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Abstract

Testing for conditional independence is a core part of constraint-based causal
discovery. We specifically focus on discrete data. Although commonly used tests
are perfect in theory, due to data sparsity they often fail to reject independence in
practice—especially when conditioning on multiple variables.
We propose a new conditional independence test based on the notion of algorithmic
independence. To instantiate this ideal formulation in practice, we use stochastic
complexity. We show that our proposed test SCI is an asymptotically unbiased
estimator for conditional mutual information (CMI ) as well as L2 consistent.
Further, we show that SCI can be reformulated to find a sensible threshold for
CMI that works well given only limited data.
Empirical evaluation shows that SCI has a lower type II error than commonly used
tests, which leads to a higher recall when we use it in causal discovery algorithms;
without compromising the precision.

1 Introduction

Testing for conditional independence plays a key role in causal discovery (Spirtes et al., 2000). If the
probability distribution from which the observed data was generated is faithful to the true underlying
causal graph, conditional independence tests can be used to recover the undirected causal network. In
essence, under the faithfulness assumption (Spirtes et al., 2000) finding that two random variables
X and Y are conditionally independent given a set of random variables Z, denoted as X ⊥⊥ Y | Z,
implies that there is no direct causal link between X and Y .

As an example, consider Figure 1. Nodes F and T are d-separated given D,E. Based on the
faithfulness assumption, we can identify this d-separation from an i.i.d. sample of the joint distribution
P (D,E, F, T ), as F will be independent of T given D,E. In contrast, D 6⊥⊥ T | E,F , as well as
E 6⊥⊥ T | D,F . Identifying these cases correctly depends on the quality of the test.

Conditional independence testing is also important for recovering the Markov blanket of a target
node: the minimal set of variables, conditioned on which all other variables are independent of the
target (Pearl, 1988). There exist classic algorithms that find the correct Markov blanket with provable
guarantees (Margaritis and Thrun, 2000; Peña et al., 2007). These guarantees, however, only hold
under the faithfulness assumption and when given a perfect independence test.

In this paper, we are not trying to improve those algorithms, but rather propose a new independence
test to enhance their performance. While recently a lot of work focuses on continuous data, as
methods range from approximating the continuous conditional mutual information (Runge, 2018) to
kernel based methods (Zhang et al., 2011), we focus on discrete data.
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Figure 1: [d-Separation] Given the above causal DAG it holds that F ⊥⊥ T | D,E, or F is d-separated
of T given D,E under the faithfulness assumption. Note that D 6⊥⊥ T | E,F and E 6⊥⊥ T | D,F .

For discrete data, two tests are frequently used in practice, the G2 test (Aliferis et al., 2010; Schlüter,
2014) and conditional mutual information (CMI ) (Zhang et al., 2010). While the G2 test is theoret-
ically sound, it is very restrictive and needs large samples sizes to detect dependencies, especially
when conditioned on multiple random variables. When used in algorithms to find the Markov blanket,
for example, this leads to low recall, as there it is necessary to condition on larger sets of variables.

If we had access to the true distributions, CMI would be the perfect criterium for conditional
independence. Estimating CMI purely from limited observational data leads, however, to discovering
spurious dependencies—in fact, it is likely to find no independence at all (Zhang et al., 2010). To use
it in practice, it is therefore necessary to set a threshold. This is not an easy task, as the threshold will
depend on both the domain sizes of the involved variables and the sample size (Goebel et al., 2005).
Often it is assumed that an exponential number of samples is required, but Canonne et al. (2018)
show the existence of a sample-efficient algorithm to distinguish dependence from independence
using CMI that has sub-linear sample complexity. Perhaps closest to our approach is the work of
Goebel et al. (2005). They use a second-order Taylor series to approximate the conditional mutual
information and show that this estimate follows the gamma distribution, which allows them to define
a threshold based on the domain sizes of the variables and the sample size.

The main problem that previous tests have is that they struggle to find the right balance for limited
data: either they are too restrictive and declare everything as independent or not restrictive enough
and do not find any independence. To approach this problem, we build upon algorithmic conditional
independence, which has the advantage that we not only consider the statistical dependence, but
also its complexity. We can instantiate this ideal formulation with the stochastic complexity. In
essence, we compute the stochastic complexity using the factorized normalized maximum likelihood
(fNML) (Silander et al., 2008), and formulate SCI , the Stochastic complexity based Conditional
Independence criterium.

