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New insights into modified scalar sectors and exotic Higgs decays

In the context of models with modified Higgs sectors, we examine different possible causes
for a systematic absence of new physics from current searches at the Large Hadron Collider
(LHC). First, having in mind the lack of clear signs for supersymmetry, we consider theo-
ries based on classical scale invariance as an alternative approach towards addressing the
gauge hierarchy problem. Within the aforementioned framework, we present a systematic
analysis of simple Standard Model (SM) extensions. As a result, we identify the minimal
model, which allows for radiative electroweak symmetry breaking, is consistent with all
current experimental constraints and does not reintroduce any fine-tuning issues. Next,
given that very light scalar particles as predicted by several well-motivated beyond-the-
SM theories have not yet been detected either, we propose a novel search strategy based
on exotic Higgs decays into three of these light scalars. We show that said processes can
be abundant enough to be observable at the LHC or future lepton colliders in exciting
new signatures containing six SM fermions in the final state. In particular, we demon-
strate the three-body channel’s capabilities in probing scenarios which are inaccessible
to existing searches exclusively relying on the related two-body Higgs decay. Our last
study is motivated by the fact that new physics may manifest itself only through effects
which are out of the LHC’s reach due to the large amounts of hadronic background. As
an example, we consider quark-flavor-violating Higgs decays involving bottom quarks and
evaluate the expected sensitivity of direct searches at the proposed International Linear
Collider (ILC). In doing so, we identify hadronic SM Higgs decays with mistagged jets as
the dominant background processes and find that a dedicated analysis is anticipated to
explore branching ratios down to the per-mill level.

Neue Erkenntnisse über modifizierte Higgs-Sektoren und exotische Higgs
Zerfälle

Im Rahmen von Modellen mit modifizierten Higgs-Sektoren untersuchen wir verschiedene
mögliche Ursachen für eine systematische Abwesenheit neuer Physik von entsprechenden
Suchen am Large Hadron Collider (LHC). Angesichts des Fehlens klarer Hinweise auf Su-
persymmetrie betrachten wir als Erstes klassisch skaleninvariante Theorien, die einen al-
ternativen Zugang zur Lösung des Hierarchieproblems darstellen. Innerhalb solcher Theo-
rien führen wir eine systematische Studie einfacher Standardmodell (SM) Erweiterungen
durch. Somit können wir das minimale Modell identifizieren, welches radiative elektro-
schwache Symmetriebrechung erlaubt und vereinbar mit allen experimentellen Schranken
ist, ohne dabei ein Feinabstimmungsproblem wiedereinzuführen. Auch leichte skalare Teil-
chen, deren Existenz von etlichen gut motivierten Modellen jenseits des SM vorhergesagt
wird, konnten bisher nicht gefunden werden. Daher schlagen wir als Nächstes eine neue
Suchstrategie vor, die auf exotischen Higgszerfällen in drei dieser leichten Skalare ba-
siert. Wir finden, dass besagte Prozesse häufig genug vorkommen können, um am LHC
oder zukünftigen Leptonbeschleunigern in neuen, spektakulären Signaturen mit sechs SM
Fermionen im Endzustand beobachtet zu werden. Insbesondere zeigen wir, dass der Drei-
Körper-Zerfall Szenarien testen kann, die für bestehende Suchen, welche ausschließlich
auf dem verwandten Zwei-Körper-Zerfall beruhen, unzugänglich sind. Unsere letzte Stu-
die ist dadurch motiviert, dass neue Physik sich möglicherweise nur durch solche Signa-
turen manifestiert, welche wegen des vielen hadronischen Untergrundes am LHC nicht
nachweisbar sind. Als Beispiel betrachten wir Quark-Flavor-verletzende Higgszerfälle mit
Bottom-Quarks und bestimmen die erwartete Sensitivität direkter Suchen am geplanten
International Linear Collider (ILC). Dabei erkennen wir hadronische SM Higgszerfälle mit
falsch identifizierten Jets als die dominanten Untergrundprozesse und finden, dass eine ge-
eignete Analyse es erlauben wird, Verzweigungsverhältnisse im Promillebereich zu prüfen.
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Chapter 1

Introduction and motivation

July 4th 2012 will go down in history as one of the most memorable days
for particle physicists during the last decades. The seminal discovery of
the Higgs boson at the Large Hadron Collider (LHC) [1, 2], which was
announced on that Wednesday, marked the long-awaited experimental ob-
servation of the last missing piece of the Standard Model (SM) of particle
physics, and thus the culmination of years of extensive effort to track down
a particle which was already predicted in the 1960s, and which is of immense
importance for high-energy physics. Whereas, for instance, a third genera-
tion of quarks and leptons seems expendable from a purely formal point of
view, the existence of the Higgs field is absolutely crucial for writing down
a consistent quantum field theory describing the fundamental interactions
of Nature, barring gravity [3–5]. Although the minimal SM has thus been
completed from a theoretical perspective, it still leaves many fundamental
questions of modern physics unanswered.

For example, while the Standard Model as it stands accurately captures
phenomena related to the electromagnetic, weak and strong forces, a con-
sistent quantum theory of gravity could not be incorporated so far. It is
furthermore still unclear if and how dark matter and dark energy, which
after all make up more than 95% of the universe’s energy density [6, 7],
may be accounted for within the framework of particle physics. But also the
origins of phenomena whose ties to elementary particles are more obvious
remain unresolved. Thus, for instance, the actual mechanisms behind mas-
sive neutrinos or the baryon asymmetry of the universe are yet unknown.
Driven by this large variety of open problems, the field of beyond-the-SM
(BSM) model building has long pursued, and still pursues, a plethora of
different and ever new directions with the aim of including one or several
of the aforementioned phenomena in a consistent theory of particle physics.
Interestingly, many of the existing approaches involve postulating further
scalar bosons, or otherwise modifying the Higgs sector of the minimal SM
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2 Chapter 1. Introduction and motivation

(see e.g. [8] for a recent comprehensive review).a The question of whether
or not the particle found by the ATLAS and CMS experiments is indeed
precisely that predicted by the Standard Model is therefore one of the most
pressing questions of contemporary high-energy physics.

One additional reason to believe that the SM scalar sector is incomplete
and requires modification stems from the very nature of said sector itself.
Specifically, the SM Higgs being an elementary spinless boson implies the
emergence of the infamous gauge hierarchy problem [9–14] as soon as the
Standard Model is embedded in a more fundamental quantum field theory
involving additional heavy particles. Although as a question about natu-
ralness the hierarchy problem poses more of an aesthetic issue rather than
a theoretical inconsistency, the quest for its solution has crucially shaped
model building and the search for new physics over the last decades. Re-
markably, conventional approaches to resolve or at least alleviate the hierar-
chy problem, like theories of low-scale supersymmetry [15–19] or composite
Higgs models [20–23], typically suggest the existence of new particles at
around the TeV scale, whose interactions with known matter are expected
to be reasonably strong. Correspondingly, those particles were and still are
anticipated to be in reach of appropriate experimental searches at the LHC.

However, as of now, neither the eagerly awaited superpartners predicted
by supersymmetry were found at the LHC, nor is there any direct observa-
tional evidence pointing towards the realization of any other model solving
the hierarchy problem in Nature. Also going beyond considerations based
on naturalness as an incentive to search for BSM phenomena at the TeV
scale does not change the situation. In fact, definitive signals of any kind
of new physics are absent from the LHC to date. This, of course, includes
the well-motivated models predicting a modified scalar sector, which were
previously mentioned to play a crucial role in addressing most of today’s
BSM issues. In particular, several years of dedicated studies have shown no
significant deviations of the found Higgs boson’s properties from the corre-
sponding predictions of the minimal SM [24].

Admittedly, the LHC is still far from the end of its lifespan and many
interesting BSM phenomena may well emerge from its future runs, in partic-
ular from those during its high-luminosity phase, where substantially more
data will be accumulated than there is at the moment [25, 26]. Also the
proposed high-energy upgrade of the LHC to more than twice of the cur-
rently available center-of-mass energies certainly would have the potential
to uncover new physics [27]. Nevertheless, it is worth to take one step back
and think about possible causes for the lack of positive results so far. Except
for the obvious one, namely that we simply have to wait for the LHC to de-

aWhen speaking of modified Higgs or scalar sectors in the following, we refer to models
which involve additional elementary scalar particles beyond the already found Higgs boson,
or predict altered properties of the latter with respect to the Standard Model expectations.
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liver larger statistics and higher center-of-mass energies, there exist several
further potential reasons for a systematic absence of any new physics signal
from the current searches at the LHC, which can be broadly divided into
three classes. At the risk of oversimplifying, we summarize the contents of
said categories as:

1. We may be looking for the wrong models.

2. We may be looking in the wrong search channels.

3. We may be looking with the wrong experiment.

In the present work, we will discuss each of these three options in more
detail in the context of concrete examples involving modified scalar sectors,
which, as we have argued before, constitute an integral part of particularly
well-motivated extensions of the minimal Standard Model. Before we do so,
let us, however, first have a slightly closer look at the entries in the above
list, thereby also introducing the main topics of this thesis.b

Item 1 indicates the possibility that the generally used theories which
were devised to solve the aforementioned BSM issues are simply not the
ones realized in Nature. The awareness of this problem naturally lead to
an enhanced interest in alternative approaches during the last years. Thus,
for instance, many new models and ideas addressing the hierarchy prob-
lem were developed [28–31], which conceptually go beyond supersymmetry
or compositeness. One such relatively novel framework is based on classi-
cally conformal theories supplemented by radiative electroweak symmetry
breaking [32–38]. Here, a large separation between the electroweak and
the Planck scale is naturally explained by tying the former to an approx-
imate global symmetry, namely scale invariance. Although many concrete
realizations of classically conformal models were devised and thoroughly in-
vestigated during the last years, a systematic analysis to reveal the minimal
consistency requirements of such a model remained absent. Nevertheless,
the merits of such an analysis are obvious, since it would not only enable us
to identify the minimal conformal model, but also allow us to learn how to
systematically accommodate additional aspects of BSM physics in a classi-
cally scale-invariant framework. We will therefore provide a comprehensive
study of a considerably broad class of conformal theories in Chapter 3. As is
well known, a consistent implementation of radiative electroweak symmetry
breaking generally requires the presence of extra massive scalar particles.
Hence, our study will necessarily involve a discussion about extended scalar
sectors. Notably, said discussion is complicated by the fact that success-
fully avoiding the reintroduction of fine-tuning in classically scale-invariant

bIn this introduction, we will primarily restrict ourselves to establishing said main topics
and to integrating them in the present line of reasoning. A more thorough motivation of
the individual subjects is relegated to the respective chapters.
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theories crucially relies on the absence of any physical threshold scale be-
tween the TeV regime and the Planck energy [34, 35]. In particular, this
necessitates a stable renormalization group (RG) evolution of the candidate
model’s couplings, which is peculiarly difficult to realize in a theory with an
enlarged scalar sector. Our analysis will therefore also help to understand
how the required RG behavior can be achieved nonetheless.

The second entry from our above list signifies that some of the currently
used strategies to search for new particles at the LHC are limited in the sense
that they systematically miss certain regions of a given model’s parameter
space. In some cases those same regions may, however, become accessible in
supplementary analyses based on different signatures which have not been
thought of before. As an example for such a scenario we will study theo-
ries whose particle spectra contain additional light elementary scalar bosons
with masses of order 10GeV and below in Chapter 4. At the moment, direct
searches for the aforementioned new light states at the LHC primarily rely
on the existence of particular cascade processes, where a single SM-like Higgs
boson first decays into two low-mass scalars, which then in turn decay into
pairs of SM fermions or gauge bosons, see [39, 40]. In contrast, the related
process where the initial Higgs decay is into three instead of two light scalars
is presently neither considered by the experiments at the LHC nor by any
phenomenological study in the literature. As a first step towards filling this
gap, we thoroughly investigate basic aspects of said three-body Higgs decay
mode both in a model-independent framework and in a specific extension of
the minimal SM, namely that by one real gauge singlet scalar field. Apart
from computing expected Higgs decay rates and raw event yields of interest-
ing final states, one of our main results will be that direct collider searches
for the three-body channel would indeed be able to probe portions of param-
eter space, which are otherwise inaccessible, thereby providing information
complementary to that obtained in conventional approaches.

Finally, item 3 from our enumeration of possible reasons for the system-
atic absence of BSM signals at the LHC is based on the observation that
new physics events may indeed be produced at the currently available ener-
gies, but only induce such signatures which are fundamentally out of reach
for detection at a hadron collider. Scenarios affected are most notably those
where rare BSM processes lead to purely hadronic final states, which are no-
toriously plagued by large amounts of QCD background at the LHC. In the
context of modified scalar sectors, one interesting class of processes which
falls into the aforementioned category is that of quark-flavor-violating Higgs
decays, i.e. decays of the SM-like Higgs boson into a pair of quarks of un-
equal flavor. Notably, the associated branching fractions are generally antic-
ipated to be small due to existing indirect constraints on the corresponding
non-standard Higgs couplings coming from low-energy precision measure-
ments [41]. Whereas the LHC’s capabilities to probe quark-flavor-violating
Higgs decays are thus clearly limited, potential future Higgs factories like
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the proposed International Linear Collider (ILC) [42–47] would provide a
complementary approach to high-energy particle physics, and could there-
fore help to overcome the LHC’s inherent restrictions. Specifically, as an
electron-positron collider, the ILC would offer a much cleaner experimental
environment, which would allow to measure the properties of the found SM-
like Higgs boson with high precision. Thus motivated, Chapter 5 presents
the first thorough study of the prospects for discovering or constraining the
quark-flavor-violating Higgs decay into a bottom and a strange quark at the
ILC.

Outline

In line with the above motivation, the thesis is organized as follows. First,
we will briefly review the basics of the Standard Model of particle physics in
Chapter 2. In doing so we will predominantly concentrate on those aspects
which will be needed for a proper understanding of the rest of the thesis.
Particular focus will be placed on the scalar sector of the minimal SM and
its role in the spontaneous breaking of electroweak symmetry (Sections 2.1
and 2.2), as well as on the already mentioned gauge hierarchy problem as it
appears in generic SM embeddings (Section 2.3). Chapter 3 is then mainly
devoted to an in-depth systematic study of a broad class of classically con-
formal extensions of the SM with the aim to identify the minimal model
which is consistent with theory and experiment. Said study in Section 3.3
is preceded by a short review on how tree-level scale invariance is argued to
remedy the hierarchy problem in Section 3.1. In Chapter 4, we then discuss
decays of the SM-like Higgs boson into three light extra scalars both from a
model-independent perspective (Section 4.1) and in the context of the real
scalar singlet extension of the SM (Section 4.2). Prospects for new physics
searches at current and near-future colliders based on the three-body chan-
nel are studied in Section 4.3. Following this, Chapter 5 is dedicated to the
study of quark-flavor-violating Higgs decays, specifically to that into a bot-
tom and a strange quark. To set the stage, we begin by briefly introducing
the planned International Linear Collider (ILC) and its Higgs physics pro-
gram in Section 5.1, followed by a short discussion on the basics of effective
field theory in the context of flavor-violating Higgs couplings (Section 5.2).
Afterwards, we present a detailed analysis of the ILC’s expected perfor-
mance in probing the aforementioned Higgs decay (Section 5.3). We finally
conclude in Chapter 6. Note that each of the principal chapters of this thesis
(3, 4 and 5) is preceded by an introduction where its respective subject is
thoroughly motivated and put into context of contemporary particle physics.
At the end of those chapters, we furthermore present summaries of the main
results and their physical impact.
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Disclaimer

Parts of the present thesis are based on results which arose from collabo-
rative work with others and which were already published in peer-reviewed
journals.

• The systematic study of conformal extensions of the Standard Model
presented in Section 3.3, as well as the corresponding results summa-
rized in Section 3.4 were first published in Reference [48] in collabora-
tion with Pascal Humbert, Manfred Lindner and Juri Smirnov.

• The analysis of Higgs boson decays into three light scalars in Chap-
ter 4 is based on work done in collaboration with Manfred Lindner
which was published in Reference [49]. The model-independent dis-
cussion presented in Section 4.1 was, however, enlarged by new results
as compared to the aforementioned reference and in its entirety repre-
sents the author’s original work.

• The study of quark-flavor-violating Higgs decays in Chapter 5 elabo-
rates on Reference [50] which originates from collaborative work with
Daniele Barducci.



Chapter 2

The Standard Model and
beyond

The Standard Model (SM) of particle physics is a theory describing the fun-
damental constituents of matter and the forces through which they mutually
interact. It is extremely successful in doing so, accurately explaining a broad
range of different phenomena spanning from atomic physics at energies of
about 100 eV all the way up to LHC physics at the TeV scale and possibly
even beyond.

One of the prime examples to be mentioned here is the free electron
g-factor which was empirically determined with a relative uncertainty of
2.8 ¨ 10´13 [51]. Still, this truly remarkable level of precision is achievable
by state-of-the-art SM calculations [52] with the absolute difference between
experiment and theory being of order 10´12. But also high-energy particle
physics has long entered the era of precision measurements with experiments
at LEP (Large Electron-Positron Collider) and SLC (SLAC Linear Collider)
reaching the per-mill or even ppm-level. However, no significant deviations
from SM predictions were found [53].

Importantly, the achievements of the SM are not limited to reproducing
a vast amount of experimental results. Rather, many of the elementary
particles known today were originally predicted on the basis of the SM years
– or sometimes even decades – before they were first discovered. Of course,
the Higgs boson immediately comes to mind, which was part of the SM right
from its beginnings in the late 1960s [4, 5], before it was finally observed in
2012 [1, 2]. The list of successful SM predictions also includes the charm
quark which was introduced to explain the empirically found absence of so-
called flavor-changing neutral currents [54] only to be discovered four years
later [55, 56]. Likewise, the observed violation of CP symmetry implied
the existence of a third family of quarks [57] and eventually lead to their
detection [58–60]. Lastly, we should mention the weak gauge bosons, W
and Z, which are essential for formulating a consistent unified theory of

7



8 Chapter 2. The Standard Model and beyond

electromagnetism and weak interactions [3–5]. They were both discovered
in 1983 [61–64], i.e. more than ten years after their introduction.

In the following chapter, we will revisit the foundations of the Standard
Model starting with a brief summary of its formal basics (Section 2.1). Since
the present thesis is mainly about Higgs physics, we will pay particular atten-
tion to the Higgs mechanism and its role in electroweak symmetry breaking
(Section 2.2). The gauge hierarchy problem, which plagues generic exten-
sions of the SM and which has therefore crucially shaped model building in
the last decades, will then be the subject of Section 2.3.

Throughout this chapter, we will concentrate on aspects which are vital
for the development and understanding of this work’s principal results thus
setting the stage for the rest of the thesis. Further details on the aspects
covered here or on the Standard Model in general can be found in the nu-
merous textbooks on quantum field theory and/or particle physics, like [65]
and [66].

2.1 The Standard Model in a nutshell

The Standard Model in its textbook form is a combined description of the
electroweak interactions [3–5] and the strong force as captured by quan-
tum chromodynamics (QCD). As this work is mainly concerned with Higgs
physics, we will almost exclusively review the electroweak sector of the SM
here. Formally, the Standard Model is a local quantum field theory (QFT)
based on the gauge group

GSM “ SU(3)c ˆ SU(2)L ˆ U(1)Y , (2.1)

where the first factor is the local symmetry group of QCD, while the other
two factors constitute the electroweak gauge group. For reasons of theoreti-
cal consistency, each local symmetry group comes with its own set ofmassless
spin-1 particles, the gauge bosons (see e.g. [65]). For the SM, those are the
gluons of QCD, denoted as Ga

µ in the following, as well as the electroweak
gauge fields W a

µ and Bµ associated with SU(2)L and U(1)Y , respectively.
Here, µ is a spacetime index, while a is the index of the respective group’s
adjoint representation. In contrast to the above statement, we know empir-
ically that the electroweak sector only contains one massless spin-1 particle,
namely the photon, whereas the W and Z bosons are massive.

For the purpose of reconciling theory and experiment, the Higgs mech-
anism [67–71] is invoked in the SM to spontaneously break the electroweak
symmetry group down to the one of electromagnetism, i.e.

SU(2)L ˆ U(1)Y ÝÑ U(1)em , (2.2)

thereby giving mass to the weak gauge bosons W and Z, while the photon
remains massless as required. More details on the Higgs mechanism and
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symbol SU(3)c SU(2)L U(1)Y

Quarks
Qi

L “

ˆ

uiL
diL

˙

3 2 1{6

uiR 3 1 2{3

diR 3 1 ´1{3

Leptons
Li “

ˆ

νiL
eiL

˙

1 2 ´1{2

eiR 1 1 ´1

Higgs Φ “

ˆ

φ`

φ0

˙

1 2 1{2

Table 2.1: Standard Model particle content. All fermion fields exist in three
generations, i.e. i P t1, 2, 3u. Throughout this work, we use conventions for the
hypercharge Y such that Q “ T 3 ` Y , where Q is a particle’s electric charge after
EWSB and T 3 is the third component of its weak isospin (Gell-Mann Nishijima
formula [72, 73]).

electroweak symmetry breaking (EWSB) will be discussed in the next sec-
tion. For now, it suffices to say that the aforementioned procedure is realized
within the SM by introducing one complex scalar field Φ “ pφ`, φ0qᵀ, the
Higgs field, which transforms under GSM as

Φ „
`

1,2, 12
˘

. (2.3)

Upon EWSB the Higgs field acquires a non-zero vacuum expectation value
v and can be re-written in unitary gauge as

Φ “
1

?
2

ˆ

0
v ` H

˙

, (2.4)

where H is an electrically neutral scalar which is present in the theory’s
particle spectrum after symmetry breaking and is referred to as the Higgs
boson.

Let us continue with reviewing the Standard Model’s fermion content.
First, all matter fields are divided into two classes of particles, namely
quarks, which interact via QCD, and leptons, which do not feel the strong
force. Second, since the SM is a chiral gauge theory, it is to be formulated
using Weyl spinors. From a physics point of view, this implies that the
left-handed and right-handed components of a given particle species cou-
ple to the gauge forces in different ways. Notably, explicit fermion (Dirac)
mass terms are thus forbidden by gauge symmetry. In Table 2.1, we list all
SM fermion fields as well as the complex Higgs doublet from equation (2.3)
supplemented by their respective quantum numbers.
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We are now in the position to formulate the Standard Model’s La-
grangian. The latter consists of precisely those renormalizable and Lorentz-
invariant terms that respect the local symmetry group of equation (2.1) and
that can be written down using only the fields from Table 2.1. It reads

LSM “ Lgauge ` Lfermion ` Lscalar ` LYukawa , (2.5)

where the individual parts are given by

Lgauge “ ´1
4G

a
µνG

aµν ´ 1
4W

a
µνW

aµν ´ 1
4BµνB

µν `
θg23
32π2

Ga
µν

rGaµν , (2.6a)

Lfermion “ iL̄i {DLi ` iēiR {DeiR ` iQ
i
L {DQi

L ` iūiR {DuiR ` id̄iR {DdiR , (2.6b)

Lscalar “ pDµΦq:pDµΦq ´ V pΦq , (2.6c)

LYukawa “ ´yije L̄
iΦejR ´ yijd Q

i
LΦd

j
R ´ yiju Q

i
LΦ̃u

j
R ´ h.c. . (2.6d)

A few comments on the notation and on the physics captured by the different
contributions in equations (2.6) are in order.

