log d.

4.2 Simple PTAS
In this subsection, we show how Theorem 16 leads to a simple but inefficient deterministic PTAS,
see Algorithm 2, for the Generalized Binary `0-Rank-k problem.

A basic, but crucial property used in our analysis is that given a matrix A ∈ {0, 1}n×d, an
integer k and a matrix V , we can compute a best response matrix U minimizing ‖A − U · V ‖0
in time 2O(k)nd. Indeed, we can split ‖A−U · V ‖0 =

∑d
i=1‖Ai,: −Ui,: · V ‖0 and brute-force the

optimal solution Ui,: ∈ {0, 1}k minimizing the i-th summand ‖Ai,: − Ui,: · V ‖0. Symmetrically,
given U we can compute a best response V in time 2O(k)nd. In particular, if (U, V ) is an optimal
solution then U is a best response for V , and V is a best response for U .

We now present the pseudocode of Algorithm 2.

Algorithm 2 (PTAS for Generalized Binary `0-Rank-k)
Input: A matrix A ∈ {0, 1}n×d, an integer k, an inner product 〈., .〉, and ε ∈ (0, 1). Output:
Matrices Ũ ∈ {0, 1}n×k, Ṽ ∈ {0, 1}k×d such that ‖A− Ũ · Ṽ ‖0 ≤ (1 + ε)OPTk.

1. (Guess column set sizes) Let U, V be an optimal solution. Exhaustively guess all sizes
|CVy | =: αy for y ∈ {0, 1}k. There are d2k possibilities.

2. (Guess column multisets) Theorem 16 implies existence of a family C̃ = (C̃y)y∈{0,1}k such
that ‖A − Ũ(C̃, α) · V ‖0 ≤ (1 + ε)OPTk, where each C̃y is a multiset consisting of at most t
indices in {1, . . . , d}. Exhaustively guess such a family C̃. There are dO(t·2k) possibilities.

3. (Compute Ũ) Now we know A, k, 〈., .〉, |CVy | for all y ∈ {0, 1}k, and C̃, thus we can compute
the matrix Ũ = Ũ(C̃, α), where row Ũi,: is any vector x minimizing the estimated cost Ẽi,x.
Since each row Ũi,: ∈ {0, 1}k can be optimized independently, this takes time 2O(k)nd. If we
guessed correctly, we have ‖A− Ũ · V ‖0 ≤ (1 + ε)OPTk.

4. (Compute Ṽ ) Compute Ṽ as a best response to Ũ . This takes time 2O(k)nd. If we guessed
correctly, by best-response and Step 3, we have

‖A− Ũ · Ṽ ‖0 ≤ ‖A− Ũ · V ‖0 ≤ (1 + ε)OPTk.

5. Return the pair (Ũ , Ṽ ) minimizing ‖A− Ũ · Ṽ ‖0 over all exhaustive guesses.

The correctness of Algorithm 2 immediately follows from Theorem 16. The running time is
dominated by the exhaustive guessing in Step 2, so we obtain time m · npoly(2k/ε).

4.3 Proof of the Sampling Theorem 16
We follow the notation in Section 4.1, in particular V ∈ {0, 1}k×d is an arbitrary matrix and
U ∈ {0, 1}n×k is a best response to V . We define Di,x as the difference of the cost of row i w.r.t.
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a vector x and the cost of row i w.r.t. the optimal vector Ui,:, i.e.,

Di,x := Ei,x − Ei = ‖Ai,: − xT · V ‖0 − ‖Ai,: − Ui,: · V ‖0 (15)

=
∑

y∈{0,1}k
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉.

Note that a vector x is suboptimal for a row i if and only if Di,x > 0. By a straightforward
splitting of the expectation, we obtain the following.

Claim 5. For every V ∈ {0, 1}k×d, we have

E
C̃

[
‖A− Ũ · V ‖0

]
= OPTVk +

n∑
i=1

∑
x∈{0,1}k
Di,x>0

Pr
[
Ũi,: = x

]
·Di,x.

Proof. We split ‖A− Ũ · V ‖0 =
∑n
i=1 ‖Ai,: − Ũi,: · V ‖0. This yields

E
C̃

[
‖A− Ũ · V ‖0

]
=

n∑
i=1

E
C̃

[
‖Ai,: − Ũi,: · V ‖0

]
=

n∑
i=1

∑
x∈{0,1}k

Pr
[
Ũi,: = x

]
· ‖Ai,: − xT · V ‖0.

By definition of Di,x, we have

E
C̃

[
‖A− Ũ · V ‖0

]
=

n∑
i=1

∑
x∈{0,1}k

Pr
[
Ũi,: = x

]
· (‖Ai,: − Ui,: · V ‖0 +Di,x)

=
n∑
i=1

(
‖Ai,: − Ui,: · V ‖0 +

∑
x∈{0,1}k

Pr
[
Ũi,: = x

]
·Di,x

)

= OPTVk +
n∑
i=1

∑
x∈{0,1}k
Di,x>0

Pr
[
Ũi,: = x

]
·Di,x.

Similarly to Di,x, we define an estimator

D̃i,x := Ẽi,x − Ẽi,Ui,: =
∑

y∈{0,1}k

αy

|C̃y|
·
(
Z̃i,y,6=〈x,y〉 − Z̃i,y,6=〈Ui,:,y〉

)
. (16)

Note that Ũi,: is chosen among the vectors x ∈ {0, 1}k minimizing D̃i,x. Hence, our goal is
to show that significantly suboptimal vectors (with Di,x >

ε
3 · Ei) satisfy D̃i,x > 0 with good

probability, and thus these vectors are not picked in Ũ .
To this end, we split the rows i and suboptimal vectors x into:

L0 := {(i, x) | 0 < Di,x ≤ ε
3 · Ei},

L1 := {(i, x) | ε3 · Ei < Di,x ≤ Ei},
L2 := {(i, x) | Di,x > Ei}.

Observe that
∑

(x,i)∈L0
Pr
[
Ũi,: = x

]
· Di,x ≤ ε

3 · OPTVk . By Claim 5, we can ignore all tuples
(i, x) ∈ L0, since

E
C̃

[
‖A− Ũ · V ‖0

]
≤ (1 + ε

3 )OPTVk +
∑

(i,x)∈L1∪L2

Pr
[
Ũi,: = x

]
·Di,x. (17)

Hence, our goal is to upper bound the summation
∑

(i,x)∈L1∪L2
Pr
[
Ũi,: = x

]
·Di,x.

We next establish a sufficient condition for Ũi,: 6= x, for any suboptimal vector x. Note that
by definition of Di,x we have

Di,x =
∑

y∈{0,1}k
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉 =

∑
y∈Ŷi,x

Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉, (18)
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where Ŷi,x := {y ∈ {0, 1}k | 〈x, y〉 6= 〈Ui,:, y〉}. Similarly, for the estimator we have

D̃i,x =
∑

y∈{0,1}k

αy

|C̃y|
·
(
Z̃i,y,6=〈x,y〉−Z̃i,y,6=〈Ui,:,y〉

)
=
∑
y∈Ŷi,x

αy

|C̃y|
·
(
Z̃i,y,6=〈x,y〉−Z̃i,y,6=〈Ui,:,y〉

)
. (19)

Let Wi,x be the event that for every y ∈ Yi,x := {y ∈ Ŷi,x | |C̃y| = t} and every c ∈ {0, 1},
we have ∣∣∣∣∣Z̃i,y,c − |C̃y||CVy |

· Zi,y,c

∣∣∣∣∣ ≤ ∆y, where ∆y := t ·Di,x

2k+2 · αy
.

We now show that conditioned on the eventWi,x, we have D̃i,x > 0 for any (i, x) ∈ L1∪L2, and
thus Ũi,: 6= x.

Lemma 23. For any vector x ∈ {0, 1}k and row i ∈ [m], if event Wi,x occurs then we have
D̃i,x ≥ 1

2 ·Di,x − ε
6 · Ei. In particular, if additionally Di,x >

ε
3 · Ei then D̃i,x > 0.

Proof. Observe that Z̃i,y,6=c ∈ {Z̃i,y,0, Z̃i,y,1, Z̃i,y,0 + Z̃i,y,1} for any i, y, c. Since E[Z̃i,y,0 +
Z̃i,y,1] = |C̃y| = Z̃i,y,0 + Z̃i,y,1, conditioned on the event Wi,x for any y ∈ Yi,x all three random
variables Z̃i,y,0, Z̃i,y,1, Z̃i,y,0 + Z̃i,y,1 differ from their expectation by at most ∆y. Hence, we
have ∣∣∣∣∣ αy|C̃y| Z̃i,y,6=〈x,y〉 − αy

|CVy |
Zi,y,6=〈x,y〉

∣∣∣∣∣ ≤ Di,x

2k+2 .

The same inequality also holds for y ∈ Ŷi,x \ Yi,x, since then Z̃i,y,6=〈x,y〉 = Zi,y,6=〈x,y〉 and |C̃y| =
|CVy | (by definition of the distribution DV,t). In combination with (19) we obtain

D̃i,x ≥ −
Di,x

2 +
∑
y∈Ŷi,x

αy
|CVy |

·
(
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉

)
. (20)

Let αy = (1 + γy)|CVy | with 0 ≤ γy ≤ ε
6 for any y ∈ {0, 1}k. By (18), and since αy = |CVy | =

|C̃y| for every y ∈ Ŷi,x \ Yi,x (by definition of distribution DV,t), we have∑
y∈Ŷi,x

αy
|CVy |

(
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉

)
= Di,x +

∑
y∈Yi,x

γy
(
Zi,y,6=〈x,y〉 − Zi,y,6=〈Ui,:,y〉

)
≥ Di,x −

∑
y∈Yi,x

γyZi,y,6=〈Ui,:,y〉

≥ Di,x −
ε

6
∑

y∈{0,1}k
Zi,y,6=〈Ui,:,y〉 = Di,x −

ε

6Ei.

Together with (20), we have D̃i,x ≥ 1
2Di,x − ε

6Ei.

We next upper bound the probability of picking a suboptimal vector x.

Claim 6. For any x ∈ {0, 1}k with Di,x >
ε
3 · Ei, we have

Pr[Ũi,: = x] ≤
∑
y∈Yi,x

min
c∈{0,1}

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
.

Proof. For any y ∈ {0, 1}k, we have Z̃i,y,0 + Z̃i,y,1 = |C̃y| = E[Z̃i,y,0] + E[Z̃i,y,1]. Further, it
holds that |Z̃i,y,0 − E[Z̃i,y,0]| = |Z̃i,y,1 − E[Z̃i,y,1]|, and thus Pr

[
|Z̃i,y,0 − E[Z̃i,y,0]| ≤ ∆y

]
=

Pr
[
|Z̃i,y,1−E[Z̃i,y,1]| ≤ ∆y

]
= Pr

[
|Z̃i,y,0−E[Z̃i,y,0]| ≤ ∆y and |Z̃i,y,1−E[Z̃i,y,1]| ≤ ∆y

]
. Since

Ũi,: = x can only hold if D̃i,x ≤ 0, the claim follows by Lemma 23 and a union bound over
y ∈ Yi,x.

In the following subsections, we bound the summation in (17) over the sets L1 and L2.
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4.3.1 Case 1: Small Difference

We show first that |L1| is small (see Claim 7). Then, we use a simple bound for Pr[Ũi,: = x]
which is based on Lemma 9 (see Claim 8).

Claim 7. We have
∑

(i,x)∈L1

∑
y∈Yi,x |C

V
y | ≤ 2k+2 ·OPTVk .

Proof. Fix (i, x) ∈ L1 and let y ∈ Yi,x. Note that since 〈x, y〉 6= 〈Ui,:, y〉 we have

{j ∈ CVy | Ai,j 6= 〈x, y〉} ∪ {j ∈ CVy | Ai,j 6= 〈Ui,:, y〉} = CVy .