Importantly, we show that we can reformulate SCI to find a natural threshold for CMI that works
very well given limited data and diminishes given enough data. In the limit, we proof that SCI is an
asymptotically unbiased estimator of CMI and L2 consistent. For limited data, we show that this
threshold behaves similar to the one defined by Goebel et al. (2005), but has additional properties.
That is, the threshold derived from SCI does not only consider the sample size and the dimensionality
of the data, but also the estimated probability mass functions of the conditioning variables. In practice,
this reduces the type II error as we show in our experiments. Further, when applying SCI in constraint
based causal discovery algorithms, we observe a higher precision and recall than related tests.

2 Conditional Independence Testing

In this section, we introduce the notation, and give brief introductions to both standard statistical
conditional independence testing, as well as to the notion of algorithmic conditional independence.

Given three possibly multivariate random variables X , Y and Z, our goal is to test the conditional
independence hypothesis H0 : X ⊥⊥ Y | Z against the general alternative H1 : X 6⊥⊥ Y | Z. The
main goal of an independence test is to minimize the type I and II error. The type I error is defined as
falsely rejecting the null hypothesis and the type II error is defined as falsely accepting H0.

A well known theoretical measure for conditional independence is conditional mutual information
based on Shannon entropy (Cover and Thomas, 2006).
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Definition 1 Given random variables X , Y and Z. If

I(X;Y | Z) = H(X | Z)−H(X | Z, Y ) = 0

then X and Y are called statistically independent given Z.

In theory, conditional mutual information (CMI ) works perfectly as an independence test for discrete
data. However, only if we are given the true distributions of the random variables. In practice, those
are not given and we have to estimate the entropy from limited data. As a consequence, conditional
mutual information often overestimates dependencies, even if the involved variables are independent
of each other, i.e. consider Example 1.
Example 1 Given three random variables X , Y1 and Y2, with corresponding domain sizes 4, 8 and
1 000. Suppose that given 1 000 samples X is a deterministic function of Y1, as well as of Y2. That
is, Ĥ(X | Y1) = Ĥ(X | Y2) = 0. However, as only a single sample exists for each v ∈ Y2, it is very
likely that Ĥ(X | Y2) = 0 only due to the limited amount of samples and will be > 0 given more
samples. It is more likely that Ĥ(X | Y1) = 0 due to a true dependency, since the number of samples
n� |Y1|—i.e. we have more evidence.

A possible solution is to set a threshold t such that X ⊥⊥ Y | Z if I(X;Y | Z) ≤ t. Setting t
is, however, not an easy task, as t is dependent on the sample size and the domain sizes of X , Y
and Z. Instead, to avoid this problem altogether, we will base our test on the notion of algorithmic
independence.

2.1 Algorithmic Independence

To define algorithmic independence, we need to give a brief introduction to Kolmogorov complexity.
The Kolmogorov complexity of a finite binary string x is the length of the shortest binary program p∗

for a universal Turing machine U that generates x, and then halts (Kolmogorov, 1965; Li and Vitányi,
1993). Formally, we have

K(x) = min{|p| | p ∈ {0, 1}∗,U(p) = x} .
That is, program p∗ is the most succinct algorithmic description of x, or in other words, the ultimate
lossless compressor for that string. To define algorithmic independence, we will also need conditional
Kolmogorov complexity, K(x | y) ≤ K(x), which is again the length of the shortest binary program
p∗ that generates x, and halts, but now given y as input for free.

By definition, Kolmogorov complexity makes maximal use of any effective structure in x; structure
that can be expressed more succinctly algorithmically than by printing it verbatim. As such it is the
theoretical optimal measure for complexity. In this point, algorithmic independence differs from
statistical independence. In contrast to purely considering the dependency between random variables,
it also considers the complexity of the process behind the dependency.