The gauge part Lgauge contains, first and foremost, the kinetic terms of
the SM gauge bosons as well as their self-interactions provided the under-
lying gauge symmetry is non-Abelian. The corresponding operators are all
of the same structure, namely F a

µνF
aµν . The field strength tensor F a

µν asso-
ciated with gauge fields Aa

µ can be conveniently defined via an appropriate
gauge-covariant derivative Dµ

Fµν ” F a
µνT

a :“ ´
i

g
rDµ, Dνs with Dµ “ Bµ ` igAa

µT
a .

Here, the coupling g quantifies the gauge interaction’s strength, while T a are
the corresponding gauge group’s generators. Unlike the other operators in
equation (2.6a), the last term, containing the dual gluon field strength tensor
rGaµν “ 1

2ε
µνρσGa

ρσ, violates CP invariance. The smallness of its coefficient
θ lies at the heart of the so-called strong CP problem (see [74] for a review).

The fermion gauge-kinetic part Lfermion describes the dynamics of mass-
less fermion fields as well as their interaction with the gauge bosons accord-
ing to their quantum numbers (see Table 2.1). In writing down equation
(2.6b), we employed the Feynman slash notation, specifically {D :“ γµDµ,
where γµ is the four-tuple of Dirac matrices, while Dµ again represents a
gauge-covariant derivative. Of course, the exact form of the latter depends
on the fermion it acts on. For instance, in case of the left-handed quark
doublet QL, which is charged under all three factors of GSM, it reads

Dµ “ Bµ1 ` ig3G
a
µT

a ` ig2W
a
µτ

a ` ig1Y Bµ1 , (2.7)

where T a and τa are the generators in the fundamental representations of
SU(3) and SU(2), respectively, while Y “ 1

6 for QL. For a color (weak
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isospin) singlet the second (third) term is not present. The hypercharge has
to be adjusted as well.

The scalar sector Lagrangian from equation (2.6c) itself consists of two
parts. On the one hand, the scalar potential V pΦq captures the Higgs field’s
self-interactions. Importantly, its particular structure triggers the sponta-
neous breakdown of electroweak symmetry within the minimal SM. In this
context, the potential will be discussed in more detail in Section 2.2. On the
other hand, the Lagrangian Lscalar contains the gauge-kinetic term for the
Higgs boson, in which the covariant derivative Dµ is an appropriately modi-
fied version of that given in equation (2.7). Analogous to the fermionic case,
the scalar gauge-kinetic term describes the coupling of Φ to the SM gauge
bosons. As we will explicitly see in the next section, it is precisely these
interactions that render the weak vector bosons massive during EWSB.

Lastly, let us discuss the Yukawa sector LYukawa, in which the Higgs
boson couples left- to right-handed fermion fields. To appreciate the physical
significance of the Yukawa-type operators, recall from before that in a chiral
gauge theory as the SM, explicit fermion mass terms are forbidden.a They
may, however, be spontaneously generated, which is exactly what happens
in equation (2.6d) once the Higgs acquires a finite vev during EWSB. For
instance, the down-type quark Yukawa operator gives

´LYukawa Ě yijd Q
i
LΦd

j
R ` h.c. “ M ij

d d̄iLd
j
R

ˆ

1 `
H

v

˙

` h.c. , (2.8)

where we have employed equation (2.4) and defined the down-type quark
mass matrix as Md “ ydv{

?
2, which is a complex 3 ˆ 3 matrix in flavor

space.

Since the Yukawa interaction in equation (2.8) does not derive from any
gauge principle (as do, for instance, the gauge-kinetic terms in Lfermion),
there is no reason why the matrices yd and Md should be diagonal (see
e.g. [65]). Consequently, the electroweak interaction eigenstates d in equa-
tion (2.8) will in general not coincide with the mass eigenstates d1. In order
to find the latter, we need to diagonalize the matrix Md. This can be
achieved by means of a bi-unitary transformation,b specifically V :

dMdUd “

diagpmd,ms,mbq with Ud, Vd P U(3) and non-negative current quark masses
mq. Defining the mass eigenstates d1 accordingly,

d1i
L “ pV :

d qijdjL and d1i
R “ pU :

dqijdjR , (2.9)

aThis statement only holds for Dirac mass terms. In contrast, Majorana masses are
allowed, but require fermions that are not charged under any gauge symmetry. Such
fermion representations are absent in the minimal SM, though.

bMathematically speaking, we perform a singular value decomposition of Md.
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one can finally re-write equation (2.8) as

´LYukawa Ě
ÿ

i“d,s,b

mid̄
1i
Ld

1i
R

ˆ

1 `
H

v

˙

` h.c. . (2.10)

The Yukawa Lagrangian in the aforementioned form does not only describe
a Dirac-type mass for the down-type quarks, but also their interaction with
the physical Higgs boson H after EWSB. Clearly, the exact same logic as
applied to the down-type quark Yukawa operator in the discussion above,
holds for the other terms in LYukawa as well. Importantly, equation (2.10)
therefore demonstrates that there are no tree-level flavor-changing neutral
currents (FCNC) in the Higgs sector of the minimal SM. In other words,
barring quantum effects, the physical Higgs H exclusively couples to pairs
of same-flavor fermions. In Chapter 5, we will use this result to argue
that detecting quark flavor violating Higgs decays, like H Ñ b̄s, at near-
future collider experiments would be an unambiguous sign of beyond-the-SM
physics.

The basis change in equation (2.9) also impacts other parts of the SM,
specifically Lfermion. After EWSB, the weak interactions involving W bosons
can be brought into the form Lfermion Ě ´g2J

µ
`W

`
µ ` h.c. The quark part

of the so-called weak charged current Jµ
` is then

Jµ
` “

1
?
2
ūiLγ

µdiL “
1

?
2
ū1j
Lγ

µ
`

V :
uVd

˘jk
d1k
L . (2.11)

By convention, one now defines the Cabibbo-Kobayashi-Maskawa (CKM)
matrix as VCKM :“ V :

uVd [57, 75]. As Vu and Vd, it is a complex 3 ˆ 3 unitary
matrix, which can be shown to be parameterized by three Euler angles and
one CP-violating phase δCP [57]. In general, VCKM will be non-diagonal,
such that equation (2.11) implies the mixing of distinct quark generations in
charged-current processes. Note that the absence of a right-handed neutrino
field implies the neutrinos’ exact masslessness in the SM. The latter, in turn,
prevents the above argument from being applicable to the lepton sector.
Charged currents are therefore lepton-flavor conserving in the minimal SM.

Let us finally have a look at the situation in the neutral gauge sector.
Here, fermion couplings to the Z and the photon are diagonal in weak isospin
space. For instance, the part of the weak neutral current Jµ

Z involving left-
handed quarks reads

Jµ
Z Ě cpuq

L ūiLγ
µuiL ` cpdq

L d̄iLγ
µdiL

“ cpuq

L ū1j
Lγ

µ
`

V :
uVu

˘jk
u1k
L ` cpdq

L d̄1j
Lγ

µ
`

V :

d Vd

˘jk
d1k
L ,

where cpiq

L are suitable weak charges and the current enters the Lagrangian as

Lfermion Ě ´
a

g21 ` g22J
µ
ZZµ. The other terms in Jµ

Z and in the electromag-
netic current are of a similar form. From the unitarity of the transformation
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SM sector Parameter Symbol

Electroweak

SU(2)L gauge coupling g2
U(1)Y gauge coupling g1
Electroweak scale v
Higgs self-coupling λ

QCD
SU(3)c gauge coupling g3
QCD vacuum angle θ

Fermion
fermion masses (ˆ9) mf

CKM parameters α, β, γ, δCP

Table 2.2: Free parameters of the Standard Model and the corresponding notation
used in the present thesis. In case of quarks, mf refers to current quark masses.

matrices Vi and Ui, we can thus infer that there are no tree-level FCNCs in
the gauge sector, either.

This concludes our brief discussion of the Standard Model Lagrangian
from equation (2.5). Considering the complex physics and the plethora of
different experimental observations that are captured by LSM, it is remark-
able that the theory needs only 19 input parameters to be fully specified.
Those are summarized in Table 2.2.

2.2 Electroweak symmetry breaking

As has been alluded to in the last section, the Higgs mechanism is crucial
for the success of the Standard Model in describing Nature. To appreci-
ate its relevance, let us start with the following fact: For basic reasons of
consistency, fundamental spin-1 fields in a Lorentz-invariant theory must
necessarily be associated to a local gauge symmetry.c The empirically val-
idated existence of particles with spin 1 thus directly implies the need for
gauge theories to describe them. Accordingly, the SM is a theory based
on the local symmetry group GSM given in equation (2.1). To be slightly
more precise, the non-Abelian nature of GSM makes the SM an example of
a so-called Yang-Mills (YM) theory [77].

A further important concept in quantum field theories is that of renor-
malizability, which is inherently linked to the feature of a theory being pre-
dictive and consistent at all energy scales. These are, of course, desirable
properties for a fundamental theory of Nature. For a long time, it was far
from obvious that Yang-Mills theories as the SM exhibit the feature of renor-
malizability. It was eventually proven for YM theories with massless gauge
bosons by ’t Hooft [78]. Unfortunately, renormalizability is lost as soon as

cA very nice pedagogical review on the necessity of gauge theories is given e.g. in [76].
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we extend massless YM theory by introducing an explicit mass term for the
vector bosons (thereby explicitly breaking gauge invariance). Naively, this
seems to imply that in a renormalizable QFT all degrees of freedom with
spin 1 must be massless, in stark contrast to what we observe in Nature.
The way out of this apparent contradiction lies in the realization that YM
theories are, in fact, renormalizable provided the masses of the vector bosons
are generated spontaneously by the Higgs mechanism [79].

The Higgs mechanism itself was originally introduced in the context of
Abelian gauge theories [67–70]. To the non-Abelian case, it was first applied
in [71]. In the following, we will discuss the mechanism’s realization within
the SM and its relation to electroweak symmetry breaking (EWSB) [4, 5]. In
the course of the previous section, we have already introduced the SM Higgs
field Φ and its potential V pΦq in equations (2.3) and (2.6c), respectively.
The latter is the key to understanding how EWSB occurs. Its form in the
SM is

V pΦq “ µ2Φ:Φ ` λpΦ:Φq2 , (2.12)

where the first term renders the Higgs field massive, while the second one
describes its quartic self-interactions. In order for the theory to possess a
ground state (also referred to as vacuum in the following), its total energy
content must be positive definite. In particular, this requires the potential to
be bounded from below, which, in turn, implies λ ą 0. The aforementioned
(classical) ground state value of the Higgs field Φ0 ” xΦy can then be found
by minimizing the potential, yielding

|Φ0| ”
v

?
2

“

c

´µ2

2λ
for µ2 ă 0 (2.13)

or |Φ0| “ 0 in the case of µ2 ě 0. In the following, we will exclusively be
interested in the tachyonic case of negative µ2. Importantly, equation (2.13)
only fixes the magnitude of the vacuum expectation value (vev), while its
direction is not determined. The freedom of global SU(2) rotations, however,
allows us to conveniently write the Higgs vev as

Φ0 ” xΦy “
1

?
2

ˆ

0
v

˙

. (2.14)

Furthermore and without loss of generality, we have chosen the vev to be real
in accordance with the fact that spontaneous CP violation is not possible in
the minimal SM: A non-zero phase α, as in veiα, can always be absorbed in
an irrelevant global phase and thus will not have any physical impact (see
e.g. [80]).

Since the Higgs field Φ transforms non-trivially under SU(2)L ˆU(1)Y , a
non-zero ground state configuration xΦy ‰ 0 as in equation (2.14) indicates
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that the theory’s vacuum is no longer invariant under the electroweak sym-
metry, which is therefore said to have been spontaneously broken (EWSB).
From a physical point of view, this implies that the SU(2)L ˆU(1)Y symme-
try will no longer be manifest in the theory’s particle spectrum. Crucially,
our choice of the Higgs field’s hypercharge, Y “ 1

2 , still renders the vacuum
xΦy invariant under a U(1) subgroup with associated charge Q :“ T 3 ` Y ,
where T 3 is the third component of weak isospin. In line with experimental
observations, this unbroken subgroup of the full electroweak group is to be
identified with the gauge group of electromagnetism. In summary, we thus
obtain the symmetry breaking pattern, already quoted in equation (2.2) and
repeated here

SU(2)L ˆ U(1)Y ÝÑ U(1)em .

From a more technical point of view, performing perturbative calcula-
tions in QFT requires an expansion around the theory’s true vacuum, which
is now given by equation (2.14). Correspondingly, we have to re-write the
SM Lagrangian using an appropriately shifted Higgs field, namely

Φ “ xΦy `

˜

iG`

1?
2
pH ´ iG0q

¸

, (2.15)

where the complex field G` and the real scalars H and G0 have zero vacuum
expectation value in accordance with equation (2.14). Plugging equation
(2.15) into the scalar potential V pΦq and using the tree-level vacuum condi-
tion (2.13), reveals that the fields Gi are massless, while the physical Higgs
boson H acquires a finite mass

mH “
?
2λ v “ 125.09GeV . (2.16)

Here, we quoted the measured value from the combined ATLAS and CMS
analysis of the LHC run-1 data [81].

As we have already mentioned several times, the Higgs mechanism gen-
erates finite masses for formerly massless gauge bosons, specifically for those
associated with broken symmetry generators. To see how this works, let us
insert the shifted field from equation (2.15) into the scalar gauge-kinetic
term of equation (2.6c). In a first step, we concentrate on terms bilinear in
the gauge fields and not containing a scalar. We obtain

pDµΦq:pDµΦq Ě
g22v

2

4
W`

µ Wµ´ `
1

2

pg21 ` g22qv2

4
ZµZ

µ , (2.17)

where we defined W˘
µ “ pW 1

µ ¯ iW 2
µq{

?
2 and Zµ “ cos θWW 3

µ ´ sin θWBµ.
The neutral gauge fields W 3

µ and Bµ have mixed to give two mass eigen-
states, one of which is the massive Z boson. The other eigenstate, Aµ “

sin θWW 3
µ ` cos θWBµ, remains massless and is identified with the photon of
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quantum electrodynamics (QED). The mixing in the neutral gauge sector
can conveniently be described by one real mixing angle, the Weinberg angle
θW, which satisfies sin θW “ g1{

a

g21 ` g22. Equation (2.17) explicitly demon-
strates that the non-zero Higgs vev induces a finite mass for the W and
Z bosons as required by experiment. Specifically, one finds the tree-level
relations

mW “ 1
2g2v , mZ “ 1

2

b

g21 ` g22 v . (2.18)

As a brief digression, we remark that these identities are interesting for
two reasons. On the one hand, they allow to express the vacuum expecta-
tion value v via the particularly well measured Fermi coupling constant GF

[82]. The latter can be related to SM quantities in an effective field theory
approach yielding (see e.g. [65])

GF
?
2

“
g22

8m2
W

(2.18)
ùñ v “

´?
2GF

¯´1{2

“ 246.22GeV , (2.19)

where we used the current PDG value for the Fermi constant in the second
step [83]. On the other hand, equation (2.18) illustrates a special feature of
EWSB in the SM, namely

ρ :“
m2

W

m2
Z cos2 θW

“ 1 , (2.20)

which was experimentally established at a 5‰ level of accuracy [53].d All al-
ternative theories of EWSB should therefore somehow implement the above
property. Accordingly, we will use the constraint ρ “ 1 as one of the major
guidelines to identify potentially viable models with enlarged scalar sectors
in Chapter 3.

To gain slightly more insight into how the Higgs mechanism works, let us
consider another class of operators emerging from the scalar gauge-kinetic
term upon insertion of equation (2.15), specifically

pDµΦq:pDµΦq Ě mW

`

W`
µ BµG´ ` W´

µ BµG`
˘

` mZZµBµG0

Based on these couplings, it can be shown that the massless scalar fields Gi

behave exactly as would the longitudinal modes ofmassive vector bosons. To
be more specific, one finds that e.g. the field G0 has the correct properties
to be re-interpreted as the third degree of freedom of the now massive Z
boson. An analogous association between the charged scalars G˘ and the
W bosons exists. As a consequence, the massless scalar modes G0 and G˘

do no longer appear in the physical particle spectrum of the SM, which,

dThe observed deviation from the classical relation ρ “ 1 is fully consistent with ex-
pected effects due to quantum corrections.
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however, now contains massive vector bosons with three degrees of freedom
each. The Higgs boson is thus the only fundamental scalar mode remaining
in the physical spectrum after EWSB. Accordingly, finding an additional
fundamental spin-0 particle would be a direct proof of BSM physics, which
– among other things – motivates our study in Chapter 4.

We finish our analysis of the scalar gauge-kinetic term after EWSB by
considering the trilinear interaction of the massive weak gauge bosons with
the Higgs particle H

pDµΦq:pDµΦq Ě
m2

W

v
HW`

µ Wµ´ `
1

2

m2
Z

v
HZµZ

µ . (2.21)

These couplings are necessary for mediating the dominant production pro-
cesses of a single Higgs boson at lepton colliders and are therefore crucial
for the understanding of Chapter 5.

This concludes our discussion of electroweak symmetry breaking as it is
implemented in the minimal Standard Model.

2.3 The gauge hierarchy problem in generic
extensions of the minimal Standard Model

As we have argued in Chapter 1, the minimal SM as previously introduced
does not account for all observed physical phenomena and thus cannot be
valid at all energy scales. Even if new physics aspects such as particle dark
matter, small neutrino masses or baryogenesis could all be accommodated
without introducing a new large mass scale, one would still generally expect
the SM to be replaced by a theory of quantum gravity at energies of or-
der of the Planck scale MPl » 1.22 ¨ 1019GeV. Interestingly, even if gravity
turned out to be an emergent phenomenon without the need for an em-
bedding at around MPl, the SM would nevertheless break down eventually
due to the Landau pole in the hypercharge gauge coupling, which can be
calculated to develop at roughly 1041GeV. All this suggests the existence
of a finite energy scale Λ at which the minimal SM is embedded into a more
complete theory of high-energy physics, and which may well be much larger
than the electroweak scale, Λ " v. Crucially, the embedding scale Λ will
be associated with a physical mass or threshold scale M as soon as the UV
completion is specified and is therefore not to be confused with, for instance,
a technical cutoff introduced to regulate spurious divergences in quantum
field theory. In particular, terms containing Λ (or equivalently M) will still
be present in expressions for physical observables after the theory has been
fully renormalized.

With that said, the gauge or electroweak hierarchy problem [9–14] refers
to the two-fold shortcoming of generic embeddings of the SM at a high
scale Λ, which can typically neither explain the large difference v ! Λ, nor



18 Chapter 2. The Standard Model and beyond

stabilize it under quantum corrections. To see why, let us first introduce
the notion of Dirac naturalness [84, 85]. Employing the standard language
of QFT as well as natural units [65], the latter states that the natural size
of the coefficient gO of a local operator O with scaling dimension ∆O in a
four-dimensional theory with fundamental mass scale Λ is

gO “ cO ¨ Λ4´∆O , (2.22)

where cO is a dimensionless numerical constant of order unity. In Chapter
2, we have learned that the scale of electroweak symmetry breaking in the
minimal SM is set by the Higgs mass parameter µ2, which, in turn, is the co-
efficient of the dimension-two operator Φ:Φ, cf. equations (2.12) and (2.13).
According to equation (2.22) the natural size of the electroweak scale – or
equivalently that of the Higgs mass mH – is therefore of order Λ in stark
contrast to the assumed v ! Λ, thus illustrating the first part of the gauge
hierarchy problem.

To also understand the second and more severe part of the hierarchy
problem, recall that in perturbative QFT a renormalized physical observ-
able can be written as a sum of a bare quantity and appropriate quantum
corrections. Accordingly, the renormalized Higgs mass mH is

m2
H “ m2

H,0 ` δm2
H (2.23)

where m2
H,0 denotes the bare mass parameter while δm2

H arises from loop

effects. Importantly, even if we accept that the bare coupling m2
H,0 attains a

value much smaller than its natural size in the Dirac sense of equation (2.22),
mH,0 ! Λ, this assumption is not meaningful since it is usually not stable
under radiative corrections. To be more precise, it is straightforward to show
that δm2

H and therefore also the renormalized Higgs mass is quadratically
sensitive to any large physical mass scale with which the Higgs field interacts,
even if said coupling is only indirect, e.g. via gravity. Specifically, if the SM
is embedded into a more complete theory at a finite scale Λ, which is also
employed to regulate loop momenta, δm2

H is given by (see e.g. [65])

δm2
H “ fpgiq ¨ Λ2 , (2.24)

with f being some suitable function of the theory’s couplings gi, which
is generally not too small. Hence, equations (2.23) and (2.24) imply that
the observed Higgs mass should be of order of the high-energy embedding
scale Λ, even in cases where the bare mass is much smaller. Explaining the
difference mH ! Λ then requires to assume that the bare mass is set in a
way as to precisely cancel the radiative contribution of equation (2.24). The
corresponding delicate fine-tuning constitutes the gauge hierarchy problem’s
second part.

A few comments on the above discussion are in order. First, we stress
again that (the second part of) the hierarchy problem is a statement about
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the Higgs mass parameter’s strong sensitivity to UV physics, rather than
about the used regularization scheme. To illustrate, let us assume for now
that the UV completion of the minimal SM involves a heavy particle of
mass M " mH , which somehow couples to the Higgs field. Instead of cutoff
regularization as before, we now want to employ dimensional regularization
together with modified minimal subtraction (MS). Since this is a mass-
independent scheme, we have to explicitly match the full high-energy theory
onto the low-energy effective one in which the heavy particle has already
been integrated out. Said matching is performed at the physical threshold
scale µ̄ “ M , where µ̄ is the arbitrary mass scale introduced in the MS
scheme, and can easily be shown to produce the following correction to the
Higgs mass in the low-energy effective theory

δm2
H “ f̃pgiq ¨ M2 . (2.25)

Analogous to equation (2.24), the radiative contribution to the Higgs mass
is again found to be quadratically sensitive to the high-energy physics scale.

As a second remark, let us mention that fermion and gauge bosons
masses do not suffer from a similar problem. If, for instance, we had an
extra light fermion f of mass mf ! M in the above situation, the cor-
responding threshold correction δm2

f would be proportional to m2
f rather

than to M2. This property can be shown to originate from the fact that
the f -sector becomes chirally invariant in the limit mf Ñ 0. Couplings like
mf , whose vanishing enhances a theory’s symmetry, are referred to as tech-
nically natural [14]. Although they may still be unnaturally small in the
Dirac sense of equation (2.22), that smallness is now radiatively stable and
thus does not imply any fine-tuning of bare parameters. Similarly, gauge
boson masses are protected by gauge symmetry. The problematic strong
sensitivity on UV physics found in the case of the Higgs in equations (2.24)
and (2.25) can consequently be traced back to the fact that the Higgs boson
is a (fundamental) scalar field and the absence of an appropriate protective
symmetry.