Note that this union is not necessarily disjoint, e.g., if 〈x, y〉 6∈ {0, 1}. Since Ei,x = Di,x + Ei
(by (15)) and Di,x ≤ Ei (by definition of L1), we have∑

y∈Yi,x

|CVy | ≤
∑
y∈Yi,x

Zi,y,6=〈x,y〉 + Zi,y,6=〈Ui,:,y〉 ≤ Ei,x + Ei ≤ 3Ei. (21)

Fixing x and summing over all i with (i, x) ∈ L1, the term Ei sums to at most OPTVk . Also
summing over all x ∈ {0, 1}k yields another factor 2k. Therefore, the claim follows.

Claim 8. We have
∑

(i,x)∈L1
Pr[Ũi,: = x] ·Di,x ≤ ε

3 ·OPTVk .

Proof. Note that for any row i, vector y ∈ Yi,x, and c ∈ {0, 1}, the random variable Z̃i,y,c is a
sum of independent Bernoulli random variables, since the t samples from CVy forming C̃y are
independent, and each sample contributes either 0 or 1 to Z̃i,y,c. Hence, our instantiations of
Chebyshev’s inequality, Lemmas 8 and 9, are applicable. We use Lemma 9 to bound Pr

[
|Z̃i,y,c−

E[Z̃i,y,c]| > ∆y

]
≤
√
t/∆y. Since ∆y = t ·Di,x/(2k+2 · αy) and αy ≤ (1 + ε

6 )|CVy | < 2|CVy |, we
have Pr

[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
≤ 2k23|CVy |/(

√
t · Di,x), and thus by Claim 6, we obtain

Pr[Ũi,: = x] ≤ 2k+3/(
√
tDi,x)) ·

∑
y∈Yi,x |C

V
y |. Claim 7 now yields

∑
(i,x)∈L1

Pr[Ũi,: = x] ·Di,x ≤
2k+3
√
t

∑
(i,x)∈L1

∑
y∈Yi,x

|CVy | ≤
22k+5
√
t

OPTVk .

Since we chose t ≥ 24k+14/ε2, see Theorem 16, we obtain the upper bound ε
3OPTVk .

4.3.2 Case 2: Large Difference

We use here the stronger instantiation of Chebyshev’s inequality, Lemma 8, and charge µ =
E[Z̃i,y,c] against OPTVk .

Claim 9. We have
∑

(i,x)∈L2
Pr[Ũi,: = x] ·Di,x ≤ ε

3 ·OPTVk .

Proof. Fix (i, x) ∈ L2 and let y ∈ Yi,x. As in the proof of Claim 8, we see that our instantiation
of Chebyshev’s inequality, Lemma 8, is applicable to Z̃i,y,c for any c ∈ {0, 1}. We obtain
Pr
[
|Z̃i,y,c−E[Z̃i,y,c]| > ∆y

]
≤ E[Z̃i,y,c]/∆2

y. Note that E[Z̃i,y,c] = Zi,y,c · t/|CVy |, since |C̃y| = t.
Using minc∈{0,1} Zi,y,c ≤ Zi,y,6=〈Ui,:,y〉, we have

min
c∈{0,1}

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
≤ t

|CVy |∆2
y

· Zi,y,6=〈Ui,:,y〉.

Since ∆y = t ·Di,x/(2k+2 · αy) and αy ≤ (1 + ε/6)|CVy | < 2|CVy |, we have

min
c∈{0,1}

Pr
[
|Z̃i,y,c − E[Z̃i,y,c]| > ∆y

]
≤

22k+6 · |CVy |
t · (Di,x)2 · Zi,y,6=〈Ui,:,y〉.

Summing over all y ∈ Yi,x, Claim 6 yields

Pr[Ũi,: = x] ≤
∑
y∈Yi,x

22k+6 · |CVy |
t · (Di,x)2 · Zi,y,6=〈Ui,:,y〉. (22)
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We again use inequality (21), i.e.,
∑
y∈Yi,x |C

V
y | ≤ Ei,x + Ei. Since Ei,x = Di,x + Ei (by (15))

and Ei < Di,x (by definition of L2), we have |CVy | ≤ 3Di,x for any y ∈ Yi,x. Together with (22),
and then using the definition of Ei, we have

Pr[Ũi,: = x] ·Di,x ≤
22k+8

t

∑
y∈Yi,x

Zi,y,6=〈Ui,:,y〉 ≤
22k+8

t
Ei,

Fixing x and summing over all i with (i, x) ∈ L2, the term Ei sums to at most OPTVk . Also
summing over all x ∈ {0, 1}k yields another factor 2k. Thus, it follows that∑

(i,x)∈L2

Pr[Ũi,: = x] ·Di,x ≤
23k+8

t
OPTVk .

Since we chose t ≥ 23k+10/ε, see Theorem 16, we obtain the upper bound ε
3 ·OPTVk .

4.3.3 Finishing the Proof

Taken together, Claims 5, 8, and 9 prove Theorem 16.

Proof of Theorem 16. Using Claim 5, splitting into L0, L1 and L2, and using Claims 8 and 9,
we obtain for any ε ∈ (0, 1) and t = 24k+12/ε2 that

E
Ṽ

[
‖A− Ũ · V ‖0

]
≤ (1 + ε

3 )OPTVk +
∑

(i,x)∈L1

Pr
[
Ũi,: = x

]
·Di,x +

∑
(i,x)∈L2

Pr
[
Ũi,: = x

]
·Di,x

≤ (1 + ε)OPTVk .

This completes the proof.

4.4 Efficient Sampling Algorithm
The conceptually simple PTAS in Section 4.2 has two running time bottlenecks, due to the
exhaustive enumeration in Step 1 and Step 2. Namely, Step 1 guesses exactly the sizes |CVy |
for each y ∈ {0, 1}k, and there are dO(2k) possibilities; and Step 2 guesses among all columns
of matrix A the multiset family C̃, guaranteed to exist by Theorem 16 and there are dO(t·2k)

possibilities.
Since Theorem 16 needs only approximate cluster sizes, it suffices in Step 1 to guess numbers

αy with |CVy | ≤ αy ≤ (1 + ε
6 )|CVy | if |CVy | ≥ t, and αy = |CVy | otherwise, where t = 24k+12/ε2.

Hence, the runtime overhead for Step 1 can be easily improved to (t+ ε−1 log d)2k .
To reduce the exhaustive enumeration in Step 2, we design an efficient sampling procedure,

see Algorithm 3, that uses ideas from clustering algorithms pioneered by Kumar et al. [43] and
refined in [1, 44]. Our algorithm reduces the total exhaustive enumeration in Step 2 and the
guessing overhead for the approximate cluster sizes in Step 1 to (2k/ε)2O(k) · (log d)(log log d)0.1

possibilities.
This section is structured as follows. We first replace an optimal solution (U, V ) by a “well-

clusterable” solution (U,W ), which will help in our correctness proof. In Subsection 4.4.2 we
present pseudocode for our sampling algorithm. We then prove its correctness in Subsection 4.4.3
and analyze its running time in Subsection 4.4.4. Finally, we show how to use the sampling
algorithm designed in Subsection 4.4.2 together with the ideas of the simple PTAS from Sub-
section 4.2 to prove Theorem 2, see Subsection 4.4.5.

4.4.1 Existence of a (U, V, ε)-Clusterable Solution

For a matrix B ∈ {0, 1}n×d we denote by ColSupp(B) the set of unique columns of B. Note
that if the columns of U are linearly independent then U ·ColSupp(V ) denotes the set of distinct
columns of U ·V . In the clustering formulation of the Generalized Binary `0-Rank-k problem as
discussed in the introduction, the set U · ColSupp(V ) corresponds to the set of cluster centers.

Given matrices U, V , we will first replace V by a related matrix W in a way that makes
all elements of U · ColSupp(W ) sufficiently different without increasing the cost too much, as
formalized in the following.
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Lemma 24. For any U ∈ {0, 1}n×k, V ∈ {0, 1}k×d and ε ∈ (0, 1), there exists a matrix W ∈
{0, 1}k×n such that ‖A−U ·W‖0 ≤ (1 + ε)‖A−U ·V ‖0 and for any distinct y, z ∈ ColSupp(W )
we have

(i) ‖Uy − Uz‖0 > ε · 2−k · ‖A− U · V ‖0/min{|CWy |, |CWz |}, and

(ii) ‖A:,j − Uy‖0 ≤ ‖A:,j − Uz‖0 for every j ∈ CWy .

We say that such a matrix W is (U, V, ε)-clusterable.

Proof. The proof is by construction of W . We initialize W := V and then iteratively resolve
violations of (i) and (ii). In each step, resulting in a matrix W ′, we ensure that ColSupp(W ′) ⊆
ColSupp(W ). We call this support-monotonicity.

We can resolve all violations of (ii) at once by iterating over all columns j ∈ [d] and replacing
W:,j by the vector z ∈ ColSupp(W ) minimizing ‖A:,j − Uz‖0. This does not increase the cost
‖A− U ·W‖0 and results in a matrix W ′ without any violations of (ii).

So assume that there is a violation of (i). That is, for distinct y, z ∈ ColSupp(W ), where we
can assume without loss of generality that |CWy | ≤ |CWz |, we have

‖Uy − Uz‖0 ≤ ε · 2−k · ‖A− U · V ‖0/|CWy |.

We change the matrix W by replacing for every j ∈ CWy the column W:,j = y by z. Call the
resulting matrix W ′. Note that the cost of any replaced column j changes to

‖A:,j − U ·W ′:,j‖0 = ‖A:,j − Uz‖0 ≤ ‖A:,j − Uy‖0 + ‖Uy − Uz‖0
≤ ‖A:,j − U ·W:,j‖0 + ε · 2−k · ‖A− U · V ‖0/|CWy |.

Since the number of replaced columns is |CWy |, it follows that the overall cost increases by at
most ε · 2−k · ‖A − U · V ‖0. Note that after this step the size of ColSupp(W ) is reduced by 1,
since we removed any occurrence of column y. By support-monotonicity, the number of such
steps is bounded by 2k. Since resolving violations of (ii) does not increase the cost, the final
cost is bounded by (1 + ε)‖A− U · V ‖0.

After at most 2k times resolving a violation of (i) and then all violations of (ii), we end up
with a matrix W without violations and the claimed cost bound.

4.4.2 The Algorithm Sample

Given A ∈ {0, 1}n×d, k ∈ N, ε ∈ (0, 1), and t ∈ N, fix any optimal solution U, V , that is
‖A− U · V ‖0 = OPTk. Our proof will use the additional structure provided by well clusterable
solutions. Therefore, fix any (U, V, ε)-clusterable matrixW as in Lemma 24. Since ‖A−U ·W‖0 ≤
(1 + ε)‖A − U · V ‖0, we can restrict to matrix W . Specifically, we fix the optimal partitioning
CW of [d] for the purpose of the analysis and for the guessing steps of the algorithm. Our goal
is to sample from the distribution DW,t.

Pseudocode of our sampling algorithm SampleA,k,ε,t(M,N , R̃, C̃, α) is given below. The
arguments of this procedure are as follows. Matrix M is the current submatrix of A (initialized
as the full matrix A). Set N ⊆ {0, 1}k is the set of clusters that we did not yet sample from
(initialized to {0, 1}k). The sequence R̃ stores “representatives” of the clusters that we already
sampled from (initialized to undefined entries (⊥, . . . ,⊥)). The sequence C̃ contains our samples,
so in the end we want C̃ to be drawn according to DW,t (C̃ is initialized such that C̃y = ∅ for
all y ∈ {0, 1}k). Finally, α contains guesses for the sizes of the clusters that we already sampled
from, so in the end we want it to be a sequence of ε6 -approximate cluster sizes (α is initialized such
that αy = 0 for all y ∈ {0, 1}k). This algorithm is closely related to algorithm “Irred-k-means”
by Kumar et al. [43], see the introduction for a discussion.

