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Abstract Plant transpiration (T), biologically controlled movement of water from soil to atmosphere,
currently lacks sufficient estimates in space and time to characterize global ecohydrology. Here we describe
the Transpiration Estimation Algorithm (TEA), which uses both the signals of gross primary productivity and
evapotranspiration (ET) to estimate temporal patterns of water use efficiency (WUE, i.e., the ratio between
gross primary productivity and T) from which T is calculated. The method first isolates periods when T is
most likely to dominate ET. Then, a Random Forest Regressor is trained on WUE within the filtered periods
and can thus estimate WUE and T at every time step. Performance of the method is validated using
terrestrial biosphere model output as synthetic flux data sets, that is, flux data where WUE dynamics are
encoded in the model structure and T is known. TEA reproduced temporal patterns of T with modeling
efficiencies above 0.8 for all three models: JSBACH, MuSICA, and CASTANEA. Algorithm output is robust
to data set noise but shows some sensitivity to sites and model structures with relatively constant
evaporation levels, overestimating values of T while still capturing temporal patterns. The ability to capture
between-site variability in the fraction of T to total ET varied by model, with root-mean-square error values
between algorithm predicted and modeled T∕ET ranging from 3% to 15% depending on the model. TEA
provides a widely applicable method for estimating WUE while requiring minimal data and/or knowledge
on physiology which can complement and inform the current understanding of underlying processes.

Plain Language Summary While it is widely known that plants need water to survive, exactly
how much water plants in an ecosystem use is hard to quantify. However, many places have been
measuring how much total water leaves an ecosystem, both the water plants use directly and the water
that simply evaporates from the soil or the surfaces of leaves, using eddy covariance towers. These eddy
covariance towers also measure the coming and going of carbon, such as the total amount of carbon taken
up by photosynthesis. Here we present the idea that by using the signals from both photosynthesis and
total water losses together, we can capture the water signal related to plants, namely, transpiration, using an
algorithm called Transpiration Estimation Algorithm (TEA). To verify that TEA is working the way we expect,
we test it out using artificial ecosystem simulations where transpiration and photosynthesis come from
mathematical models. By thoroughly testing TEA, we have a better idea of how it will work in a real world
situation, hopefully opening the door for a better understanding on how much water ecosystems are using
and how it might affect our changing planet.

1. Introduction

At current state, transpiration (T) is a key ecosystem process that lacks the widespread and consistent esti-
mates necessary to study ecohydrological processes globally. For example, a recent meta-analysis by Wei et al.
(2017) analyzed an aggregation of ecosystem level T estimates resulting in a data set of only 64 studies con-
ducted between 1941 and 2014, a relatively sparse data set when attempting to capture global variability.
As such, demand for T data sets that can encompass the variety of ecosystem responses to water availability
has been highlighted as a key need, from the perspectives of both the water (Fisher et al., 2017) and carbon
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(Rogers et al., 2017) cycle communities. Though transpiration and evaporation (E) processes are built into most
ecosystem and land surface models, resulting estimates are poorly constrained, as can be seen in the spread
of global T∕ET estimates from the Coupled Model Intercomparison Project Phase 5 which ranged from 22%
to 58% (Wei et al., 2017). Here we present an approach for estimating T which is applicable to eddy covariance
(EC) networks and is data driven providing an alternative perspective to current process-based approaches.

The difficulty in partitioning evapotranspiration (ET) into the biotic component (transpiration, T) and the
abiotic component (here evaporation, E) is partially due to equifinality, as E and T share the same primary
environmental drivers making the problem difficult to constrain. From the view point of physics, transpiration
is an evaporation which is then modulated by stomatal resistance, making the task of distinguishing the two
fluxes particularly challenging. However, a key distinction of T lies in that it is regulated by an active process
via stomatal control, which is linked to plant photosynthesis. To this end, the method we propose aims to uti-
lize this link between water and carbon cycles as the key differentiating process between E and T in an effort
to distinguish the two.

As reviewed in Kool et al. (2014), many approaches to partition ET attempt to pair a separate E and/or T dis-
tinguishing estimate, such as measurements of sap flux, isotope fractionation, or carbonyl sulfide (OCS) flux,
in tandem with an ET estimate. Sap flux measurements, which estimate the flow of water through a stem
(Granier, 1987), is currently the most widespread method. Though sap flux measurements have proven to be
effective at measuring tree water fluxes, estimating ecosystem T relies on upscaling point source sap flow
estimates based on an approximation of sapwood area, which can be problematic in ecosystems with high
plant diversity, hampering suitability for universal application (Oishi et al., 2008; Poyatos et al., 2016). Isotopic
methods take advantage of the isotopic fractionation of water oxygen (18O/16O) and hydrogen (2H/1H) which
occurs from evaporation but not root uptake, producing isotopic signatures related to the T :E ratio. Isotopic
methods have been used both at global scales (Good et al., 2015; Jasechko et al., 2013) and at high tempo-
ral resolutions (Good et al., 2014) yet are limited in the number of sites and length of time series. In general,
global isotopic estimates of T∕ET tend to be higher than site estimates (Wei et al., 2017), some even controver-
sially so (Coenders-Gerrits et al., 2014). The OCS method attempts to use the flux of OCS uptake by leaves to
estimate ecosystem canopy conductance directly, as the pathways of CO2 and OCS are similar (Sandoval-Soto
et al., 2005; Whelan et al., 2017). The calculation of conductance is simplified when using OCS, as it does not
have the complication of having a large source component such as is the case with respiration and CO2 (Wehr
et al., 2017). While the OCS method is promising, the novelty and potential complications due to alternate
sources/sinks of OCS (Gimeno et al., 2017; Wohlfahrt, 2017) have resulted in limited applications in practice.