Finally, it is worth noting that the electroweak hierarchy problem does
not afflict the minimal SM, because the latter is a renormalizable QFT with
only one explicit physical scale, namely the electroweak vev (cf. Table 2.2).
Any cutoff scale which may be introduced for regularization in expressions
such as equation (2.24) must therefore be unphysical and can hence be renor-
malized away [32].





Chapter 3

Minimal conformal
extensions of the Higgs
sector

The gauge hierarchy problem [9–14] as discussed in Chapter 2 is arguably one
of the most pressing issues of beyond-the-Standard Model (BSM) physics.
Although as a naturalness problem it is more of an aesthetic issue rather than
a theoretical inconsistency, the quest for its solution has crucially shaped
model building and the search for new physics over the last decades. Corre-
spondingly, there exists a large variety of proposed theoretical frameworks
which offer remedies to overcome or at least alleviate the hierarchy prob-
lem. The most prominent one of these is certainly provided by low-scale
supersymmetry (SUSY) [15–19]. However, even though the relevant SUSY
scenarios typically suggest the existence of BSM phenomena in the TeV
range, no appropriate new particles were found at the LHC to date, see
e.g. [86]. As a consequence, the simplest and most appealing SUSY models
are severely constrained by now and thereby become increasingly unnatural
themselves [87–89].

Obviously, the aforementioned absence of experimental evidence for su-
persymmetry lead to an enhanced interest in alternative approaches towards
solving the hierarchy problem. Well-established frameworks include extra-
dimensional theories [90–92] as well as technicolor [11–13, 93–95], composite
Higgs [20–23] and little Higgs models [96–99]. Importantly, and analogous
to the case of SUSY, all of the above examples introduce extra symmetries
in order to prevent the electroweak scale from becoming unstable against
radiative corrections. More recently, many new ideas such as cosmological
relaxation [28], twin Higgs models [29], Nnaturalness [30] and clockwork
theories [31] were developed and are being thoroughly investigated at the
moment.

21
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Finally, also theories based on classically scale-invarianta Lagrangians
attracted some attention in the last years and will be the main subject of
the present chapter. Similar to some of the above examples, the electroweak
scale is again tied to an approximate global symmetry – namely scale in-
variance – and is thereby protected against quadratic divergences [32]. More
details on how this works exactly are provided in Section 3.1. Crucially, a
common feature of conformal extensions of the Standard Model (SM) is that
spontaneous electroweak symmetry breaking necessarily has to be a conse-
quence of the model’s quantum dynamics, since by definition there exists
no explicit mass scale in the classical theory. Early works which advocated
the aforementioned protection mechanism based on scale invariance include
[33–38]. These basic studies have subsequently inspired the exploration of
numerous further conformal models, which then additionally addressed var-
ious other open questions of BSM physics, like the particle nature of dark
matter, the smallness of neutrino masses or baryogenesis [103–118].

Nevertheless, there does not exist any systematic study of the minimal
requirements to be fulfilled by a scale-invariant model of particle physics
in order to allow for consistent dynamical electroweak symmetry breaking,
while also satisfying basic experimental constraints. With the following
study we try to fill this gap at least for a reasonably broad class of classically
scale-invariant models defined by the following set of working assumptions:

1. Spontaneous breakdown of scale invariance is supposed to be triggered
by perturbative effects in a Coleman-Weinberg-like scenario [119].

2. Spontaneous breakdown of scale invariance is furthermore assumed to
occur at energies around the electroweak scale.

3. All models are to be built around the gauge symmetry group of the
minimal Standard Model (SM) given in equation (2.1).

A few remarks on the above items are in order. First, it is well known
that the scale-invariant version of the minimal SM does not facilitate ra-
diative symmetry breaking à la Coleman-Weinberg, since large top quark
fluctuations destabilize the effective potential so that the resulting theory is
rendered inconsistent. Therefore, assumption 1 implies that a viable con-
formal model in our sense has to extend the minimal SM’s field content
by extra bosonic degrees of freedom, which must be sufficiently heavy so
as to stabilize the effective potential. Since we restrict ourselves to the
SM gauge group according to assumption 3, successful radiative symmetry
breaking requires the existence of additional massive scalar particles. In

aSince scale and conformal invariance were proven to be equivalent at the classical
level in any four-dimensional unitary and renormalizable field theory [100–102], we will
use the terms “scale-invariant” and “conformal” interchangeably in the following, always
referring to the classical symmetry. An exception to this is Section 3.1 where carefully
distinguishing tree- and quantum-level symmetries is more important.
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Figure 3.1: Schematic illustration of the opposing tendencies being at work in the
class of classically conformal models under consideration in the present chapter.

other words, viable candidate models inevitably possess an enlarged scalar
sector. The exact minimization of the associated effective potential and
thus the determination of the theory’s ground state is therefore typically a
computationally expensive task. However, Gildener and S. Weinberg devel-
oped a simple approximate approach for solving that problem [120], which
we will use throughout the present chapter, and which will be discussed in
more detail in Section 3.2.

Next, assumption 2 is introduced for the purpose of avoiding unnec-
essarily tiny scalar portal couplings, which would be needed if the scales
of spontaneous conformal and electroweak symmetry breaking were to be
widely separated. Although fully consistent and technically natural [14]
scale-invariant models with a substantial hierarchy between the aforemen-
tioned scales can be written down (cf. e.g. [121]), this is not the approach
we want to pursue here, partly because said models still fail to explain the
origin of the portal couplings’ smallness. An important consequence of as-
sumption 2 now is the need for at least one sizable scalar coupling in order
to guarantee the presence of a sufficiently heavy scalar particle to stabilize
the theory’s effective potential. Such large couplings will, on the other hand,
typically destabilize the model’s renormalization group (RG) running and
thus eventually lead to the appearance of Landau poles. As we will argue
in the next section, the absence of such infinities signaling the breakdown of
perturbation theory below the Planck scale is a necessary condition for the
success of classically scale-invariant models in solving the hierarchy problem.
The situation just described is schematically summarized in Figure 3.1.

Thus, investigating how the aforementioned opposing tendencies due to
substantial scalar couplings may balance within a conformal set-up is one
of the prime goals of the present chapter. Doing this in a systematical
way starting with the simplest extensions of the SM will ultimately allow
us to identify the minimal consistent scale-invariant model which can re-
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produce phenomenologically viable electroweak symmetry breaking. In this
context, minimality means that the number of particle representations is
as small as possible. The chapter is now organized as follows. General
aspects of conformal model building and more details on how classically
scale-invariant theories can solve the hierarchy problem are presented in
Section 3.1. The Gildener-Weinberg formalism is subsequently introduced
in Section 3.2. Thus prepared, Section 3.3 contains our systematic study of
conformal extensions of the SM, adopting the assumptions outlined on page
22, and culminating in the identification of the minimal consistent theory in
Section 3.3.3.B. We finally conclude in Section 3.4.

3.1 Basics of scale-invariant model building

In order to appreciate the fundamental principles of conformal model build-
ing, which will be applied in the course of our systematic study in Section
3.3, it is helpful to initially understand how classically scale-invariant theo-
ries are supposed to solve the gauge hierarchy problem. To this end, let us
first recall that during our discussion of the hierarchy problem in generic ex-
tensions of the minimal SM in Chapter 2, one of the major conclusions was
the following: Unlike a low-mass fundamental Higgs boson, light fermions
or gauge bosons are not plagued by severe fine-tuning issues, since the cor-
responding mass parameters are protected by chiral and gauge symmetry,
respectively, and are thus technically natural [14]. One may now naively
think that scale invarianceb can act in the same way to prevent the SM Higgs
mass parameter µ2 from obtaining large radiative corrections. And indeed,
since µ2 is the only explicit dimensionful parameter in the SM, setting it to
zero renders the theory’s Lagrangian scale invariant and thereby enhances
its symmetry. There is, however, a crucial difference with respect to chiral
and gauge symmetries, which makes the present situation more complicated.
Specifically, scale invariance is in general explicitly broken by radiative ef-
fects via the conformal anomaly [123–130] and is thus only a symmetry of
the classical action rather than of the full quantum action. Conversely, it
is relatively straightforward to construct theories without chiral or gauge
anomalies.

To see why classical scale invariance is still considered to be a useful
guiding principle in addressing the hierarchy problem, it is instructive to
study the anomalous conformal Ward identity. The latter encodes how scale
symmetry is violated in a general renormalizable quantum field theory, and

bAlso known as dilatation symmetry. For a formal definition of scale transformations
in field theory and a discussion of related notions, see e.g. [65, 122] and references therein.
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schematically reads [101, 131]

Tµ
µpxq “

ÿ

j

βj ¨ Ojpxq ` Mpxq . (3.1)

Here, Tµν is the theory’s improved symmetric energy-momentum tensor
[101], while the index j runs over all possible local operators Oj which are
consistent with the theory’s symmetries. The corresponding beta functions
are denoted as βj . Furthermore, restricting to models defined on a flat
spacetime, M can be shown to be the sum of precisely those terms of the
Lagrangian which involve dimensionful coefficients and thus explicitly break
dilatation symmetry already at tree-level [101]. Importantly, in a classically
conformal theory where all dimensionful Lagrangian parameters are absent
[132], said contributions to the trace vanish identically, i.e. Mpxq ” 0. In
the scenario just described, we are hence left with the first term of equation
(3.1). Since the beta functions appearing there encode the couplings’ depen-
dence on the renormalization scale implied by quantum effects, a non-zero
beta function obviously violates dilatation symmetry. In other words, we can
conclude that the first term captures the anomalous breaking of scale invari-
ance. As the scale dependence induced by the RG running of the theory’s
dimensionless couplings is only logarithmic, equation (3.1) crucially demon-
strates that in a classically scale-invariant model, radiative corrections can
at most reintroduce a logarithmic sensitivity of IR parameters, like the ob-
served Higgs mass, to UV physics. The existence of radiatively stable and
exponentially separated scales can thus, in principle, be explained. Interest-
ingly, the above logic continues to hold once scale invariance is in addition
spontaneously broken, because it is nevertheless still non-linearly realized in
theses cases, so that the Ward identity of equation (3.1) remains unchanged.

Note that all of the previous considerations are not too helpful when ap-
plied to the minimal SM only, except for explicitly demonstrating that the
latter does not suffer from the electroweak hierarchy problem [32] (cf. also
Chapter 2). However, if the SM is embedded in some more fundamental
theory at a scale Λ, classical conformal invariance may offer a means of
stabilizing the Higgs mass against said embedding scale and thus avoid oth-
erwise present fine-tuning issues. Still, due to the particular character of
scale symmetry the details are rather subtle. In particular, the following
two aspects must be kept in mind:

1. Since Nature inherently includes quantum effects, a classical symmetry
is not meaningful as such. Accordingly, tree-level scale invariance has
to arise from and must be explained by some more fundamental theory.

2. Also the question of how the classical conformal SM (or its extensions)
may be embedded in the aforementioned underlying frameworks with-
out reintroducing the gauge hierarchy problem is non-trivial.
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The first issue in the above list would, for instance, be solved if anomalously
broken dilatation symmetry was restored at the quantum level in the UV
within the framework of a conformal quantum field theory (CFT) replacing
the SM at energies above Λ. There is, however, an immediate problem with
such an approach. Specifically, since the considered conformal UV comple-
tion is supposed to be based on standard concepts of QFT, the Wilsonian
view of renormalization [133–135] is expected to be applicable. Here, one
regards the SM as a low-energy effective theory which is obtained from the
complete theory by appropriately integrating out large-momentum modes.
Accordingly, the Higgs mass parameter is then anticipated to obtain radia-
tive corrections of the order of the physical transition scale between the two
aforementioned descriptions Λ (cf. equation (2.24) and e.g. [65] for further
details). Unfortunately, this reintroduces the gauge hierarchy problem un-
less Λ is in the TeV range. Obviously, any embedding of the classically
conformal SM in a UV completion based on standard concepts of QFT is
plagued by the same problem. Even though classically scale-invariant mod-
els of electroweak symmetry breaking supplemented by a suitable low-energy
CFT are thus conceivable, there exists no successful implementation so far,
and we will not follow this option here.

Learning from the previous discussion, we will assume in the following
that the theory completing the SM at energies above Λ involves concepts
beyond traditional quantum field theory, so that the Wilsonian line of ar-
guments is not guaranteed to hold and the hierarchy problem may remain
absent even for large Λ. Clearly, an approach which relies on the existence
of non-QFT physics may seem to be of limited use at first, since the bulk
of BSM scenarios are well describable using QFT. On the other hand, it is
far from obvious whether or not a quantum theory of gravity may be formu-
lated within the bounds of conventional quantum field theory. Accordingly,
Meissner and Nicolai [34–36] argue that scale-invariance of the classical par-
ticle physics action may arise from embedding the SM or suitable extensions
of it at the Planck scale in a finite theory of quantum gravity, which is as-
sumed not to rely on standard field theory concepts.c The reappearance of
fine-tuning issues would thus be avoided and anomalously broken classical
scale symmetry would explain the exponential lowering of the Higgs mass
with respect to the embedding scale Λ :“ MPl as argued before. In partic-
ular, the anomalous contributions to the conformal Ward identity (3.1) are
in this context interpreted as being induced by gravity effects [36].

For the rest of the present thesis, we will assume that a scenario of
the aforementioned type is realized. Requiring a consistent implementation
of low-energy particle physics as part of the thus-defined framework then
has several consequences for model building within classically conformal
extensions of the SM, which we will briefly discuss in the following. First, as

cFor a heuristic justification of why this assumption is well-motivated, see [35].
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already mentioned during the introduction to this chapter, scale invariance
of the tree-level action implies that the electroweak scale must be generated
dynamically. The corresponding mechanism, through which quantum effects
induce the emergence of a dimensionful quantity from a classical theory
without mass scale, is known as dimensional transmutation and comes in
two different variants. On the one hand, and completely analogous to the
situation in QCD with massless quarks [136, 137], an explicit scale may
arise from non-perturbative effects in a strongly interacting theory. On the
other hand, a mass scale can equally well be induced by weakly coupled
physics as was first demonstrated by Coleman and E. Weinberg [119]. Even
though both versions have successfully been used to write down consistent
classically scale-invariant theories in the past, we will restrict to scenarios
of the latter type in this thesis (cf. our assumption 1 on page 22).

A second consequence for conformal model building follows from the pre-
viously worked out fact, that embedding a classically scale-invariant model
in a more fundamental theory based on concepts of QFT will reintroduce
fine-tuning issues unless the embedding scale Λ is in the TeV range. Hence,
consistently avoiding the gauge hierarchy problem within the presently con-
sidered framework implies the absence of any intermediate physical thresh-
olds between the electroweak and the Planck scale [35]. In particular, this
forbids the presence of any Landau poles in the renormalization group flow
of the model’s couplings across the aforementioned energy range [34]. The
existence of vacuum instabilities would render our approach inconsistent in
a similar way. During our systematic study in the next section, we will
therefore only consider those models as viable in which an RG extrapola-
tion all the way up to the Planck scale can successfully be performed in
the above sense. The previous discussion also highlights one of the primary
goals of conformal model building, which is to accommodate as many BSM
phenomena as possible without introducing any new independent physical
thresholds between the electroweak and the Planck scale.

3.2 The Gildener-Weinberg formalism

The Gildener-Weinberg (GW) formalism as introduced in [120] is an ap-
proach to determine the (approximate) minimum of the one-loop effective
potential in a theory with an arbitrary number of massless scalar fields.
As such, it is excellently suited to investigate the spontaneous symmetry
breaking properties of classically scale-invariant models. In this context, it
notably presents an economic alternative to the time-consuming numerical
minimization of a multivariate function using brute-force algorithms. Hav-
ing in mind that our systematic study of minimal conformal extensions of
the SM in Section 3.3 will make extensive use of the GW approach, we will
review the latter’s formal basics in the present section. Following the original
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work by Gildener and Weinberg [120], our starting point is the most general
tree-level scalar potential V that is invariant under scale transformations.
It can be conveniently written as

V pΦq “ 1
24 fijk` φi φj φk φ` , (3.2)

where Φ denotes the vector containing all (real) scalar degrees of freedom
φi. Moreover, f “ fpΛq is an appropriate set of coupling constants, which
will in general be rendered scale dependent by quantum effects and thus
become functions of the renormalization scale Λ.

In the following, we will be interested in the situation where the theory’s
high-energy phase exhibits a symmetric vacuum, such that all symmetries
of the underlying Lagrangian are respected. For large enough Λ, the poten-
tial V is therefore supposed to possess a global minimum at the origin of
scalar field space. Furthermore, we will assume that loop corrections to the
classical potential at this high scale are sufficiently small and do not shift
the minimum of V away from zero.

However, let us now imagine that at some scale ΛGW, the Gildener-
Weinberg scale, the couplings fpΛGWq are such that the tree-level potential
develops a flat direction, along which it is identically zero. This flat direction
will be a ray through the origin of scalar field space and can therefore be
conveniently parameterized as

Φflat “ nϕ (3.3)

with a fixed unit vector n and a real parameter ϕ specifying the position
along the ray. Whereas the classical potential thus exhibits a continuous set
of degenerate minima Φflat, quantum effects will induce a non-zero curvature
along the flat direction thereby singling out a particular point xΦflaty as
the extremum along Φflat. Provided the loop-induced curvature is positive
around the aforementioned extremum, this point will be the true global
vacuum of the quantum theory. If xΦflaty and thus xϕy is non-vanishing,
spontaneous symmetry breaking (SSB) occurs. Equation (3.3) then tells us
that exactly those scalar fields φi acquire finite vacuum expectation values
(vev), for which the corresponding components ni of the vector n are non-
zero. The numerical values of the entries in n also determine the relative
magnitudes of the different vevs. In other words, each possible flat direction
comes with its own symmetry breaking pattern, while xϕy sets the overall
scale for effects related to SSB.

Before we turn to the precise formulation of the above idea within a one-
loop calculation, let us briefly mention the following. The requirement on
the tree-level potential from (3.2) to develop a flat direction can be encoded
in an implicit equation for the couplings fpΛGWq, the so-called Gildener-
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Weinberg condition, which can schematically be written asd

Rpfq

ˇ

ˇ

ˇ

Λ“ΛGW

“ 0 . (3.4)

Using the above constraint, one formerly free coupling can be eliminated.
In contrast, we have introduced a dimensionful parameter, namely the scale
ΛGW. As previously mentioned, this phenomenon, where the inclusion of
quantum effects leads to the appearance of a mass scale in an originally
scale-invariant theory, goes by the name of dimensional transmutation and
is best known from QCD. However, unlike in QCD, the scale is generated in
a perturbative way in the present Coleman-Weinberg-like scenario.

As it becomes clear from our discussion up to this point, a major ad-
vantage of the Gildener-Weinberg formalism is that not the full one-loop
effective potential must be known. Rather, quantum corrections are only
considered along the flat direction thus making the problem of finding the
true vacuum effectively one dimensional. Specifically, the one-loop effective
potential along Φflat can be brought into the form [120]

V
p1q

eff pnϕq “ Aϕ4 ` Bϕ4 log

ˆ

ϕ2

Λ2
GW

˙

, (3.5)

with ΛGW being the renormalization point. In equation (3.5), the loop func-
tions A and B are found to be

A “
1

64π2xϕy
4

ÿ

i

p´1q2sidi ¨ m4
i pnxϕyq

ˆ

log
m2

i pnxϕyq

xϕy
2 ´ ci

˙

, (3.6a)

B “
1

64π2xϕy
4

ÿ

i

p´1q2sidi ¨ m4
i pnxϕyq . (3.6b)

The sums in the above expressions run over the set of all particles in the
theory at hand. Particle i is supposed to have field-dependent tree-level mass
mipΦq, spin si and di real degrees of freedom. Moreover, the constants ci are
renormalization scheme dependent. In the MS scheme employed here, one
finds ci “ 5

6 for gauge bosons and ci “ 3
2 in the case of fermions or scalars.

Computing the extremum xϕy of the potential from equation (3.5) is
straightforward and yields

xϕy “ ΛGW ¨ exp

ˆ

´
1

4
´

A

2B

˙

. (3.7)

Note that the above expression demonstrates that the extremal value xϕy

and ΛGW will be of the same order of magnitude if the same is true for A

dMore details on how to obtain the Gildener-Weinberg condition for a fixed model and
a given symmetry breaking pattern can be found in the next section, as well as in the
original paper [120] or in other works using the Gildener-Weinberg approach like [106].
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and B. Importantly, the extremum xϕy is a minimum if and only if the loop
function B is positive. The classically massless scalar excitation along the
flat direction Φflat then acquires a positive mass squared, namely

m2
PGB “

d2V
p1q

eff pnϕq

dϕ2

ˇ

ˇ

ˇ

ˇ

ˇ

ϕ“xϕy

“ 8Bxϕy
2 . (3.8)

It is to be identified with the pseudo-Goldstone boson (PGB) of sponta-
neously broken scale invariance, sometimes referred to as scalon [120]. The
appearance of a light scalar boson is also one of the key features of classically
scale-invariant models from a phenomenological point of view.

3.3 Finding the minimal conformal model

As outlined in the introduction to this chapter, we will now systematically
study conformal extensions of the minimal SM, adopting the assumptions
previously listed on page 22. In doing so, we will search for the model
with the smallest number of field representations which facilitates consistent
radiative breaking of scale invariance while also correctly reproducing well-
established aspects of electroweak phenomenology. In particular we will
require the Higgs mass and the electroweak scale to attain their measured
values, which were already quoted in Chapter 2, equations (2.16) and (2.19):

mH
!

“ 125GeV and v
!

“ 246GeV . (3.9)

The RG evolution of all models is analyzed using the appropriate full one-
loop beta functions, which we compile in Appendix B.

3.3.1 SM + one scalar representation

As we have argued before, the consistent implementation of radiative sym-
metry breaking in a phenomenologically viable model of particle physics
based on the SM gauge group, requires introducing additional scalar de-
grees of freedom. Correspondingly, already the simplest extension of the
minimal SM by one real scalar gauge singlet might be successful. Slightly
generalizing this idea, we will in a first step study models in which the SM
field content is supplemented by one in general complex, colorless scalar
SU(2)L multiplet χ of dimension N and hypercharge Y ,

χ „ p1,N , Y q .

