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Equivalence between algebraic equations of motion may be detected by using a p-adic
method, methods using factorization and linear algebra, or by systematic computer
search of suitable Tschirnhausen transformations. Here, we show standard polynomial

interpolation to be a competitive alternative method for detecting orbital equivalences
and field isomorphisms. Efficient algorithms for ascertaining equivalences are relevant for
significantly minimizing computer searches in theoretical and practical applications.
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1. Introduction

Massive simulations in computer clusters have revealed that the control parameter

space of dissipative dynamical systems is riddled with stability islands characterized

individually by periodic motions of ever increasing periods which accumulate, ex-

hibiting conspicuous and interesting regularities. Even in systems governed by sim-

ple polynomial maps, the number of periodic orbits displays an explosive growth as

a function of the nonlinearity1. A few years ago it was realized that the nucleation

of stability in classical systems occurs in a variety of ways which normally involve

the presence of peak-doubling and peak-adding cascades extending over wide re-

gions of the control space. For instance, transitions among distinct stable oscillatory

phases may, or may not, be mediated by parameter intervals, windows, of chaotic

oscillations2,3,4. Details of these and other novel regularities are summarized in re-

cent surveys concerning complexities observed in the accumulations of doubling and

adding cascades in laser systems see Ref. 5, in chemistry6, in biochemical models7,8,

and in the dynamics of cancer9.
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Efficient algorithms for explicitly computing field isomorphisms and their in-

verses for dynamical systems governed by polynomial maps are central players for

analytically assessing the aforementioned regularities present in both theoretical

and practical applications. Polynomial maps are useful because metric properties of

systems governed by sets of nonlinear differential equations cannot yet be analyti-

cally determined due to the lack of methods to solve them exactly. Since stability

windows quickly become very narrow as oscillations increase, accuracy is tanta-

mount to exact analytical work. One added advantage of polynomial maps is that

the equations of motion generated by them are always exact, not contaminated by

the unavoidable round-off and discretization errors arising from numerical approx-

imations of differential equations.

Currently, the common methods used for determining field isomorphism and

equivalence among equations of motion are: i) a p-adic method reported by Zassen-

haus and Liang and used10,11 to study isomorphisms among quintic polynomials

of all three signatures12 (n, ℓ), namely (1, 2), (3, 1) and (5, 0), where n refers to

the number of real roots while ℓ refers to the number of pairs of complex roots; ii)

methods using factorization and linear algebra13; iii) a systematic search of suitable

Tschirnhausen transformations constrained by some quantity of interest, usually

polynomial discriminants. This approach is efficient for systems with low-degree

equations of motion14.

The purpose of this paper is to introduce an alternative method to detect equiva-

lence among orbital equations of motion, namely Lagrange polynomial interpolation.

While standard methods look for isomorphisms focusing primarily on properties of

the number fields involved, the method based on polynomial interpolation seeks

isomorphisms directly among irreducible polynomials, because they are the objects

that arise automatically as equations of motion governing periodic trajectories of

dynamical systems of algebraic origin15,16,17. After obtaining sets of equations of

motion, the most important task in dynamics is to determined whether or not such

equations are interconnected (i.e. define or not the same number field), and when

they are, to obtain complete sets of explicit expressions for the transformations and

corresponding inverses interconnecting them.

2. Polynomial interpolation as isomorphism detector

Although already used in 1779 by Edward Waring and an easy consequence of a

formula published in 1783 by Euler, “Lagrange” interpolation is a result rediscovered

by Lagrange in 1795 which is nowadays traditionally used in numerical analysis

for polynomial interpolation. The history of polynomial interpolation is however

considerably older than the works above, as reviewed by Meijering18.

For a given set of k pairs (ai, bi), i = 1, · · · , k with all ai distinct, the interpola-

tion polynomial is defined as the lowest degree polynomial that assumes the value
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bi at the point ai for each i. The interpolation polynomial is a linear combination

L(x) =

k
∑

i=0

biℓi(x),

where

ℓi(x) =
(x− a1) · · · (x− ai−1)(x− ai+1) · · · (x− ak)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − ak)
=

∏

j 6=i

x− aj
ai − aj

are the basis polynomials. The interpolator L(x) has degree k′ ≤ (k−1) and L(a1) =

b1, · · · , L(ak) = bk. In all cases of interest here, not only are the ai distinct but the

bi are too, so we may reverse the interpolations.