Due to the limits of current T estimates, and shortfalls in understanding ecosystem water dynamics,
data-driven approaches can provide an alternate perspective. Widespread monitoring of both water and CO2

fluxes provide rich data sets that can inform T estimates by utilizing concepts of water use efficiency (WUE),
here defined as the ratio of gross primary productivity (GPP) to T . At present, data-driven approaches to esti-
mate ecosystem WUE and T do exist, such as the method proposed by Zhou et al. (2016; hereafter referred
to as the Zhou method) which is based on estimates of annual underlying WUE from GPP and vapor pressure
deficit (VPD), calculated as

uWUEt =
GPPt ⋅

√
VPDt

ETt
, (1)

where the
√

VPD term represents an approximate stomatal response which is broadly applied to many ecosys-
tems. uWUE is related to the carbon cost of water which is assumed to be constant in light-limited leaves over
time scales of days to weeks. By incorporating the

√
VPD term, the carbon:water relationship becomes lin-

ear and uWUE values can be estimated using linear regression where uWUE is the slope parameter. The Zhou
method makes a T∕ET estimate by taking the ratio of a normal linear regression of uWUE estimated within
1 day (which would include the E component), and the 95th percentile regression of annual uWUE which is
assumed to contain only transpiration. The key assumptions are then that uWUE is constant within a year and
that the 95th percentile of uWUE corresponds to conditions where E ≈ 0. E is most likely to be 0 at high per-
centiles because these points correspond to periods with the highest ratio of GPP∕ET , whereas points with a
high E component would increase ET with no added T causing the uWUE to decrease. Points over the 95th
percentile are assumed not to be representative of uWUE, possibly due to noise.

While Zhou et al. (2016) and other data-driven WUE estimates (Beer et al., 2009; Scott & Biederman, 2017) have
laid the foundation for globally useful WUE and T estimates, they have yet to be rigorously validated, likely
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Figure 1. Theoretical outline of both the TEA algorithm (lower section) and validation steps (upper section). TEA consists of a filtration step to isolate dry periods
when vegetation is active using the CSWI, then a Random Forest Regressor is trained on the filtered data set to characterize WUE dynamics, which are then
predicted for the entire time series. The validation scheme involves using model output as a synthetic flux data set, to evaluate if TEA is able to replicate the WUE
dynamics encoded in the models. TEA = Transpiration Estimation Algorithm; CSWI = conservative surface wetness index; WUE = water use efficiency.

in part due to the limited availability of verification data sets as described in the previous section. Notably,
assumptions on ecosystem WUE dynamics which are not fully understood must be taken into consideration.
In particular, nonlinearities in the GPP to T relationship must be addressed such as the known effects from
stomatal response (VPD) (Beer et al., 2009; Katul et al., 2009; Zhou et al., 2014). Though the Zhou method
does attempt to account for VPD effects, the resulting uWUE estimate is tied to annual time periods and does
not allow for seasonal or diurnal variations in plant and ecosystem responses, only accounting for the VPD
response. Boese et al. (2017) concluded that the uWUE framework could be outperformed by empirical models
that included incoming radiation, suggesting that only incorporating VPD may not be sufficient to character-
ize the carbon:water relationships at ecosystem level. As such, the method proposed here attempts to derive
WUE dynamics from a data-driven perspective, using a nonlinear, machine learning method to characterize
the carbon:water relationship and thus make few assumptions on the ecosystem WUE dynamics.

1.1. Method Outline and Objectives
We identify two key limitations of the current methods outlined: (1) restricted applicability or spatiotem-
poral scope, particularly with direct T measurements; (2) strong assumptions of carbon:water relationship,
particularly with EC-dependent methods, which have the potential to bias WUE and T estimates.

We aim to overcome the first limitation by basing the method only on water, energy, and carbon EC
fluxes with associated meteorological data to make predictions at half-hourly to hourly scales with minimal
data requirements.

To address the second limitation, we validated the presented ET partitioning method against model output in
an effort to assess sensitivities and limitations. The use of artificial data sets has proven useful both in the field
of biogeochemistry (Jung et al., 2009), as well as adjacent fields (Ishizaki et al., 2014; Jasechko et al., 2014). We
used three separate models in an effort to reduce the influence of any one set of model assumptions.

Here we introduce the Transpiration Estimation Algorithm (TEA), which uses ecosystem WUE (eWUE =
GPP∕ET) to predict transpiration in two steps (see Figure 1): (1) a data filtration step to isolate the signal of
ET for periods where E is minimized and ET is likely dominated by the signal of T , that is, during periods of
the growing season with dry surfaces; and (2) a step that predicts the WUE using meteorological variables,
as well as information derived from the carbon and energy fluxes. This prediction of WUE translates to a
novel transpiration estimate which aims to be capable of capturing seasonal and diurnal dynamics with wide
application potential.
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Table 1
Overview of Filters Used to Isolate Conditions Where the Signal of ET is Dominated by T

Variable Long name Half-hourly limit Daily limit

GPP Gross primary productivity > 0.05 μmol C⋅m−2⋅s−1 > 0.5 g C⋅m−2⋅day−1

Tair Air temperature >5 ∘C —

Rg Incoming radiation > 0 W/m2 —

CSWI Conservative surface wetness index <−3 to 2 mm —

Note. GPP and Tair filters were designed to ensure plants are active, while Rg filters remove nighttime values.
The CSWI filter attempts to remove periods where the surface is likely to be wet, a sensitivity analysis of
which can be found in section 3.2.