Consequently, our discussion of Coleman-Weinberg symmetry breaking in
the present segment will rely on the following potential, which respects the
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SM gauge symmetries, as well as scale invariance

V “ λ1pΦ:Φq2 ` λ2pχ:χq2 ` λ3pχ:T aχq2

` κ1pΦ:Φqpχ:χq ` κ2pΦ:τaΦqpχ:T aχq .
(3.10)

A few remarks on the above potential and the employed notation are in
order. First, the quantum numbers of the field Φ “ pφ`, φ0qᵀ are assumed
to be those of the usual complex Higgs doublet of the minimal SM, which
we introduced in equation (2.3). In line with the transformation properties
of Φ and χ, the matrices τa and T a then denote the infinitesimal genera-
tors of SU(2) in the fundamental representations and in the N -dimensional
irreducible representation (irrep), respectively.

Second, let us mention that the most general gauge- and scale-invariant
potential involving the fields Φ and χ should, in principle, contain further
dimension-four operators, specifically, ones of the form pχ:T a1 . . . T anχq2, as
well as the associated portal terms to the Φ-sector. However, a dedicated
study in [138] demonstrated that the most stable RG running is obtained
in the case where all of the corresponding couplings vanish in the IR, i.e. at
the Gildener-Weinberg scale in the present context. Still, we will take into
account the simplest representatives of the aforementioned class of operators,
namely those proportional to λ3 and κ2.

e

Furthermore, particular representations pN , Y q of the electroweak group
may allow additional gauge-invariant dimension-four operators to be present.
However, the results from [138] apply to the thus introduced couplings as
well, so that we will also ignore the aforementioned special terms, unless
otherwise stated.

A Real multiplet with vanishing vacuum expectation value

Motivated by minimality, let us start by investigating the situation, in which
χ is a real SU(2)L multiplet. In order to formally distinguish real from
complex multiplets, we first need to recall that all irreducible representations
of SU(2) are either real or pseudo-real. Hence, for each irrep, there exists a
unitary matrix C in the associated representation of the SU(2) algebra such
that

C´1T aC “ ´pT aqᵀ (3.11)

holds for all a P t1, 2, 3u. If the field χ now transforms in the N -dimensional
irrep of SU(2), equation (3.11) implies that the same is true for the conjugate

eImportantly, some of the mentioned contributions may turn out to be redundant
in the sense that they are expressible in terms of operators containing less generator
matrices. For an SU(2) doublet, for instance, one can derive pΦ:τaΦq

2
“ pΦ:Φq

2
{4 and

pΦ:τaτ bΦq
2

“ pΦ:Φq
2
{16 by using the Fierz identity for the τa.
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multiplet χ̃ :“ Cχ˚. The following definition of a real SU(2) multiplet is
therefore natural and will be adopted throughout this chapter:

χ real :ô χ̃
!

“ χ . (3.12)

The above definition has some interesting consequences, relevant to the
present discussion. For one, real multiplets can be seen to contain only
half as many degrees of freedom as a complex multiplet of equal dimen-
sion, for which χ̃ ‰ χ. Furthermore, it is straightforward to show that a
real multiplet cannot carry any finite U(1) charge and therefore necessarily
has zero hypercharge. Lastly, using equations (3.11) and (3.12), the expres-
sion χ:T aχ can be demonstrated to vanish identically for any real SU(2)
multiplet χ, regardless of the irrep it transforms in. The general potential
introduced in equation (3.10) thus reduces to

V “ λ1pΦ:Φq2 ` λ2pχ:χq2 ` κ1pΦ:Φqpχ:χq , (3.13)

provided χ is a real multiplet.
At the Gildener-Weinberg scale ΛGW, the above potential is assumed

to develop a flat direction such that quantum effects lead to a non-trivial
vacuum configuration which spontaneously breaks not only scale invariance,
but also electroweak symmetry. Notably, the potential exhibits an accidental
global O(4) ˆ O(N) symmetry, which will become important later since it
implies the appearance of massless Goldstone modes once χ obtains a finite
vacuum expectation value (vev). For now, we will, however, assume that
the additional scalar fields satisfy

xχiy “ 0 @i P t1, . . . , Nu .

The electroweak vev is then necessarily identical to that of the Higgs doublet,
v ” vφ and each of the extra scalar’s components obtains the same mass mχ

upon EWSB. Specifically, an explicit calculation based on equation (3.13)
and using φ0 “ pv ` Hq{

?
2 reveals

m2
χ “ κ1v

2 . (3.14)

Similarly, the physical Higgs boson’s tree-level mass is found to be m2
H “

3λ1v
2, while all remaining SM particles acquire masses in exactly the same

way as they do in the minimal SM. Importantly, equation (3.14) requires the
portal coupling κ1 to be non-negative at ΛGW, as all physical masses must
be real.

The vacuum configuration described before is realized, provided the flat
direction develops along the φ0-axis in scalar field space. This, in turn,
corresponds to the Gildener-Weinberg condition λ1pΛGWq “ 0. As expected,
the leading-order mass of the physical Higgs modeH thus vanishes so thatH
is to be identified with the pseudo-Goldstone boson (PGB) of spontaneously
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broken scale invariance. Since scale symmetry is anomalously broken via
quantum effects, the Higgs will, however, acquire a finite mass at the one-
loop level as per equation (3.8). In the present case, one finds

m2
H “ 4

ˆ

BSM `
Nκ21
16π2

˙

v2 , (3.15)

where BSM is defined in Appendix A, equation (A.1) and can be calculated
to be negative. Solving equation (3.15) for the portal coupling allows us
to compute the unique value for κ1pΛGWq ą 0 that is consistent with the
phenomenological constraints of equation (3.9), namely

κ1pΛGWq “
2π

v

b

m2
H ´ 4BSMv2 ¨ N´1{2 with BSM ă 0 . (3.16)

Let us remark that, strictly speaking, mH in the above equation is not the
Higgs pole mass measured at the LHC, but rather its renormalized mass
evaluated at ΛGW. However, the error we make by inserting mH “ 125GeV
is expected to be small, since the RG running of the mass is only logarithmic
and we always assume ΛGW to be reasonably close to the electroweak scale.
That being said, equation (3.16) demonstrates that adding a larger scalar
multiplet to the SM entails a smaller initial value for κ1 at ΛGW. As we will
explicitly argue later (cf. e.g. Figure 3.2b), a sufficiently small portal coupling
is essential in order to avoid low-scale Landau poles. Hence, one might
naively expect the RG evolution towards the UV to become stable for large
enough N . However, at the same time, a large multiplet dimension N also
amplifies the RG flows of several model parameters, most importantly those
of the scalar sector couplings, as well as that of the SU(2)L gauge coupling
(see Appendix B.1). The number of extra scalar degrees of freedom N
therefore enters the problem in a non-trivial way so that dedicated numerical
analyses of the models’ RG evolutions are needed.

In doing so, we adopt several additional simplifications. On the one
hand, we ignore the term proportional to BSM in equation (3.16), i.e. we fix

κ1pΛGWq :“ 2π
mH

v
¨ N´1{2 . (3.17)

Since BSM is always negative, we thereby underestimate the initial value of
κ1, thus making the RG running more stable. Potential Landau poles are
therefore expected to be shifted towards larger energy scales. On the other
hand, note that while choosing the portal coupling according to equation
(3.17) guarantees that the ratio mH{v attains its physical value, the correct
overall scale of v (or mH) must be adjusted by appropriately setting the
Gildener-Weinberg scale. How this can be consistently done within a full
treatment of the problem is the subject of Appendix A. Here, we instead
fix ΛGW “ 500GeV, keeping in mind that our approach towards radiative
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symmetry breaking forbids ΛGW to deviate too much from the electroweak
scale. Even though the aforementioned special choice will, in general, not
reproduce the true Higgs mass, it is anticipated to only marginally impact
the actual position of potential Landau poles, whose determination is the
prime objective of the current study. Varying the renormalization point ΛGW

in the range r100GeV, 1TeVs explicitly confirmed that expectation.

Having set λ1, κ1 and ΛGW as described above, only the initial value for
the extra multiplet’s quartic self interaction, λ2, remains to be fixed. Since
there are no phenomenological constraints on λ2pΛGWq, we will just vary
it in the perturbative regime and eventually choose the value that allows
for the farthest extrapolation towards the UV. The corresponding scale of
maximal extrapolation will be referred to as ΛUV.

Results and discussion. Based on the procedure just outlined and for
a given multiplet dimension N , we performed the model’s RG evolution
towards the UV, starting at the Gildener-Weinberg scale ΛGW. In doing so,
we checked the perturbativity of all couplings after each RG step, thereby
eventually determining the quantity ΛUV introduced above. The outcome is
shown in Figure 3.2a. Notably, due to our approximation made in equation
(3.17), the quoted values for ΛUV are to be seen as an upper bound for the
scale of maximal extrapolation. Since Landau poles were found to always
appear significantly below the Planck scale, this is, however, sufficient to
rule out the present model’s UV completeness.

From a qualitative point of view, the results of Figure 3.2a can be easily
interpreted with the help of the model’s beta functions presented in Ap-
pendix B.1. Concentrating on the scalar subsystem in a first step (blue
circles), we can learn from the RG equations in (B.2) that all contributions
to the scalar flow are always greater than zero, provided the portal cou-
pling is positive, κ1 ą 0. Hence, no cancellations are possible and the scalar
couplings are driven towards ever higher values until one of them hits a
Landau pole. Of course, this positive feedback mechanism is more effective
for larger initial values. While λ1pΛGWq is fixed via the GW condition and
λ2pΛGWq can be chosen arbitrarily small, the initial value of κ1 decreases for
larger multiplets according to equation (3.17). Correspondingly, we observe
that ΛUV slowly increases with the multiplet dimension N . However, ΛUV

saturates at around 106GeV, since large N also amplify the scalar RG flow.

Additionally taking into account contributions due to the top quark (red
squares) leads to the same qualitative dependence of ΛUV on the multiplet
dimension, but with an overall degraded performance.

In contrast, including the gauge instead of the top sector (green trian-
gles) induces a significantly different behavior. On the one hand, equations
(B.3) reveal that the scalar flow obtains negative and thus stabilizing contri-
butions proportional to the scalar couplings themselves and the SU(2) gauge
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Figure 3.2: Results for extensions of the classically scale-invariant SM by one real
SU(2)L multiplet of dimension N with zero vev.

coupling, specifically g22. Said terms typically grow as N2 and will outweigh
the also existing positive contributions involving g42, if the gauge coupling
remains sufficiently small. We hence see a substantial rise in ΛUV as long as
N ď 6, where g2 is asymptotically free. Nevertheless, the stabilizing terms
due to gauge interactions can only delay but not prevent the appearance of
Landau poles in one of the scalar couplings.

On the other hand, the presence of an extra SU(2) multiplet entails
additional positive contributions to the flow of g2, in which the multiplet
dimension enters to the third power, see equation (B.5). As a consequence,
the SU(2) gauge coupling stops being asymptotically free for N ě 7 and will
thus ultimately develop a Landau pole. In particular, g2 now also increases
with energy scale, so that the aforementioned positive contributions to the
scalar flow proportional to g42 become relevant. The latter enter the beta
functions of λ1, λ2 and κ1 with coefficients that scale as 1, N4 and N2,
respectively. Correspondingly, λ2 is found to be the parameter which hits a
Landau pole first and thus limits the model’s extensibility towards the UV
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for N ą 6.
Adding effects due to the top quark cannot improve the performance just

described, since yt neither directly enters the flow of λ2 nor that of g2. Thus,
using the full one-loop RGEs (orange diamonds) results in nearly the same
values for ΛUV as before when N ą 6. For N ď 6, the maximum reachable
UV scale even decreases. In summary, Figure 3.2a demonstrates that we
cannot extrapolate the present set-up all the way up to the Planck scale.

In order to further illuminate the above observations, we analyze the
interplay between the contributions of the different particle sectors to the
model’s RG flow. As an example, we use the beta function of the Higgs
self-coupling λ1 for N “ 5, the relative contributions to which are displayed
in Figure 3.2b as functions of renormalization scale µ. Several features are
particularly crucial to note. First, we see that in the gauge sector the stabi-
lizing contribution proportional to ´λg2 soon overpowers the positive `g4

term. However, both contributions are constantly outweighed by the desta-
bilizing `λy2 term, which dominates the Yukawa sector for sufficiently large
energy scales. Second, and more importantly, Figure 3.2b demonstrates that
the portal coupling κ1 has the biggest impact on the flow of λ1, with the
associated relative contribution being roughly one order of magnitude larger
than those due to non-scalar interactions. The appearance of a Landau pole
in the running of λ1 is thus triggered by said `κ21 term and could only be
avoided, if κ1 was kept sufficiently small. However, consistency with elec-
troweak phenomenology as enforced by equation (3.16) prevents small values
for κ1 in the present case. On a related note, it is also important to remark
that complete cancellations between the Yukawa and gauge sectors, on the
one hand, and the scalar sector, on the other hand, are not achievable. Sta-
bilization of the scalar RGE subsystem in the presence of substantial scalar
couplings therefore has to originate from negative terms within the scalar
sector, which are, however, absent as long as κ1 ą 0 is necessary.

B Real multiplet with finite vacuum expectation value

Slightly expanding our set-up of the previous section, we will now allow the
real scalar field χ to develop a non-zero vacuum expectation value vχ. Just
as the Higgs doublet’s vev vφ before, also vχ is assumed to be induced by
the radiative breaking of scale invariance at ΛGW. Importantly, since the
electromagnetic symmetry is observed to be intact at low energies, only an
electrically neutral component of χ, say χi0 , can acquire a finite vev in a
phenomenologically consistent way,

χi0 “ vχ ` σ , (3.18)

with σ being an appropriate radial excitation. Recalling that real SU(2)
multiplets cannot carry hypercharge, and employing the Gell-Mann Nishi-
jima formula from Chapter 2, we find that the index i0 needs to be chosen
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such that the third component of weak isospin vanishes for χi0 , specifically
i0 “ pN`1q{2. Notably, the thus determined i0 is only an integer for odd N ,
which immediately excludes even-dimensional multiplets from our current
discussion.

In the spirit of the Gildener-Weinberg formalism and using the notation
introduced in Section 3.2, we parameterize the vevs vφ and vχ as

vφ
?
2

“ xφ0y “ n1xϕy ” sinβ ¨ xϕy ,

vχ “ xχi0y “ n2xϕy ” cosβ ¨ xϕy ,
(3.19)

taking into account that they both derive from the same dynamically gen-
erated scale xϕy. Without loss of generality, we choose the angle β to range
within p0, π{2q. Employing the tadpole equations of the tree-level potential
in equation (3.13), i.e.

BV

Bvφ

ˇ

ˇ

ˇ

ˇ

vac.

“ 0 and
BV

Bvχ

ˇ

ˇ

ˇ

ˇ

vac.

“ 0 ,

as well as requiring both n1 and n2 from equation (3.19) to be non-zero, we
can now derive the Gildener-Weinberg condition associated with the desired
vev configuration, namely

4λ1λ2 ´ κ21 “ 0 , n2
1 “

κ1
κ1 ´ 2λ1

. (3.20)

The (largest) energy at which the former relation is fulfilled then defines the
scale of spontaneous symmetry breaking ΛGW. Notably, the second identity
in equation (3.20) implies that the portal coupling must be negative, κ1 ă

0, since n1 necessarily ranges between zero and one, while λ1 has to be
positive due to stability reasons. Combining equations (3.19) and (3.20)
also allows us to express the angle β in terms of quantities at defined at
ΛGW. Specifically, we find

tanβ “
vφ

?
2vχ

“

c

´
κ1
2λ1

. (3.21)

A qualitatively new feature, which emerges once vχ ą 0, is that of scalar
mixing. Parameterizing the electrically neutral component of the Higgs
doublet as φ0 “ pvφ ` φq{

?
2, we observe that the CP-even scalar degrees

of freedom φ and σ have the same quantum numbers and will therefore, in
general, mix. Specifically, the corresponding mass terms can be written as

Vmass Ě 1
2

`

φ σ
˘

ˆ

3λ1v
2
φ ` κ1v

2
χ 2κ1vφvχ

2κ1vφvχ 12λ2v
2
χ ` κ1v

2
φ

˙ ˆ

φ
σ

˙

. (3.22)

The above scalar mass matrix (henceforth denoted as M2) is symmetric and
real and may therefore be diagonalized by an orthogonal matrix U , which is
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parameterized by one real mixing angle α. For later convenience, we choose
α to range between ´π{4 and π{4 without loss of generality. Clearly, one
of the two resulting mass eigenstates will have to be identified with the
125GeV Higgs boson H. Since the latter is empirically observed to behave
very similarly to what is expected from the minimal SM [24], H is to be
predominantly composed of φ (see also [109, 110]). Our aforementioned
choice for the range of α thus implies the following assignment

ˆ

H
S

˙

“ U

ˆ

φ
σ

˙

“

ˆ

cosα ¨ φ ´ sinα ¨ σ
cosα ¨ σ ` sinα ¨ φ

˙

, (3.23)

where S is an additional physical scalar mode in the theory’s particle spec-
trum. The mass squared matrix M2 introduced in equation (3.22) possesses
two eigenvalues corresponding to the eigenstates’ tree-level masses. They
are given by

m2
˘ “

1

2

„

TrM2 ˘

b

pTrM2q
2

´ 4 ¨ detM2



.

Employing equations (3.20) to (3.22), we can evaluate the above expression
and obtain the eigenvalues in terms of parameters at ΛGW, namely

m2
` “ 2pλ1 ´ κ1qv2φ ą 0 and m2

´ “ 0 , (3.24)

where we additionally used λ1 ą 0 and κ1 ă 0. Crucially, equation (3.24)
explicitly confirms the presence of a CP-even scalar particle whose tree-
level mass vanishes, and which must therefore be identified with the PGB of
anomalously broken scale invariance. Note, that it is not a priori clear which
of the eigenstates H and S acquires which mass upon symmetry breaking.
This rather depends on the sign of the mixing angle α as we will discuss
shortly.

Before, let us however investigate the relation between the scalar mixing
angle and the other model parameters introduced so far. Requiring the
matrix UM2Uᵀ to be diagonal, as well as employing equation (3.21) to
eliminate the vevs in favor of the angle β, yields the identity

tan 2α “
4

?
2κ1 tanβ

p12λ2 ´ κ1q ´ 2p3λ1 ´ κ1q tan2 β
.

Additionally exploiting the extra constraint set on the model’s parameter
space by the Gildener-Weinberg condition of equation (3.20), allows to fur-
ther simplify the above expression to eventually give

tan 2α “
2
?
2 tanβ

1 ´ 2 tan2 β
. (3.25)

Notably, the angle β quantifying the vev ratio and the mixing angle of
CP-even scalars α are thus uniquely related in the conformal models under
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scalar mixing angle PGB relation between α and β scale hierarchy

α ą 0 ‰ H tanα “
?
2 tanβ vφ ă vχ

α ă 0 “ H tanα “ ´p
?
2 tanβq´1 vφ ą vχ

Table 3.1: Phenomenological differences between models with positive and nega-
tive scalar mixing angle α P t´π{4, π{4u. The origin of the statements in the second
column is explained in the main text after equation (3.25). The relations in the
third and fourth columns are based on equations (3.25) and (3.21).

consideration, whereas they can be varied independently in a general theory.
Specifically, equation (3.25) possesses two solutions, which are valid for dif-
ferent signs of α and can be found in Table 3.1. Furthermore, a closer look
at said solutions reveals that the sign of α also determines whether the ratio
vφ{vχ is larger or smaller than one. The corresponding relation is listed in
Table 3.1 as well.

Now that we have an explicit expression for the scalar mixing angle,
it is straightforward to show, that performing the diagonalization of the
mass squared matrix M2 for positive α gives UM2Uᵀ “ diagpm2

`,m
2
´q. In

accordance with equation (3.23), we then need to identify the scalar mode
S with the classically massless PGB, while the leading-order Higgs mass is
equal to m`. Similarly, the Higgs boson H corresponds to the PGB for
negative α (cf. Table 3.1). In the following, we will investigate the two cases
α ą 0 and α ă 0 in turn, starting with the former.

On the one hand, a positive mixing angle entails a sizable vev vχ accord-
ing to Table 3.1, specifically vχ ą vφ. But a non-negligible vev contributing
to the electroweak scale will generally induce a significant deviation of the
leading-order ρ-parameter from its SM value of one, which we have derived
in Chapter 2, equation (2.20). Since ρ « 1 has been experimentally verified
with high precision [53], this feature typically rules out models with a large
vev vχ. There exist, however, certain representations of the electroweak
group, i.e. particular combinations of N and Y , for which the tree-level
identity ρ “ 1 is reproduced regardless of the size of vχ (see e.g. [139]). Re-
quiring the extra multiplet to be real, i.e. Y “ 0, only leaves one of the
aforementioned exceptions, namely the singlet with N “ 1. Accordingly, we
restrict the present discussion of positive α to the real singlet case.

As we have argued before, a positive mixing angle also requires the extra
scalar mode S to be identified with the PGB, whereas the physical Higgs bo-
son H obtains the leading-order mass m` “ mH . Computing the one-loop
effective potential’s curvature along the leading-order flat direction then
amounts to adding the positive contribution of the 125GeV Higgs scalar
to that of SM fermions and gauge bosons. The latter is dominated by the
fermionic top quark loop and therefore strongly negative. Correspondingly,
an explicit calculation reveals that the overall curvature is negative as well,
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so that the theory exhibits a maximum instead of a minimum at the dynam-
ically selected local extremum xϕy.f The singlet case with α ą 0 can thus
also be discarded as inconsistent.

Negative mixing angles, on the other hand, imply the scale hierarchy
vχ ă vφ. Hence, arbitrarily small vevs vχ are possible and constraints coming
from the tree-level ρ-parameter can, in principle, be circumvented. Accord-
ingly, our study of the α ă 0 scenario will not be restricted to the singlet case
as before, but will also include larger (odd) multiplets. As a consequence,
it is crucial to observe that the presence of a finite vev in the χ-sector spon-
taneously breaks part of the global symmetry of the potential in equation
(3.13), specifically O(N) Ñ O(N ´ 1). In line with Goldstone’s theorem,
the model’s particle spectrum will therefore contain N ´ 1 exactly massless
scalar modes, whose existence can explicitly be demonstrated by using the
GW condition from equation (3.20). Instead of addressing potential phe-
nomenological issues of additional massless and electrically charged scalars,
we will here focus on their implications on radiative electroweak symmetry
breaking and the model’s RG evolution.

To that end, we recall from Table 3.1 that negative mixing angles require
the 125GeV Higgs boson to be identified with the PGB. The only further
massive scalar particle in the physical spectrum is the CP-even mode S,
which acquires an a priori unknown tree-level mass m`, parameterized as
in equation (3.24). The Higgs boson’s one-loop mass can then be calculated
via equation (3.8), namely

m2
H “ 8

ˆ

BSM `
m4

`

64π2xϕy
4

˙

xϕy
2

ă
n2
1

π2
pλ1 ´ κ1q2v2φ ,

where we employed equations (3.19) and (3.24), as well as BSM ă 0 in the
second step. Next, we observe that the electroweak scale v can generally
be written as v2 “ v2φ ` c2v2χ in the present class of theories, where c is a
model-dependent and real constant. Using vφ ď v accordingly, and isolating
the empirically known quantities mH and v, we find the inequality

n2
1pλ1 ´ κ1q2 ą π2m

2
H

v2
“: r2 .