In this algorithm, at the base case we call EstimateBestResponseA,k(C̃, α), which com-
putes matrix Ũ = Ũ(C̃, α) and a best response Ṽ to Ũ . Apart from the base case, there are
three phases of algorithm Sample. In the sampling phase, we first guess some y ∈ N and an
approximation αy of |CWy |. Then, from the current matrix M of dimension n× dM , we sample
min{t, αy} columns to form a multiset C̃y, and we sample one column from M to form R̃y. We
make a recursive call with y removed from N and updated R̃, C̃, α by the values R̃y, C̃y, αy.

36



As an intermediate solution, we let U (1), V (1) be the best solution returned by the recursive
calls over all exhaustive guesses. In the pruning phase, we delete the dM/2 columns of M that
are closest to R̃, and we make a recursive call with the resulting matrix M ′, not changing the
remaining arguments. Denote the returned solution by U (2), V (2). Finally, in the decision phase
we return the better solution between U (1), V (1) and U (2), V (2).

Algorithm 3 Estimating Best Response
SampleA,k,ε,t(M, N , R̃, C̃, α)

let dM be the number of columns of M
set ν := (ε/2k+4)2k+2−|N|

1. if N = ∅ or dM = 0: return (Ũ , Ṽ ) = EstimateBestResponseA,k(C̃, α)

* Sampling phase *
2. guess y ∈ N
3. guess whether |CWy | < t:
4. if |CWy | < t: guess αy := |CWy | exactly, i.e. αy ∈ {0, 1, . . . , t− 1}
5. otherwise: guess ν · dM ≤ αy ≤ dM such that |CWy | ≤ αy ≤ (1 + ε

6 )|CWy |
6. if αy = 0: (U (y,αy), V (y,αy)) = EstimateBestResponseA,k(C̃, α)
7. else
8. sample u.a.r. min{t, αy} columns from M ; let C̃y be the resulting multiset6

9. sample u.a.r. one column from M ; call it R̃y
10. (U (y,αy), V (y,αy)) = SampleA,k,ε,t(M, N\{y}, R̃ ∪ {R̃y}, C̃ ∪ {C̃y}, α ∪ {αy})
11. let (U (1), V (1)) be the pair minimizing ‖A− U (y,αy)V (y,αy)‖0 over all guesses y and αy

* Pruning phase *
12. let M ′ be matrix M after the deleting dM/2 closest columns to R̃,

i.e., the dM/2 columns M:,j with smallest values miny∈{0,1}k\N ‖M:,j − R̃y‖0
13. (U (2), V (2)) = SampleA,k,ε,t(M ′, N , R̃, C̃, α)

* Decision *
14. return (U (`), V (`)) with the minimal value ‖A− U (`)V (`)‖0 over ` ∈ {1, 2}.

Algorithm 4 Estimating Best Response
EstimateBestResponseA,k(C̃, α)
1. (Compute Ũ) Compute a matrix Ũ = Ũ(C̃, α), where row Ũi,: is any vector x minimizing the
estimated cost Ẽi,x. Note that each row Ũi,: ∈ {0, 1}k can be optimized independently.
2. (Compute Ṽ ) Compute Ṽ as a best response to Ũ .
3. Return (Ũ , Ṽ )

4.4.3 Correctness of Algorithm Sample

With notation as above, we now prove correctness of algorithm Sample.

Theorem 17. Algorithm SampleA,k,ε,t generates a recursion tree which with probability at least
( ε2t )

2O(k)·t has a leaf calling EstimateBestResponseA,k(C̃, α) such that
(i) α is a sequence of ε

6 -approximate cluster sizes (w.r.t. the fixed matrix W ), and
(ii) C̃ is drawn according to distribution DW,t.

The rest of this section is devoted to proving Theorem 17. Similarly as in the algorithm, we
define parameters

γ := ε/2k+4 and νi := γ2k+2−i.

6 Given a submatrix M of A, and t columns sampled u.a.r. from M , we denote by C̃y the resulting multiset
of column indices with respect to the original matrix A.
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Sort {0, 1}k = {y1, . . . , y2k} such that |CWy1
| ≤ . . . ≤ |CWy2k

|. We construct the leaf guaranteed by
the theorem inductively. In each depth τ = 0, 1, . . . we consider one recursive call

SampleA,k,ε,t(M (τ), N (τ), R̃(τ), C̃(τ), α(τ)).

We consider the partitioning P (τ) := {P (τ)
y }y∈{0,1}k induced by the partitioning CW on M (τ),

i.e., P (τ)
y is the set CWy restricted to the columns of A that appear in the submatrix M (τ). We

claim that we can find a root-to-leaf path such that the following inductive invariants hold with
probability at least (ν0/t)(2k−|N (τ)|)(t+1):

I1. P (τ)
y = CWy for all y ∈ N (τ), i.e., no column of an unsampled cluster has been removed,

I2. N (τ) = {y1, . . . , y|N (τ)|}, i.e., the remaining clusters are the |N (τ)| smallest clusters,

I3. For any y ∈ {0, 1}k \N (τ) the value α(τ)
y is an ε

6 -approximate cluster size, i.e., if |CWy | < t

we have α(τ)
y = |CWy |, and otherwise |CWy | ≤ α

(τ)
y ≤ (1 + ε

6 )|CWy |,

I4. For any y ∈ {0, 1}k \N (τ) the multiset C̃(τ)
y is sampled according to distribution DW,t, i.e.,

if |CWy | < t then C̃(τ)
y = CWy and otherwise C̃(τ)

y consists of t uniformly random samples
from CWy with replacement, and

I5. For any y ∈ {0, 1}k \ N (τ) the vector R̃(τ)
y satisfies ‖R̃(τ)

y − Uy‖0 ≤ 2‖A− UW‖0/|CWy |.

For shorthand, we set d(τ) := dM(τ) and ν(τ) := ν|N (τ)|.

Base Case: Note that the recursion may stop in Step 1 with N (τ) = ∅ or d(τ) = 0, or in Step
6 with α(τ)

y = 0 for some guessed y ∈ N . Since we only want to show existence of a leaf of the
recursion tree, in the latter case we can assume that we guessed y = y|N (τ)| and α

(τ)
y = |CWy |,

and thus we have |CWy | = 0. Hence, in all three cases we have |CWy | = 0 for all y ∈ N (τ), by
invariant I2 and sortedness of y1, . . . , y2k . Since we initialize C̃(0)

y = ∅ and α(0)
y = 0, we are done

for all y ∈ N (τ). By invariants I3 and I4, we are also done for all y ∈ {0, 1}k \ N (τ). The total
success probability is at least(ν0

t

)2k(t+1)
=
( ε

2k+4t

)2k(2k+2)(t+1)
=
( ε

2t

)2O(k)·t
.

The proof of the inductive step proceeds by case distinction.

Case 1 (Sampling): Suppose |P (τ)
y | ≥ ν(τ) · d(τ) for some y ∈ N (τ). Since P (τ)

y = CWy (by
invariant I1) and sortedness, we have |CWy | ≥ ν(τ)d(τ) for y := y|N (τ)|. We may assume that we
guess y = y|N (τ)| in Step 2, since we only want to prove existence of a leaf of the recursion tree.
Note that there is a number

ν(τ)d(τ) ≤ αy ≤ d(τ) with |CWy | ≤ αy ≤ (1 + ε
6 )|CWy |

(in particular αy = |CWy | would work), so we can guess such a number in Step 5. Together with
Steps 3 and 4, we can assume that α(τ+1) satisfies invariant I3.

In Step 8 we sample a multiset C̃y of min{t, αy} columns from M . If |CWy | ≥ t, we condition
on the event that all these columns lie in CWy . Then C̃y forms a uniform sample from CWy of size
t. Since |CWy | ≥ ν(τ)d(τ), this event has probability at least (ν(τ))t. Otherwise, if |CWy | = αy < t,
we condition on the event that all αy samples lie in CWy and are distinct. Then C̃y = CWy . The
probability of this event is at least

(1/d(τ))αy ≥ (ν(τ)/αy)αy ≥ (ν(τ)/t)t.

In total, C̃(τ+1) satisfies invariant I4 with probability at least (ν(τ)/t)t.
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In Step 9 we sample one column R̃y uniformly at random from M . With probability at least
ν(τ), R̃y belongs to CWy , and conditioned on this event Ey we have

E
R̃y

[
‖R̃y − Uy‖0

∣∣∣ Ey] = 1
|CWy |

∑
j∈CWy

‖A:,j − Uy‖0 ≤
‖A− UW‖0
|CWy |

.

ByMarkov’s inequality, with probability at least ν(τ)/2 we have ‖R̃y−Uy‖0 ≤ 2‖A−UW‖0/|CWy |,
and thus invariant I5 holds for R̃(τ+1).

Finally, since we did not change M (τ), invariant I1 is maintained. We conditioned on events
that hold with combined probability at least

(ν(τ)/t)t · ν(τ)/2 ≥ (ν0/t)t+1.

Since we decrement |N (τ)| by removing y = y|N (τ)| from N (τ), we maintain invariant I2, and we
obtain total probability at least

(ν0/t)(2k−|N (τ+1)|)(t+1).

Case 2 (Pruning): Suppose |P (τ)
y | < ν(τ) · d(τ) for every y ∈ N (τ). (Note that cases 1 and 2

are complete.) In this case, we remove the d(τ)/2 columns of M (τ) that are closest to R̃(τ),
resulting in a matrix M (τ+1), and then start a recursive call on M (τ+1). Since we do not change
N (τ), R̃(τ), C̃(τ), and α(τ), invariants I2-I5 are maintained.

Invariant I1 is much more difficult to verify, as we need to check that the d(τ)/2 deleted
columns do not contain any column from an unsampled cluster. We first show that some column
of a cluster we already sampled from survives to depth τ + 1 and has small distance to R̃(τ)

(see Claim 10). Then we show that every column of a cluster that we did not yet sample from
has large distance to R̃(τ) (see Claim 12). Since we delete the d(τ)/2 closest columns to R̃(τ), it
follows that every column of a cluster that we did not yet sample from survives.

Claim 10. There exists x ∈ {0, 1}k \ N (τ) and column j ∈ P (τ+1)
x with

‖A:,j − R̃(τ)
x ‖0 ≤ 2k+4‖A− UW‖0/d(τ).

Proof. By Case 2, we have |P (τ)
y | < ν(τ) · d(τ) for every y ∈ N (τ), and since ν(τ) ≤ ν2k ≤ 2−k−2

it follows that ∑
y∈N (τ)

|P (τ)
y | < 2kν(τ)d(τ) ≤ d(τ)/4.

Combining |P (τ)
y | ≥ |P (τ+1)

y | and
∑
y∈{0,1}k |P

(τ+1)
y | = d(τ)/2, yields∑

y∈{0,1}k\N (τ)

|P (τ+1)
y | ≥ d(τ)/4.

Hence, there is x ∈ {0, 1}k \ N (τ) such that

|P (τ+1)
x | ≥ 2−k−2d(τ). (23)

By the minimum-arithmetic-mean inequality, some j ∈ P (τ+1)
x satisfies

‖A:,j − R̃(τ)
x ‖0 ≤

1
|P (τ+1)
x |

·
∑

j′∈P (τ+1)
x

‖A:,j′ − R̃(τ)
x ‖0

≤ ‖R̃(τ)
x − Ux‖0 + 1

|P (τ+1)
x |

·
∑

j′∈P (τ+1)
x

‖A:,j′ − Ux‖0,

where the last step uses the triangle inequality. For the first summand we use invariant I5, and
for the second we use that P (τ+1)

x is by definition part of an induced partitioning of CW on a
smaller matrix, and thus the summation is bounded by ‖A− UW‖0. This yields

‖A:,j − R̃(τ)
x ‖0 ≤

(
2
|CWx |

+ 1
|P (τ+1)
x |

)
· ‖A− UW‖0.