The key hypothesis to be tested here is as follows: Does the TEA algorithm capture the dynamics of WUE and T
encoded in the models? If the method cannot capture WUE dynamics from the three different models, we can
assume it will not capture real world WUE dynamics; thus, the exercise is a sanity check on whether TEA is
capable of extracting physiological patterns of ecosystem WUE. Furthermore, we explore scenarios when a
key assumption is broken, that is, evaporation is persistent at every point in time, as well as how evaporation
can bias the results and how to mitigate this bias using percentile regression.

2. Methods
2.1. Isolating Training Periods
To accomplish the characterization of T in time, we used the assumption that the signal of T∕ET ≈ 1 under
conditions where the ecosystem has minimal surface moisture and the plants are photosynthetically active,
as manifest via the set of filters outlined in Table 1. Filters were constructed from half hourly flux and mete-
orological data which excluded periods that did not meet filter criteria (individual half hours were removed).
Periods likely to have no or low photosynthetic activity were removed, such as nighttime values or periods
with low temperatures, as well as full days that did not reach a minimum threshold of total daily GPP. Periods
expected to have high surface moisture were removed using the conservative surface wetness index (CSWI),
a shallow bucket model where the bucket represents the surface water storage (S) for each half-hourly time
step t (St) relative to the last precipitation event, or,

St = min
(

St−1 + Pt − ETt, Smax

)
, (2)

where Pt is the precipitation at time t and Smax is the maximum allowable storage (size of bucket). Smax was set
to 5 mm, and values from 3 to 9 mm showed no difference in filter utility (data not shown, further discussed
in section 4.2). The CSWI is then calculated as

CSWI = max
(

St,min
(

Pt, Smax

))
. (3)

Periods were considered sufficiently dry based on a CSWI limit, that is, periods where CSWI < limitare assumed
to have dry surfaces. As opposed to other methods of identifying wet and dry conditions, such as removing
periods after rain events, the CSWI accounts for the amount of rain evaporated and therefore compensates for
small rain events which may evaporate relatively quickly as well as for periods of low ET after rain events such
as persistent clouds reducing radiation inputs where surfaces may stay wet longer. As the appropriate limit
for CSWI was unknown, this limit then becomes an input parameter to the algorithm which is not optimized,
or hyperparameter; hence, a sensitivity analysis was conducted across a range of limits from 2 to −3 mm (see
section 3.2). The CSWI limits were not extended past −3 mm, as lower limits resulted in fewer than 500 half
hours remaining in the training data set at some sites, which was considered too few to properly characterize
site variability. Note that the limit of 500 half hours is arbitrary and possibly conservative; however, results
indicate stricter limits (i.e., CSWI < −3 mm) may cause the training data set to only include periods of water
stress and decrease prediction performance (see Figure 7). Similarly for CSWI, periods when daily GPP was too
low were also filtered in an effort to remove periods when the plants are relatively inactive, such as transition
periods from winter to spring. A minimum daily threshold of 0.5 g C⋅m−2⋅day−1 was found to give a good
performance, and a sensitivity analysis to daily GPP filter can be found in supporting information Figure S1.

Each individual filter was combined (logical AND), resulting in a filtered time series that was then used to
calculate half-hourly values of eWUE to be used as a training data set in the next section, hereafter referred to
as the training data set.

NELSON ET AL. 3620
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2.2. Modeling WUE and Predicting T
Using a set of features X, we trained a random forest regressor (RF; RandomForestRegressor from Pedregosa
et al., 2011, based on Breiman, 2001) on eWUE within the training data set (for each site) made with the filters
outlined in Table 1. Features consisted of four meteorological variables: incoming radiation (Rg), air temper-
ature (Tair), relative humidity (RH), wind speed (u); four derived variables: the derivative of a Gaussian filtered
GPP (GPP′), the Rg normalized diurnal centroid of ET (C∗

ET), the diurnal water:carbon index (DWCI), CSWI;
and daily potential radiation (Rgpot,daily), the derivative of daily potential radiation (Rg′

pot,daily), and year. The
resulting feature vector X is

X = [Rg, Tair, RH, u, Rgpot,daily, Rg′
pot,daily, CSWI,GPP′, C∗

ET,DWCI, year]. (4)

Note that C∗
ET measures the morning shift of diurnal ET, and DWCI measures the degree of correlation in 1 day

between GPP and ET; a detailed explanation of C∗
ET, DWCI, and CSWI can be found in Nelson et al. (2017),

code for which can be found at Nelson (2017). The set of features X was designed to give the RF regressor
information on processes that may impact WUE.

The full time series of WUE was then predicted for all half hours (unfiltered data) using the resulting model as

WUEt,pred = RFP(Xt, P), (5)

where P is the percentile used from each resulting predictive leaf, or prediction percentile (Meinshausen,
2006). Quantile random forest regression is analogous to the linear quantile regression use by the Zhou
method but makes no assumptions on linearity.

The RF utilized 100 trees which were fully grown, and each splitting node consisted of a maximum number of
features equal to one third the total number of features, rounded up. A sensitivity analysis of the number of
trees and maximum number of feature parameters can be found in supporting information Figure S2.