Here, n1 is given by equation (3.20) and the parameters on the left-hand
side are to be evaluated at ΛGW. Solving the above relation for one of the
unknown Lagrangian parameters, say λ1pΛGWq, yields

λ1pκ1q ą
pr2 ´ κ21q ˘

a

r2pr2 ´ κ21q

´κ1
. (3.26)

For any given portal coupling κ1pΛGWq, replacing the inequality (3.26) by an
equality amounts to underestimating the initial value of λ1, thus rendering

fFurther details can be found in Section 3.2, especially in equations (3.6b) and (3.8).
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the RG running more stable. Since we are presently only interested in an
upper bound on the scale of potential Landau poles, we will adopt the above
simplification during our analysis.

As a last point before discussing actual results, let us investigate the
allowed range for the parameter κ1pΛGWq. Of course, λ1pΛGWq has to be real
and positive which singles out the solution with the plus sign in equation
(3.26) and confines the portal coupling to |κ1| ď r. As mentioned before,
a negative mixing angle implies vφ ą vχ according to Table 3.1, which, in
turn, requires |κ1| ě λ1 as per equation (3.21). Using the inequality (3.26),
the latter condition can be recast into |κ1| ą

?
3r{2. Numerically evaluating

the aforementioned constraints on κ1 yields

1.38 ď |κ1| ď 1.60 . (3.27)

In summary, our analysis of the models’ RG equations will be based
on the initial conditions which are fixed by the following procedure: Simi-
lar to before, we first simplify the calculation by choosing ΛGW “ 500GeV.
We then vary κ1pΛGWq in the viable region presented in equation (3.27).
For given portal coupling, λ1pΛGWq is set according to equation (3.26) with
the inequality replaced by an equality, while λ2pΛGWq is determined by the
Gildener-Weinberg condition of equation (3.20).

Results and discussion. Also for the present set-up, we are interested in
the maximum possible scale of RG extrapolation ΛUV, i.e. the largest energy
scale which can be reached before at least one running coupling becomes
non-perturbative. The values for ΛUV shown in Figure 3.3 were determined
as previously described on page 34 with obvious adjustments to the present
context. Most importantly, Figure 3.3 demonstrates that also allowing for
a finite vev vχ ă vφ does not produce a theory whose RG flow remains
perturbative all the way up to the Planck scale. Rather, barring the singlet
case, all models discussed here hit a Landau pole at even smaller scales than
their counterparts with vanishing vev in the χ-sector.

Interestingly, the results of Figures 3.2 and 3.3 not only differ quantita-
tively, but also qualitatively: While the UV scale as a function of multiplet
dimension exhibited a (well-understood) peak for zero vχ, ΛUV monotonously
decreases with N in the present study. To understand this difference, recall
that in the absence of a vev in the χ-sector, the number of massive scalar
particles rises linearly with N , so that large-dimensional multiplets allow for
small initial values of the portal coupling. In contrast, owing to the sponta-
neously broken accidental O(N) symmetry of the potential, there is always
only one massive scalar degree of freedom next to the physical Higgs boson,
if χ acquires a finite vev. Hence, RG running invariably starts on the same
hypersurface in parameter space, which is fixed by requiring the ratio mH{v
to attain its physical value, see equation (3.26). At the same time, the RG
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Figure 3.3: Maximum possible scale of RG extrapolation ΛUV in extensions of
the scale-invariant SM by one real SU(2)L multiplet of dimension N with finite
vev vχ ă vφ. The color code indicates which set of one-loop beta functions and
which contributions to them are taken into account. Note that we only study
odd-dimensional representations in line with our discussion below equation (3.18).

flow increases with N , which now cannot be compensated by smaller ini-
tial values. Correspondingly, models with larger multiplets develop Landau
poles at lower scales.

Whereas the overall behavior of the UV scale as a function of multiplet
dimension N thus strongly depends on whether or not χ acquires a vev, the
observed impact of including different contributions to the theory’s RG flow
for fixed N does not. Specifically, the relative magnitudes of ΛUV calculated
using distinct sets of RGEs is very similar to those of Figure 3.2, where
vχ “ 0 was assumed. This behavior is expected, as the beta functions do
not rely on the precise value of vχ so that our discussion from the previous
section still applies.

C Complex multiplet with vanishing vacuum expectation value

Let us continue to study extensions of the minimal SM, where the Higgs
sector is supplemented by only one colorless scalar SU(2)L multiplet χ.
However, in contrast to the previous sections, let us now remove the re-
striction of considering exclusively real multiplets and investigate how the
situation changes once χ is allowed to be complex in the sense discussed
below equation (3.12). Such a complex multiplet will generally carry a non-
zero hypercharge Y . Notably, the theory of a complex SU(2) multiplet with
vanishing hypercharge can be recast into that of two real multiplets of equal
dimensions, which will be covered in Section 3.3.3. Here, we will therefore
assume a non-zero hypercharge without loss of generality.

In line with the scalar particle content presently under consideration, our
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analyses will be based on the full potential of equation (3.10). Furthermore,
recall from our discussion below equation (3.10) that there exist additional
operators which are only gauge-invariant for particular representations of
the electroweak group. One of those is given by

∆V1 “ κ3

”

pΦᵀετaΦqpχᵀCT aχq ` h.c.
ı

, (3.28)

where C is the matrix introduced in equation (3.11), while ε is the two-
dimensional representation of said matrix. The above term can easily be
shown to be symmetric for the choice Y “ ´Yφ “ 1

2 . Importantly, this state-
ment holds regardless of the multiplet dimension N . However, the matrices
CT a are anti-symmetric in all odd-dimensional SU(2) representationsg so
that the operator in equation (3.28) vanishes identically for odd N . Since
∆V1 is still present in a whole class of models, we decided to take it into
account during our analysis.

Similar to the real case, let us assume in a first step that the extra mul-
tiplet’s vacuum expectation value vanishes, i.e. vχ “ 0, whereas the Higgs
doublet is supposed to acquire a finite vev, specifically φ0 “ pv ` Hq{

?
2.

As before, the physical Higgs boson H is then to be identified with the PGB
of broken scale invariance, with the associated Gildener-Weinberg condition
being λ1pΛGWq “ 0.

An important difference to the scenario where χ is a real multiplet lies in
the fact that the potential of equation (3.10) supplemented by ∆V1 no longer
enjoys a global O(2N) symmetry in the χ-sector.h The latter is explicitly
broken by the terms proportional to κ2, κ3 and λ3. Correspondingly, not
all components of χ obtain the same mass during EWSB as in the real
case. Rather, the O(2N)-violating portal operators induce a mass splitting
between the individual complex fields χk. Ignoring contributions due to ∆V1

for now, an explicit calculation yields

m2
k “ 1

8

“

4κ1 ´ pN ´ 2k ` 1qκ2
‰

v2 , (3.29)

where k P t1, . . . , Nu and the couplings are to be understood as evaluated
at ΛGW. Importantly, requiring all of the above masses to be real implies a
non-negative value of κ1pΛGWq. Additionally asking for at least one finite
mass in the χ-sector, constrains κ1 to be positive at the Gildener-Weinberg
scale. Both statements remain valid upon inclusion of ∆V1. However, the
presence of the corresponding operator leads to a much more complex χ
mass spectrum than that of equation (3.29). In particular, a mass splitting

gThis is true in the so-called spherical basis of the SU(2) Lie algebra (see e.g. [140]).
Said basis is, however, unique in the sense that the component fields of the multiplet χ
then have well-defined weak isospin T3 and thus a definite electric charge.

hNote that the global symmetry in the χ-sector of the constrained potential in equation
(3.13) is enhanced from O(N) to O(2N) when going from a real to a complex multiplet
due to the doubling of degrees of freedom.
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proportional to κ3 is introduced between the CP-even and the CP-odd modes
of the electrically neutral component. Still, all mass eigenvalues can be
calculated analytically. According to equation (3.8), the Higgs boson’s one-
loop mass is then given by m2

H “ 8pBSM ` Baddqxϕy
2, where BSM ă 0 and

Badd :“
2

64π2xϕy
4

N
ÿ

k“1

m4
k “

4Nκ21 ` Dκ22 ` pN2 ` 12N ´ 24qκ23
128π2

.

Here, the overall factor of two accounts for the fact that each component
field is complex and thus encodes two real degrees of freedom. Moreover, D
denotes the Dynkin index of the N -dimensional SU(2) irrep, which is given
by D “ NpN2 ´ 1q{12. Following our approach from the previous sections,
we use BSM ă 0 and isolate the phenomenologically known quantities mH

and v to obtain
b

4Nκ21 ` Dκ22 ` pN2 ` 12N ´ 24qκ23 ą 4
?
2π

mH

v
.

Replacing the above inequality by an equality will again lead to a more stable
RG running, since it implies an underestimation of the portal couplings
at ΛGW. Given the multiplet dimension N as well as the initial values of
the O(N)-violating portal couplings, κ2pΛGWq and κ3pΛGWq, the resulting
equation can then be uniquely solved for κ1, specifically

κ1pΛGWq :“
1

2

c

32π2
m2

H

v2
´ Dκ22 ´ pN2 ` 12N ´ 24qκ23 ¨ N´1{2 . (3.30)

Note, however, that only real solutions with κ1pΛGWq ą 0 are viable in ac-
cordance with our discussion below equation (3.29).

Apart from λ1 and κ1 whose initial values are set by the Gildener-
Weinberg condition and equation (3.30), respectively, all other parame-
ters at ΛGW are varied in the perturbative regime. Additionally fixing
ΛGW “ 500GeV as before, completes the initial conditions for the model’s
RG evolution towards the UV.

Results and discussion. In Figure 3.4, we show the maximum possible
scale of RG extrapolation ΛUV for theories extending the SM by one addi-
tional complex multiplet of dimension N and hypercharge Y , which does not
acquire a finite vev. The results were computed using the full RGEs given in
Appendix B.2. Most importantly, none of the models can be extrapolated
beyond 107GeV. Specifically, the figure demonstrates that the appearance
of Landau poles gets delayed the most for quintuplet and sextet models with
small hypercharges. In that regard, the present findings are similar to those
obtained for the case of real multiplets with vanishing vev, where ΛUV was
observed to possess a maximum for N “ 6 (see Figure 3.2a). The strong de-
crease in ΛUV for large hypercharges is consistent with the fact that the flow
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Figure 3.4: Maximum possible scale of RG extrapolation ΛUV in extensions of
the scale-invariant SM by one complex SU(2)L multiplet of dimension N and hy-
percharge Y with zero vev.

of the U(1) gauge coupling g1 and that of the scalar subsystem are ampli-
fied by terms growing as Y 2 or even Y 4. This particularly affects the portal
coupling κ1 whose starting value cannot be arbitrarily small due to equa-
tion (3.30), and whose beta function includes a contribution proportional to
Y 4g41.

As already mentioned, the hypercharge enters only with even powers into
the model’s beta functions, which are therefore invariant under the replace-
ment Y Ñ ´Y . Correspondingly, Figure 3.4 exhibits a reflection symmetry
with respect to the line of vanishing hypercharge. Notably, the presence
of the additional O(N)-violating operator proportional to κ3 for Y “ ´1

2
explicitly breaks the aforementioned exchange symmetry of the RGE sys-
tem. However, the optimal initial value of κ3, producing the largest ΛUV

for a given N , is found to be near zero in all investigated cases. Since κ3 is
renormalized multiplicatively, it then stays small during the entire RG evo-
lution, which explains the fact that the hypercharge conjugation symmetry
is still manifest in Figure 3.4. On a related note, our study also reveals that
the most stable RG running is achieved for initial values of λ3 and κ2 close
to zero. Thus, our analysis is consistent with the discussion after equation
(3.10), as well as with the previously mentioned results of [138].

Lastly, let us briefly mention a particularly interesting model that is
contained within the present class of theories, namely the Inert Doublet
Model (IDM) [141–143]. Here, the SM Higgs sector is supplemented by a
second doublet χ „ p1,2, 12q, which transforms non-trivially under an exact
Z2 symmetry and therefore does not acquire a finite vev. Notably, particle
content and symmetries of the IDM allow for an additional operator in the
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scalar potential of equation (3.10), namely

∆V2 “ κ4

”

pΦ:χq2 ` h.c.
ı

. (3.31)

The IDM has received considerable attention during the last decade, since
it is a simple and tractable extension of the SM, which was found to provide
a viable dark matter candidate. Its conformal version was first studied in
[103], however without addressing potential issues due to Landau poles in the
model’s RG running. Taking into account the complete set of RGEs includ-
ing contributions from the term of equation (3.31), we found that the confor-
mal IDM remains perturbative only up to scales of around ΛUV » 105GeV
and therefore does not offer a consistent realization of radiative EWSB.

D Complex multiplet with finite vacuum expectation value

Having already extensively studied extensions of the minimal SM by one
extra real scalar multiplet with non-zero vev (cf. Section 3.3.1.B), the gen-
eralization to a complex scalar field χ is now straightforward. Assuming
the absence of spontaneous CP violation for simplicity, we parameterize the
electrically neutral component of χ as

χi0 “ 1?
2
pvχ ` σ ` iπ0q , (3.32)

where σ is an appropriate radial excitation, while π0 is a neutral CP-odd
field. Utilizing the Gell-Mann Nishijima formula introduced in Chapter 2,
the index i0 can be determined as i0 “ pN ` 1q{2 ` Y , with N and Y being
the extra multiplet’s dimension and hypercharge, respectively. Obviously,
only those representations which allow for an integer i0 are viable. For
the sake of convenience, let us furthermore introduce the following set of
auxiliary quantities:

v1
φ :“ vφ , v1

χ :“ vχ , λ1
1 :“ λ1 ,

λ1
2 :“

1
4

“

λ2 ` p1 ´ δN,1qY 2λ3

‰

,

κ1
1 :“

1
2

“

κ1 ` 1
2p1 ´ δN,1qY κ2

‰

, and

tanβ1 :“ 1?
2
tanβ .

(3.33)

Restricting to the physics of the CP-even scalar sector, a dedicated cal-
culation then reveals that the results obtained for a complex χ based on
the potential of equation (3.10) are formally equivalent to those of the real
case when written in the primed quantities. For instance, the Gildener-
Weinberg condition corresponding to finite vevs for both Φ and χ now reads
4λ1

1λ
1
2 ´ κ1

1 “ 0.i In the same way, equations (3.21) to (3.25) as well as the

iAs an additional condition one finds κ3pΛGWq “ 0. Since κ3 is multiplicatively renor-
malized, it necessarily vanishes at all scales, see Appendix B.
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contents of Table 3.1 are reproduced using the auxiliary parameters of equa-
tion (3.33). In particular, we thus recover the mixing phenomenology of the
real case, which was previously summarized in Table 3.1, and which was
crucially influenced by the sign of the mixing angle α P p´π{4, π{4q.

A positive mixing angle, on the one hand, hence again requires vχ ą vφ
and thereby a substantial vacuum expectation value in the χ-sector. Such
a vev will generally contribute to the model’s tree-level ρ-parameter intro-
duced in equation (2.20) of Chapter 2, and will therefore spoil the well-
established empirical finding ρ « 1 [53]. However, as mentioned before, the
leading-order ρ-parameter will be identically one irrespective of the size of
vχ, if χ transforms under certain representations of the electroweak group
(see e.g. [139]). Restricting to N ď 20, there exist three such representa-
tions, namely the singlet with zero hypercharge, the doublet with Y “ 1

2
and the septet with Y “ 2, which we will discuss in turn.

First, it is easy to prove that the theory of one complex hyperchargeless
singlet is equivalent to that of two real singlets (see e.g. [140]), which will
be covered in detail in Section 3.3.3.

The second case, pN , Y q “ p2, 12q, corresponds to the well-studied two-
Higgs-doublet model, which is comprehensively reviewed e.g. in [144]. Here,
the extra scalar χ has the exact same quantum numbers as the SM Higgs
(cf. equation (2.3)), which leads to a particularly rich phenomenology. How-
ever, without any additional assumptions, the model’s particle content al-
lows for Yukawa terms coupling all SM fermions to the second scalar field.
Since both doublets are assumed to obtain a finite vev, this situation is in-
compatible with the Glashow-Weinberg criterion [145] and thus may lead
to unacceptably large tree-level flavor-changing neutral currents (FCNC).
Avoiding said FCNCs requires to either introduce additional new physics in
the form of new particles, or to restrict the theory’s Lagrangian by imposing
extra symmetries, which then typically also act on the fermion sector. Both
of the above options are, however, in conflict with our notion of minimality,
so that the conformal two-Higgs-doublet model will not be discussed any
further.

Finally, in the extension of the scale-invariant SM by a complex septet
with Y “ 2, the large multiplet dimension and hypercharge of the additional
scalar field strongly enhance the RG flow of the U(1)Y gauge coupling,
cf. equation (B.6) in Appendix B. As a consequence, the latter develops
a Landau pole already below the Planck scale, which rules out the septet
model as well. Since all possible representations with N ą 20 which also
leave the ρ-parameter invariant are plagued by an even larger RG flow of
the hypercharge gauge coupling, this already exhausts all options for α ą 0.

A negative scalar mixing angle α, on the other hand, implies vφ ą vχ.
Assuming that vχ is sufficiently small, the leading-order SM relation ρ “ 1
can then be approximately reproduced regardless of the representation un-
der which χ transforms. Nevertheless, we do not expect to find a model
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without low-scale Landau poles within the present class of conformal SM
extensions either. To see why, let us first recall from Table 3.1 that a neg-
ative α requires the physical Higgs boson H to be identified with the PGB
of broken scale invariance, whose mass is only generated through quantum
effects as shown in Section 3.2. In particular, implementing the necessary re-
lation mPGB “ 125GeV then demands the presence of relatively heavy scalar
degrees of freedom whose contributions to mPGB are large enough so as to
outweigh those originating from top quark fluctuations. Also the aforemen-
tioned loop suppression has to be overcome.

Now, let us furthermore recall that the potential in the real case exhib-
ited a global O(N) symmetry (cf. equation (3.13)), which was spontaneously
broken down to O(N ´ 1) during electroweak symmetry breaking. Corre-
spondingly, only the radial excitation σ acquired a finite mass, whereas all
other degrees of freedom in χ remained massless according to Goldstone’s
theorem. Consequently, the above requirement of large scalar fluctuations
contributing to the Higgs mass could only be realized at the price of a siz-
able scalar portal coupling (cf. equation (3.27)), which, in turn, severely
destabilized the RG flow.

As opposed to that, the O(2N) symmetry of the χ-sector in the com-
plex casej is no longer exact, but is rather explicitly violated by the λ3-
and κ2-terms in the potential of equation (3.10). Accordingly, not only
will the electrically neutral, CP-even mode of a complex χ become massive
upon EWSB, but so will the CP-odd field as well as the formerly massless
charged components χi with i ‰ i0. One may thus naively think that the
required Higgs mass can now be generated without the need for large scalar
couplings. Importantly though, Goldstone’s theorem also implies that the
masses of the CP-odd excitation and of the electrically charged modes of χ
must necessarily be proportional to the coefficients of the O(2N)-breaking
operators, namely λ3 and κ2. Our previous analysis of the complex case
with vanishing vχ, revealed, however, that said couplings are to be chosen
close to zero, in order to facilitate a reasonably stable RG evolution. Taking
into account that the theory’s RG evolution is independent of whether or
not χ obtains a non-zero vev, we expect the above result to also pertain
to the present scenario. Thus, the O(2N) symmetry of the potential is ap-
proximately restored and the line of reasoning from the real case can be
applied, which suggests that a low-scale Landau pole will appear well below
the Planck scale.

Apart from the symmetry-based argument just discussed, we can also
use the findings from our previous analyses to argue that the present class
of models is unlikely to provide a viable candidate for a consistent conformal
theory. Specifically, comparing the outcome obtained for the real (Figure
3.2a) and complex (Figure 3.4) cases with vanishing vev, we realize that

jConfer footnote h on page 43.
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they are very similar both from a qualitative and from a quantitative point
of view. Analogously, we do not expect a drastic change when going from
a real multiplet χ with vχ ‰ 0 and negative mixing angle to its complex
counterpart. A dedicated analysis of the latter is therefore anticipated to
yield similar results to those displayed in Figure 3.3, simply generalized to
the N -Y plane.

3.3.2 SM + one scalar and one fermionic representation

After having exhausted all possibilities of models where the SM Higgs sector
is supplemented by only one scalar multiplet, let us briefly discuss the option
of extending these theories by an additional fermionic representation. How-
ever, one immediately realizes that also the resulting class of models cannot
remedy the issues described in the previous section. Rather, extra massive
fermions coupling to the scalar sector will induce a two-fold destabilization
of the resulting model’s RG evolution.

On the one hand, said fermionic particles will give negative contributions
to the effective potential’s curvature along its leading-order flat direction as
per equation (3.6b). Requiring a stable vacuum therefore typically necessi-
tates heavier scalar degrees of freedom and thus larger scalar couplings at
ΛGW than in the same model without additional fermions.

On the other hand, a fermion which interacts with some scalar field with
Yukawa coupling strength y, will amplify the RG flow of said scalar’s self-
coupling λ via a positive contribution which grows as `λy2. Admittedly,
the beta function of λ will then also contain an additional negative term
proportional to ´y4, but in the regime of large scalar couplings the `λy2

term will always be the dominant one. The situation may be even worse for
the RG flow of the associated scalar portal couplings where the stabilizing
´y4 contribution is only present if both of the involved scalars interact with
the extra fermion.

In summary, we conclude that if a given conformal model produces Lan-
dau poles well below the Planck scale, then augmenting said model by ad-
ditional fermions cannot change this outcome. In particular, the simple and
hence popular theory studied in [34], in which the classically scale-invariant
SM is extended by a real scalar singlet and right-handed sterile neutrinos
cannot be perturbatively extrapolated all the way up to the Planck scale.k

3.3.3 SM + two scalar representations

Completely analogous to our discussion of Section 3.3.1, we will now inves-
tigate theories where the minimal Standard Model’s Higgs sector is supple-
mented by two scalar SU(2) multiplets denoted as χ and ξ. The scale- and

kThe authors of [34] arrive at a different conclusion since they neglect the aforemen-
tioned destabilizing contributions to the scalar RG flow which grow as `λy2.
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gauge-invariant leading-order potential on which our analyses in the present
section will rely reads

V “ λφpΦ:Φq2 ` λχpχ:χq2 ` λξpξ:ξq2

` κφχpΦ:Φqpχ:χq ` κφχpΦ:Φqpξ:ξq ` κχξpχ:χqpξ:ξq ,
(3.34)

where Φ “ pφ`, φ0qᵀ is again the complex SM Higgs doublet introduced in
equation (2.3). Note that in writing down the above potential, we restrict
ourselves to those terms which are present irrespective of the involved multi-
plets’ quantum numbers. As we have argued several times before and as we
have explicitly seen during our previous studies, the inclusion of additional
operators for individual models is not expected to qualitatively change our
results, since the associated couplings must be small in order to allow for a
stable RG evolution [138].