Now, it is not difficult to see that by taking b1 = a2, · · · , bk−1 = ak, bk = a1
we obtain L(a1) = a2, · · · , L(ak) = a1 or, in other words, for this choice of bi the

“action” of L(x) is to induce a (cyclic) permutation among the elements a1, · · · , ak.
This is the basic observation that will be explored in the remainder of the paper as

an efficient detector of equivalence and isomorphism among polynomial equations

of motion. In the applications considered here, the elements ai and bi are usually

roots of algebraic orbital equations which have real coefficients and, consequently,

may be real or complex numbers. Depending on the numerical values of (ai, bi), the

transformations resulting from permutations of the bi will have coefficients defined

by real or complex numbers. Isomorphisms of interest to us here are the ones char-

acterized by rational coefficients. As seen in the examples in the next Section, in

most cases, these interesting isomorphisms involve just integer coefficients.

3. Applications

3.1. Equivalences of Vandermonde’s totally real cyclic quintic

As a first application, we apply polynomial interpolation to find direct and in-

verse transformations that establish the equivalence among a pair of cyclic quintics

of minimum discriminant ∆ = 14641 = 114 originally considered by Cohn19,14,

namely

V (x) = x5 − x4 − 4x3 + 3x2 + 3x− 1, (Vandermonde’s quintic) (1)

G(x) = x5 + 2x4 − 5x3 − 2x2 + 4x− 1. (2)

The polynomial V (x) represents a period-five orbital equation of motion for at least

three paradigmatic physical models in the so-called generating partition limit20,

namely the quadratic map xt+1 = 2 − x2
t , the Hénon map (x, y) 7→ (2 − x2, y),

and the canonical quartic map21,22, namely xt+1 = (x2
t − 2)2 − 2. For details see,

e.g. Refs. 23,24. Apart from these fruitful applications, V (x) is the celebrated quintic

solved by Vandermonde (1735-1796) using “Lagrange” resolvents a number of years

before Lagrange, and radical expressions at a time when it was still unknown that

a general solution of quintic equations was not possible 25,26,27.
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Table 1. The ten transformations interconnecting V (x) and G(x).

b1 b2 b3 b4 b5 Direct transforms: V (x) → G(x)

g4 g1 g2 g5 g3 D1 = −x3 + x2 + 3x− 2
g5 g2 g4 g3 g1 D2 = −x3 + 2x
g1 g5 g3 g2 g4 D3 = x3 − x2 − 2x+ 1
g3 g4 g5 g1 g2 D4 = x4 − 4x2 − x+ 2

g2 g3 g1 g4 g5 D5 = −x4 + x3 + 4x2 − 2x− 3

b1 b2 b3 b4 b5 Inverse transforms: G(x) → V (x)

v2 v3 v5 v1 v4 I1 = 4x4 + 10x3 − 15x2 − 15x+ 9
v2 v3 v1 v4 v5 I2 = x4 + 2x3 − 5x2 − 3x+ 3
v4 v1 v2 v5 v3 I3 = −2x4 − 5x3 + 7x2 + 7x− 3
v3 v4 v5 v1 v2 I4 = −x4 − 2x3 + 5x2 + 2x− 3
v3 v1 v2 v4 v5 I5 = −2x4 − 5x3 + 8x2 + 9x− 5

To define basis polynomials and interpolations, we fix the roots of V (x) and

G(x) in the following orders:

v1 ≃ −1.68, v2 ≃ −0.83, v3 ≃ 0.28, v4 ≃ 1.30, v5 ≃ 1.91,

g1 ≃ −3.22, g2 ≃ −1.08, g3 ≃ 0.37, g4 ≃ 0.54, g5 ≃ 1.39.