By P (τ+1)
x ⊆ CWx and by (23), we obtain the claimed bound.
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Claim 11. For any y ∈ {0, 1}k \ N (τ) we have |CWy | ≥ ν(τ)d(τ)/γ.

Proof. Since y 6∈ N , we sampled from this cluster in some depth τ ′ < τ . In the call corresponding
to τ ′, we had N (τ ′) ⊇ N (τ) ∪ {y} and thus |N (τ ′)| ≥ |N (τ)|+ 1, and we had d(τ ′) ≥ d(τ). Since
we sampled from CWy in depth τ ′, Case 1 was applicable, it follows that

|CWy |
(I1)= |P (τ ′)

y | ≥ ν(τ ′) · d(τ ′) = ν|N (τ′)| · d
(τ ′)

≥ ν|N (τ)|+1 · d(τ) = ν|N (τ)| · d(τ)/γ = ν(τ) · d(τ)/γ.

Claim 12. For any y ∈ {0, 1}k \ N (τ), z ∈ N (τ), and j ∈ P (τ)
z we have

‖A:,j − R̃(τ)
y ‖0 > 2k+4‖A− UW‖0/d(τ).

Proof. By triangle inequality, we have

‖Uy − Uz‖0 ≤ ‖A:,j − Uy‖0 + ‖A:,j − Uz‖0.

Since j ∈ P
(τ)
z = CWz and by property (ii) of (U, V, ε)-clustered (see Lemma 24), the first

summand is at least as large as the second, and we obtain

‖Uy − Uz‖0 ≤ 2‖A:,j − Uy‖0.

We use this and the triangle inequality to obtain

‖A:,j − R̃(τ)
y ‖0 ≥ ‖A:,j − Uy‖0 − ‖R̃(τ)

y − Uy‖0

≥ 1
2‖Uy − Uz‖0 − ‖R̃

(τ)
y − Uy‖0.

For the first summand we use property (i) of (U, V, ε)-clustered (see Lemma 24), for the second
we use invariant I5. This yields

‖A:,j − R̃(τ)
y ‖0 >

ε

2k+1 ·
‖A− UV ‖0
|CWz |

− 2‖A− UW‖0
|CWy |

.

Since y ∈ {0, 1}k \ N (τ), Claim 11 yields |CWy | ≥ ν(τ)d(τ)/γ. Since z ∈ N (τ), by invariant I1,
and since we are in Case 2, we have

|CWz | = |P (τ)
z | < ν(τ) · d(τ).

Moreover, by the properties of (U, V, ε)-clustered (see Lemma 24), it follows that ‖A−UW‖0 ≤
(1 + ε)‖A− UV ‖0 and thus ‖A− UV ‖0 ≥ 1

2‖A− UW‖0. Together, this yields

‖A:,j − R̃(τ)
y ‖0 >

(
ε

2k+2 − 2γ
)
· ‖A− UW‖0

ν(τ)d(τ)

= ε

2k+3ν(τ) ·
‖A− UW‖0

d(τ)

≥ 2k+4 · ‖A− UW‖0
d(τ) ,

since γ = ε/2k+4 and
ν(τ) ≤ ν2k = γ2 ≤ ε/22k+7.

Together, Claims 10 and 12 prove that no column j ∈ P
(τ)
y with y ∈ N (τ) is removed.

Indeed, we remove the columns with smallest distance to R̃(τ), some of the columns in distance
2k+4‖A−UW‖0/d(τ) survives, and any column j ∈ P (τ)

y with y ∈ N has larger distance to R̃(τ).
It follows that invariant I1 is maintained, completing our proof of correctness.
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4.4.4 Running Time Analysis of Algorithm Sample

We now analyze the running time of Algorithm 4.
Lemma 25. Algorithm EstimateBestResponse runs in time 2O(k)nd.
Proof. Note that if C̃ is drawn according to distribution DW,t, then its total size

∑
y∈{0,1}k |C̃y|

is at most n. Hence, we can ignore all calls violating this inequality. We can thus evaluate the
estimated cost Ẽi,x in time 2O(k)d. Optimizing over all x ∈ {0, 1}k costs another factor 2k, and
iterating over all rows i adds a factor n. Thus, Step 1 runs in time 2O(k)nd. Further, Step 2
finds a best response matrix, which can be computed in the same running time.

We proceed by analyzing the time complexity of Algorithm 3.

Lemma 26. For any t = poly(2k/ε), Algorithm SampleA,k,ε,t runs in time (2/ε)2O(k) ·nd1+o(1),
where o(1) hides a factor (log log d)1.1

/ log d.

Proof. Consider any recursive call SampleA,k,ε,t(M, N , R̃, C̃, α). We express its running time
as T (a, b) where a := |N | and b := log(dM ). For notational convenience, we let log(0) =: −1
and assume that dM is a power of 2.

If we make a call to algorithm EstimateBestResponse then this takes time 2O(k)nd by
the preceding lemma. Note that here we indeed have the size d of the original matrix and not
the size dM of the current submatrix, since we need to determine the cost with respect to the
original matrix.

In the sampling phase, in Step 2 we guess y, with |N | ≤ 2k possibilities. Moreover, in Steps
3,4,5 we guess either αy ∈ {0, 1, . . . , t − 1} or ν|N | · dM ≤ αy ≤ dM such that |CWy | ≤ αy ≤
(1 + ε

6 )|CWy |. Note that there are O(log(1/ν|N |)/ log(1 + ε/6)) = poly(2k/ε) possibilities for the
latter, and thus poly(2k/ε) possibilities in total. For each such guess we make one recursive call
with a decremented a and we evaluate the cost of the returned solution in time 2O(k)nd.

In the pruning phase, we delete the dM/2 columns that are closest to R̃, which can be
performed in time 2O(k)ndM (using median-finding in linear time). We then make one recursive
call with a decremented b.

Together, we obtain the recursion

T (a, b) ≤ poly(2k/ε)nd+ poly(2k/ε) · T (a− 1, b) + T (a, b− 1),

with base cases T (0, b) = T (a,−1) = 2O(k)nd. The goal is to upper bound T (2k, log d).
Let Y = poly(2k/ε) and X = Y · nd such that

T (a, b) ≤ X + Y · T (a− 1, b) + T (a, b− 1),

and T (0, b), T (a,−1) ≤ X. We prove by induction that T (a, b) ≤ X · (2Y (b + 2))a. This works
in the base cases where a = 0 or b = −1. Inductively, for a > 0 and b ≥ 0 we bound 7

T (a, b) ≤ X + Y ·X · (2Y (b+ 2))a−1 +X · (2Y (b+ 1))a

= X · (2Y (b+ 2))a ·
(

1
(2Y (b+ 2))a + 1

2(b+ 2) +
(
b+ 1
b+ 2

)a)
≤ X · (2Y (b+ 2))a ·

(
1

2(b+ 2) + 1
2(b+ 2) + b+ 1

b+ 2

)
= X · (2Y (b+ 2))a. (24)

Let C be a constant to be determined soon. Using (24), the total running time is bounded by

T (2k, log d) ≤ X · (2Y (log(d) + 2))2k ≤ (2/ε)2(C+1)·k
· nd · log2k d ≤ (2/ε)2(C+1)·k

· nd1+o(1),

where the last inequality follows by noting that log2k d > (2/ε)2(C+1)·k iff k < log
(

log log d
log(2/ε)

)1/C

and in this case
(log d)2k ≤ (log d)

(
log log d
log(2/ε)

)1/C

≤ no(1),

where o(1) hides a factor (log log d)1+1/C
/ log d. The statement follows for any C ≥ 10.

7 Using similar arguments, for any α ∈ [0, 1] the recurrence T (a, b) ≤ (1 + α)b ·X+Y ·T (a− 1, b) +T (a, b− 1)
is upper bounded by X · (2Y )a ·

(
b1−α + 2

)a
· (1 + α)b. In particular, we obtain the following upper bound

T (a, b) ≤ X · (2Y )a ·min
{

(b+ 2)a , 2a+b
}

and thus T (2k, log d) ≤ (2/ε)2O(k) · nd ·min
{

(log d)2k , d
}
.
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4.4.5 The Complete PTAS

Finally, we use Algorithm Sample to obtain an efficient PTAS for the Generalized Binary `0-
Rank-k problem. Given A, k, ε, we call SampleA,k,ε/4,t with

t = t(k, ε4 ) := 24k+16/ε2.

(This means that we replace all occurrences of ε by ε/4, in particular we also assume that W is
(U, V, ε4 )-clusterable.) By Theorem 17, with probability at least

( ε2t )
2O(k)·t = (ε/2)2O(k)/ε2

at least one leaf of the recursion tree calls EstimateBestResponseA,k(C̃, α) with proper C̃
and α such that the Sampling Theorem 16 is applicable. By choice of t = t(k, ε4 ), this yields

E
[
‖A− Ũ(C̃, α) ·W‖0

]
≤ (1 + ε

4 )OPTWk ≤ (1 + ε
4 )2OPTk,

where we used that W is (U, V, ε4 )-clusterable in the second step (see Lemma 24). The algorithm
EstimateBestResponse computes the matrix Ũ = Ũ(C̃, α) and a best response Ṽ to Ũ . This
yields

E
[
‖A− Ũ · Ṽ ‖0

]
≤ E

[
‖A− Ũ ·W‖0

]
≤ (1 + ε

4 )2OPTk.

By Markov’s inequality, with probability at least 1− 1/(1 + ε/4) ≥ ε
5 we have

‖A− Ũ · Ṽ ‖0 ≤ (1 + ε
4 ) · E

[
‖A− Ũ · Ṽ ‖0

]
≤ (1 + ε

4 )3OPTk ≤ (1 + ε)OPTk.

Hence, with probability at least p = (ε/2)2O(k)/ε2 at least one solution Ũ , Ṽ generated by our
algorithm is a (1 + ε)-approximation. Since we return the best of the generated solutions, we
obtain a PTAS, but its success probability p is very low.

The success probability can be boosted to a constant by running O(1/p) = (2/ε)2O(k)/ε2 inde-
pendent trials of Algorithm Sample. By Lemma 26, each call runs in time (2/ε)2O(k) ·nd1+o(1),
where o(1) hides a factor (log log d)1.1

/ log d, yielding a total running time of (2/ε)2O(k)/ε2 ·
nd1+o(1). This finishes the proof of Theorem 2. The success probability can be further amplified
to 1− δ for any δ > 0, by running O(log(1/δ)) independent trials of the preceding algorithm.
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5 Hardness
In this section, we prove hardness of approximately computing the best rank k-approximation
of a given n × d matrix A, where n ≥ d. Indeed all hardness results in this section hold when
k = d − 1, indicating that reducing the rank by 1 is indeed hard to even approximate. This
complements our efficient approximation schemes when k = O(1).

Our results for p ∈ (1, 2) assume the Small Set Expansion Hypothesis. Originally conjectured
by Raghavendra and Stuerer [59], it is still the only assumption that implies strong hardness
results for various graph problems such as Uniform Sparsest Cut [61] and Bipartite Clique [47].
Assuming this hypothesis, we prove even stronger results than above that rules out any constant
factor approximation in poly(n, k). The following theorem immediately implies Theorem 4 in
the introduction.