A Two real multiplets with vanishing vacuum expectation value

In a first step, we assume both of the extra scalars to be real in the sense
of equation (3.12). Furthermore, their vacuum expectation values are sup-
posed to vanish. The resulting study is then a simple generalization of that
presented in Section 3.3.1.A. In particular, electroweak symmetry breaking
proceeds via φ0 “ pv ` Hq{

?
2 and the physical Higgs mode H is to be iden-

tified with the PGB of anomalously broken scale invariance. The associated
Gildener-Weinberg condition is again λφpΛGWq “ 0, which signifies a flat di-
rection of the tree-level potential along the φ0-axis at ΛGW. Upon EWSB
all components of a given real multiplet then obtain the same leading-order
mass, namely

m2
χ “ κφχv

2 or m2
ξ “ κφξv

2 . (3.35)

In contrast, the Higgs boson remains classically massless, but acquires a
finite mass via quantum effects at the one-loop level. Its exact form is given
by equation (3.8). Evaluating the latter using the results of equation (3.35)
yields

m2
H “ 4

˜

BSM `
Nχκ

2
φχ ` Nξκ

2
φξ

16π2

¸

v2 . (3.36)

Once more exploiting that BSM is negative, we recast the above identity into

b

Nχκ2φχ ` Nξκ
2
φξ ą 2π

mH

v
,

where the portal couplings are to be understood as evaluated at ΛGW. As
before, we are only interested in assessing an upper bound on the scale
of potential Landau poles. Correspondingly, we can simplify the previous
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relation by replacing the inequality with an equality. Thereby, the portal
couplings’ initial values are underestimated so that the RG evolution is
expected to become more stable and potential Landau poles are shifted
towards larger energy scales. In the approximation just described the value
of e.g. κφξ at ΛGW can be calculated in terms of the multiplet dimensions
and the other parameter involved, κφχpΛGWq, namely

κφξpΛGWq :“

c

4π2
m2

H

v2
´ Nχκ2φχ ¨ N

´1{2

ξ . (3.37)

Notably, requiring all physical masses to be real, confines both portal cou-
plings κφχ and κφξ to be non-negative at ΛGW according to equation (3.35).

Apart from λφ and κφξ whose initial values are set by the Gildener-
Weinberg condition and equation (3.37), respectively, all other parameters
at ΛGW are varied in the perturbative range. In doing so, we bear in mind
that λχ, λξ and κφχ must be non-negative due to vacuum stability and
equation (3.35), respectively. In contrast, there is no a priori constraint
on the sign of κχξ. Lastly, fixing ΛGW “ 500GeV as before, completes the
initial conditions for the model’s RG evolution towards the UV.

Results and discussion. Our findings for the maximum possible scale
of RG extrapolation ΛUV in the present category of models are displayed in
Figure 3.5. In complete analogy to our analyses in Section 3.3.1, the four
panels of Figure 3.5 show the UV scale as a function of the multiplet dimen-
sions Nχ and Nξ, calculated using distinct sets of RGEs from Appendix B.1.
Notably, all plots exhibit a reflection symmetry with respect to the diagonal
in the Nχ-Nξ plane, which originates from the fact that the models’ RG
flows are fully invariant under the exchange Nχ Ø Nξ.

From a qualitative point of view, the current results can be seen as a
simple generalization of those obtained for one extra real and vev-less scalar,
so that they are expected to show similar characteristics (cf. Figure 3.2a).
For instance, by comparing the left panels of Figures 3.5a and 3.5b with the
respective ones on the right-hand side, we observe that including fermionic
contributions due to the top quark consistently shifts Landau poles towards
lower energies. Similarly, taking into account gauge contributions is again
found to induce a rapid decrease of ΛUV once the SU(2) gauge coupling g2
stops being asymptotically free.

A quantitative evaluation of the results now reveals that the farthest
extrapolation is achieved in the SM extension by two real quintets, which
remains perturbative up to around 108GeV. Although the aforementioned
maximum possible UV scale is still far away from the Planck scale, it is one
order of magnitude larger than its counterpart in the case of only one extra
real scalar. This observation can be understood as follows: The introduction
of a third scalar representation induces several structurally new terms in
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scalar and top-quark contri-
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Figure 3.5: Maximum possible scale of RG extrapolation ΛUV in extensions of the
scale-invariant SM by two real SU(2)L multiplets of dimensions Nχ and Nξ with
zero vev. The individual plots differ in the contributions to the model’s RGEs that
were included.

the models’ RG flows. Most importantly, the Higgs portal couplings obtain
additional contributions, namely

βp1q
κφχ

Ě `4Nξκφξκχξ and βp1q
κφξ

Ě `4Nχκφχκχξ . (3.38)

Recall that, while κφχ and κφξ must be positive at the GW scale, the sign
of κχξ is a priori unconstrained. Choosing κχξpΛGWq to be less than zero
then introduces negative terms in the beta functions of all portal couplings,
which may (partially) compensate for the other positive contributions from
the scalar sector. Thus, the terms of equation (3.38) may to some extent
prevent too large flows of the scalar couplings, which were found to be the
main source of instabilities in models with only one extra scalar (cf. Figure
3.2b and the associated discussion). Accordingly, Landau poles are shifted
towards higher energies. Completely in line with the above reasoning, the
most stable RG running was found for negative and often sizable initial
values of κχξ.

Although cancellations are now possible within the scalar subsystem, the
initial portal couplings required by the consistency condition of equation
(3.36) are still too large to fully avoid the appearance of Landau poles.



3.3. Finding the minimal conformal model 53

B The minimal conformal model

All of our previous attempts of finding a phenomenologically consistent
model of radiative electroweak symmetry breaking, which can be pertur-
batively extrapolated all the way up to the Planck scale, failed. The main
obstacles in most of the investigated theories was found to be an unstable
subsystem of scalar RGEs, in which positive feedback unavoidably leads to
the appearance of low-scale Landau poles. Interestingly, our analysis of the
last section demonstrated that in models with three scalar representations,
the presence of phenomenologically less constrained portal couplings may
stabilize the scalar subsystem to some extent. However, consistently repro-
ducing the measured Higgs mass required too large initial values for some
of the scalar couplings, so that the aforementioned stabilizing effects were
insufficient to prevent Landau poles from developing.

Learning from this, we will now study theories which still extend the
SM Higgs sector by two real scalar multiplets, but in which one of the extra
scalars dynamically acquires a finite vacuum expectation value. In fact, it
turns out that we can restrict ourselves to the simplest case, where both of
the additional scalars are gauge singlets, since already this model allows for
an perturbative extrapolation all the way up to the Planck scale. The most
general gauge- and scale-invariant leading order potential then reads

V “ λφpΦ:Φq2 ` λSS
4 ` λRR

4

` κφSpΦ:ΦqS2 ` κφRpΦ:ΦqR2 ` κSRS
2R2

` κ4SRpΦ:Φq2 ` κ5S
3R ` κ6SR

3 .

(3.39)

with the complex SM Higgs doublet Φ and the real scalar singlets S and R.
For the purpose of reducing the number of free parameters, we introduce a
global Z2 parity under which one of the singlets, say R, is odd,

R
Z2

ÝÑ ´R , (3.40)

whereas all other fields are supposed to be left invariant. Assuming that
said Z2 symmetry remains unbroken has two immediate consequences. On
the one hand, all terms in the third line of equation (3.39) transform non-
trivially under the operation of equation (3.40) and are thus forbidden. On
the other hand, an exact Z2 parity prevents R from acquiring a finite vev.
The pattern of electroweak symmetry breaking to be considered here is

φ0 “
vφ ` φ

?
2

and S “ vS ` σ . (3.41)

Since S is a gauge singlet, the electroweak scale v is then only set by the
Higgs vev, i.e. v ” vφ. Note that, interestingly, the resulting model is for-
mally equivalent to the extension of the classically scale-invariant SM by
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one complex singlet with zero hypercharge which acquires a finite, but CP-
conserving vev. The aforementioned model was discussed in different con-
texts in the literature, see e.g. [107, 109–111].

As opposed to S, the second extra scalar R is does not develop a non-
zero vev and therefore does not mix with the other CP-even scalar degrees of
freedom φ and σ. Rather, an explicit calculation based on equations (3.39)
and (3.41) implies that R obtains the following tree-level mass

m2
R “ κφRv

2
φ ` 2κSRv

2
S . (3.42)

In contrast, the scalar modes φ and σ do mix. The resulting phenomenology
turns out to be identical to that described in Section 3.3.1.B, where there
was only one extra real scalar added to the SM. Correspondingly, upon
renaming the relevant parameters,

λ1 Ñ λφ , λ2 Ñ λS ,

κ1 Ñ κφS , vχ Ñ vS ,
(3.43)

all identities derived there – see equations (3.19) to (3.25) – also apply to the
φ-σ-sector of the present model. In particular, the sign of the φ-σ mixing
angle α again crucially influences the theory’s properties at the electroweak
scale (cf. Table 3.1).

In the following, we restrict ourselves to the case of positive α. According
to our listing in Table 3.1, the physical Higgs boson H is then not identified
with the PGB of anomalously broken scale invariance, but rather obtains
its mass already at tree-level. Before we continue, let us briefly recall, why
we ruled out this scenario’s counterpart in Section 3.3.1.B, where the second
extra scalar R was absent. In the corresponding discussion on pages 39–40,
we argued that the Higgs alone was not heavy enough to overcome the large
negative top quark contribution to the curvature of the effective potential.
The latter therefore developed a maximum instead of a minimum, which
is clearly unacceptable. In contrast, the presence of the additional scalar
particle R in the current theory’s physical spectrum invalidates the above
line of reasoning, since now also R gives a positive contribution to the effec-
tive potential’s curvature. Hence, if R is sufficiently heavy, the theory can,
indeed, dynamically acquire a stable non-trivial vacuum.

That being said, let us now study what parameters of the potential in
equation (3.39) are constrained by basic electroweak phenomenology. First,
stability of the tree-level potential requires [146]

λφ ě 0 , λS ě 0 , λR ě 0 ,

σ̄φS :“ κφS ` 2
a

λφλS ě 0 ,

σ̄φR :“ κφR ` 2
a

λφλR ě 0 ,

σ̄SR :“ κSR ` 2
a

λSλR ě 0 ,

κφS
a

λR ` κφR
a

λS ` κSR
a

λφ ` 2
a

λφλSλR `
a

σ̄φS σ̄φRσ̄SR ě 0 .
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Second, the adopted symmetry breaking pattern of equation (3.41) implies
a negative portal coupling κφS (cf. equation (3.20) and the associated dis-
cussion). On a related note, within the framework of the Gildener-Weinberg
formalism the assumed vev configuration is equivalent to the previously de-
rived condition of equation (3.20). As before, the latter can be used to
eliminate one dimensionless coupling in favor of the scale of radiative sym-
metry breaking ΛGW, specifically

λS “
κ2φS
4λφ

at ΛGW . (3.44)

Second, as already mentioned above, the leading-order mass of the physical
Higgs boson H is parameterized as m` from equation (3.24),

m2
H “ 2pλφ ´ κφSqv2 ô λφ “ κφS `

m2
H

2v2
at ΛGW . (3.45)

For a given portal coupling, the second identity allows us to calculate the
corresponding value of λφ which is consistent with the physical point of the
ratio mH{v. Furthermore, equation (3.45) together with equation (3.21) and
the information from Table 3.1 can be used to obtain a one-to-one relation
between κφS and the scalar mixing angle α ą 0, namely

sinα “

b

2|κφS |
v

mH
. (3.46)

Finally, note that while imposing equation (3.45) guarantees the ratio
mH{v to attain its physical value, the overall scale of v (or mH) must still
be set consistently. It is now straightforward to show that fixing v and,
for instance, the PGB mass mPGB, one can determine the unique value of
the Gildener-Weinberg scale ΛGW, as well as that of the heavy scalar mass
mR, for which the theory correctly reproduces the electroweak scale. Since
the corresponding calculation is quite technical, it has been relegated to
Appendix A.

Summarizing, the model’s relevant phenomenology at ΛGW is fully spec-
ified once the scalar mixing angle α P p0, π{4q and the PGB mass are fixed.
Uniquely solving the model’s complete one-loop RGEs for the purpose of
searching for potential Landau poles additionally requires to choose initial
values for λR and for one of the two remaining portal couplings κφR or κSR
(the other one then being fixed by equation (3.42)).

Results and discussion. The main findings of our analysis of the min-
imal conformal model are presented in Figure 3.6. However, before we
explicitly evaluate the information displayed there, it makes sense to first
review the meanings of the plot’s individual components. As mentioned be-
fore, fixing the scalar mixing angle α together with the PGB mass mPGB
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Figure 3.6: Maximum possible scale of RG extrapolation ΛUV in the minimal
conformal model. The white arrow indicates the benchmark point of equation
(3.47). For details on the included constraints, see the main text on the next page.

completely specifies the model’s relevant phenomenology at the Gildener-
Weinberg scale. In particular, the couplings of the Φ-S-sector λS , λφ and
κφS are then given by equations (3.44), (3.45) and (3.46), respectively. Sim-
ilarly, the heavy scalar’s mass mR can be fixed by self-consistently solving
equations (A.5) and (A.6) as described in the Appendix. As a consequence,
it is most convenient to investigate the subspace of the model’s full param-
eter space that is spanned by mPGB and sin2 α, which is exactly what we do
in Figure 3.6.

Next, the color code represents the maximum possible scale of RG ex-
trapolation ΛUV, which is computed as follows: For a given pair pmPGB, αq,
we vary the remaining free couplings, λR and κSR, within the perturba-
tive regime. For each individual point of said parameter scan, we then use
the complete set of one-loop beta functions to calculate all couplings’ RG
running towards the UV, thereby determining the model’s UV cutoff corre-
sponding to the currently considered parameter point. The aforementioned
UV cutoff is defined as the energy scale up to which the model’s RG evolution
is free of any Landau poles or tree-level vacuum instabilities. Additionally,
we check whether the leading-order scalar potential develops any further flat
directions at some scale Λ1 above ΛGW. If so, the effective potential would
have developed a non-trivial vacuum at Λ1, so that dynamical symmetry
breaking would have already occurred then. Since this would invalidate our
initial assumption that ΛGW is the scale of radiative EWSB, we also stop the
RG running once a flat direction is found and set the UV cutoff accordingly.
The largest UV cutoff found in the way just described is then identified with
ΛUV for the given values of mPGB and α. Note that it is not meaningful in the
current approach to extrapolate the model’s parameters beyond the Planck
scale. Hence, we stop our calculation there at the latest so that ΛUV ď MPl
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always holds.
Lastly, Figure 3.6 shows some relevant constraints on the model’s pa-

rameter space. On the one hand, the dark shaded areas are disfavored for
different reasons of theoretical consistency: First, in line with our working
assumption that radiative symmetry breaking occurs at around the elec-
troweak scale, we discard points for which the Gildener-Weinberg scale is
too large, specifically ΛGW ą 1TeV (cf. assumption 2 on page 22). Sec-
ond, parts of the parameter space where there is a substantial hierarchy
between the renormalization scale ΛGW and the condensate xϕy are possibly
problematic. To see why, note that the effective potential’s perturbative
expansion is only reliable as long as the appropriate expansion parameter
λ{p2πq ¨ logpxϕy{ΛGWq is sufficiently small, where λ is some generic and prop-
erly normalized scalar coupling [147] (cf. also the corresponding discussion
in [120]). Consequently, more care must be taken in order to determine
whether perturbation theory is still applicable, once the above logarithm is
larger than unity.

On the other hand, we also include a generic experimental bound on the
mixing angle between the physical Higgs boson and the PGB of a classically
scale-invariant model, which was derived in [109, 110]. Here, the authors
used the fact that too large a mixing would modify the signal strengths of
Higgs events beyond what is compatible with measurements at the LHC.
The found limit of sin2 α ă 0.19 is independent of the PGB mass and is
shown as horizontal dashed line in Figure 3.6.

The most important feature of the plot in Figure 3.6 is now the existence
of a parameter region (red area), where a fully consistent extrapolation of the
model all the way up to the Planck scale is possible. Interestingly, imposing
UV completeness in the above sense only allows for PGB masses of up to
around 15GeV and requires the mixing angle to be relatively small.

Now that we have learned that the current set-up provides parameter
points, for which Landau poles below the Planck scale are absent, it is in-
structive to investigate how the RG running is actually stabilized in those
cases. Thereby, one will be able to specifically construct non-minimal confor-
mal models, which may then accommodate further aspects of BSM physics
as, for instance, neutrino masses or dark matter, and will thus yield a more
complete picture of particle physics. With this in mind, we will follow our
approach from Section 3.3.1 and study the different contributions to the flow
of the Higgs self-coupling as functions of the RG scale. The corresponding
results are shown in Figure 3.7a and were calculated based on the benchmark
point indicated by the white arrow in Figure 3.6, namely

mPGB “ 5GeV , sinα “ 0.16 , (3.47)

supplemented by the choices λR “ 0.015 and κSR “ 0.021, which, indeed,
allow for an extrapolation of the model up to the Planck scale. Further
details on the above example point are listed in Figure 3.7b.
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Figure 3.7: Scale dependence of the relative contributions to the beta function of
λφ in the minimal conformal model (panel (a)) for the benchmark point of equation
(3.47), on which additional information is provided in panel (b). For further details,
see also the caption of Figure 3.2b.

The key difference between the current scenario and the running dis-
played in Figure 3.2b is that the scalar portal contribution is no longer the
largest one over the whole energy range. Instead, the stabilizing ´y4 term
due to the top-quark loop dominates for energies up to 1014GeV, so that
the Higgs self-coupling first decreases. It does so, however, without ever
becoming negative. At large enough scales, the Yukawa contribution is then
finally exceeded by the positive portal terms. The latter will therefore ulti-
mately trigger the appearance of a Landau pole in the running of λφ, but,
as our analysis demonstrates, only at energies beyond the Planck scale.

The theory’s improved extensibility towards the UV can be mainly as-
cribed to two features of its portal couplings and their RG running. Inter-
estingly, both of the aforementioned features originate from the presence of
more than two independent scalar multiplets in the model’s Higgs sector.
First and foremost, imposing a positive curvature of the effective poten-
tial along its leading-order flat direction no longer necessitates one single
scalar coupling to be particularly large at the Gildener-Weinberg scale. To
be more precise, Figure 3.6 together with equation (3.46) reveals that the
parameter κφS at ΛGW is preferably of order 10´2 or smaller in the mini-
mal conformal model. Also the other portal couplings, κφR and κSR, can
attain initial values of moderate size without rendering the model’s elec-
troweak phenomenology inconsistent. In contrast, at least one of the portal
couplings in previously investigated theories with only one extra scalar was
typically required to be of order unity, see e.g. equations (3.16) and (3.27).
Similarly, sizable portal couplings κφχ or κφξ were implied in the case of
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two additional vev-less scalars, since the relatively heavy physical Higgs bo-
son had to be identified with the PGB, see equation (3.36). In the present
model, the latter constraint is removed so that lower PGB masses and hence
smaller scalar couplings are possible.

The second reason for the more stable RG evolution of the scalar subsys-
tem in the minimal conformal model originates in the potentially stabilizing
terms already mentioned in equation (3.38) (cf. also the associated discus-
sion on page 52). As all scalar couplings can now be of the same order of
magnitude, different contributions to the portal couplings’ beta functions
may effectively cancel each other. Said cancellations will then help to keep
the RG flow in the scalar subsystem small and under control.

C Non-minimal conformal models

After having gained insight into how a stable RG evolution could be realized
within the minimal conformal model (MCM), we will now briefly discuss
some possibilities to extend the latter in order to eventually build more
complete theories of particle physics.

As a first example of a consistent and non-minimal conformal model, we
consider the theory which is obtained by exchanging the second singlet R of
the MCM for a real, vev-less scalar SU(2)L triplet Σ (henceforth referred to
as CSMTS). The corresponding scale- and gauge-invariant scalar potential
can then be written as

V “ λφpΦ:Φq2 ` λSS
4 ` λΣpTrΣ2q2

` κφSpΦ:ΦqS2 ` κφΣpΦ:ΦqTrΣ2 ` κSΣS
2TrΣ2 ,

where we imposed a global O(3) symmetry in the triplet sector as a gener-
alization of the minimal conformal model’s Z2 parity introduced in equa-
tion (3.40). Repeating our complete analysis from before, we are able to
determine the model’s UV extensibility which is shown in Figure 3.8. In-
terestingly, the present triplet model allows for larger PGB masses of up to
roughly 35GeV, while still providing a stable renormalization group running
all the way up to the Planck scale. This extended range of possible PGB
masses can be explained as follows: As compared to the MCM, the particle
spectrum of the CSMTS after radiative symmetry breaking contains two
additional heavy bosonic degrees of freedom, Σ˘. According to equations
(3.8) and (3.6b), a given value for mPGB can then be realized for smaller
initial values of the scalar couplings. Potential Landau poles will therefore
appear at larger scales than in the MCM.

Remarkably, models like the MCM or the CSMTS are of peculiar interest
since they provide an electrically neutral and stable particle, which might
provide the cold dark matter of the universe. Correspondingly, studies of
the minimal conformal model’s dark matter phenomenology indicate that
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there exist regions of parameter space where the scalar mode R correctly
reproduces the observed dark matter relic abundance if thermally produced
[107, 109–111]. A similar analysis does not yet exist for the CSMTS. Note
that the dark matter candidates’ stability in the aforementioned examples
had to be enforced by introducing an ad hoc global symmetry. In contrast,
the required stability is guaranteed by an accidental symmetry once the
potential dark matter particle originates from a real SU(2)L septet [148, 149].
The latter theory is therefore a particularly well motivated extension of the
SM. In line with our previous analyses, we expect it to support a fully
consistent conformal realization, as well.

As a second class of non-minimal conformal theories, extensions of the
MCM that allow for the inclusion of finite neutrino masses certainly are also
worth exploring (see [113] for an overview). For instance, supplementing the
MCM by fermionic gauge singlets to be identified with right-handed neutrino
fields immediately introduces two additional terms in the model’s gauge- and
scale-invariant Lagrangian, through which the right-handed neutrinos inter-
act with some of the remaining particles: a Majorana-type Yukawa coupling
to the scalar singlet S, as well as a Dirac-type Yukawa operator involving the
SM lepton and Higgs doublets. Once radiative symmetry breaking occurs,
the aforementioned Yukawa terms induce a neutrino mass matrix, which re-
alizes a type-I seesaw mechanism [150–153], provided the associated Yukawa
coupling parameters are chosen appropriately [113]. In particular, the small-
ness of active neutrino masses implies reasonably heavy right-handed neu-
trinos within the type-I seesaw scenario. Due to their fermionic nature the
right-handed neutrinos give substantial negative contributions to the effec-
tive potential’s curvature as per equation (3.6b). Requiring the effective
potential to be bounded from below therefore typically necessitates larger
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scalar masses as compared to the MCM, which may, in turn, destabilize the
scalar RG subsystem. Alternatively, additional bosonic degrees of freedom
may be introduced in order to outweigh the negative contributions due to
the right-handed neutrinos without having to resort to larger scalar masses.
Also more elaborate mechanisms of neutrino mass generation may be real-
ized in a classically scale-invariant setup. Good examples are given by the
conformal inverse see-saw, which was investigated in [115, 116], and radia-
tive neutrino mass models as studied in [117, 118]. Crucially, determining
whether any of the aforementioned models allows for a consistent perturba-
tive extrapolation all the way up to the Planck scale has exploited or will
exploit methods and results presented in this chapter.