Fixing ai = vi, we compute the five basis elements ℓi(x). To check for the ex-

istence of transformations allowing the passage from V (x) to G(x) one needs to

consider the 120 permutations of the roots gi, using each permuted set of roots as

the points bi. This generates a set {Ln(x)} of transformations, for n = 1, · · · , 120.
Proceeding in this way, we find that, although the transformations may have both

real and complex coefficients, some permutations produce transformations having

just integer or rational coefficients. For the passage from V (x) to G(x) we find five

transformations given in the upper part of Table 1, together with the root permuta-

tions leading to them. To obtain the inverse transformations, allowing the passage

from G(x) to V (x), we fix ai = gi and investigate the nature of the coefficients of

the 120 transformations obtained by taking bi = vi for all possible permutations

of the roots vi. As before, we find five inverse transformations, also listed in Ta-

ble 1 with the root permutations leading to them. To obtain the transformations

we wrote a program for Maple 2018 (X86 64 LINUX) running on a Dell XPS 13

notebook. Recently, using systematic search of coefficients14, it was possible to dis-

cover the nine new transformations that had not been found with p-adic methods.

Systematic coefficient search of the ten transformations required about 2.1 seconds

and used 133.1 MB of memory. In contrast, Lagrange interpolation has enabled

these transformations to be obtained in just 0.25 seconds and using only 13.7 MB

of memory, a considerable improvement. This speedup of the classification of orbital

points is, of course, a desirable feature, that opens the possibility of investigating

orbital equations of considerably higher degrees.

While a systematic search of suitable Tschirnhausen transformations was able

to find the transformations in Table 1, the interpolation polynomials introduced

here have the advantage of revealing concomitantly, as a byproduct, the nature of

the action of the individual transformations on the roots. We remark that some of
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the transformations in Table 1 are reducible, e.g., D2(x) is clearly reducible as also

are D1, D4, I2, and I3.

3.2. Hasse’s problem: Equivalence of quintics with complex roots

As a second application, we use polynomial interpolation to uncover four new trans-

formations, Eqs. (3)-(6), providing a complete and “symmetric solution”, i.e. a so-

lution providing both direct and inverse connections for a classical problem posed

by Hasse, who conjectured the possible existence of an isomorphism between three

quintics sharing a factor 472 in their discriminant28,29. Such isomorphism was in-

deed confirmed by Zassenhaus and Liang10, who used a p-adic method to uncover

a pair of generating automorphisms of the Hilbert class field over Q(
√
−47). Their

pair of transformations is certainly enough to establish isomorphism of the quintics

but, as mentioned, does not provide an unbiasedly balanced and symmetric solu-

tion to Hasse’s problem, i.e. a solution containing all possible direct and inverse

transformations among all polynomials involved.

Hasse’s problem is concerned with relations between the zeros of three quintic

equations obtained by Weber 30, by Fricke 31, and by Hasse 28,29, while inves-

tigating class invariants for modular equations with discriminant −47. The three

quintics found by these authors are, respectively,

fW = x5 − x3 − 2 x2 − 2 x− 1, θW the real root;

fF = x5 − x4 + x3 + x2 − 2 x+ 1, θF the real root;

fH = x5 + 10 x3 − 235 x2 + 2610 x− 9353, θH the real root.

As reported by Zassenhaus and Liang 10, Hasse asked whether or not θW , θF , θH
generate the same field. And if so, how to express these roots in terms of each other?

Zassenhaus and Liang demonstrated that the polynomials indeed generate the

same field as manifest by the following transformations:

θH = 5θ2W − 5θW − 2,

θW = − θ4F − 2θF + 1.

Proceeding as before, we find the additional root interconnections which read, in

the notation used by Zassenhaus and Liang:

θF = −θ4W + θ3W + θW + 1, (3)

θH = 10θ4F − 5θ3F + 5θ2F + 10θF − 12, (4)

θW =
1

6875

(

6θ4H + 23θ3H + 194θ2H − 1308θH + 9821
)

, (5)

θF = − 1

6875

(

θ4H + 13θ3H + 179θ2H + 717θH − 444
)

. (6)

which may be easily verified. Note the conspicuous presence of non-integer coeffi-

cients in Eqs. (5) and (6), not a common occurrence in the literature. Thus, poly-

nomial interpolation is also able to deal with situations involving not only real but
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also complex roots. Of course, not only the real roots but also all complex roots are

properly transformed by the same transformations above. When added to the known

pair, the four new transformations reported here solve Hasse’s problem completely

and symmetrically, with no bias.