Theorem 18. Fix p ∈ (1, 2) and r > 1. Assuming the Small Set Expansion Hypothesis, there is
no r-approximation algorithm for rank k approximation of a matrix A ∈ Rn×d with n ≥ d and
k = d− 1 in the entrywise `p norm that runs in time poly(n).

Consequently, additionally assuming the Exponential Time Hypothesis, there exists δ :=
δ(p, r) > 0 such that there is no r-approximation algorithm for rank k approximation of a matrix
A ∈ Rn×d with n ≥ d and k = d− 1 in the entrywise `p norm that runs in time 2nδ .

For p ∈ (2,∞), we do not rely on the Small Set Expansion Hypothesis though the hardness
factor is bounded by a constant. Recall that γp := Eg[|g|p]1/p where g is a standard Gaussian,
which is strictly greater than 1 for p > 2.

Theorem 19. Fix p ∈ (2,∞) and ε > 0. Assuming P 6= NP, there is no (γpp − ε)-approximation
algorithm for rank k approximation of a matrix A ∈ Rn×d with n ≥ d and k = d − 1 in the
entrywise `p norm that runs in time poly(n).

Consequently, assuming the Exponential Time Hypothesis, there exists δ := δ(p, ε) > 0 such
that there is no (γpp−ε)-approximation algorithm for rank k approximation of a matrix A ∈ Rn×d

with n ≥ d and k = d− 1 in the entrywise `p norm that runs in time 2nδ .

We also prove similar hardness results for `0-low rank approximation in finite fields. The
following theorem immediately implies Theorem 6 in the introduction.

Theorem 20. Fix a finite field F and r > 1. Assuming P 6= NP, there is no r-approximation
algorithm for rank k approximation of a matrix A ∈ Fn×d with n ≥ d and k = d − 1 in the
entrywise `0 metric that runs in time poly(n).

Consequently, assuming the Exponential Time Hypothesis, there exists δ := δ(r) > 0 such
that there is no r-approximation algorithm for rank k approximation of a matrix A ∈ Fn×d with
n ≥ d and k = d− 1 in the entrywise `0 metric that runs in time 2nδ .

Section 5.1 proves Lemma 1, showing that computing minp∗→p(A) is equivalent to finding the
best rank k approximation of A ∈ Rn×d when n ≥ d and k = d−1. Section 5.2 proves Lemma 2,
reducing ‖·‖2→p∗ to minp∗→p(·). Section 5.3 presents the Barak et al. [7]’s proof of hardness
of ‖·‖2→p∗ with modifications for all q > 2, finishing the proof of Theorem 18 for p ∈ (1, 2).
Section 5.4 proves the hardness of minp∗→p(·) for p > 2, using the result of [29], and finishes the
proof of Theorem 19. Finally, Theorem 20 is proved in Section 5.5.

Numerical issues. In the proofs of Theorem 18 and Theorem 19, we consider our matrices
as having real entries for simplicity, but our results will hold even when all entries are rescaled
to polynomially bounded integers. The instance in Theorem 19 is explicitly constructed and it
can be easily checked that all entries are polynomially bounded integers. For Theorem 18, our
hard instance B for ‖·‖p→p∗ is simply a projection matrix and the final instance A is obtained by
(εI + B)−1, so by ensuring that ε ≥ 1/poly(n), we can ensure that eigenvalues of A are within
[1,poly(n)].
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5.1 `p-Low Rank Approximation and minp∗→p(A)
In this subsection, we prove the following lemma showing that computing minp∗→p(A) is equiv-
alent to finding the best rank k approximation of A ∈ Rn×d when n ≥ d and k = d− 1.

Lemma 27 (Restatement of Lemma 1). Let p ∈ (1,∞). Let A ∈ Rn×d with n ≥ d and k = d−1.
Then

min
U∈Rn×k,V ∈Rk×d

‖UV −A‖p = min
x∈Rd,‖x‖p∗=1

‖Ax‖p.

Proof. Assume that the rank of A is d; otherwise the lemma becomes trivial. We first prove
(≥). Given V ∗ ∈ Rk×d that achieves the best rank k approximation, assume without loss of
generality that the rank of V ∗ is k = d − 1. Let x ∈ Rd be the unique vector (up to sign) that
is orthogonal to the rowspace of V ∗ and ‖x‖p∗ = 1. Let a1, . . . , an be the rows of A. For fixed
V ∗, for i ∈ [n], the ith row u∗i ∈ Rk of U∗ must be obtained by computing

min
u∗
i
∈Rk
‖u∗i V ∗ − ai‖p = min

y∈rowspace(V ∗)
‖y − ai‖p = min

z∈Rd:〈x,z〉=−〈x,ai〉
‖z‖p.

Note that by Hölder’s inequality, the last quantity is at least |〈x, z〉|/‖x‖p∗ = |〈x, ai〉|/‖x‖p∗ =
|〈x, ai〉|. Indeed, taking z ∈ Rd with zj := (−〈x, ai〉) · (sgn(xj)|xj |p

∗/p) for each j ∈ [d] implies

〈x, z〉 = −〈x, ai〉 ·
∑
j∈[d]

sgn(xj)|xj |p
∗/p · xj = −〈x, ai〉 · ‖x‖p

∗

p∗ = −〈x, ai〉,

and
‖z‖p = |〈x, ai〉| · (

∑
j∈[d]

|xj |p
∗
)1/p = |〈x, ai〉| · ‖x‖p

∗/p
p∗ = |〈x, ai〉|,

so we can conclude ‖u∗i V ∗ − ai‖p = minz∈Rd:〈x,z〉=−〈x,ai〉‖z‖p = |〈x, ai〉|. Summing over i ∈ [n],

‖U∗V ∗ −A‖p =
( ∑
i∈[n]

‖u∗i V ∗ − ai‖pp
)1/p =

( ∑
i∈[n]

|〈x, ai〉|p
)1/p = ‖Ax‖p.

This proves that minU∈Rn×k,V ∈Rk×d‖UV −A‖p ≥ minx∈Rd,‖x‖p∗=1‖Ax‖p. For the other direction,
given x ∈ Rd with ‖x‖p∗ = 1, let V ∗ ∈ Rk×d be a matrix whose rowspace is a k-dimensional
subspace orthogonal to x, and compute U∗ as above. The above analysis shows that ‖U∗V ∗ −
A‖p = ‖Ax‖p, which completes the proof.

5.2 Reducing ‖ · ‖2→p∗ to minp∗→p(·)
In this subsection, we show that computing minp∗→p(·) is as hard as computing ‖·‖2→p∗ , proving
the following lemma.

Lemma 28 (Restatement of Lemma 2). For any ε > 0, p ∈ (1,∞), there is an algorithm that
runs in poly(n, log(1/ε)) and on a non-zero input matrix A, computes a matrix B satisfying

(1− ε)‖A‖−2
2→p∗ ≤ minp∗→p(B) ≤ (1 + ε)‖A‖−2

2→p∗ .

The lemma is proved in the following two steps.

Reducing ‖·‖2→p∗ to ‖·‖p→p∗ . We first prove the following claim. This follows from standard
tools from Banach space theory that factor an operator from `p to `∗p via `2.

Claim 13. ‖AAT ‖p→p∗ = ‖A‖22→p∗ .

Proof. By the definitions of p→ q norms,

‖AAT ‖p→p∗ = sup
x

‖AATx‖p∗
‖x‖p

≤ sup
x

‖A‖2→p∗‖ATx‖2
‖x‖p

≤ ‖A‖2→p∗‖AT ‖p→2 = ‖A‖22→p∗ ,

where the last line follows from the fact that

‖A‖2→p∗ = sup
‖y‖p=1

sup
‖x‖2=1

〈y,Ax〉 = sup
‖x‖2=1

sup
‖y‖p=1

〈AT y, x〉 = ‖AT ‖p→2.
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For the other direction,

‖AAT ‖p→p∗ = sup
‖x‖p=1

sup
‖y‖p=1

〈y,AATx〉 = sup
‖x‖p=1

sup
‖y‖p=1

〈AT y,ATx〉

≥ sup
‖x‖p=1

‖ATx‖22 = ‖AT ‖2p→2 = ‖A‖22→p∗ ,

which completes the proof.

Reducing ‖ · ‖p→p∗ to minp∗→p(·). We now relate two quantities ‖A‖p→p∗ and minp∗→p(B)
for two related matrices A and B. If A is invertible, this can be seen easily.

Fact 4. If A is an invertible matrix, then minp→q(A−1) = (‖A‖q→p)−1

Proof. First observe that the condition A−1x 6= 0 is equivalent to the condition x 6= 0 since A is
invertible. Then we have,

inf
x6=0

‖A−1x‖q
‖x‖p

= inf
Ax 6=0

‖A−1x‖q
‖x‖p

=
(

sup
A−1x 6=0

‖x‖p
‖A−1x‖q

)−1
=
(

sup
y 6=0

‖A−1y‖p
‖y‖q

)−1
.

The leftmost quantity is minp→q(A−1) and the rightmost quantity is (‖A‖q→p)−1.

Even if A is not invertible, there is an invertible matrix B whose p→ q norm is close to that
of A for any p and q.

Claim 14. Let A be a non-zero n × d matrix. For any p, q ∈ (1,∞) and any ε > 0, there is
an invertible and polynomial time computable max(n, d) × max(n, d) matrix B such that (1 −
ε)‖A‖p→q ≤ ‖B‖p→q ≤ (1 + ε)‖A‖p→q.

Proof. Let ⊕ denote vector concatenation. We start by exhibiting a square matrix with the
same norm. If d ≥ n, we pad 0’s to the bottom of A to obtain an d× d matrix A′. Now for any
x ∈ Rd, ‖A′x‖q = ‖Ax⊕ 0d−n‖q = ‖Ax‖q. So ‖A‖p→q = ‖A′‖p→q.

If d ≤ n, we pad 0’s to the right of A to obtain an n × n matrix A′. Consider any y ∈ Rn
and let x ∈ Rd, z ∈ Rn−d be such that y = x ⊕ z. Then we have ‖A′y‖q = ‖Ax‖q. Now
since ‖y‖p ≥ ‖x‖p, we have ‖A‖p→q ≥ ‖A′‖p→q. On the other hand, ‖A‖p→q ≤ ‖A′‖p→q since
‖A′(x⊕ 0n−d)‖q = ‖Ax‖q and ‖x⊕ 0n−d‖p = ‖x‖p.

Next to obtain an invertible matrix, we set B := A′+ε′ · I where ε′ := ε ·M/‖I‖p→q andM is
the max magnitude of an entry of A which must be non-zero since A is non-zero. First we observe
that ‖A‖p→q ≥M since one can substitute x = ei where i is the index of the column containing
the max magnitude entry. Lastly, applying triangle inequality (since ‖·‖p→q is a norm) implies
the claim.

5.3 Hardness of 2→ q norm for all q ∈ (2,∞)
In this subsection, we prove Theorem 7 for hardness of ‖·‖2→q for q ∈ (2,∞). Barak et al. [7]
proved that under the Small Set Expansion Hypothesis, for any r > 1 and an even integer
q ≥ 4, it is NP-hard to approximate the 2→ q norm problem within a factor r. The same proof
essentially works for all q ∈ (2,∞) with slight modifications. For completeness, we present their
proof here, with additional remarks when we generalize an even integer q ≥ 4 to all q ∈ (2,∞).

Preliminaries for Small Set Expansion. For a vector x ∈ Rd, every p-norm in this sub-
section denotes the expectation norm defined as ‖x‖Lp := (Ei∈[d][|xi|p])1/p. For a regular graph
G = (V,E) and a subset S ⊆ V , we define the measure of S to be µ(S) = |S|/|V | and we define
G(S) to be the distribution obtained by picking a random x ∈ S and then outputting a random
neighbor y of x. We define the expansion of S to be

ΦG(S) = Pr
y∈G(S)

[y /∈ S].