3.4 Summary and conclusion

In the present chapter, we systematically studied simple classically con-
formal extensions of the minimal Standard Model (SM), thereby following
our original analysis in [48]. In doing so, we assumed that the spontaneous
breaking of scale invariance is triggered by perturbative effects in a Coleman-
Weinberg-like scenario at energies around the electroweak scale. Since, fur-
thermore, all of the investigated models were based on the SM gauge group,
radiative symmetry breaking consistent with electroweak phenomenology
was seen to require the introduction of additional heavy scalar degrees of
freedom, which, in turn, necessitated the presence of sizable scalar cou-
plings. A further vital consistency condition was argued to be the absence
of any intermediate physical scales between that of spontaneous conformal
symmetry breaking and some high-energy scale, at which new concepts be-
yond those of quantum field theory (QFT) may lead to boundary conditions
appropriate for a classically scale-invariant model at lower energies. Only
thus can conformal models protect the Higgs mass from becoming quadrati-
cally sensitive to UV physics and thereby solve the longstanding electroweak
hierarchy problem as first suggested in [32]. A prime candidate for the afore-
mentioned high-energy scale is the Planck scale MPl, where effects due to
quantum gravity are expected to become relevant. As a consequence, all
investigated models were required to exhibit a stable renormalization group
(RG) running all the way up to MPl, which, however, typically needs small
scalar couplings.

The main result of the present chapter is the identification of the mini-
mal conformal model for which the opposing tendencies just described can
be successfully reconciled. Specifically, said minimal theory was shown to
extend the SM by two real scalar gauge singlets, precisely one of which
acquires a finite vacuum expectation value (vev) of the same order of mag-
nitude as the electroweak scale. The aforementioned scalar field then mixes
with the neutral CP-even component of the SM Higgs doublet to form the
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physical 125GeV Higgs boson as well as a light scalar particle with a mass
of preferably Op10GeVq or less. The latter was identified with the pseudo-
Goldstone boson associated with broken scale invariance. The extra vev-less
scalar, on the other hand, was found to be necessarily heavier than 300GeV
in accordance with our expectations. In a detailed analysis of the model’s
one-loop effective potential and its RG equations, it was then proven that
the presence of three independent scalar field representations together with
the second finite vev was essential for controlling the scalar couplings’ size
at the scale of spontaneous conformal symmetry breaking and thereby for a
stable RG evolution.

As a byproduct, our systematic study of conformal models explicitly
ruled out popular scale-invariant extensions of the SM like the original model
by Meissner and Nicolai in which the SM is supplemented by one scalar
singlet field and right-handed neutrinos [34], or the classically conformal
version of the Inert Doublet Model [103].

Obviously, the minimal model does not address all of the issues of beyond-
the-SM physics such as small neutrino masses. Therefore, we finally had a
glimpse at non-minimal consistent conformal theories of electroweak symme-
try breaking, where we briefly discussed possible directions for further well-
motivated SM extensions. This already illustrates that our result constitutes
an important step towards systematically constructing non-minimal confor-
mal models, which may then accommodate further aspects of new physics
and will thus yield a more complete picture of particle physics in a classically
scale-invariant framework. Likewise, our study can be seen as a prototype
for similar systematic analyses of different classes of conformal models, in
which one or more of our initial assumptions is altered or abandoned.



Chapter 4

Three-body Higgs boson
decays into extra light scalars

In the last chapter, we have encountered an explicit example of why the
scalar sector of the minimal Standard Model (SM) may need to be extended.
Specifically, addressing the long-standing gauge hierarchy problem via the
phenomenologically consistent implementation of Coleman-Weinberg sym-
metry breaking at around the electroweak scale required the presence of
extra bosonic degrees of freedom. Further reasons to study theories with
an enlarged scalar sector were already given in Chapter 1 in the context
of various beyond-the-Standard Model (BSM) scenarios (see also [8] for a
recent comprehensive review).

Regardless of the actual underlying motivation, there are several aspects
common to all such models. Most importantly, each additional fundamental
scalar field S inevitably interacts with the SM Higgs doublet Φ. To see why
this is true, note that the dimension-two operator S:S is a singlet under any
linearly realized internal symmetry that S may transform under. Irrespec-
tive of the quantum numbers of S, the theory’s most general, renormalizable
Lagrangian L will therefore inevitably contain a term of the form

L Ě ´λp

`

Φ:Φ
˘`

S:S
˘

, (4.1)

with a dimensionless coupling λp. Equation (4.1) is usually referred to as
(scalar) Higgs portal and has a number of important phenomenological con-
sequences. Here, we will mostly be interested in exotic processes involving
the 125GeV Higgs boson, which are induced by the above portal term or
similar operators. In particular, equation (4.1) implies that, once the Higgs
doublet acquires a finite vacuum expectation value (vev), its physical exci-
tation H can decay into a pair of extra scalars,

H Ñ SS , (4.2)

provided the final-state particles are sufficiently light.

63
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Indeed, as we have seen in Chapter 3, extra light scalar degrees of free-
dom may arise naturally as pseudo-Goldstone bosons of some spontaneously
broken, approximate global symmetry.a But also without underlying sym-
metry, the presence of low-mass scalar particles may be well motivated. Fa-
mously, the physical spectrum of the next-to-minimal supersymmetric SM
can contain a light pseudoscalar consistent with all existing experimental
constraints, cf. [154, 155] for recent reviews. Similar situations may be re-
alized in the two-Higgs-doublet model and its variants (for an overview, see
e.g. [144]).

Assuming for now the existence of a low-mass scalar S, the exotic Higgs
decay in equation (4.2) in principle offers a promising possibility to search
for these light particles at collider experiments.b Depending on the actual
properties of S, the aforementioned decay will lead to different signatures.
For one, if the light scalar does not interact with any detector component
and at the same time possesses a sufficiently long lifetime, such that it does
not decay itself within the detector, the process H Ñ SS will not be directly
observable. Still, it would contribute to the invisible Higgs width. Such BSM
contributions to the Higgs boson’s total width are, for instance, indirectly
constrained by precise measurements of Higgs signal strengths as performed
by both ATLAS and CMS [24]. Based on the 7 and 8TeV proton-proton
data sets, the collaborations were able to obtain a 95% CL upper bound of
0.34 on the total branching ratio of BSM Higgs decays [24]. Furthermore,
direct searches for invisible Higgs decays exist [156, 157] and may also help to
constrain models with light extra scalars. The current 95% CL upper limits
on the invisible Higgs branching fraction provided by ATLAS and CMS are
0.25 [156] and 0.24 [157], respectively. Both the aforementioned direct and
indirect bounds are, of course, expected to significantly improve during the
LHC’s high-luminosity phase and, in particular, at potential future electron-
positron colliders, see e.g. [158]. Note, furthermore, that the above limits
also constrain scenarios, where the light scalar S decays promptly, but only
into particles that do not leave traces in any of the detector components.

Next, let us discuss the case in which a low-mass scalar S is unstable and
decays into SM states within a typical detector radius. The basic process
in equation (4.2) will then lead to interesting non-standard Higgs decay
signatures, potentially observable at current and future colliders, namely

H Ñ SS Ñ 4 SM , (4.3)

where the Higgs is seen to decay into two pairs of SM particles, both of which

aRecall from Chapter 3 that there the relevant symmetry was anomalously broken scale
invariance. Correspondingly, the scalon only became massive via radiative corrections and
could thus be significantly lighter than the 125GeV Higgs boson.

bApart from high-energy collider experiments, there are multiple other ways to directly
or indirectly search for low-mass scalars. We will touch on some of them in the course of
Sections 4.1.1 and 4.2.1. A full review, however, is beyond the scope of the present study.
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have the same invariant mass. Depending on the actual model and the light
scalar’s decay modes, there may be a plethora of possible final states to be
considered here. Correspondingly, the ATLAS and CMS collaborations put
great effort into searching processes of the general form given in equation
(4.3). Comprehensive reviews on existing LHC analyses of two-body scalar
Higgs decays are e.g. provided in [39, 40].

In contrast, prior to our study in [49], the related decay of the Higgs
boson into three scalars,

H Ñ SSS , (4.4)

has never been discussed in the literature, despite the fact that it is predicted
by a large variety of models which extend the minimal SM by extra scalar
fields. In particular, all BSM theories in which new CP-even scalar degrees
of freedom mix into the physical 125GeV Higgs boson inevitably entail the
process of equation (4.4) as long as it is kinematically accessible.

The present chapter will therefore be devoted to investigating the phe-
nomenology of three-body scalar Higgs decays. As one of our main re-
sults, we will demonstrate that said exotic processes may occur abundantly
enough to be observed at current and near-future collider experiments via
certain six-particle signatures which all exhibit very special and characteris-
tic kinematic features. Interestingly, it turns out that a signal in the three-
body channel may even be found in scenarios where Higgs decays into only
two light scalars are suppressed and hence undetectable. Correspondingly,
the three-body mode can be seen as a complementary approach towards
searching for light scalar sectors at colliders. While the aforementioned find-
ings are obtained within a particular model, we also derive several model-
independent statements about the physical requirements which have to be
fulfilled in order for the three-body decay to be relevant.

The chapter is thereby structured as follows. In Section 4.1, we start by
discussing the formal basics of Higgs decays into light scalars. In doing so,
we do not resort to a specific model realization, but rather consider a generic
two-scalar potential. Based on this set-up we then review both experimen-
tal and theoretical constraints on the generic scalar couplings, which are
subsequently used to determine prerequisites for three-body Higgs decays
to become reasonably abundant. These model-independent results are then
complemented by in-detail studies of multibody scalar Higgs decays within
a specific model, namely the SM extension by one real scalar gauge singlet
(henceforth simply referred to as the “singlet-extended SM”). The latter is
introduced in Section 4.2, while its collider phenomenology is discussed in
Section 4.3. In particular, we identify the most promising signatures which
may lead to the detection of three-body scalar Higgs decays. We conclude
in Section 4.4.
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4.1 Higgs boson decays into scalars
– a model-independent analysis

Let us start by discussing somemodel-independent aspects of scalar-to-scalar
decays in theories describing particle physics at low energies. For that pur-
pose, we consider a generic model whose particle spectrum after electroweak
symmetry breaking is assumed to contain two electrically neutral and col-
orless physical scalar mass eigenstates, which will be denoted as H and h.
Without loss of generality, we adopt mH ě mh. The corresponding most
general leading-order potential at the renormalizable level will then be of
the following form

V pH,hq “
m2

H
2 H2 `

m2
h
2 h2 ` λ4HH4 ` λ4hh

4

` κ3HH3 ` κ3hh
3 ` κH2hHh2 ` κ2HhH

2h

` λ2H2hH
2h2 ` λ3HhH

3h ` λH3hHh3 .

(4.5)

The scalars’ mutual and self-interactions are parameterized by the dimen-
sionless couplings λi, as well as by the dimensionful parameters κi and mi.
Since the present chapter is devoted to studying exotic decays of the 125GeV
Higgs boson into scalars, we will always identify the heavier state H with the
SM-like Higgs found at the LHC. Accordingly, the low-mass scalar h is at-
tributed to some beyond-the-Standard Model (BSM) sector. As a side note,
we remark that some terms in the most general potential of equation (4.5)
may be forbidden by possible extra symmetries of the underlying theory or
its particle content.

From now on, we will always assume the scalar mass eigenvalues to satisfy
mH ě 3mh, so that both the Higgs decay into two and into three low-mass
states h are kinematically accessible. On the one hand, the leading-order
two-body decay rate is then calculated to be

Γ2 ” ΓpH Ñ 2hq “
κ2H2h

8πmH
¨ `2pxq , (4.6)

with the mass ratio x :“ mh{mH and the kinematic threshold function
`2pxq “

?
1 ´ 4x2. On the other hand, the interactions covered by the po-

tential in equation (4.5) equally imply the presence of three-body Higgs
decays already at tree-level. The corresponding relevant Feynman diagrams
are displayed in Figure 4.1. The process H Ñ 3h is thus mediated by the
contact interaction operator proportional to λH3h (Figure 4.1a), as well as
by the virtual exchange of a light scalar (Figure 4.1b). Notice that contri-
butions similar to that in Figure 4.1b, but with an intermediate Higgs H
are suppressed by the small ratio m2

h{m2
H and will therefore be neglected
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Figure 4.1: Leading-order Feynman graphs giving relevant contributions to the
decay H Ñ 3h: (a) contact interaction and (b) virtual h-exchange. There exist two
extra inequivalent final-state permutations for (b), which are not shown.

throughout this work. An explicit leading-order computation then yields

Γ3 ” ΓpH Ñ 3hq “
9mH

64π3

„

λ2
H3h

12
`

p0q

3 pxq ` λH3h
κH2hκ3h
m2

H

`
p1q

3 pxq

`
κ2H2hκ

2
3h

m4
H

´

`
p2q

3 pxq ` 2`
p1,1q

3 pxq

¯



,

(4.7)

where the full expressions of the various three-body threshold functions `3
can be found in Appendix C. To further our understanding of the formula
for Γ3 in equation (4.7), let us have a brief look at the individual terms
involved. On the one hand, the first and third terms originate from the
squared contact and h-exchange interaction diagrams, respectively. On the
other hand, the second term is due to the interference between the aforemen-
tioned contributions. Similarly, the fourth term arises from the interference
among h-exchange graphs of different final-state permutations.

One of the present study’s major goals is to assess the three-body mode’s
importance relative to its two-body counterpart. A convenient measure to
do so is given by the ratio of the associated partial widths, specifically

r :“
Γ3

Γ2
”

BpH Ñ 3hq

BpH Ñ 2hq
. (4.8)

Of course, we will be particularly interested in identifying scenarios where r
is of order unity or even larger. Nevertheless, one naively anticipates r to be
much smaller than one. Therefore, the usual approach towards multi-Higgs
models is to neglect existing three-body channels entirely, even if they are
kinematically allowed. As a justification of this simplification various ratio-
nales come to mind. For one, energy conservation requires the three-body
final state to have a smaller phase space than its two-body counterpart.
However, the associated phase space suppression decreases as the mass ratio
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mh{mH becomes tiny. Correspondingly, we will mostly focus on the situa-
tion where mh ! mH . Furthermore, processes involving the exchange of a
virtual particle are usually suppressed with respect to pure contact interac-
tions by an extra coupling and the mass of the internally propagating state.
The h-mediated contribution to the three-body rate (cf. Figure 4.1b) may
hence seem to be negligible. Still, if the low-mass state h is sufficiently light
and κ3h is not too small also these topologies can, in principle, contribute
significantly.

Apart from the three-body channel’s relative importance quantified by
r, also the absolute relevance of Higgs decays into scalar final states is of
interest. The latter can be measured by the associated inclusive branching
fraction, specificallyc

Bscalar :“ BpH Ñ 2hq ` BpH Ñ 3hq . (4.9)

The size of Bscalar is obviously crucial for assessing the prospects for detecting
any scalar Higgs decays at collider experiments. Let us finally remark that
given r and Bscalar the individual branching ratios are readily computed as

BpH Ñ 2hq “
Bscalar

1 ` r
and BpH Ñ 3hq “

r ¨ Bscalar

1 ` r
. (4.10)

Before we further investigate the range of possible values for r (and
Bscalar), let us first discuss existing experimental and theoretical constraints
on models based on the generic scalar potential of equation (4.5).

4.1.1 Model-independent constraints

In this section, we will study constraints that can be set on the general
scalar sector described by the potential of equation (4.5). Specifically, we
aim at finding all such constraints which are derived solely on the basis of
the aforementioned potential and are thus as model independent as possible.
Notice that the generic potential (4.5) does not provide any information on
the light scalar’s couplings to other particles beside the 125GeV Higgs boson.
In particular, the decay properties of h remain unspecified. In the following,
we will discuss experimental and theoretical constraints in turn.

A Experimental constraints

Empirical constraints on models with light scalar degrees of freedom usually
originate from high-precision measurements of suitable low- and medium
energy processes, especially meson decays. Important experiments in this
context include but are not limited to beam-dump facilities and fixed-target

cIn our definition of Bscalar we ignore contributions from Higgs decays into n scalars
with n ě 4. We will comment on why this is expected to be a reasonable approximation
later in Section 4.1.2 on page 75.
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experiments, such as those of the NA48 family. In addition, direct searches
at B factories, like BaBar or Belle, or at high-energy electron-positron col-
liders, such as LEP, may be relevant. Further details on this subject can,
for instance, be found in the corresponding passages of [159, 160]. However,
constraints based on the aforementioned experiments typically depend on
the low-mass scalar’s production and decay modes and thus necessarily on
its couplings to SM fermions or gauge bosons. They are therefore not of
interest to the present discussion. Note that also results from direct LHC
searches for invisible or other exotic Higgs decays involving light scalars are
not applicable here, since they have to make assumptions on the possible
decay channels of h as well.

Here, we will therefore focus on a different kind of measurements per-
formed at the LHC, namely those of Higgs signal strengths. In a combined
analysis based on Run 1 data, the ATLAS and CMS collaborations found
the SM predictions to be well reproduced, thus setting an indirect, but
nearly model-independent upper limit on the total branching fraction of
non-standard Higgs decays, specifically [24]

BpH Ñ BSMq ď Bmax

BSM “ 0.34 at 95% CL . (4.11)

The above result was obtained assuming that the investigated 125GeV Higgs
boson H is a single CP-even state with an SM-like tensor coupling struc-
ture, as well as SM-like production and decay kinematics. Furthermore, the
validity of the narrow-width approximation was assumed. Lastly, the Higgs
coupling modifiers in the κ-framework [161] were supposed to remain un-
changed when going from 7 to 8TeV and to satisfy |κW |, |κZ | ď 1, as well
as κW ¨ κZ ą 0.

The indirect limit on BpH Ñ BSMq in equation (4.11) can be translated
into an 95% CL upper bound on the non-standard Higgs width,

ΓpH Ñ BSMq ď ΓSM
H

Bmax

BSM

1 ´ Bmax

BSM

» 2.1MeV , (4.12)

where we assumed that the Higgs partial width for decays into SM final
states is similar to that predicted by the minimal SM, namely ΓSM

H “ 4.1MeV
[162]. In a general model of new physics, the Higgs can have further BSM
decay channels in addition to those involving light scalars. For the following
study, we will, however, restrict ourselves to scenarios in which all contribu-
tions due to decays into non-scalar final states are negligible, i.e.

BpH Ñ BSMq “ Bscalar “
Γ2 ` Γ3

ΓSM
H ` Γ2 ` Γ3

, (4.13)

where we used the definition of Bscalar from equation (4.9) in the second step.
Combining equations (4.11) and (4.13) then obviously yields Bscalar ď 0.34.
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The latter result also enables us to constrain the allowed ranges for some
of the couplings in the generic potential of equation (4.5). On the one hand,
neglecting the three-body decay mode H Ñ 3h for the moment, equations
(4.11) and (4.13) permit us to derive

|κH2h|

mH
À

d

8π
ΓSM
H

mH

Bmax

BSM

1 ´ Bmax

BSM

» 0.02 , (4.14)

where we employed Γ2 in the form of equation (4.6) with mh ! mH , in which
case the threshold function `2pxq is close to unity. Similarly, one arrives at
a bound on λH3h if one temporarily ignores the two-body channel H Ñ 2h,
specifically

|λH3h| À

d

256π3

3

ΓSM
H

mH

Bmax

BSM

1 ´ Bmax

BSM

» 0.2 . (4.15)

Here, we used that theoretical consistency requires |κ3h| À Opmhq as we
will explicitly demonstrate in the next paragraph. Hence, |κ3h| is neces-
sarily much smaller than mH , so that we can approximately neglect the
corresponding terms in the formula for Γ3 in equation (4.7). Additionally
employing that `

p0q

3 pxq approaches unity for mh ! mH finally gives the limit
in equation (4.15).

B Theoretical constraints

Complementary to the empirical bounds derived in the previous paragraph,
we are now interested in how purely theoretical considerations may help in
narrowing down the viable parameter space for our generic two-scalar model
based on equation (4.5).

We will start by reviewing limits originating from tree-level perturbative
unitarity (see e.g. [163] and our account in Appendix D for details). The
underlying idea is based on the observation that probability has to be con-
served in any well-behaved quantum field theory. This, in turn, necessitates
the unitarity of the theory’s S-matrix which then inevitably constrains said
theory’s scattering amplitudes. To put it differently, unitarity bounds im-
plement the intuitive requirement that the probability for a given process
to occur can never be larger than one. From a more technical point of view,
perturbative unitarity is most conveniently imposed on the partial-wave am-
plitudes aj associated with a given process, which are thereby forbidden to
become arbitrarily large. For instance, the corresponding bound in the case
of elastic scattering of two identical particles of mass m is

|Re ãjpsq| ď 1 @j ě 0 , (4.16)
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which has to be satisfied for all kinematically allowed center-of-mass energies
?
s. Notably, equation (4.16) does not contain the exact coefficients aj of

the considered partial-wave expansion, but a modified version defined by

ãj :“ ξpsqajpsq with ξpsq “

c

1 ´
4m2

s
.

The above form crucially involves the energy-dependent function ξpsq and
thus guarantees to properly take into account kinematic effects near the
threshold sth “ 4m2. Accordingly, one recovers ãj Ñ aj far above the afore-
mentioned threshold.

For the purpose of applying the ideas just outlined to our general model,
we calculated the matrix elements of two-to-two scalar scattering processes
solely based on the generic potential of equation (4.5). Thereby, the severest
constraints on the scalar couplings were found to arise from the s-wave am-
plitude (i.e. j “ 0) associated to elastic scattering of light scalars, hh Ñ hh.
For computational details, we again refer to Appendix D. Interestingly, im-
posing the unitarity bound of equation (4.16) over the whole range of acces-
sible energies allows to constrain multiple parameters at the same time.