As ET in the training data set is assumed to be only a proxy of T , there is likely E still present even after filtering.
For example, when making a prediction for a particular half hour the process would work as follows: Features
of the half hour would be fed to the RF (Rg, Tair, RH, etc… ); in turn the RF will return a number of WUE values
which it has identified as associated with the particular features of that half hour; this set of returned values
can then be summarized, which is typically via the mean, but can also be a median or any other quantile such
as the percentiles used here. If one assumes that all these WUE values from the RF for a half hour represents a
single true WUE (GPP/T) that is contaminated by some residual evaporation (GPP/(T + E)), the best summary
statistic to use would be the maximum, as that would be the point most likely to have minimal residual evap-
oration. However, because the assumption that the WUE values returned from the RF likely do not represent
a single true WUE, and instead variability comes both from residual evaporation and variability in WUE, the
most appropriate percentile is not known. Therefore, the magnitude of predicted WUE can be adjusted using
the percentile of prediction from the random forest and the optimum percentile, another hyperparameter
which is not known a priori. A sensitivity analysis of prediction percentiles can be found in section 3.2. Note
that extraction of percentiles from 50 to 100 is the result of a single prediction step with a single trained RF
regressor; that is, the RF was not retrained for each percentile.

Given an estimate of WUE, the prediction of transpiration at time t was calculated as

Tt =
GPPt

WUEt,pred
(6)

for each half hour, where nighttime values of T are considered 0. The evaporation component at time t was
then estimated as

Et = ETt − Tt. (7)

All code for processing and partitioning, as well as interactive examples, can be found in Nelson (2018).

2.3. Model Output Used for Method Evaluation
To test the predictive performance of the method, WUE and T estimates were compared to output from three
separate models with different underlying carbon:water coupling mechanisms: CASTANEA (Delpierre et al.,
2012; Dufrêne et al., 2005), JSBACH (Knauer et al., 2015; Reick et al., 2013), and MuSICA (Ogée et al., 2003;
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Journal of Geophysical Research: Biogeosciences 10.1029/2018JG004727

Figure 2. Average seasonal cycle of four output variables from JSBACH, CASTANEA, and MuSICA, all driven with the same
meteorological forcing from three forest sites. Modeled years were 1997–2011 for FI-Hyy and FR-Hes, and 1997–2010
for DE-Tha. Data presented correspond to daily data averaged across all years and are intended to show seasonal trends.
FI-Hyy = Hyytiälä, Finland; FR-Hes = Hesse beech forest in France; DE-Tha = Anchor Station Tharandt, Germany.

Potier et al., 2015; Wilkinson et al., 2015). Each model comes from a slightly different perspective, character-
ized by different model structures and ways of dealing with carbon-water relationships. JSBACH differs from
the other two models in that it is a land surface model designed to be integrated into a global climate model,
which was run off-line for this study. MuSICA separates the canopy into multiple layers, with each layer con-
taining various plant components each with their own water status, light regime, and age. CASTANEA focuses
on the growth, carbon allocation, and water budget of a monospecific forest stand.

Models were run using meteorological forcing data from 73 different sites, with 85 model runs in total (see
full list in File S6 in the supporting information). Meteorological forcing data for the models came directly
from the flux towers. This exercise was designed to test whether the method is capable of extracting a known
carbon:water relationship even when the underlying assumptions are different. The ability of the algorithm
to infer the complex formulations from these process-based models gives credence to the capability of the
method to estimate these processes in real data. Therefore, the method was applied to the modeled GPP and
ET fluxes paired with the respective forcing meteorological data, with the resulting TEA algorithm transpira-
tion estimates compared to the modeled T . An intercomparison of the three models which used the same
meteorological forcing data set can be seen for three sites in Figure 2. Key distinctions between the models
can be seen in the leaf area index (LAI) and T∕ET , with highest values of LAI from CASTANEA and MuSICA and
highest T∕ET values being from JSBACH. An overview of key model features can be found in Table 2.
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Table 2
Overview of Key Processes in the Three Models Used for Validation

Key processes Remarks

MuSICA

Interception Canopy rain interception and water storage on leaf surfaces are computed in each vegetation layer using a water balance equation

and the concept of maximum storage capacity, scaled by the leaf area of each layer (Rutter et al., 1971). Evaporation from the

interception storage is taken at the potential rate in each layer. More details are provided in Potier et al. (2015).

Water stress Stomatal conductance, leaf photosynthetic capacity, and/or root hydrauilc conductivity downregulated based on instantaneous

(Tuzet) or predawn (Ball, Leuning) leaf water potential.

Stomatal conductance Ball et al. (1987), Leuning (1995), or Tuzet et al. (2003) depending on parameterizations available for individual sites.

Soil evaporation zlitter acts as a separate, insulating layer.

Phenology Dates of phenology events (bud burst, senescence) and minimum/maximum leaf area are constant throughout the simulation

and supplied by the user.

JSBACH

Interception Water storage for the whole canopy, scaled by LAI, with evaporation from interception storage at the potential rate.

Water stress Nonlinear reduction of g1 (stomatal slope parameter) and photosynthetic capacity (Vcmax and Jmax) based on available soil moisture.

Stomatal conductance Medlyn et al. (2011)

Soil evaporation Soil evaporation coming from top soil layer (of 5).