Table 2. Direct transformations among the si(x) of Eqs. (7)-(10).

b1 b2 b3 b4 b5 b6 Transforms from s1(x) → s2(x)

1 4 2 6 5 3 2x5 − x4 − 14x3 − 4x2 + 10x+ 2
2 1 3 4 6 5 −3x5 + x4 + 21x3 + 9x2 − 11x− 4
3 2 5 1 4 6 −6x5 + 2x4 + 43x3 + 17x2 − 28x− 7
4 6 1 5 3 2 4x5 − 2x4 − 28x3 − 7x2 + 18x+ 2
5 3 6 2 1 4 3x5 − 22x3 − 15x2 + 12x+ 6
6 5 4 3 2 1 −x

b1 b2 b3 b4 b5 b6 Transforms from s1(x) → s3(x)

1 2 5 3 6 4 −7x5 + 2x4 + 50x3 + 22x2 − 30x− 8
2 3 1 6 4 5 6x5 − 2x4 − 43x3 − 17x2 + 29x+ 7
3 6 2 4 5 1 −x4 + x3 + 6x2 − x− 2
4 5 6 1 2 3 −x5 + x4 + 7x3 − 2x2 − 7x+ 2

5 1 4 2 3 6 −2x5 + x4 + 14x3 + 4x2 − 9x− 2
6 4 3 5 1 2 4x5 − x4 − 29x3 − 13x2 + 18x+ 5

b1 b2 b3 b4 b5 b6 Transforms from s1(x) → s4(x)

1 3 4 2 6 5 −4x5 + x4 + 29x3 + 13x2 − 18x− 5
2 6 3 5 4 1 2x5 − x4 − 14x3 − 4x2 + 9x+ 2
3 2 1 6 5 4 x5 − x4 − 7x3 + 2x2 + 7x− 2
4 1 5 3 2 6 x4 − x3 − 6x2 + x+ 2
5 4 6 1 3 2 −6x5 + 2x4 + 43x3 + 17x2 − 29x− 7
6 5 2 4 1 3 7x5 − 2x4 − 50x3 − 22x2 + 30x+ 8

b1 b2 b3 b4 b5 b6 Transforms from s2(x) → s3(x)

1 5 4 2 6 3 −x4 − x3 + 6x2 + x− 2
2 1 5 3 4 6 −4x5 − x4 + 29x3 − 13x2 − 18x+ 5
3 2 1 6 5 4 x5 + x4 − 7x3 − 2x2 + 7x+ 2
4 6 3 5 2 1 7x5 + 2x4 − 50x3 + 22x2 + 30x− 8
5 4 6 1 3 2 −6x5 − 2x4 + 43x3 − 17x2 − 29x+ 7
6 3 2 4 1 5 2x5 + x4 − 14x3 + 4x2 + 9x− 2

b1 b2 b3 b4 b5 b6 Transforms from s2(x) → s4(x)

1 4 5 3 6 2 −2x5 − x4 + 14x3 − 4x2 − 9x+ 2
2 3 1 6 4 5 6x5 + 2x4 − 43x3 + 17x2 + 29x− 7
3 1 4 2 5 6 −7x5 − 2x4 + 50x3 − 22x2 − 30x+ 8
4 5 6 1 2 3 −x5 − x4 + 7x3 + 2x2 − 7x− 2
5 6 2 4 3 1 4x5 + x4 − 29x3 + 13x2 + 18x− 5
6 2 3 5 1 4 x4 + x3 − 6x2 − x+ 2

b1 b2 b3 b4 b5 b6 Transforms from s3(x) → s4(x)

1 3 2 5 4 6 2x5 − 6x4 − 7x3 + 8x2 + 3x− 1
2 6 5 1 3 4 −2x4 + 6x3 + 7x2 − 8x− 2
3 2 6 4 1 5 x4 − 2x3 − 6x2 + 2
4 1 3 6 5 2 −2x5 + 7x4 + 4x3 − 12x2 + 3x+ 2
5 4 1 2 6 3 −x3 + 3x2 + 3x− 3
6 5 4 3 2 1 −x
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Table 3. Inverse transformations among the si(x) of Eqs. (7)-(10).