Let us consider Example 1 again and let x, y1 and y2 be the binary strings representing X,Y1 and
Y2. As X can be expressed as a deterministic function of Y1 or Y2, K(x | y1) and K(x | y2) reduces
to the program describing this function. As the domain size of Y1 is 8 and |X | = 4, the program to
describe X from Y1 only has to describe the mapping from 8 to 4 values, which will be shorter than
describing a mapping from Y2 to X , since |Y2| = 1 000—i.e. K(x | y1) ≤ K(x | y2) in contrast
Ĥ(X | Y1) = Ĥ(X | Y2). To reject X ⊥⊥ Y | Z, we test whether prividing the information of
Y leads to a shorter program than only knowing Z. Formally, we define algorithmic conditional
independence as follows (Chaitin, 1975).
Definition 2 Given the strings x, y and z, We write z∗ to denote the shortest program for z, and
analogously (z, y)∗ for the shortest program for the concatenation of z and y. If

IA(x; y | z) := K(x | z∗)−K(x | (z, y)∗)
+
= 0

holds up to an additive constant that is independent of the data, then x and y are called algorithmically
independent given z.

Sadly, Kolmogorov complexity is not computable, nor approximable up to arbitrary precision due to
the halting problem (Li and Vitányi, 1993). We can approximate it, however, through the Minimum
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Description Length (MDL) principle (Grünwald, 2007). For discrete data, this means we can use
the stochastic complexity for multinomials (Kontkanen and Myllymäki, 2007), which belongs to the
class of refined MDL codes.

3 Stochastic Complexity for Multinomials

Given n samples of a discrete univariate random variable X with a domain X of |X | = k distinct
values, xn ∈ Xn, let θ̂(xn) denote the maximum likelihood estimator for xn. Shtarkov (1987)
defined the mini-max optimal normalized maximum likelihood (NML)

PNML(xn | Mk) =
P (xn | θ̂(xn),Mk)

CnMk

, (1)

where the normalizing factor, or regret CnMk
, relative to the model classMk is defined as

CnMk
=

∑
xn∈Xn

P (xn | θ̂(xn),Mk) . (2)

The sum goes over every possible xn over the domain of X , and for each considers the maximum
likelihood for that data given model classMk. Whenever clear from context, we will drop the model
class to simplify the notation—i.e. we write PNML(xn) for PNML(xn | Mk) and Cnk for CnMk

.

For discrete data, assuming a multinomial, we rewrite Eq. (1) as (Kontkanen and Myllymäki, 2007)

PNML(xn) =

∏k
j=1

(
|vj |
n

)|vj |
Cnk

,

writing |vj | for the frequency of value vj in xn, resp. Eq. (2) as

Cnk =
∑

|v1|+···+|vk|=n

n!

|v1|! · · · |vk|!

k∏
j=1

(
|vj |
n

)|vj |
.

Mononen and Myllymäki (2008) derived a formula to calculate the regret in sub-linear time, meaning
that the whole formula can be computed in linear time w.r.t. n.

We obtain the stochastic complexity for xn by simply taking the negative logarithm of PNML, which
decomposes into a Shannon-entropy and the log regret

S (xn) = − logPNML(xn) ,

= nH(xn) + log Cnk .

Next, we show how to compute the conditional stochastic complexity.

3.1 Conditional Stochastic Complexity

To compute the conditional stochastic complexity, we use the factorized normalized maximum
likelihood (fNML) (Silander et al., 2008).

Given xn and yn drawn from the joint distribution of the two random variables X and Y , where k is
the size of the domain of X . The conditional stochastic complexity using fNML is defined as

Sf (xn | yn) =
∑
v∈Y
− logPNML(xn | yn)

=
∑
v∈Y
|v|H(xn | yn =v) +

∑
v∈Y

log C|v|k ,

with Y the domain of Y with domain size l, and |v| is the frequency of a value v in yn.

In the following, we always consider the sample size n and slightly abuse the notation by replacing
S (xn) by S (X), similar so for the conditional case. We refer to the ideal conditional stochastic
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complexity as S and to the instantiation based on fNML with Sf . In addition, we refer to the regret
terms of the conditional S (X | Z) asR(X | Z), where for fNML

Rf (X | Z) =
∑
z∈Z

log C|z||X | .