Phenology Logistic Growth Phenology model (LoGro-P); calculation depends on the phenotype, dependent on temperature, soil moisture, and

NPP; for evergreen and deciduous forests (described in Böttcher et al., 2016): heat sum approach in combination with a critical

number of chill days.

CASTANEA

Interception Water storage for the whole canopy, function of WAI and LAI.

Water stress Linear reduction of g1 based on extractable soil water content.

Stomatal conductance Ball et al. (1987)

Soil evaporation Evaporation coming from both litter and top soil layer, soil moisture levels updated daily.

Phenology LAI dynamics based on degree-days (Delpierre et al., 2009); for coniferous trees, winter regulation of photosynthetic transpiration

activity further modulated by thermal acclimation (Delpierre et al., 2012).

Note. LAI = leaf area index; NPP = net primary production; WAI = wood area index.

Comparisons between model output and TEA estimations were focused on two key aspects: replication of
patterns and minimizing bias. The ability to capture patterns was assessed using the modeling efficiency (MEF;
Nash & Sutcliffe, 1970), calculated as

MEF = 1 −
∑

(Tt,model − Tt,TEA)2

∑
(Tt,model − Tmodel)2

. (8)

As this metric is meant to identify only patterns so as to differentiate bias due to consistent overestima-
tions/underestimations and inability to capture temporal patterns, the mean values of TTEA and Tmodel are
removed prior to calculating the MEF. Quantification of bias was calculated as a relative bias,

bias =
∑

Tt,TEA −
∑

Tt,model∑
Tt,model

. (9)

2.4. Noise and Evaporation Sensitivity Experiments
To isolate the effects of noise and training set E, two artificial experiments were conducted where the data
from each model run were used to create a series of new experimental data sets. The first case attempted
to assess the sensitivity of the TEA algorithm hyperparameters to the presence of noise, which is likely to be
present in real EC data and is not present in the model output. The second experiment aimed to isolate the
effect of E on prediction bias, with the aim of understanding how a persistent fraction of E may potentially
bias T estimates.

To test the effects of noise, Random Gaussian noise was added to the original modeled GPP and ET values
with a standard deviation corresponding to a scaling factor (s) according to percentages of the original value:
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5%, 10%, 15%, 20%, and 25%. The experimental GPP and ET fluxes were then calculated as

fluxt,noise = N
(

fluxt,original,
(

fluxt,original ⋅ s
)2
)
, (10)

with the resulting eWUE containing noise in both the GPP and ET components. Noise levels were designed to
encompass the range expected in real EC data (Hollinger & Richardson, 2005).

To isolate the effect of E on prediction bias, it is important to distinguish between total E and E which is persis-
tent within the training data set (Etrain, see Figure 3 for a conceptual overview). As the RF is trained on GPP∕ET
within the filtered periods, only E which is present in the training data set can bias WUE predictions. To quan-
tify how sensitive the method is to Etrain, experimental ET data were calculated from simulated model T data
to give a consistent Etrain for the entire time series which could not be filtered via CSWI. Etrain levels ranged
from 0% to 50% of ET, with some added noise to give some uncharacterizable variability. Calculations utilized
a multiplier (efactor) which was centered on the desired Etrain, with standard deviation equal to 25% of Etrain:

et,factor = N(Etrain,
(

Etrain ⋅ 0.25
)2), (11)

from which ET was calculated as
ETt =

Tt

1 − et,factor
. (12)

The resulting ET data set had a consistent fraction of Etrain in ET which was independent of the magnitude of
ET and which the random forest was unable to characterize. The range of E in the experiments encompassed
the E levels in the original model training data sets, which reached values up to 37%.

These two experimental data sets were then partitioned using the exact same procedure as the original
data set.

2.5. Application to Real EC Data
The TEA algorithm was used as described above to partition the real EC data from three sites: Hesse beech
forest in France (FR-Hes, Granier et al., 2008), a Scots pine forest in Hyytiälä, Finland (FI-Hyy, Mammarella et al.,
2009), and a spruce forest at Anchor Station Tharandt, Germany (DE-Tha, Grünwald and Bernhofer (2007)).
Flux data were flagged as good or bad quality as per Papale et al. (2006), and gap filling and net ecosystem
exchange partitioning were performed as per Reichstein et al. (2005). TEA estimates from real flux data can
be found as part of the discussion.

3. Results

Figure 4 shows the average annual cycle of T∕ET for the three sites run by each model with the same forcing
data set, as well as the total T∕ET values. For clarity, TEA estimated values are reported here using hyperpa-
rameter values of CSWI limit of −0.5 mm and the 75th prediction percentile. The 75th prediction percentile
corresponds to the median of the 50th–100th percentiles and offers a value useful to quantify spatial and
temporal patterns (see section 3.2 for sensitivity analysis of hyperparameters and section 4.2 for a discussion
on their use). It can seem surprising that the TEA algorithm, which is trained on periods when E is assumed to
be 0, performs so well given that the mean daily evaporation across years is often over 40% (Figure 2). This is
because this mean daily evaporation includes nighttime periods (when all ET is likely from evaporation) and
rainy or postrain periods, while the TEA algorithm training data set excludes all those periods (via the radi-
ation and CSWI filters). Thus, the amount of evaporation in the training data set is much lower than seen in
these two plots. The ability of TEA to extract the WUE dynamics can be seen in Figure 5, with seasonal and
diurnal WUE patterns of TTEA∕ET matching those of Tmodel∕ET , including during periods where ET∕GPP shows
the obvious effects of E during the wet winter periods.