b1 b2 b3 b4 b5 b6 Transforms from s2(x) → s1(x)

1 3 6 2 5 4 −6x5 − 2x4 + 43x3 − 17x2 − 2x+ 7
2 1 3 4 6 5 −3x5 − x4 + 21x3 − 9x2 − 11x+ 4
3 6 5 1 4 2 3x5 − 22x3 + 15x2 + 12x− 6
4 2 1 5 3 6 2x5 + x4 − 14x3 + 4x2 + 10x− 2
5 4 2 6 1 3 4x5 + 2x4 − 28x3 + 7x2 + 18x− 2
6 5 4 3 2 1 −x

b1 b2 b3 b4 b5 b6 Transforms from s3(x) → s1(x)

1 2 4 6 3 5 x5 − 2x4 − 6x3 − x2 + 4x+ 2
2 4 5 3 1 6 x5 − 3x4 − 3x3 + 3x2 − x

3 1 2 5 6 4 −x5 + 3x4 + 3x3 − 3x2 + 2x
4 5 6 1 2 3 −x5 + 2x4 + 7x3 − 2x2 − 7x+ 1
5 6 3 2 4 1 x5 − 4x4 − x3 + 9x2 − 2x− 2
6 3 1 4 5 2 −x5 + 4x4 − 6x2 + 4x

b1 b2 b3 b4 b5 b6 Transforms from s4(x) → s1(x)

1 4 2 3 6 5 −x5 − 4x4 + x3 + 9x2 + 2x− 2
2 5 4 1 3 6 x5 + 4x4 − 6x2 − 4x
3 2 1 6 5 4 x5 + 2x4 − 7x3 − 2x2 + 7x+ 1
4 6 5 2 1 3 x5 + 3x4 − 3x3 − 3x2 − 2x
5 3 6 4 2 1 −x5 − 2x4 + 6x3 − x2 − 4x+ 2
6 1 3 5 4 2 −x5 − 3x4 + 3x3 + 3x2 + x

b1 b2 b3 b4 b5 b6 Transforms from s3(x) → s2(x)

1 4 6 3 2 5 x5 − 4x4 + 6x2 − 4x
2 1 4 5 3 6 −x5 + 4x4 + x3 − 9x2 + 2x+ 2
3 2 1 6 5 4 x5 − 2x4 − 7x3 + 2x2 + 7x− 1
4 6 5 2 1 3 x5 − 3x4 − 3x3 + 3x2 − 2x
5 3 2 4 6 1 −x5 + 3x4 + 3x3 − 3x2 + x

6 5 3 1 4 2 −x5 + 2x4 + 6x3 + x2 − 4x− 2

b1 b2 b3 b4 b5 b6 Transforms from s4(x) → s2(x)

1 6 4 2 3 5 x5 + 3x4 − 3x3 − 3x2 − x

2 4 1 3 5 6 x5 + 2x4 − 6x3 + x2 + 4x− 2
3 1 2 5 6 4 −x5 − 3x4 + 3x3 + 3x2 + 2x
4 5 6 1 2 3 −x5 − 2x4 + 7x3 + 2x2 − 7x− 1
5 2 3 6 4 1 −x5 − 4x4 + 6x2 + 4x
6 3 5 4 1 2 x5 + 4x4 − x3 − 9x2 − 2x+ 2

b1 b2 b3 b4 b5 b6 Transforms from s4(x) → s3(x)

1 3 2 5 4 6 2x5 + 6x4 − 7x3 − 8x2 + 3x+ 1
2 6 3 1 5 4 −x4 − 2x3 + 6x2 − 2
3 4 6 2 1 5 2x4 + 6x3 − 7x2 − 8x+ 2
4 1 5 6 3 2 −x3 − 3x2 + 3x+ 3
5 2 1 4 6 3 −2x5 − 7x4 + 4x3 + 12x2 + 3x− 2
6 5 4 3 2 1 −x

As described by Pohst32, Hasse’s problem played an important role in estab-

lishing computational algebraic number theory at a time when computations of all

kinds were taboo. In the early 1960s, Zassenhaus developed algorithmic means for

number theoretical experiments in algebraic number theory. A major success was
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the proof of the isomorphism of the three quintic fields which occurred as candidates

for the real subfield of the Hilbert class field of Q(
√
−47). This problem, pointed

out by Hasse, could not be solved by theoretical methods. It was the numerical solu-

tion by Zassenhaus and Liang10 that gave major credit to methods in constructive

algebraic number theory.