Next, we introduce two important properties of the regret term.

Lemma 1 For n ≥ 1, the regret term Cnk of the multinomial stochastic complexity of a random
variable with a domain size of k ≥ 2 is log-concave in n.

Theorem 1 Given three random variables X , Y and Z, it holds thatRf (X | Z) ≤ Rf (X | Z, Y ).

For conciseness, we postpone both proofs to the appendix. Now that we have all the necessary tools,
we can define our independence test in the next section.

4 Stochastic Complexity based Conditional Independence

With the above, we can now formulate our new conditional independence test, which we will refer to
as the Stochastic complexity based Conditional Independence criterium, or SCI for short.

Definition 3 Let X , Y and Z be random variables. We say that X ⊥⊥ Y | Z, if

SCI (X;Y | Z) := S (X | Z)− S (X | Z, Y ) ≤ 0 . (3)

In particular, Eq. 3 can be rewritten as

SCI (X;Y | Z) = n · I(X;Y | Z)

+R(X | Z)−R(X | Z, Y ) .

From this formulation, we can see that the regret terms essentially formulate a threshold tS for the
conditional mutual information, where tS = R(X | Z, Y )−R(X | Z). From Theorem 1 we know
that if we instantiate SCI using fNML that Rf (X | Z, Y ) − Rf (X | Z) ≥ 0. Hence, Y has to
provide a significant gain such that X 6⊥⊥ Y | Z—i.e. n · (H(X | Z)−H(X | Z, Y )) must be > tS .

Next, we show how we can use SCI in practice by formulating it based on fNML.

4.1 Factorized SCI

To formulate our independence test based on the factorized normalized maximum likelihood, we
have to revisit the regret terms again. In particular,Rf (X | Z) is only equal toRf (Y | Z), when the
domain of X is equal to the domain of Y . Further,Rf (X | Z)−Rf (X | Z, Y ) is not guaranteed to
be equal toRf (Y | Z)−Rf (Y | Z,X). As a consequence,

IfS (X;Y | Z) := Sf (X | Z)− Sf (X | Z, Y )

is not always equal to

IfS (Y ;X | Z) := Sf (Y | Z)− Sf (Y | Z,X) .

To achieve symmetry, we formulate SCI f as

SCI f (X;Y | Z) := max{IfS (X;Y | Z), IfS (Y ;X | Z)}

and say that X ⊥⊥ Y | Z, if SCI f (X;Y | Z) ≤ 0.

Note that we could also define alternative formulations of SCI , such as defining it via the recently
proposed quotient normalized maximum likelihood (qNML) (Silander et al., 2018), however, pre-
liminary results showed that these formulations lead to worse results. A more in depth analysis of
alternative formulations of SCI is part of future work.

In the next section, we show the main properties for SCI f . Thereafter, we compare SCI f to CMI
using the threshold based on the gamma distribution, as proposed by Goebel et al. (2005).
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4.2 Properties of SCI

First, we show that if X ⊥⊥ Y | Z, we have that SCI f (X;Y | Z) ≤ 0. Then, we prove that 1
nSCI f

is an asymptotically unbiased estimator of the conditional mutual information and is L2 consistent.
Note that by dividing SCI f by n we do not change the decisions we make as long as n <∞. Since
we only accept H0 if SCI f ≤ 0, any positive output will still be > 0 after dividing it by n.
Theorem 2 If X ⊥⊥ Y | Z, SCI f (X;Y | Z) ≤ 0.

Proof: W.l.o.g. we can assume that IfS (X;Y | Z) >= IfS (Y ;X | Z). Based on this, it suffices
to show that IfS (X;Y | Z) ≤ 0 if X ⊥⊥ Y | Z. As the first part of this formulation consists of
n · I(X;Y | Z), it will be zero by definition. From Theorem 1, we know thatRf (X | Z)−Rf (X |
Z, Y ) ≤ 0, which concludes the proof. �

Next, we show that 1
nSCI f converges against the conditional mutual information and hence is an

asymptotically unbiased estimator of the conditional mutual information and is L2 consistent to it.
Lemma 2 Given three random variables X , Y and Z, it holds that limn→∞ 1

nSCI f (X;Y | Z) =
I(X;Y | Z).