3.1. Resulting Partitioning Performance
The predictive performance of the TEA algorithm applied to the model outputs across both aggregated time
scales, as well as across all sites, is shown in Figure 6. The median MEF values between TTEA and Tmodel are
greater than 0.9 for all models across all time aggregations up to quarterly, with a slight decrease at annual
aggregation. This decrease in performance at annual scale may be due to the limited variability at these time
scales, as well as the limited number of years at some sites. Model bias varies between sites and particu-
larly between models, indicating that the optimal prediction percentile for minimizing bias may vary for each
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Figure 3. Conceptual diagram showing persistent evaporation in the training data set (Etrain). In the case without
persistent evaporation, many periods of the training data set contain little Etrain, meaning the algorithm can likely find
periods where eWUE = WUE, (GPP∕ET) = (GPP∕T), and ET = T . In the case with high Etrain, every period contains
significant E, which is likely to cause a bias in WUE estimates and ultimately an overestimation of T . WUE = water use
efficiency; GPP = gross primary productivity; ET = evapotranspiration.

model (see section 3.2 for analysis of prediction percentiles). The method performed well spatially, that is,
across sites, with slopes between predicted and modeled T∕ET varying between 1.02 and 1.12.

Using the wider range of sites afforded by JSBACH, site characteristics such as aridity index, mean annual
temperature, max LAI, and plant functional type (PFT) were shown to have no significant effect on MEF or bias
(see supporting information Figure S3).

3.2. Sensitivity to Hyperparameters: CSWI Limit and Prediction Percentile
The TEA algorithm provides two key hyperparameters to tune the resulting WUE and transpiration esti-
mates: the CSWI limit which controls the amount of required accumulated ET after a rain event before data
are included in the training data set, and the prediction percentile which adjusts the predictions higher or
lower, that is, closer to the limits of the training data set eWUE values. As the CSWI limit attempts to remove
E-contaminated data, the limit should be optimized to maximize the MEF between TTEA and Tmodel while main-
taining a high number of points in the training data set. As seen in Figure 7a, MEF values improve with limits
below 0 mm and stabilize below a limit of−0.5 mm. Furthermore, spatial correlations (Figure 7b) show a similar
improvement at a limit of −0.5 mm, followed with a sharp decline from the JSBACH runs below a limit of
−2.0 mm. A CSWI limit of −0.5 mm was used for all further analysis (see section 4.2 for further discussion).

Figure 8 shows sensitivity and model performance with respect to prediction percentile. MEF for each pre-
diction percentile was generally above 0.7 for all models and sites, with some MEF values less than 0.7 at the
highest (P100) and lowest (P50) prediction percentiles (Figure 8a). In accordance with the hypothesis laid out in
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Figure 4. Average seasonal cycle of T∕ET both from model output and the TEA estimate from model output, as well as total T∕ET from the entire time series. TEA
algorithm was run on each individual site and model independently. Modeled years were 1997–2011 for FI-Hyy and FR-Hes, and 1997–2010 for DE-Tha. Data
presented correspond to daily data averaged across all years and are intended to show seasonal trends. TEA = Transpiration Estimation Algorithm;
ET = evapotranspiration; FI-Hyy = Hyytiälä, Finland; FR-Hes = Hesse beech forest in France; DE-Tha = Anchor Station Tharandt, Germany.

Zhou et al. (2016), prediction percentiles closer to the limit which maximizes the GPP:ET ratio should be asso-
ciated with periods where E contamination is minimized. In contrast, looking at the relative bias between TTEA

and Tmodel (Figure 8b), we found that the prediction percentile which minimizes bias varied depending on the
model, with optimal prediction percentiles to minimize bias for CASTANEA being around P95, compared to P70

for MuSICA and P60 for JSBACH. This difference in optimal prediction percentiles may be due to the differences
in the inherent residual E predicted by the models (see Figure 2), with CASTANEA having the highest level of
E throughout the growing season (and highest bias-minimized prediction percentile) and JSBACH having the
lowest. Supporting information Figure S4, which shows the relationship of E∕ET in prediction points at vari-
ous prediction percentiles, further indicates that indeed the E component from TEA predictions is minimized
at different percentiles for the three models.

Figure 5. The TEA algorithm captures mean seasonal and daily cycles of WUE from MuSICA output forced with data from Yatir Forest from 2001. Mean daily
cycles are based on half hourly data for each month, whereas the seasonal cycles are an average from 5 days. TEA = Transpiration Estimation Algorithm;
WUE = water use efficiency;
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Figure 6. Overall model performance in space (right) and time (left). All models show high correlation across time
scales, with some degradation at annual scale. In space (i.e., across sites), the TEA algorithm shows the highest
agreement with the MuSICA model runs (r2 ≈ 0.97), and root-mean-square error for JSBACH, CASTANEA, and MuSICA
was 8.4%, 15.3%, and 3.2%, respectively.