For δ ∈ (0, 1), we define ΦG(δ) = minS⊆V :µ(S)≤δ ΦG(S). We identify G with its normalized
adjacency matrix. For every λ ∈ [−1, 1], we denote by V≥λ(G) the subspace spanned by the
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eigenvectors of G with eigenvalue at least λ. The projector into this subspace is denoted P≥λ(G).
For a distribution D, we let cp(D) denote the collision probability of D (the probability that
two independent samples from D are identical). The Small Set Expansion Hypothesis, posed by
Raghavendra and Steurer [59] states the following.

Hypothesis 8. For any ε > 0, there exists δ > 0 such that it is NP-hard to decide whether
ΦG(δ) ≤ ε or ΦG(δ) ≥ 1− ε.

This implies strong hardness results for various graph problems such as Uniform Sparsest
Cut [61] and Bipartite Clique [47]. The main theorem of this subsection is the following, which
corresponds to Theorem 2.4 of [7].

Theorem 21. For every regular graph G,λ ∈ (0, 1), and q ∈ (2,∞),

1. For all δ > 0, ε > 0, ‖P≥λ(G)‖L2→Lq ≤ ε/δ(q−2)/2q implies that ΦG(δ) ≥ 1− λ− ε2.

2. There is a constant a = a(q) such that for all δ > 0, ΦG(δ) > 1− aλ2q implies

‖P≥λ(G)‖L2→Lq ≤ 2/
√
δ.

Given this theorem, the hardness of 2→ q norm can be proved as follows. This corresponds
to Corollary 8.1 of [7].

Proof of Theorem 7. Using [60], the Small Set Expansion Hypothesis implies that for any suf-
ficiently small numbers 0 < δ ≤ δ′, there is no polynomial time algorithm that can distinguish
between the following cases for a given graph G:

• Yes case: ΦG(δ) < 0.1.

• No case: ΦG(δ′) > 1− 2−a′ log(1/δ′). (a′ is a fixed universal constant.)

In particular, for all η > 0, if we let δ′ = δ(q−2)/8q and make δ small enough, then in the No case
ΦG(δ(q−2)/8q) > 1− η. (Since q > 2, δ′ → 0 as δ → 0.)

Using Theorem 21, in the Yes case we know ‖P≥1/2‖L2→Lq ≥ 1/(10δ(q−2)/2q), while in the
No case, if we choose δ sufficiently small so that η is smaller than a(1/2)2q, then we know that
‖P≥1/2‖L2→Lq ≤ 2/

√
δ′ = 2/δ(q−2)/4q. The gap between the Yes case and the No case is at least

δ−(q−2)/4q/20, which goes to ∞ as δ decreases.

We now prove Theorem 21. The first part that proves small set expansion of G given a 2→ q
norm bound indeed follows from older work (e.g., [40]).

Lemma 29 (Lemma B.1 of [7]). For all δ > 0, ε > 0, ‖P≥λ(G)‖L2→Lq ≤ ε/δ(q−2)/2q implies
that ΦG(δ) ≥ 1− λ− ε2

Proof. Let q∗ = q/(q − 1) be the Hölder conjugate of q such that 1/q + 1/q∗ = 1. Since P≥λ is
a projector,

‖P≥λ(G)‖Lq∗→L2 = ‖P≥λ(G)T ‖Lq∗→L2 = ‖P≥λ(G)‖L2→Lq .

Given S ⊆ V with µ(S) = µ ≤ δ, let f = 1S/
√
µ be the normalized indicator vector of

S so that ‖f‖L2 = 1. Let f = f ′ + f ′′ where f ′ is its projection to the eigenvalues at least
λ (i.e., f ′ = P≥λf) and f ′′ is its projection to the eigenvalues strictly less than λ. Since
‖1S‖Lq∗ = µ1/q∗ = µ(q−1)/q, we have ‖f‖Lq∗ = µ((q−1)/q)−1/2 ≤ δ((q−1)/q)−1/2 (since q > 2 and
δ ≥ µ), and

‖f ′‖L2 ≤ ‖f‖Lq∗ · ‖P≥λ(G)‖Lq∗→2 ≤ δ
((q−1)/q)−1/2 · (ε/δ(q−2)/2q) = ε.

Then
〈f,Gf〉 = 〈f ′, Gf ′〉+ 〈f ′′, Gf ′′〉 ≤ ‖f ′‖2L2

+ λ‖f ′′‖2L2
≤ ε2 + λ.

Since ΦG(S) = 1− 〈f,Gf〉, the lemma follows.

The second part of Theorem 21 requires more technical proofs.

Lemma 30 (Lemma 8.2 of [7]). There is a constant a = a(q) such that for all δ > 0, ΦG(δ) >
1− aλ2q implies ‖P≥λ(G)‖L2→Lq ≥ 2/

√
δ.
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Proof. Let f be a function in V≥λ with ‖f‖L2 = 1 that maximizes ‖f‖Lq . We write f =∑m
i=1 αiχi where χ1, . . . , χm denote the eigenfunctions of G with values λ1, . . . , λm that are

at least λ. Assume towards contradiction that ‖f‖Lq < 2/
√
δ. We will prove that g =∑m

i=1(αi/λi)χi satisfies ‖g‖Lq ≥ 5‖f‖Lq/λ. Note that g is defined such that f = Gg. This
is a contradiction since (using λi ∈ [λ, 1]) ‖g‖L2 ≤ ‖f‖L2/λ, and we assumed f is a function in
V≥λ with a maximal ratio ‖f‖Lq/‖f‖L2 .

Let U ⊆ V be the set of vertices such that |f(x)| ≥ 1/
√
δ for all x ∈ U . Using the Markov

inequality and the fact that Ex∈V [f(x)2] = 1, we know that µ(U) = |U |/|V | ≤ δ. On the
other hand, because ‖f‖qLq ≥ 2q/δq/2, we know that U contributes at least half of the term
‖f‖qLq = Ex∈V [|f(x)|q]. That is, if we define α to be µ(U)Ex∈U [|f(x)|q] then α ≥ ‖f‖qLq/2. We
will prove the lemma by showing that ‖g‖qLq ≥ (10λ−1)qα.

Let c = c(q) and d = d(c, q) be sufficiently large constants that will be determined later, and
e = d · λ−q. By the variant local Cheeger bound obtained in Theorem 2.1 of [69], there exists
a = a(d, q) such that ΦG(δ) > 1−aλ2q implies that cp(G(S)) ≤ 1/(e|S|) for all S with µ(S) ≤ δ.

We define Ui to be the set {x ∈ U : f(x) ∈ [ci/
√
δ, ci+1/

√
δ]}, and let I be the maximal i such

that Ui is non-empty. Thus, the sets U0, . . . , UI form a partition of U (where some of these sets
may be empty). We let αi be the contribution of Ui to α. That is, αi = µiEx∈Ui [|f(x)|q], where
µ = µ(Ui). Note that α = α0 + · · · + αI . We will show that there are some indices i1, . . . , iJ
such that

1. αi1 + · · ·+ αiJ ≥ α/(2cq).

2. For all j ∈ [J ], there is a non-negative function gj : V → R such that Ex∈V [|gj(x)|q] ≥
eαij/(10c2)q/2.

3. For every x ∈ V , g1(x) + · · ·+ gJ(x) ≤ |g(x)|.

Showing these will complete the proof, since it is easy to see that for non-negative functions
g′, g′′ and q ∈ [1,∞)

E[(g′(x) + g′′(x))q] ≥ E[g′(x)q] + E[g′′(x)q],

and hence 2. and 3. imply that

‖g‖qLq = E[|g(x)|q] ≥ (e/(10c2)q/2)
∑
j

αij . (25)

Using 1., we conclude that for e ≥ 2cq · (10c2)q/2 · (10/λ)q, the right-hand side of (25) will be
larger than (10/λ)qα. In particular, we set d = d(c, q) = 2cq · (10c2)q/2 · 10q.

We find the indices i1, . . . , iJ iteratively. We let I be initially the set {0, ..., I} of all indices.
For j = 1, 2, . . . , we do the following as long as I is not empty:

• Let ij be the largest index in I.

• Remove from I every index i such that αi ≤ cqαij/2i−ij .

We let J denote the step we stop. Note that our indices i1, . . . , iJ are sorted in descending
order. For every step j, the total of the αi’s for all indices we removed is less than cqαij and
hence we satisfy 1. We use the following claim, whose proof is omitted here since it does not
involve q at all. This follows from the fact that cp(G(S)) ≤ 1/(e|S|) for all S with µ(S) ≤ δ.

Claim 15 (Claim 8.3 of [7]). Let S ⊆ V and β > 0 such that µ(S) ≤ δ and |f(x)| ≥ β for all
x ∈ S. Then there is a set of size at least e|S| such that Ex∈T [g(x)2] ≥ β2/4.

We will construct the functions g1, . . . , gJ by applying iteratively Claim 15. We do the
following for j = 1, . . . , J :

1. let Tj be the set of size e|Uij | that is obtained by applying Claim 15 to the function f

and the set Uij . Note that Ex∈Tj [g(X)2] ≥ β2
ij
/4, where we let βi = ci/

√
δ (and hence for

every x ∈ Ui, βi ≤ |f(x)| ≤ cβi).

2. Let g′j be the function on input x that outputs γ · |g(x)| if x ∈ Tj and 0 otherwise, where
γ ≤ 1 is a scaling factor that ensures that Ex∈Tj [g′(x)2] equals exactly β2

ij
/4.
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3. We define gj(x) = max(0, g′j(x)−
∑
k<j gk(x)).

Note that the second step ensures g′j(x) ≤ |g(x)|, while the third step ensures that g1(x) +
· · ·+ gj(x) ≤ g′j(x) for all j, and in particular g1(x) + · · ·+ gJ(x) ≤ |g(x)|. Hence the only thing
left to prove is the following.

Claim 16 (Claim 8.5 of [7]). Ex∈V [|gj(x)|q] ≥ eαij/(10c2)q/2.

Proof. Recall that for every i, αi = µiEx∈Ui [|f(x)|q], and hence (using f(x) ∈ [βi, cβi) for
x ∈ Ui):

µiβ
q
i ≤ αi ≤ µic

qβqi . (26)

Now fix T = Tj . Since Ex∈V [|gj(x)|q] = µ(T ) · Ex∈T [|gj(x)|q] and µ(T ) = eµ(Uij ), we can
use (26) and Ex∈T [|gj(x)|q] ≥ (Ex∈T [gj(x)2])q/2 (since q > 2), to reduce proving the claim to
showing the following:

Ex∈T [gj(x)2] ≥ (cβij )2/(10c2) = β2
ij/10. (27)

We know that Ex∈T [g′j(x)2] = β2
ij
/4. We claim that (27) will follow by showing that for every

k < j,
Ex∈T [g′k(x)2] ≤ 100−i

′
· β2

ij/4, (28)

where i′ = ik − ij . (Note that i′ > 0 since in our construction the indices i1, . . . , iJ are sorted in
descending order.)

Indeed, (28) means that if we let momentarily ‖gj‖L2 denote
√

Ex∈T [gj(x)t] then

‖gj‖L2 ≥ ‖g′j‖L2 −‖
∑
k<j

gk‖L2 ≥ ‖g′j‖L2 −
∑
k<j

‖gk‖L2 ≥ ‖g′j‖L2(1−
∞∑
i′=1

10−i
′
) ≥ 0.8‖g′j‖L2 . (29)

The first inequality holds we can write gj as g′j − hj , where hj = min(g′j ,
∑
k<j gk). Then, on

the other hand, ‖gj‖L2 ≥ ‖g′j‖L2 −‖hj‖L2 , and on the other hand, ‖hj‖L2 ≤ ‖
∑
k<j gk‖L2 since

g′j ≥ 0. The second inequality holds because ‖gk‖L2 ≤ ‖g′k‖L2 . By squaring (29) and plugging
in the value of ‖g′j‖2L2

we get (27).