Proof: To show the claim, we need to show that

lim
n→∞

I(X;Y | Z) +
1

n
(Rf (X | Z)−Rf (X | Z, Y )) = 0 .

The proof for IfS (Y ;X | Z) follows analogously. In essence, we need to show that 1
n (Rf (X |

Z)−Rf (X | Z, Y )) goes to zero as n goes to infinity. From Rissanen (1996) we know that log Cnk
asymptotically behaves like k−1

2 log n + O(1). Hence, 1
nRf (X | Z) and 1

nRf (X | Z, Y ) will
approach zero if n→∞. �

As a corollary to Lemma 2 we find that 1
nSCI f is an asymptotically unbiased estimator of the

conditional mutual information and is L2 consistent to it.
Theorem 3 Let X , Y and Z be discrete random variables. Then limn→∞ E[ 1

nSCI f (X;Y |Z)] =

I(X;Y |Z), i.e. 1
nSCI f is an asymptotically unbiased estimator for the conditional mutual informa-

tion.

Theorem 4 Let X , Y and Z be discrete random variables. Then limn→∞ E[( 1
nSCI f (X;Y |Z)−

I(X;Y |Z))2] = 0 i.e. 1
nSCI f is an L2 consistent estimator for the conditional mutual information.

Next, we compare SCI f to the findings of Goebel et al. (2005).

4.3 Link to Gamma Distribution

Goebel et al. (2005) estimate the conditional mutual information through a second-order Taylor series
and show that their estimator can be approximated with the gamma distribution. In particular,

Î(X;Y | Z) ∼ Γ

(
|Z|
2

(|X | − 1)(|Y| − 1),
1

n ln 2

)
,

where X , Y and Z refer to the domains of X , Y and Z. This means by selecting a significance
threshold α, we can derive a threshold for the conditional mutual information based on the gamma
distribution—for convenience we call this threshold tΓ.

In contrast to tΓ, tS = Rf (X | Z, Y ) − Rf (X | Z) the regret terms for both Rf (X | Z) and
Rf (X | Z, Y ) also relate to the probability mass functions of Z, and respectively the cartesian
product of Z and Y . Recall that for k being the size of the domain of X , we have that

Rf (X | Z) =
∑
z∈Z

log C|z|k .

As Cnk is log-concave in n (see Lemma 1),Rf (X | Z) is maximal if Z is uniformly distributed—i.e.
it is maximal when H(Z) is maximal. This is a favourable property, as the probability that Z is equal
to X is minimal for uniform Z, as stated in the following Lemma (see (Cover and Thomas, 2006)).
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Figure 2: Threshold for CMI using fNML and the gamma distribution with α = 0.05 (Γ.05) and
α = 0.001 (Γ.001) for different sample sizes and fixed domain sizes equal to four (left) and fixed
sample size of 500 and changing domain sizes (right).

Lemma 3 If X and Y are i.i.d. with entropy H(Y ), then P (Y = X) ≥ 2−H(Y ) with equality if and
only if Y has a uniform distribution.

To elaborate the link between tΓ and tS , we empirically compare them. First, we compare tΓ with
α = 0.05 and α = 0.001 to tS/n on fixed domain sizes, with |X | = |Y| = |Z| = 4 and varying the
sample sizes (see Figure 2). For tS we computed the worst case threshold under the assumption that
Z is uniformly distributed. In general, both thresholds behave similar, whereas tS is more restrictive.

Next, we keep the sample size fix at 500 and increase the domain sizes of Z from 2 to 200, to simulate
multiple variables in the conditioning set. Again we observe that tS is more restrictive than tΓ until
we reach a plateau when |Z| = 125. This is due to the fact that |Z||Y| = 500 and hence each data
point is assigned to one value in the cartesian product. We have thatRf (X | Z, Y ) = |Z||Y|C1

k .

It is important to note, however, that the thresholds that we computed for tS assume that Z and Y are
uniformly distributed and Y ⊥⊥ Z. In practice, when this requirement is not fulfilled, the regret term
of fNML can be smaller than this value, since it is data dependent. In addition, it is possible that the
number of distinct values that we observe from the joint distribution of Z and Y is smaller than their
cartesian product, which also reduces the difference in the regret terms for fNML.