3.2.1. Sensitivity to Training Set Evaporation and Noise
As seen in Figure 8d, the TEA algorithm shows a response in bias to Etrain (see section 2.4 for experimental out-
line), with the slope between bias and Etrain being between 1 and 2 for the 50th–90th prediction percentiles.
These slopes correspond to a worst case scenario, representing a situation where a site would have a constant
E component, for example, a site where E never goes below 15% of ET at any time. So if a site is estimated to
have at least 15% Etrain at every half hour, the transpiration rates may be 22% overestimated using the 75th
prediction percentile. An overestimation of 150% of Etrain is consistent with the CASTANEA model runs, which
across sites has a mean Etrain of 20% and a mean total bias of 32%, which translates to a mean overestimation
of total T∕ET of 14%. For context the percentage of training data set half hours with less than 15% E∕ET was
on average 67%, 33%, and 95% for MuSICA, JSBACH, and CASTANEA, respectively, with the lowest percentage,
6%, for the Hyytiälä Forest simulation from CASTANEA.

Though the highest prediction percentiles show the lowest sensitivity to Etrain and could thus mitigate this
bias, high prediction percentiles also show large sensitivity to noise (Figure 8c; see section 2.4 for experimental
outline), indicating that directly using prediction percentiles above P95 is not suitable. Prediction percentiles
below P90 show less sensitivity to noise, with slopes between MEF and the noise-to-signal ratio (inverse of
signal-to-noise ratio used to simplify sign convention) generally being between −0.1 and 0 for the majority
of sites. To put a slope of −0.1 into context, if a site had an MEF of 0.9 and a noise-to-signal ratio of 1:10, the
same site would have an MEF of 0.83 if noise was then added making the noise-to-signal ratio 1:2 (see section
4.2 for further discussion).

4. Discussion
4.1. Broadly Applicable WUE and T Estimates
The validation experiment presented here indicates that while ET is composed of two signals (E and T), by
pairing the ET signal with GPP, TEA is able to extract the WUE dynamics and thus the biologically controlled
T signal. Figures 5 and 6 demonstrate that TEA-estimated WUE captures variability in transpiration from
subdaily to interannual scales and between sites, particularly when comparing only simulations from an indi-
vidual model. The relatively fine temporal resolution of TEA provides the possibility of exploring the dynamics
of carbon:water interactions such as seasonal and diurnal cycles. In general, the method as outlined here
can be directly applied to real EC data with minimal alteration, allowing for potential global application, with
the limitations and cautionary remarks described in the following sections. As a demonstration of TEA using
real data, Figure 9 shows a comparison of modeled T∕ET at three sites compared to the TEA-estimated T∕ET
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Figure 7. Sensitivity of TEA performance to CSWI limit hyperparameter. Though low CSWI limits help reduce the impact
of Etrain, strict filters also decrease the number of points available in the training data set, which can exclude some wet
sites entirely. A filter of −0.5 shows good MEF between TTEA and Tmodel across sites (a), with little improvement using
stricter filtering. The negative effect of strict filtering can be seen in the spatial correlation (b) of the JSBACH models,
which significantly decreases at limits less than −2, as well as in the spatial slopes (c) and spatial intercepts (d).
TEA = Transpiration Estimation Algorithm; CSWI = conservative surface water index; MEF = modeling efficiency.

using actual EC data. T estimates from TEA using real EC data fall between the process model T estimates,
all while requiring no parameterizations nor having any assumptions on the underlying biological processes.
Importantly, TEA does not rely on the model data in any way, as model runs were only used as a validation
experiment; thus, TEA is purely data driven and represents the statistical prediction of WUE and T based on
input data of GPP, ET, and meteorological data. To see the value that these widely applicable methods provide,
one needs to look no further than the partitioning of carbon EC fluxes, which have provided a wealth of infor-
mation despite having known limitations (Reichstein et al., 2012). Combining such widely applicable methods,
such as TEA, with the unconstrained processed-based models and the sparse independent T measurements
provides a multifaceted and complementary view of ecosystem T .

Though methods for estimating T from independent measurements such as upscaled sap flux methods have
existed for decades, there are still relatively few published values that coincide with EC sites. One set of esti-
mates at Hesse forest gives a seasonal T∕ET (2 May to 27 October) from sap flux upscaling of 0.72, 0.82, and
0.86 for 1997, 1998, and 1999, respectively (Vainshtein, 2010), which is in relative agreement with the TEA esti-
mates from EC data at Hesse forest being 0.75, 0.82, and 0.73. Though an in-depth comparison to independent
T measurements is beyond the scope of this analysis, initiatives such as SAPFLUXNET, which aims to aggregate
sap flux data sets from around the world (Poyatos et al., 2016), as well as aggregations of isotope-based mea-
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Figure 8. Sensitivity analysis of prediction percentile (P) used in TEA. MEF (a), while generally stable, shows the highest
values at relatively high percentiles (P ≈ 80–90), whereas bias (b) is minimized at around P70 for MuSICA and JSBACH.
Similarly, percentiles near the maximum (P100) shows the lowest sensitivity to evaporation content in the training data
set (d), yet these high percentiles are also very sensitive to noise in the training data set (c). Given that residual
evaporation will likely be present in the training data set, causing predictions to be overestimated, percentiles below the
median (P50) can be discounted. As such, by treating each percentile above the median (P ≥ 50) as an equally likely
estimate, we can calculate the mean of TP50,… , TP100, the results of which are seen as the far right points in each plot or
the median which corresponds to P75. TEA = Transpiration Estimation Algorithm; MEF = modeling efficiency.

surements and the continued aggregation of EC data set will help constrain ecosystem transpiration estimates
within the next few years.