3.3. Equivalence among totally real sextics with small coefficients

A very interesting and much studied class of equations of motion involves sextic

polynomials 33. Their splitting fields may contain quadratic and cubics subfields

or no subfields at all. Thus, sextics may appear generically as orbital clusters al-

gebraically entangling orbits into distinct groups of periodicity. Of particular inter-

est is knowledge concerning cyclic sextics. The minimum discriminant of sextics,

300, 125 = 53 · 74, was found by Liang and Zassenhaus for the polynomial s1(x) a

totally real cyclic sextic 34:

s1(x) = x6 − x5 − 7x4 + 2x3 + 7x2 − 2x− 1, (7)

s2(x) = x6 + x5 − 7x4 − 2x3 + 7x2 + 2x− 1, (8)

s3(x) = x6 − 2x5 − 7x4 + 2x3 + 7x2 − x− 1, (9)

s4(x) = x6 + 2x5 − 7x4 − 2x3 + 7x2 + x− 1. (10)

The same minimum discriminant is also shared by s2(x), s3(x), s4(x), simple rein-

carnations of s1(x) after the substitutions x → ±x and x → ±1/x and suitable

simplifications. Curiously, the roots of the above polynomials are interconnected in

subtle ways by a multitude of transformations, given in Tables 2 and 3. The values

of the bi given in these tables indicate the order of the roots needed to find the cor-

responding transformations. As before for Vandermonde’s quintic, we assume the

roots of the si(x) to be ordered from the smallest to the largest. Thus, denoting by

s
(i)
1 , i = 1, . . . , 6, the ordered roots of s1(x), the transformation shown in the first

line of Table 2 is obtained when fixing bi = s
(i)
1 , and so on.

Similarly as for the si(x), polynomials characterized by totally real cyclic sextics

and second lowest discriminant, namely 371, 293, are the following:

t1(x) = x6 − x5 − 5 x4 + 4 x3 + 6 x2 − 3 x− 1,

t2(x) = x6 + x5 − 5 x4 − 4 x3 + 6 x2 + 3 x− 1,

t3(x) = x6 − 3 x5 − 6 x4 + 4 x3 + 5 x2 − x− 1,

t4(x) = x6 + 3 x5 − 6 x4 − 4 x3 + 5 x2 + x− 1,

t5(x) = x6 − 2 x5 − 7 x4 + 6 x3 + 5 x2 − 5 x+ 1,

t6(x) = x6 + 2 x5 − 7 x4 − 6 x3 + 5 x2 + 5 x+ 1,

t7(x) = x6 − 5 x5 + 5 x4 + 6 x3 − 7 x2 − 2 x+ 1,

t8(x) = x6 + 5 x5 + 5 x4 − 6 x3 − 7 x2 + 2 x+ 1.

As for the si(s), note the conspicuous presence of two groups of four elements arising

from the substitutions x → ±x and x → ±1/x and suitable simplifications.
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Table 4. Bridges among sextics arising in orbital clusters of the Hénon Hamiltonian repeller.
Note the non-integer coefficients in the first column, not a common occurrence in the literature.

Direct Inverse

X → Y : − 1

2
x2 + 3 Y → X : −x4 + 2x3 + 9x2 − 13x− 16

X → Z : − 1

4
x4 + 3x2 − x− 3 Z → X : −x4 − 2x3 + 11x2 + 11x− 30

Y → Z : x4 − 2x3 − 10x2 + 13x+ 22 Z → Y : −x2 − x+ 6 = −(x+ 3)(x − 2)

U → W : − 1

4
x4 + 3x2 − x− 3 W → U : −4x5 − 6x4 + 63x3 + 74x2 − 234x− 219

− 1

2
x2 + 3 2x5 + 3x4 − 32x3 − 38x2 + 121x+ 116

To each pair of polynomials ti(x) corresponds a set of six transformations anal-

ogous to the ones in Tables 2 and 3, resulting from similar root permutations. The

total number of such transformations is 64, too many to be recorded here explicitly.