5 Experiments

In this section, we empirically evaluate our proposed independence test based on fNML and compare
it to the G2 test from the pcalg R package (Kalisch et al., 2012) and CMI Γ (Goebel et al., 2005).

5.1 Identifying d-Separation

To test whether SCI f can reliably distinguish between independence and dependence, we generate
data as depicted in Figure 1, where we draw F from a uniform distribution and model a dependency
from X to Y by simply assigning uniformly at random each x ∈ X to a y ∈ Y . We set the domain
size for each variable to 4 and generate data under various samples sizes (100–2 500) and additive
uniform noise settings (0%–95%). For each setup we generate 200 data sets and assess the accuracy.
In particular, we report the correct identifications of F ⊥⊥ T | D,E as the true positive rate and the
false identifications D ⊥⊥ T | E,F or E ⊥⊥ T | D,F as false positive rate.1 For the G2 test and
CMI Γ we select α = 0.05, however, we found no significant differences for α = 0.01.

We plot the accuracy for SCI f , G2 and CMI Γ in Figure 3. Overall, we observe that SCI f performs
near perfect for less than 70% additive noise. When adding 70% or more noise, the type II error
increases. In contrast, CMI Γ only performs well for less than 30% noise and then fails to identify
the true independencies, which leads to a high type I error. The G2 test has problems with sample
sizes up to 500 and performs inconsistently given more than 35% noise. Note that we forced G2 to
decide for every sample size, while the minimum number of samples recommended for G2 on this
data set would be 1 440, which corresponds to 10(|X − 1|)(|Y − 1|)(|Z|).

1Note that for 0% noise, F has all information about D and E therefore D 6⊥⊥ T | E,F and E 6⊥⊥ T | D,F
cannot be identified.
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Figure 3: Accuracy of SCI f , CMI Γ and G2 for identifying d-separation using varying samples sizes
and additive noise percentages, where a noise level of 0.95 refers to 95% additive noise.

5.2 Changing the Domain Size

Using the same data generator as above, we now consider a different setup. We fix the sample size to
2 000 and use only 10% additive noise—a setup where all tests performed well. What we change,
is the domain size of the source F from 2 to 20 and also restrict the domain sizes of the remaining
variable to the same size. For each setup we generate 200 data sets.

From the results in Figure 4 we can clearly see that only SCI f is able to deal with larger domain
sizes as for all other test, the false positive rate is at 100% for larger domain sizes, resulting in an
accuracy of 50%.

5.3 Plug and Play with SCI

Last, we want to show how SCI f performs in practice. To do this, we run the stable PC algo-
rithm (Kalisch et al., 2012; Colombo and Maathuis, 2014) on the Alarm network (Scutari and Denis,
2014) from which we generated data with different sample sizes and averaged over the results of 10
runs for each sample size. We equipped the stable PC algorithm with SCI f , CMI Γ and the default,
the G2 test, and plot the average F1 score over the undirected graphs in Figure 5. We observe that
our proposed test, SCI f outperforms the other tests for each sample size with a large margin and
especially for small sample sizes.
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Figure 4: Accuracy of SCI f , CMI Γ and G2

for d-separation with 2 000 samples and 10%
noise for increasing domain size of the F .
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Figure 5: F1 score on undirected edges for
stable PC using SCI f , CMI Γ and G2 on the
Alarm network given different sample sizes.

As a second practical test, we compute the Markov blanket for each node in the Alarm network and
report the precision and recall. To find the Markov blankets, we run the PCMB algorithm (Peña
et al., 2007) with the different independence tests. We plot the precision and recall for each variant
in Figure 6. We observe that SCI f performs best—especially with regard to recall. As for Markov
blankets of size k it is necessary to condition on at least k − 1 variables, this advantage in recall can
be linked back to SCI f being able to correctly detect dependencies for larger domain sizes.