Proof of (28). By our construction, it must hold that

cqαik/2i
′
≤ αij , (30)

since otherwise the index ij would have been removed from the I at the kth step. Since βik =
βijc

i′ , we can plug (26) in (30) to get

µikc
q+qi′/2i

′
≤ cqµij

or
µik ≤ µij · 2i

′
· c−qi

′
.

Since |Ti| = e|Ui| for all i, it follows that |Tk|/|T | ≤ 2i′ · c−qi′ . On the other hand, we know
that Ex∈Tk [g′k(x)2] = β2

ik
/4 = c2i

′
β2
ij
/4. Thus,

Ex∈T [g′k(x)2] ≤ 2i
′
c2i
′−qi′β2

ij/4 = (2/cq−2)i
′
β2
ij/4,

and we now just choose c sufficiently large so that 2/cq−2 > 100.
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5.4 Hardness of minp∗→p(·)
In this subsection, we prove Theorem 8 that for any ε > 0 and p ∈ (2,∞), it is NP-hard to
approximate minp∗→p(·) within a factor (γp − ε), where γp = (Eg∼N (0,1)[|g|p])1/p > 1 is the
absolute pth moment of the standard Gaussian.

Our result is obtained by using the result of Guruswami et al. [29] that proved the same
hardness of min2→p(·). When ‖·‖Lp denotes expectation p-norm defined by ‖x‖Lp := Ei[|xi|p]1/p,
since p∗ < 2, any x satisfies ‖x‖Lp∗ ≤ ‖x‖L2 . This implies that for any matrix A, the optimal
value of minp∗→p(A) is at least the optimal value of min2→p(A). We modify the reduction
of [29] slightly such that in the Yes case, x that minimizes min2→p(A) has either +1 or −1 in
each coordinate. This implies ‖x‖L2 = ‖x‖Lp∗ , and certifies that minp∗→p(A) = min2→p(A). In
the No case, minp∗→p(A) is always at least min2→p(A), so the gap between the Yes case and the
No case for minp∗→p(·) is at least as large as the gap for min2→p(·).

Our presentation closely follows the recent work by Bhattiprolu et al. [10]. To present the
reduction, we introduce standard backgrounds on Fourier analysis and Label Cover problems.

Fourier Analysis. We introduce some basic facts about Fourier analysis of Boolean functions.
Let R ∈ N be a positive integer, and consider a function f : {±1}R → R. For any subset S ⊆ [R]
let χS :=

∏
i∈S xi. Then we can represent f as

f(x1, . . . , xR) =
∑
S⊆[R]

f̂(S) · χS(x1, . . . xR), (31)

where
f̂(S) = Ex∈{±1}R [f(x) · χS(x)] for all S ⊆ [R]. (32)

The Fourier transform refers to a linear operator F that maps f to f̂ as defined as (32). We
interpret f̂ as a 2R-dimensional vector whose coordinates are indexed by S ⊆ [R]. In this
subsection, we let ‖·‖`p to denote the counting p-norm and ‖·‖Lp to denote the expectation
p-norm. Endow the expectation norm and the expectation norm to f and f̂ respectively; i.e.,

‖f‖Lp :=
(
Ex∈{±1}R |f(x)|p

)1/p and ‖f̂‖`p :=

 ∑
S⊆[R]

|f̂(S)|p
1/p

.

as well as the corresponding inner products 〈f, g〉 and 〈f̂ , ĝ〉 consistent with their 2-norms.
We also define the inverse Fourier transform FT to be a linear operator that maps a given
f̂ : 2R → R to f : {±1}R → R defined as in (31). We state the following well-known facts from
Fourier analysis.

Observation 9 (Parseval’s Theorem). For any f : {±1}R → R, ‖f‖L2 = ‖Ff‖`2 .

Observation 10. F and FT form an adjoint pair; i.e., for any f : {±1}R → R and ĝ : 2R → R,

〈ĝ, Ff〉 = 〈FT ĝ, f〉.

Observation 11. FTF is the identity operator.

Smooth Label Cover. An instance of Label Cover is given by a quadruple L = (G, [R], [L],Σ)
that consists of a regular connected graph G = (V,E), a label set [R] for some positive integer
n, and a collection Σ = ((πe,v, πe,w) : e = (v, w) ∈ E) of pairs of maps both from [R] to [L]
associated with the endpoints of the edges in E. Given a labeling ` : V → [R], we say that
an edge e = (v, w) ∈ E is satisfied if πe,v(`(v)) = πe,w(`(w)). Let OPT(L) be the maximum
fraction of satisfied edges by any labeling.

The following hardness result for Label Cover, given in [29], is a slight variant of the original
construction due to [39]. The theorem also describes the various structural properties, including
smoothness, that are identified by the hard instances.

Theorem 22. For any ξ > 0 and J ∈ N, there exist positive integers R = R(ξ, J), L = L(ξ, J)
and D = D(ξ), and a Label Cover instance (G, [R], [L],Σ) as above such that
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• (Hardness): It is NP-hard to distinguish between the following two cases:

– Yes case: OPT(L) = 1.

– No case: OPT(L) ≤ ξ.

• (Structural Properties):

– (J-Smoothness): For every vertex v ∈ V and distinct i, j ∈ [R], we have

Pre3v
[
πe,v(i) = πe,v(j)

]
≤ 1/J.

– (D-to-1): For every vertex v ∈ V , edge e ∈ E incident on v, and i ∈ [L], we have
|π−1
e,v(i)| ≤ D; that is at most D elements in [R] are mapped to the same element in

[L].

– (Weak Expansion): For any δ > 0 and vertex set V ′ ⊆ V such that |V ′| = δ · |V |, the
number of edges among the vertices in |V ′| is at least (δ2/2)|E|.

Reduction. Let L = (G, [R], [L],Σ) be an instance of Label Cover with G = (V,E). Our
reduction will construct a linear operator A : RN → RM with N = |V | · 2R and M = 2|V | ·
2R − |V |+ |E| · |L|. The space RN will be endowed the expectation norm (and call its elements
functions) and RM will be endowed the counting norm (and call its elements vectors). We define
A by giving a linear transformation from a function f : V ×{±1}R → R to a vector a ∈ RM . Let
C := M3. Given f , a vertex v ∈ V induces fv ∈ R2R defined by fv(x) := f(v, x) for x ∈ {±1}R.
Let ĝ ∈ V × [R] be the vectors of linear coefficients; ĝ(v, i) = f̂v(i) for v ∈ V, i ∈ [R]. Given f
(that determines {f̂v}v ∈ V and ĝ), a = Af is defined as follows.

• For v ∈ V and x ∈ {±1}R, a(v, x) =
∑R
i=1 ĝ(v, i)xi.

• For v ∈ V and S ⊆ [R] with |S| 6= 1, a(v, S) = C · f̂v(S).

• For e = (u, v) ∈ E and i ∈ [L], a(e, i) = C ·
(∑

j∈π−1
e,u(i) f̂u(i)−

∑
j∈π−1

e,v(i) f̂v(i)
)
.

Since ĝ and a are all linear in f , the matrix A that satisfies a = Af is well-defined, which is our
instance of minp∗→p(·). Intuitively, C will be chosen large enough so that every f̂v has almost all
Fourier mass on its linear coefficients, and their linear coefficients correctly indicate the labels
that satisfy all constraints of the Label Cover instance.

Completeness. We prove the following lemma for the Yes case.

Lemma 31 (Completeness). Let ` : V → [R] be a labeling that satisfies every edge of L. There
exists a function f ∈ RV×2R such that f(v, x) is either +1 or −1 for all v ∈ V, x ∈ {±1}R and
‖Af‖`p = (|V | · 2R)1/p. In particular, ‖Af‖`p/‖f‖Lp∗ = (|V | · 2R)1/p.

Proof. Let f(v, x) := x`(v) for every v ∈ V, x ∈ {±1}R. Consider a = Af . Since every f̂v is
linear, for each v ∈ V and S ⊆ [R] with |S| 6= 1, a(v, S) = 0. For each v ∈ V and i ∈ [R],
ĝ(v, i) = 1 if and only if i = `(v) and 0 otherwise. Since ` satisfies every edge of L, a(e, i) = 0 for
every e ∈ E and i ∈ [L]. This implies that for every v ∈ V, x ∈ {±1}R, a(v, x) = x`(v) = f(v, x).
Therefore, ‖Af‖`p = (|V | · 2R)1/p.

Soundness. We prove the following lemma for the soundness. Combined with Theorem 22 for
hardness of Label Cover and observing that ‖f‖Lp∗ ≤ ‖f‖L2 , it finishes the proof of Theorem 8.

Lemma 32. For any η > 0, there exists ξ > 0 (that determines D = D(ξ) as in Theorem 22)
and J ∈ N such that if OPT(L) ≤ ξ, L is D-to-1 and L is J-smooth, for every f with ‖f‖L2 = 1,
‖Af‖`p ≥ (γp − η)(|V | · 2R)1/p.
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Proof. We will prove contrapositive; if ‖Af‖`p ≤ (γp − η)(|V | · 2R)1/p for some f is small then
OPT(L) ≥ ξ with the choice of the parameters that will determined later. Fix such an f with
‖f‖L2 = 1 that determines fv and f̂v for each v ∈ V . Let a = Af . Suppose that there is v ∈ V
and S ⊆ [R] with |S| 6= 1 such that |f̂v(S)| > 1/M2. It means that |a(v, S)| > C/M2. Since
C = M3, it already implies ‖a‖`p ≥M � (γp − η)(|V | · 2R)1/p, so suppose that there is no such
v and S.

Let ĝ ∈ V × [R] be defined as above; ĝ(v, i) = f̂v(i) for v ∈ V, i ∈ [R]. By Parseval,∑
v∈V
‖f̂v‖2`2

=
∑
v∈V
‖fv‖2L2

= |V | · Ev∈V ‖fv‖2L2
= |V | · ‖f‖2L2

= |V |.

and the fact that |f̂v(S)| < 1/M2 for every v ∈ V , S ⊆ [R] with |S| 6= 1, we have ‖ĝ‖`2 ∈
[
√
|V | − 1/M,

√
|V |].

Furthermore, suppose that there is e = (u, v) ∈ E and i ∈ [L] such that∣∣∣∣ ∑
j∈π−1

e,u(i)

ĝ(u, i)−
∑

j∈π−1
e,v(i)

ĝ(v, j)
∣∣∣∣ ≥ 1/M2.

This implies that |a(e, i)| ≥ C/M2. Since C = M3, it already implies ‖a‖`p ≥ M � (γp −
η)(|V | · 2R)1/p, so we can assume that there is no such e and i.

To bound ‖a‖`p , it only remains to analyze

∑
v∈V

∑
x∈{±1}R

∣∣∣∣a(v, x)
∣∣∣∣p =

∑
v∈V

∑
x∈{±1}R

∣∣∣∣ ∑
i∈[R]

ĝ(v, i)xi
∣∣∣∣p. (33)

The rest of the proof closely follows [29], and we explain high-level intuitions and why their
proofs work in our settings. First, let us assume that ‖ĝ‖`2 =

√
|V |. It involves a multiplicative

error of (1− 1/M), which is negligible in our proof. To simplify notations, let ĝv ∈ RR be such
that ĝv(i) := f̂v({i}) = ĝ(v, i) for each v ∈ V and i ∈ [R]. Call a vertex v ∈ V τ -irregular if
there exists i ∈ [R] such that |ĝ(v, i)| > τ‖ĝv‖2`2

. If not, v is τ -regular. Also, call a vertex v ∈ V
small if ‖ĝv‖`2 < 1/M . Otherwise, call it big.