4.2. Sensitivities and Limitations
As seen in Figure 7, the CSWI limit hyperparameter should always be less than 0. However, prediction per-
formance did not improve at increasingly negative values and may actually deteriorate performance due
to declines in sample size. This lack of improvement indicates that CSWI, though likely an improvement to
time-based methods, does not do well at indicating degrees of moisture levels past simple wet and dry. There-
fore, a CSWI value of around −0.5 or −1.0 mm is warranted, as it creates the largest sample size while still
being below 0. It is possible that the TEA algorithm could be improved with a filter that better minimizes the
amount of evaporation left in the training data set, Etrain, such as using surface soil moisture data. As such, the
TEA algorithm would likely benefit from site-specific information on water status, both as a means to filter the
training data set and as a predictor variable. Additionally, it should be noted that as the filtering step removes
all periods during and immediately after rain, these periods will not be represented in the training data set
and therefore any response of WUE during these rainy periods will not be captured. However, as none of the
filters was based on humidity levels, periods of high relative humidity are included in the training data set, so
both stressed and unstressed conditions will be included in the training data set. As rain specifically should
not have a dramatic influence on WUE, indeed, we did not observe any error increase in the validation data
set during wet periods.

Overall, the method tends to be more precise than accurate, that is, it robustly produces precise patterns but
with a propensity for systematic overestimation or underestimation. In particular, the method is sensitive to
Etrain such as is the case with the CASTANEA model runs, producing an overestimation of transpiration while
still capturing the temporal patterns across time scales. The CASTANEA simulations here provide an important
test as to how E can impact the TEA estimates, as the simulations have not only relatively high E∕ET through-
out the year, but, due to the fact that soil moisture levels are updated daily, E∕ET is also relatively consistent
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Figure 9. Comparison of mean seasonal cycle of T∕ET (5-day aggregation) results from model simulations (JSBACH,
CASTANEA, and MuSCIA) and TEA algorithm partitioning of original EC data (ET, GPP, and meteorological variables).
Modeled years were 2001–2006 for FI-Hyy and FR-Hes, and 1998–2003 for DE-Tha. Seasonal cycles are an average of
5 days. TEA = Transpiration Estimation Algorithm; EC = eddy covariance; ET = evapotranspiration; GPP = gross primary
productivity. FI-Hyy = Hyytiälä, Finland; FR-Hes = Hesse beech forest in France; DE-Tha = Anchor Station Tharandt,
Germany.

throughout the day. Therefore, the training data set from CASTANEA simulations is always contaminated by
E, in contrast to MuSICA which can have daily E but still have periods when T dominates within that day, and
JSBACH which has very low E throughout the growing season (see Figure S4). That being said, it is possible to
predict an accurate average T∕ET using a higher prediction percentile even when E is always present as long
as there is variability in WUE (see Figure S5), though the highest WUE values will be underestimated.

Given that the optimal prediction percentile for minimizing bias differed among the three models, all predic-
tion percentiles above the 50th can be considered equally likely predictors, with P50 representing the case with
no Etrain and a constant WUE, and P100 representing the maximum eWUE. The result is a distribution of esti-
mates for WUE and T , which can be translated into an average and uncertainty. As this distribution tends to be
rather skewed, the median of this distribution (or P75) is likely a more robust estimator. While the lower bound
of the distribution is well bounded, the maximum (P100) case could still systematically underestimate WUE if
Etrain is significantly higher than 0. In contrast, P100 could also grossly overestimate WUE as it can correspond
to conditions which are not at all representative, for example, conditions of high humidity when WUE tends
to infinity, which can be further complicated with the added effects of noise.

Ecosystems with sparse vegetation coverage are likely most at risk of having high Etrain levels, and therefore
overestimation, as the canopy is potentially not the key control on ET. The risk of overestimation is especially
high at wetland sites with exposed open water. Therefore, site-specific estimations are warranted to determine
if TEA estimations would benefit from hyperparameter adjustments such as using a higher prediction per-
centile, improved training set filtering, or other improvements based on site knowledge (e.g., filtering periods
during irrigation). Another important consideration when applying the method to actual data is the existence
of noise which is not present in the synthetic validation data sets. This is particularly pertinent due to very
large or small values of WUE (a ratio) during mornings and evenings when the fluxes are low. In this case, a
filter for small values of either ET, GPP, or Rg will likely be warranted, even though the method was shown
to be relatively insensitive to noise for most prediction percentiles (Figure 7c). Given the considerations out-
lined above, a general framework for implementing TEA for EC data would be to use a CSWI limit of −0.5 mm
and the 75th percentile for prediction, which corresponds to the median of predictions from the 50th to
100th percentiles.
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5. Conclusion

In its current state, ecosystem transpiration is far a more concrete physiological concept than it is actually
quantifiable, as one can isolate transpiration in relatively controlled leaf- or plant-scale experiments in con-
trast to the difficulties of isolating soil and interception evaporation components from the transpiration of
each needle and leaf at a field site. However, by utilizing the carbon cycle, transpiration dynamics can be
extracted from the overall evapotranspiration signal. As such, the TEA algorithm is a novel evapotranspiration
partitioning method designed for EC data sets which is able to capture dynamics in WUE and transpiration
across spatial and temporal scales. The method is the first such evapotranspiration partitioning approach to
attempt such an extensive validation exercise, utilizing a synthetic experiment of process model output, which
demonstrates the ability of the method to replicate the carbon:water relationship across three model frame-
works. Furthermore, we outline the biases and uncertainties of the approach with particular respect to effect
of persistent evaporation fluxes, with the prospect that by thoroughly scrutinizing and testing the limits of
TEA we can open the door to wide scale application.
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