6 Conclusion

In this paper we introduced SCI , a new conditional independence test for discrete data. We derive
SCI from algorithmic conditional independence and show that it is an unbiased asymptotic estimator
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Figure 6: [Higher is better] Precision (left) and recall (right) for PCMB using SCI f , CMI Γ and G2

to identify all Markov blankets in the Alarm network for different sample sizes.

for the conditional mutual information (CMI ). Further, we show how to use SCI to find a threshold
for CMI and compare it to thresholds drawn from the gamma distribution.

In particular, we propose to instantiate SCI using fNML as in contrast to thresholds drawn from
the gamma distribution, SCI f does not only make use of the sample size and domain sizes of the
involved variables, but also utilizes the empirical probability mass function of the conditioning
variable. Moreover, we SCI f clearly outperforms its competitors on synthetic and real world data.
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A Appendix

A.1 Proof of Lemma 1

Proof: To improve the readability of this proof, we write CnL as shorthand for CnML
of a random

variable with a domain size of L.

Since n is an integer, each CnL > 0 and C0
L = 1, we can prove Lemma 1, by showing that the fraction

CnL/C
n−1
L is decreasing for n ≥ 1, when n increases.

We know from Mononen and Myllymäki (2008) that CnL can be written as the sum

CnL =

n∑
k=0

m(k, n) =

n∑
k=0

nk(L− 1)k

nkk!
,

where xk represent falling factorials and xk rising factorials. Further, they show that for fixed n we
can write m(k, n) as

m(k, n) = m(k − 1, n)
(n− k + 1)(k + L− 2)

nk
, (4)

where m(0, n) is equal to 1. It is easy to see that from n = 1 to n = 2 the fraction CnL/C
n−1
L

decreases, as C0
L = 1, C1

L = L and C2
L = L+L(L− 1)/2. In the following, we will show the general

case. We rewrite the fraction as follows.
CnL
Cn−1
L

=

∑n
k=0m(k, n)∑n−1

k=0 m(k, n− 1)

=

∑n−1
k=0 m(k, n)∑n−1

k=0 m(k, n− 1)
+

m(n, n)∑n−1
k=0 m(k, n− 1)

(5)

Next, we will show that both parts of the sum in Eq. 5 are decreasing when n increases. We start with
the left part, which we rewrite to∑n−1

k=0 m(k, n)∑n−1
k=0 m(k, n− 1)

=

∑n−1
k=0 m(k, n− 1) +

∑n−1
k=0 (m(k, n)−m(k, n− 1))∑n−1

k=0 m(k, n− 1)

= 1 +

∑n−1
k=0

(L−1)k

k!

(
nk

nk − (n−1)k

(n−1)k

)
∑n−1

k=0 m(k, n− 1)
. (6)

When n increases, each term of the sum in the numerator in Eq. 6 decreases, while each element of
the sum in the denominator increases. Hence, the whole term is decreasing. In the next step, we show
that the right term in Eq. 5 also decreases when n increases. It holds that

m(n, n)∑n−1
k=0 m(k, n− 1)

≥ m(n, n)

m(n− 1, n− 1)
.

Using Eq. 4 we can reformulate the term as follows.
n+L−2

n2 m(n− 1, n)

m(n− 1, n− 1)
=
n+ L− 2

n2

(
1 +

m(n− 1, n)−m(n− 1, n− 1)

m(n− 1, n− 1)

)
After rewriting, we have that n+L−2

n2 is definitely decreasing with increasing n. For the right part of
the product, we can argue the same way as for Eq. 6. Hence the whole term is decreasing, which
concludes the proof. �

A.2 Proof of Theorem 1

Proof: Consider that Z contains p distinct value combinations {r1, . . . , rp}. If we add Y to Z, the
number of distinct value combinations, {l1, . . . , q}, increases to q, where p ≤ q. Consequently, to
show that Theorem 1 is true, it suffices to show that

p∑
i=1

log C|ri|k ≤
q∑

j=1

log C|lj |k (7)
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whereas
∑p

i=1 |ri| =
∑q

j=1 |lj | = n. Next, consider w.l.o.g. that each value combination
{ri}i=1,...,p is mapped to one or more value combinations in {l1, . . . , q}. Hence, Eq. (7) holds,
if the log Cnk is sub-additive in n. Since we know from Lemma 1 that the regret term is log-concave
in n, sub-additivity follows by definition. �
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