However, the polynomials ti(x) allow them to be obtained easily if so desired, along

with the proper root permutations leading to them.

3.4. Equivalent totally real cyclic sextics with larger coefficients

Table 4 reports isomorphisms having a direct bearing on the inner workings of

the Hénon Hamiltonian repeller33. As seen in the previous Section, sextics leading

to minimal discriminants tend to have comparatively small coefficients. However,

in real-life applications the coefficients are not always so small, for instance the

cluster A(5)(x) = X(x)Y 2(x)Z2(x) defining the orbital coordinates of six period-

five trajectories of the Hénon Hamiltonian repeller involves totally real sextics with

larger coefficients:

X(x) = x6 − 2 x5 − 14 x4 + 24 x3 + 32 x2 − 16 x− 8, ∆X = 218 · 31 · 241 · 389,
Y (x) = x6 − 2 x5 − 16 x4 + 26 x3 + 81 x2 − 84 x− 125, ∆Y = 26 · 31 · 241 · 389,
Z(x) = x6 + 2 x5 − 16 x4 − 22 x3 + 85 x2 + 60 x− 151, ∆Z = 26 · 31 · 241 · 389.

Similarly, a trio of period-five orbits is amalgamated into B(5)(x) = U(x)W 2(x),

defining the eighteen orbital coordinates as roots of a pair of totally real sextics33,

with Galois group 6T7:

U(x) = x6 − 22x4 + 8x3 + 124x2 − 88x− 32, ∆U = 218 · 34 · 6592,
W (x) = x6 + 4x5 − 12x4 − 58x3 + 12x2 + 202x+ 139, ∆W= 26 · 34 · 6592.

Table 4 shows that the orbits algebraically entangled together to form the above

pair of orbital clusters have their coordinates related by simple transformations that,

surprisingly, allow back and forth passage among seemingly distinct orbits. Unfor-

tunately, the Galois group of X(x), Y (x), Z(x), U(x), and W (x) is the symmetric

group, meaning that these sextics cannot be solved in terms of a finite number of

radical extractions and elementary arithmetic operations. But the transformations

interconnecting these sextics show clearly that knowledge of just two sets of six

roots is enough to interconnect in phase-space all orbital points of the equations
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Table 5. Some representative bridges that allow direct and inverse passage among polynomials
of the families fi(x) and gi(x). There are no connections between the fi(x) and gi(x) and
vice-versa, despite the fact that they all share the same discriminant 810, 448 = 22 · 373.