For each v ∈ V , we consider
∑
x∈{±1}R

∣∣∑
i∈[R] ĝ(v, i)xi

∣∣p. By Khintchine inequality, it is at
most 2R · γpp · ‖ĝ‖

p
`2
. The following lemma, based on standard applications of the Berry-Esseen

theorem, shows that the converse is almost true when v is τ -regular, implying the contribution
from irregular vertices to (33) is large.

Lemma 33 ([42]). For sufficiently small τ (depending only on p), if v ∈ V is τ -regular, then

∑
x∈{±1}R

∣∣∣∣ ∑
i∈[R]

ĝ(v, i)xi
∣∣∣∣p ≥ 2R · γpp · ‖ĝ‖

p
`2

(1−
√
τ).

Let S be the set of big τ -irregular vertices. Based on the above, the following lemma shows
that S must be a large set. Originally, [29] only argued for τ -irregular vertices. (The notion of
big and small vertices does not appear there.) However, since the contribution of small vertices
to (33) is negligible, the same proof essentially works.

Lemma 34 (Lemma 4.4 of [29]). There are τ and θ, depending only on p and η, such that S,
the set of big τ -irregular vertices, satisfies |S| ≥ θ|V |.

By the weak expansion property of L guaranteed in Theorem 22, S induces at least θ2|E|
edges of L. To finish the proof, [29] showed that we can satisfy a significant fraction of the edges
from L. The only difference in their setting and our setting is that

• [29]: S is the set of all τ -irregular veritces. For each e = (u, v) and i ∈ [L],∑
j∈π−1

e,u(i)

ĝu(j) =
∑

j∈π−1
e,v(i)

ĝv(j). (34)
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• Here: S is the set of all big τ -irregular veritces. For each e = (u, v) and i ∈ [L],∣∣∣∣ ∑
j∈π−1

e,u(i)

ĝu(j)−
∑

j∈π−1
e,v(i)

ĝv(j)
∣∣∣∣ < 1/M2. (35)

These differences do not affect their proof since in the only place (34) was used for e = (u, v) and
i ∈ [L], they indeed used the fact the left-hand side of (35) is at most 0.3τ ·max(‖ĝu‖`2 , ‖ĝv‖`2).
Since we additionally assumed that S is big, ‖ĝu‖`2 ≥ 1/M for each u ∈ S, so it is always
satisfied from (35).

Lemma 35 ([29]). Let β := 10000D4/τ4J . Then OPT(L) ≥ (τ4/16)(θ2 − 2/β).

Since θ and τ only depend on η and p, fixing small enough ξ (that determines D) and large
enough J will ensure OPT(L) ≥ (τ4/16)(θ2 − 2/β) ≥ ξ, finishing the proof of the lemma.

5.5 Hardness for Finite Fields
In this subsection, we prove Lemma 3, which in turn finishes the proof of Theorem 20 for hardness
of `0-row lank approximation for matrices whose entries are from a finite field F.

Lemma 36 (Restatement of Lemma 3). Let F be a finite field and A ∈ Fn×d with n ≥ d and
k = d− 1. Then

min
U∈Fn×k,V ∈Fk×d

‖UV −A‖0 = min
x∈Fd,x 6=0

‖Ax‖0.

Proof. Assume that the rank of A is d; otherwise the lemma becomes trivial. We first prove
(≥). Given V ∗ ∈ Fk×d that achieves the best rank k approximation, assume without loss of
generality that the rank of V ∗ is k = d − 1. Let x ∈ Fd be a nonzero vector that is orthogonal
to the rowspace of V ; i.e., 〈v, x〉 = 0 if and only if v ∈ rowspace(V ). Note that unlike in R, x
can be in rowspace(V ), but it does not affect the proof. Let a1, . . . , an be the rows of A. For
fixed V ∗ and i ∈ [n], if ai ∈ rowspace(V ), then we can compute the ith row of U∗ (denoted
by u∗i ) such that u∗i V ∗ = ai. Otherwise, 〈ai, x〉 = b for some b 6= 0, since x is nonzero, there
is u∗i such that ‖u∗i V ∗ = ai‖0 = 1. Therefore, ‖U∗V ∗ − A‖0 = ‖Ax‖0, which implies that
minU∈Fn×k,V ∈Fk×d‖UV −A‖0 ≥ minx∈Fd,x 6=0‖Ax‖0.

For the other direction, given x ∈ Fd \ {0}, the set of vectors u with 〈u, x〉 = 0 forms a
k-dimensional subspace. (Again, this space may contain x unlike in R, but it does not matter.)
Let V ∗ ∈ Rk×d be a matrix whose rows span that space, and compute U∗ as above. The above
analysis shows that ‖U∗V ∗ −A‖0 = ‖Ax‖0, which completes the proof.
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6 Additional Results
Here we list some additional results on variants of the `p low rank approximation problem.

6.1 Bicriteria Algorithm
In this section we show that we can develop low rank approximations that apply to matrices
whose entries are not bounded by poly(n) so long as we accept bicriteria algorithms. That is,
instead of a target rank k approximation, the algorithm will output an approximating matrix of
rank 3k.

Theorem 23. If A is an n × d matrix, our target rank k is a constant, and 1 ≤ p < 2, then
there exists a polynomial time algorithm that outputs a matrix M of rank at most 3k such that
‖M − A‖p ≤ (1 + ε)OPT where OPT is the best rank k `p-low rank approximation value for A
with probability 1−O(1).

Proof. Let Cl denote the best rank l approximation to a matrix C in the `p norm (i.e. the matrix
that minimizes ‖Cl − C‖p).

Let B be the best rank k approximation to A in the Frobenius norm. Then

‖A−B‖p ≤ poly(n)‖A−B‖F ≤ poly(n)‖A−Ak‖F ≤ poly(n)OPT.

We can find a rank 2k (1 + ε)-approximation to A − B using the same techniques as in
Theorem 10, where we sample a matrix S of p-stable variables, guess values for SU∗, and then
minimize ‖SU∗V ∗ − S(A − B)‖p. Now the entries of A − B are not necessarily bounded by
poly(n) so we need to justify that it suffices to guess poly(n) values for SU∗.

Indeed, by a well-conditioned basis argument, no entry of U∗ has absolute value greater than
poly(n)‖A−B‖p. Furthermore, we can round each entry of U∗ (similar to the proof of Theorem
10) to the nearest multiple of ε‖A−B‖p

poly(n) and incur an additive error of at most εOPT because
‖A−B‖p ≤ poly(n)OPT . This error is small enough for the purposes of our approximation.

Let (A−B)∗2k = U∗V ∗ and let M = (A−B)∗2k +B. We have

‖M −A‖p = ‖(A−B)∗2k +B −A‖p
= ‖(A−B)∗2k − (A−B)‖p
≤ (1 + ε)‖(A−B)2k − (A−B)‖p + εOPT

≤ (1 + ε)‖Ak −B − (A−B)‖p + εOPT

≤ (1 + ε)OPT

where the first inequality follows from our argument above and the second inequality follows
because Ak −B has rank at most k + k = 2k.

Since M has rank at most 2k + k = 3k, then the result follows.

6.2 Weighted Low Rank Approximation
For 0 < p < 2, we can also design a PTAS for the weighted `p low rank approximation problem.
In this setting we have a matrix A, a weight matrix W of rank r, and we want to output a rank
k matrix A′ such that, for ε > 0,

‖W ◦ (A−A′)‖pp ≤ (1 + ε) min
rank k Ak

‖W ◦ (A−Ak)‖pp.

Our main tool will be a multiple regression concentration result based on that of [62].

Theorem 24. Let S be a poly(k/ε)×n matrix whose entries are i.i.d p-stable random variables
with scale 1. Let M (1),M (2), . . . ,M (m) be n× d matrices and let b(1), b(2), . . . , b(m) ∈ Rn. Let

x(i) = arg min
x
‖M (i)x− b(i)‖pp

and
y(i) = arg min

y
med(SM (i)y − Sb(i))/medp.
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Then w.h.p we have∑
i

‖M (i)y(i) − b(i)‖pp ≤ (1 +O(ε))
∑
i

‖M (i)x(i) − b(i)‖pp

Proof. By Lemmas 12 and 16, w.h.p.∑
i

med(S(M (i)x(i) − b(i)))p

medpp
≤ (1 +O(ε))

∑
i

‖M (i)x(i) − b(i)‖pp.

Let T be the set of all i such that
med(S[M (i) b(i)]y)p

medpp
≥ (1−Θ(ε))‖[M (i) b(i)]y‖pp

for all y. By Corollary 3, we know that for each i, the probability that i ∈ T is at least 1−Θ(ε).
Thus

E[
∑
i/∈T

‖[M (i) b(i)]y‖pp] ≤ Θ(ε)
∑
i

‖[M (i) b(i)]y‖pp

so by Markov’s inequality, w.h.p we have∑
i/∈T

‖[M (i) b(i)]y‖pp ≤ Θ(ε)
∑
i

‖[M (i) b(i)]y‖pp.

Let y be arbitrary. Since∑
i

med(S[M (i) b(i)]y)p

medpp
≥
∑
i/∈T

med(S[M (i) b(i)]y)p

medpp
≥ (1−Θ(ε))

∑
i/∈T

‖[M (i) b(i)]y‖pp,

it follows that for all y we have∑
i

med(S[M (i) b(i)]y)p

medpp
≥ (1−Θ(ε))

∑
i

‖[M (i) b(i)]y‖pp.

Therefore w.h.p we have

(1−Θ(ε))
∑
i

‖M (i)y(i) − b(i)‖pp ≤
∑
i

S(M (i)y(i) − b(i))
medpp

≤
∑
i

S(M (i)x(i) − b(i))
medpp

≤ (1 +O(ε))
∑
i

‖M (i)x(i) − b(i)‖pp

because 0 < p < 2. The result follows.

Theorem 25. Suppose A and W are n × d matrices with entries bounded by poly(n), and
r = rank(W ). There is an algorithm that for any integer k, p ∈ (0, 2) and ε ∈ (0, 1), outputs in
time nr·poly(k/ε) a n× k matrix U∗ and a k × d matrix V ∗ such that

‖W ◦ (A− U∗V ∗)‖pp ≤ (1 +O(ε)) min
rank-k Ak

‖W ◦ (A−Ak)‖pp.

Proof. To achieve a relative-error low rank approximation W ◦ (UV −A), for each column i we
can guess sketches for W:,i ◦ UVi using a similar argument as in Theorem 10. Indeed, we can
apply Theorem 24 with M (i) = W:,i ◦ U∗V ∗i and b(i) = W:,i ◦A:,i. To do so, we need to be able
to guess SW:,i ◦U∗, a poly(kε )× k matrix, in poly(n) tries. We will follow the same reasoning as
in the proof of Theorem 10. Since the entries of W and A are bounded by poly(n), then we can
bound the entries of U∗ by poly(n) using a well-conditioned basis. Furthermore, we can round
each entry of U∗ to the nearest multiple of poly(n−1) while incurring an error factor of only
(1 +O(ε)). Thus, we need only npoly(k/ε) guesses.

Of course, there d columns so this is not enough to achieve a PTAS. However, we only need
to guess sketches for r values of j because W has rank r so we can express any column of W as
a linear combination of those r columns. That is, we choose a subset S of the columns such that
|S| = r and guess the sketches ofW:,i◦UVi for each i ∈ S as described in the previous paragraph.
Therefore, we require nr·poly(k/ε) time in total for a (1 +O(ε)) approximation algorithm. Since
k and r are constants this results in a PTAS.
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