Direct Inverse

f1 → f2 : −x f2 → f1 : −x

x− 1 x+ 1

−x5 + 2x4 + 4x3 − 6x2 − 4x+ 2 −x5 − 3x4 + 2x3 + 8x2 − x− 2

−x5 + 3x4 + 2x3 − 8x2 − x+ 2 −x5 − 2x4 + 4x3 + 6x2 − 4x− 2

x5 − 3x4 − 2x3 + 8x2 + x− 3 x5 + 2x4 − 4x3 − 6x2 + 4x+ 3

x5 − 2x4 − 4x3 + 6x2 + 4x− 3 x5 + 3x4 − 2x3 − 8x2 + x+ 3

g1 → g2 : −x g2 → g1 : −x

x5 − 5x4 + 8x3 − 9x2 + 8x− 5 x5 + 5x4 + 8x3 + 9x2 + 8x+ 5

g1 → g3 : −x5 + 4x4 − 4x3 + 5x2 − 3x+ 2 g3 → g1 : −x5 + 3x4 − 6x3 + 7x2 − 2x

x5 − 4x4 + 4x3 − 5x2 + 3x− 1 x5 − 2x4 + 4x3 − 3x2 − x+ 1

g1 → g4 : −x5 + 4x4 − 4x3 + 5x2 − 3x+ 1 g4 → g1 : −x5 − 2x4 − 4x3 − 3x2 + x+ 1

x5 − 4x4 + 4x3 − 5x2 + 3x− 2 x5 + 3x4 + 6x3 + 7x2 + 2x

g1 → g5 : −x g5 → g1 : −x

x5 − 5x4 + 8x3 − 9x2 + 8x− 4 x5 − 2x3 + 5x2 − x+ 2

g1 → g6 : x+ 1 g6 → g1 : x− 1

−x5 + 5x4 − 8x3 + 9x2 − 8x+ 4 −x5 + 2x3 + 5x2 + x+ 2

algebraically entangled in each cluster. The sextic trio of cluster A(5)(x) is not iso-

morphic to the pair of sextics of cluster B(5)(x). Table 4 contains transformations

with non-integer coefficients, something that we have not been able to find in the

literature.

3.5. Equivalence among distinct families of isodiscriminant sextics

As a quite remarkable final example, we consider a family of ten totally real sextics

sharing the same discriminant, 810, 448 = 22·373, but formed by two non-isomorphic

families fi(x) and gi(x), defined in Eqs. (11)-(20). The four sextics fi(x) are iso-

morphic among themselves, as also are the six gi(x). However, none of the fi(x) is

isomorphic to any of the gi(x) and vice-versa, despite the fact that they all share

the same discriminant. In the notation of Butler and McKay35 adopted by Maple,

the Galois group of the fi(x) is 6T1, a cyclic semiabelian group, while the group of

the gi(x) is 6T8, a solvable, semiabelian group.

f1(x) = x6 − 3x5 − 2x4 + 9x3 − 5x+ 1, (11)

f2(x) = x6 + 3x5 − 2x4 − 9x3 + 5x+ 1, (12)

f3(x) = x6 − 5x5 + 9x3 − 2x2 − 3x+ 1, (13)

f4(x) = x6 + 5x5 − 9x3 − 2x2 + 3x+ 1, (14)
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g1(x) = x6 − 5x5 + 8x4 − 9x3 + 8x2 − 5x+ 1, (15)

g2(x) = x6 + 5x5 + 8x4 + 9x3 + 8x2 + 5x+ 1, (16)

g3(x) = x6 − 3 x5 + 6 x4 − 7 x3 + 2 x2 + x− 1, (17)

g4(x) = x6 + 3x5 + 6x4 + 7x3 + 2x2 − x− 1, (18)

g5(x) = x6 − x5 − 2 x4 + 7 x3 − 6 x2 + 3 x− 1, (19)

g6(x) = x6 + x5 − 2 x4 − 7 x3 − 6 x2 − 3 x− 1. (20)

Once again, note in Eqs. (11)-(20) two groups of four elements underlying the sub-

stitutions x → ±x and x → ±1/x, and the presence of two outliers, namely the

reciprocal polynomials g1(x) and g2(x).

Proceeding as before, from the roots of Eqs. (11)-(20) one may easily obtain

the large set of transformations allowing back and forth passage, local to the global,

among both groups of sextics. There is a total of six transformations connecting each

pair of fi(x) but just two transformations connecting pairs of gi(x). The complete

set of transformations is omitted here, with just a few representative ones being

given in Table 5.

4. Conclusions and outlook

This paper has shown that Lagrange interpolation works as an efficient detector of

equivalence and isomorphism among orbital equations of motion of algebraic dynam-

ical systems governed by discrete-time mappings. This is a startling new application

for a well-known interpolation technique of numerical analysis. Here, it is not used

to approximate anything but, instead, as means of obtaining exact analytical ex-

pressions for isomorphisms. We found polynomial interpolation to efficiently detect

equivalences among equations of any signature, i.e. among polynomials having only

real roots or not. The method is simple to implement and very fast. We antici-

pate polynomial interpolation to be a helpful tool to locate equivalences among the

huge number1 of orbital equations in systems of algebraic origin and polynomials

in general. In particular, it should help to uncover equivalences among, e.g., the

complicated amalgamation polynomial clusters arising in the Hamiltonian repeller

limit of the Hénon map33, and among orbits of the Pincherle map, a paradigmatic

map underlying the operating kernel of the so-called chaotic computer23,36,37,38.
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