First, at asymptotically large energies, s Ñ 8, the only finite contribu-
tion to a0phh Ñ hhq originates from momentum-independent contact inter-
actions. Consequently, perturbative tree-level unitarity induces an upper
bound on λ4h as per equation (4.16), which is found to be

λ4h ď
2π

3
» 2.1 . (4.17)

The next constraint derives from the observation that hh Ñ hh scatter-
ing is dominated by s-channel Higgs exchange at energies around the Higgs
pole. Accordingly, the function |Re ã0| is anticipated to exhibit a local maxi-
mum close to s » m2

H . A dedicated calculation of the partial-wave amplitude
and requiring the unitarity bound of equation (4.16) to be satisfied across
the Higgs resonance result in

|κH2h|

mH
ď

c

8π
ΓH

mH
» 0.03 . (4.18)

In numerically evaluating the right-hand side above, we employed the mea-
sured Higgs mass [81], as well as the SM prediction for the Higgs boson’s
total decay width [162]. Obviously, new physics effects like the presently
considered Higgs decays into light scalars will generally lead to an enlarged
ΓH (cf. equation (4.12)). Using the maximally allowed value for ΓH consis-
tent with current Higgs signal strength measurements, one obtains a relaxed
upper limit of κH2h{mH À 0.04. In any case, the constraints on the trilin-
ear portal coupling arising from perturbative unitarity turn out to be less
stringent than that from experiment presented in equation (4.14).
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Lastly, contributions from t- and u- channel h-exchange were found to
typically dominate the s-wave amplitude of hh Ñ hh scattering near the
kinematic threshold at sth “ 4m2

h. In particular, the function |Re ã0| as
given in Appendix D possesses a further local maximum at small energies,
whose exact position depends on the light scalar’s self-couplings κ3h and
λ4h, as well as on its decay width. Asking the unitarity bound of equation
(4.16) to hold at said maximum then enables us to put an upper limit on
κ3h. Assuming Γh ! mh, as is usually the case for low-mass scalars, and
vanishing λ4h, we find

|κ3h|

mh
À 1.64 . (4.19)

Finite values of λ4h will lead to cancellations in |Re ã0| between contributions
from contact and h-exchange diagrams. Accordingly, the limit of equation
(4.19) is slightly relaxed for λ4h ą 0. Adopting, for instance, λ4h “ 1

2 im-
plies |κ3h|{mh À 1.73. Notably, the quoted bounds on κ3h are intuitive in
the sense that they confirm the naive expectations based on dimensional
analysis: the dimensionful trilinear scalar self-coupling cannot significantly
exceed the associated particle’s mass (cf. also [164]).

A second category of theoretical consistency checks arises from requiring
the validity of the perturbative expansion of physical observables in a given
quantum field theory. For instance, let us consider a generic quartic scalar
self-interaction operator with dimensionless coefficient λ. If the operator is
normalized such that the associated Feynman rule is ´iλ, then the relevant
expansion parameter of the perturbative series can be shown to be λ{p4πq.
Correspondingly, a necessary condition for the perturbative approach to
be applicable in the case just described is |λ| ă 4π, which is the form of
the perturbativity bound that is widely used in the literature. Taking into
account the different normalizations of the operators in the potential of
equation (4.5) and rescaling the above perturbativity limit accordingly, we
obtain

λH3h ă
2π

3
» 2.1 , λ4h ă

π

6
» 0.52 and λ2H2h ă π » 3.1 , (4.20)

as well as similar constraints on the remaining quartic couplings, which are,
however, not relevant to us here. Notably, the perturbativity bound on λ4h

is significantly better than the limit arising from unitarity in equation (4.17).

4.1.2 Model-independent results

After our discussion of generic constraints on models with extra light scalars
in the previous paragraphs, we are now in the position to derive some model-
independentd statements on scalar Higgs decays in general, and on the three-

dWhen deriving the constraint based on Higgs signal strength measurements, a number
of mild assumptions on the underlying model were made, which are outlined between
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Figure 4.2: Ratio r “ Γ3{Γ2 as a function of κH2h and λH3h for mh “ 5GeV
and different values of κ3h{mh. The r “ 1 contour is drawn as white dashed line.
Additionally, contours of constant scalar Higgs branching fraction Bscalar are shown
as black dash-dotted lines. The dark shaded regions are excluded by Higgs signal
strength measurements as per equation (4.11).

body mode’s relevance in particular. Said statements build on the results
summarized in Figures 4.2 and 4.3. Here, the color code represents the ratio
r “ Γ3{Γ2, which is plotted as a function of different couplings that param-
eterize the rates of scalar Higgs decays. Additionally, we draw contour lines
of constant branching ratio Bscalar as defined in equations (4.9) and (4.13).
Note that all plots are based on the full formulas for the partial widths Γ2

and Γ3 in equations (4.6) and (4.7), respectively. In the following, contri-
butions to the three-body rate due to contact and h-mediated interactions
will be schematically denoted as Γc

3 and Γh
3 , respectively.

Figure 4.2 now shows the ratio r and the branching fraction Bscalar in the
κH2h-λH3h plane with all other model parameters held constant. Specifically,
we fixed the light scalar’s mass to 5GeV. The left and right panels were
then obtained for two different values of κ3h{mh. In both plots, the shaded
regions are excluded by current Higgs signal strength measurements and the
approximate bounds of equations (4.14) and (4.15) are well reproduced.

Most importantly, Figure 4.2 demonstrates that a substantial part of
the available parameter space entails values for r greater than unity. In-
terestingly, both r and Bscalar can be large at the same time so that the
three-body channel may indeed be relevant to the model’s phenomenology.
Furthermore, the light scalar’s sizable trilinear self-interactions, adopted to
produce the results of the left panel, are found to lead to a slightly enhanced
rate Γ3 and thus to values for r which are somewhat larger than those in
the right panel. The aforementioned effect is particularly pronounced in the

equations (4.11) and (4.13). Besides, we assumed Γh ! mh in order to deduce the unitarity
bound on κ3h.
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Figure 4.3: Ratio r “ Γ3{Γ2 as a function of κH2h and κ3h for mh “ 5GeV and
different values of λH3h. Contours of constant scalar Higgs branching fraction Bscalar

are shown as black dash-dotted lines. The dark shaded regions on the right sides
of each plot are excluded by Higgs signal strength measurements as per equation
(4.11). Similarly, the shaded regions of large κ3h{mh are ruled out by tree-level
perturbative unitarity according to equation (4.19). Note the different color scale
as compared to Figure 4.2.

phenomenologically less interesting region where r ă 1. In contrast, both
plots are virtually identical in the r ą 1 regime, which is a first indication of
the fact that it is most of all the size of the contact interactions λH3h that
determines whether the three-body channel can be dominant or not.

The above statement is further substantiated by the findings displayed
in Figure 4.3. In a similar manner to before, the corresponding plots show
the quantities of interest r and Bscalar in the κH2h-κ3h plane. Again, all
other parameters were fixed and mh “ 5GeV was chosen. The two panels
now differ in the size of the contact contribution to the three-body rate Γc

3:
Whereas the latter is finite in the left plot, it vanishes in the right one. For
both scenarios, we include constraints on the parameter space due to Higgs
signal strength measurements and perturbative unitarity.

The comparison between the two panels in Figure 4.3 allows for several
important conclusions. First, the nearly vertical contour lines imply that
the overall rate of scalar Higgs decays for a given value of λH3h is mainly
fixed by κH2h. In contrast, the impact of the light scalar’s trilinear self-
coupling on Bscalar is only of minor importance. Rather, the right plot
reveals that κ3h sets the relative size of the h-mediated contribution Γh

3

with respect to the two-body rate Γ2, as is expected based on equations
(4.6) and (4.7). Correspondingly, in cases where the contact contribution
Γc
3 is negligible, the ratio r is found to grow as κ23h while not depending

on any other couplings. The unitarity bound on κ3h presented in equation
(4.19) will therefore inherently limit the range of possible r values, if contact
interactions are absent. Specifically, r is observed to never exceed Op10´1q
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in this scenario. The situation changes, however, once λH3h becomes non-
zero. Since the corresponding contact contribution Γc

3 stays finite as κH2h

and thus Γ2 tend to zero, we find relatively large ratios r in the left panel’s
left half. Larger values for λH3h will finally extend the regime of sizable r
towards larger κH2h and hence larger Bscalar.

We conclude, that the existence of a region in parameter space with r Á 1
inevitably requires the presence of finite contact interactions contributing
to H Ñ 3h and thus a non-zero value of λH3h. In contrast, a limit on the
trilinear self coupling κ3h from perturbative tree-level unitarity prevents r
from increasing beyond Op10´1q for vanishing λH3h.

In order to appreciate the necessity of this last observation, let us tem-
porarily assume that κ3h was allowed to exceed the aforementioned unitarity
bound. As a consequence, ratios r of order unity could be realized even in
the absence of contact interactions. In a similar manner, the rates of Higgs
decays into more than three light scalars might become large as well, ulti-
mately leading to the clearly unphysical scenario where Γ2 » Γ3 » Γ4 » . . ..
In reality, boosting r from Op10´1q to Op1q or above must therefore nec-
essarily rely on additional tree-level contact interactions as we have argued
before. Crucially, such contact interactions contributing to the scalar n-
body Higgs decays H Ñ nh are absent at the renormalizable level for n ě 4.
Still, within the effective field theory framework, the operators Hhn may be
induced due to integrating out some heavy new degree of freedom. However,
said operators are irrelevant for n ě 4 in the sense of the renormalization
group, so that their coefficients will be unavoidably suppressed by the heavy
particle’s mass. The associated contributions and hence Higgs decays into
four or more light scalars in general are therefore expected to be negligible.
In that sense, the three-body channel is indeed unique.

4.2 Scalar singlet-extension of the Standard Model

The discussion on multibody scalar Higgs decays presented in the last sec-
tion was largely independent of the underlying theory’s details. However, we
also stressed the importance of the light scalar’s properties when it comes to
actually searching for this type of exotic Higgs decay signatures at collider
experiments. Therefore, we will now study a specific particle physics model,
in which a scalar potential of the form given in equation (4.5) is realized
at low energies. Specifically, we consider the simple extension of the Stan-
dard Model (SM) by one real scalar gauge singlet S (see e.g. [165–169]). Its
most general renormalizable tree-level potential before electroweak symme-
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try breaking (EWSB) reads

V pΦ, Sq “ µ2Φ:Φ ` λpΦ:Φq2

`
δ1
2

pΦ:ΦqS `
δ2
2

pΦ:ΦqS2

` κ1S `
κ2
2
S2 `

κ3
3
S3 `

κ4
4
S4 ,

(4.21)

where Φ denotes the usual complex Higgs doublet of the minimal SM as
defined in equation (2.3). Its self-interactions are captured by the first line
of equation (4.21), which is equivalent to the SM Higgs potential introduced
in equation (2.12). The second line then contains the possible operators
connecting the doublet and singlet sectors, including the generic dimension-
four scalar portal already mentioned in equation (4.1). The scalar field S
being a real gauge singlet not charged under any extra symmetry, implies
the presence of an additional portal term which is trilinear in the fields and
has a dimensionful coefficient δ1. Lastly, the third line of equation (4.21)
describes the self-interactions of S. Here, too, operators with an odd number
of singlet fields appear due to the trivial symmetry properties of S.

As in the minimal SM, the Higgs doublet Φ acquires a finite vev v upon
EWSB. Working in unitary gauge, we can write in analogy to equation (2.4)

Φ “ 1?
2

ˆ

0
v ` φ

˙

with v “ 246GeV . (4.22)

A priori, also the singlet field can possess a non-zero vev vs. The leading-
order vacuum field configuration can then be determined by solving the
model’s tadpole equations, which follow from the minimization conditions
of the tree-level potential in equation (4.21) and can be computed to be

µ2 “ ´λv2 ´ 1
2vspδ1 ` δ2vsq , (4.23a)

κ1 “ ´1
4δ1v

2 ´ vs
`

κ2 ` κ3vs ` κ4v
2
s ` 1

2δ2v
2
˘

. (4.23b)

The second equation demonstrates that the presence of the term linear in
S and proportional to κ1 allows us to set vs “ 0 without loss of general-
ity. In this case, the tadpole equations (4.23) are solved by µ2 “ ´λv2 and
κ1 “ ´δ1v

2{4.
For the phenomenology of the singlet-extended SM, the following obser-

vation is especially crucial. The CP-even scalar fields φ and S share the
same set of quantum numbers. In particular, both are colorless and elec-
trically neutral. Therefore, the trilinear portal term proportional to δ1 will
in general induce mixing of the aforementioned gauge eigenstates φ and S
into two mass eigenstates, which will be denoted as H and h. The transla-
tion between those two sets of eigenstates is described by a two-dimensional
rotation in field space, i.e.

φ “ cos θ ¨ H ´ sin θ ¨ h and S “ cos θ ¨ h ` sin θ ¨ H , (4.24)
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where the size of the real mixing angle θ quantifies the misalignment of
the two eigenbases and thus the strength of the mixing. In line with the
physical scenario we have in mind, we will identify the eigenstate H with
the SM-like Higgs boson discovered at the LHC, while h will be assumed to
be a much lighter scalar particle, i.e. mh ! mH “ 125.09GeV [81]. Under
these premises, existing experimental results constrain the mixing angle to
be relatively small, as we will see explicitly in Section 4.2.1.A. Importantly,
note that only the gauge eigenstate φ couples to the SM fermions and gauge
bosons, namely in the way reviewed in Chapter 2 (see in particular equations
(2.10) and (2.21)). Still, the presence of mixing as given in equation (4.24)
implies that both physical scalars H and h interact with the remaining SM
particles. In particular, the low-mass state h will have the same couplings as
a SM Higgs, but suppressed by a factor of sin θ. Likewise, the heavy state’s
interaction strengths will be slightly degraded as compared to those of the
Higgs boson in the minimal Standard Model, namely by cos θ.

A more formal description of mixing in the sector of CP-even scalars
starts with the realization that the corresponding mass squared matrix is
non-diagonal. Specifically, the model’s potential after EWSB and in unitary
gauge can be brought into the form

V “ 1
2

`

φ S
˘

ˆ

2λv2 1
2δ1v

1
2δ1v κ2 ` 1

2δ2v
2

˙ ˆ

φ
S

˙

+ higher-order interactions

As already indicated, the above mass squared matrix can be diagonalized
analytically by means of the rotation in equation (4.24). Thereby, it is
possible to calculate the physical particle masses as well as the mixing angle
in terms of Lagrangian parameters. The thus obtained relations can also be
inverted, resulting in

λ “
m2

H cos2 θ ` m2
h sin

2 θ

2v2
,

κ2 “ ´
δ2v

2

2
` m2

h cos
2 θ ` m2

H sin2 θ ,

δ1 “
m2

H ´ m2
h

v
sin 2θ .

(4.25)

Equations (4.25) conveniently allow to eliminate the less intuitive Lagrangian
couplings λ, κ2 and δ1 in favor of the two physical masses and the scalar
mixing angle. The model’s scalar sector is now fully characterized by three
dimensionless parameters (sin θ, δ2, κ4) and two dimensionful quantities (mh

and κ3). The electroweak scale v and the Higgs mass mH will be regarded
as fixed and are therefore set to their measured values.

For the purpose of making contact with our model-independent formula-
tion of multibody scalar Higgs decays in the previous section, we first need
to express the model’s potential in terms of the scalar mass eigenstates H
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and h. To that end, we plug in equations (4.22) to (4.25) into said poten-
tial (4.21). The resulting form will then be that of the generic potential in
equation (4.5) so that we can simply read off the relevant couplings. For the
purposes of this work, the most interesting parameters are

λH3h “ 1
2 sinp2θq

”

`

κ4 ´ 1
2δ2

˘

cos2 θ

` 1
2

`

δ2 ´ m̂2
H cos2 θ ´ m̂2

h sin
2 θ

˘

sin2 θ
ı

,

λ4h “ 1
4

`

κ4 cos
4 θ ` δ2 cos

2 θ sin2 θ

` 1
2m̂

2
H cos2 θ sin4 θ ` 1

2m̂
2
h sin

6 θ
˘

,

λ2H2h “ 1
16δ2

”

1 ` 3 cosp4θq

ı

` 3
16 sin

2p2θq
`

2κ4 ` m̂2
H cos2 θ ` m̂2

h sin
2 θ

˘

,

κH2h “ 1
2v cos θ

”

δ2 ` κ̂3 sinp2θq `
`

m̂2
H ` 2m̂2

h ´ 3δ2
˘

sin2 θ
ı

,

κ3h “ 1
3κ3 cos

3 θ ´ 1
2v sin θ

`

δ2 cos
2 θ ` m̂2

h sin
2 θ

˘

,

(4.26)

where we introduced the dimensionless trilinear self-coupling κ̂3 :“ κ3{v, as
well as the dimensionless mass parameters m̂ :“ m{v. As already alluded to
above, experiments require the mixing angle θ to be small. For the sake of
clarity and to identify the dominant terms, it is instructive to expand the
exact expressions in equation (4.26) to first order in θ. One obtains

λH3h » pκ4 ´ 1
2δ2qθ , λ4h » κ4

4 , λ2H2h » δ2
4 ,

κH2h » 1
2δ2v ` κ3θ , κ3h » 1

3κ3 ´ 1
2δ2vθ .

(4.27)

Note, however, that we will use the exact relations of equation (4.26) in all
of our calculations throughout this chapter.

Nevertheless, the approximate identities of equation (4.27) are helpful
since they make some important features of the model particularly manifest.
For instance, the parameter λH3h is seen to be proportional to the mixing
angle and thus vanishes in the decoupling limit θ Ñ 0, where the light Higgs
does not interact with any of the SM fermions or gauge bosons. According
to our model-independent discussion of Section 4.1.2, the three-body decay
channel is therefore hardly relevant in this limit. In the case of non-zero
mixing, λH3h is governed by the quartic singlet self-coupling κ4 and by the
dimensionless portal δ2. As opposed to λH3h, all of the remaining couplings
that we considered above stay finite in the decoupling limit. In particular,
the low-mass scalar’s trilinear self-coupling κ3h is then given by κ3, which
thus controls the size of the h-mediated contribution to the three-body rate
relative the partial width of the two-body mode. In conclusion, relatively
strong self-interactions in the singlet sector are found to be a a necessary
condition for the three-body channel to be relevant. Correspondingly, the
non-observation of three-body decays may be exploited to derive limits on
said self-interactions.
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4.2.1 Constraints on the parameter space

Now that we study a particular model of BSM physics and know how the
light scalar h couples to all SM fermions and gauge bosons, we are in the
position to expand our review of model-independent constraints presented
in Section 4.1.1. Accordingly, we will now address both experimental and
theoretical constraints specific to the real singlet extension of the SM. In do-
ing so, we focus on those model parameters which were previously identified
to govern multibody scalar Higgs decays, cf. our discussion after equation
(4.27).

A Experimental constraints

As we have already outlined in the introduction to the present chapter,
as well as in Section 4.1.1.A, there exist various experiments to directly or
indirectly search for low-mass scalars. In the following, we will briefly review
those measurements which have the strongest impact on the parameter space
of the singlet-extended SM. For a more complete account on the subject, we
refer the reader to [159].

Notably, the applicability of a given constraint crucially depends on
the mass of the light scalar h. We will therefore discuss different regions
of mh in turn. First, let us assume the light scalar’s mass to lie below
pmK ´ mπq « 360MeV. In this regime, precise measurements of kaon de-
cays turn out to confine the mixing angle θ to tiny values of order 10´3 or
smaller [159]. Consequently, the singlet sector virtually decouples, which
was previously demonstrated to significantly reduce the relevance of the
three-body Higgs decay mode H Ñ 3h. We will therefore ignore the mass
region below 360MeV in the following, even though we will briefly study
the decoupling limit θ Ñ 0 for larger masses of h in Section 4.3.1.

For light scalar masses greater than 360MeV the constraints on the mix-
ing angle relax to some extent, since the on-shell kaon decay K Ñ π ` h is
no longer kinematically accessible. Below the B-meson mass threshold at
mB « 5GeV the most stringent bounds on θ then originate from measure-
ments of B-meson decays [159]. Specifically, the presence of a light scalar
interacting with the SM fermions and gauge bosons contributes to the in-
clusive decay channel B Ñ Xs`

``´ via additional penguin diagrams. As a
consequence, the associated branching ratios must fulfill the relevant exper-
imental limit, namely [83]

BpB Ñ Xs ` hq ¨ Bph Ñ µ`µ´q ă BpB Ñ Xs`
``´q “

`

3.66`0.76
´0.77

˘

¨ 10´6 .

The branching fraction of the initial B decay can be computed using effective
field theory [170], which then leads to

sin2 θ ¨ Bph Ñ µ`µ´q À 0.51 ¨ 10´6 . (4.28)
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In complete analogy, the exclusive decay mode B Ñ Kµ`µ´ can be used to
derive a constraint similar to that in equation (4.28), see [159]. In order to
obtain an actual bound on the mixing angle θ, both cases require knowledge
about the branching ratio of the light scalar decay into a pair of muons.
However, calculating said branching fraction involves properly taking into
account non-perturbative QCD effects as will be discussed in more detail in
Section 4.2.2. Here, we restrict ourselves to stating that Bph Ñ µ`µ´q is
found to vary between roughly 1% and about 10% in the considered mass
range, so that the mixing angle cannot exceed 10´2 as per equation (4.28).

For low-mass scalars heavier than the B-meson threshold, the initial on-
shell decay B Ñ Xs ` h is kinematically forbidden as well. Relevant bounds
on the mixing angle now arise from Υ decays [171] and from LEP searches
for the Bjorken process e`e´ Ñ Z˚h [172–174], with the severest constraints
coming from the latter. Specifically, the L3 analysis of [173] implies

sin θ À 0.1 at 95% CL (4.29)

for light scalar masses below 10GeV, while the corresponding ALEPH bound
based on [172] is somewhat weaker [159]. Notably, both of the aforemen-
tioned studies make assumptions on the possible decay channels of h, which
are, however, fulfilled by the light scalar in the singlet-extended SM. Hence,
we do not have to resort to the OPAL analysis of [174], which is decay-mode
independent indeed, but also produces the least stringent limits.

In the case of even heavier scalars, mh Á Op10GeVq, a substantial phase
space suppression begins to reduce the rate of the three-body Higgs decay.
In conclusion, within the singlet-extended SM, the light scalar mass range

360MeV À mh À Op10GeVq (4.30)

is anticipated to produce the most promising phenomenology with respect
to scalar three-body Higgs decays at current or future collider experiments.

Note that all of the constraints presented up to now derive from the
fact that interactions of h with SM fermions and gauge bosons are not al-
lowed to be arbitrarily strong. Thus, said constraints could only limit the
scalar mixing angle θ, which parameterizes these interaction strengths. Ad-
ditional restrictions on the model’s parameter space follow from the model-
independent bounds based on Higgs signal strength measurements, which
we discussed in Section 4.1.1.A. In the following analyses, we will therefore
always require the associated constraint from equation (4.11) to be satisfied.

B Theoretical constraints

The model-independent constraints from imposing unitarity and perturba-
tivity, which we already discussed in Section 4.1.1.B, can be straightfor-
wardly applied to the singlet-extended SM, thus limiting its fundamental
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parameters. To that end, we require the scalar couplings in the form of
equation (4.26) to satisfy all of the consistency conditions given in equations
(4.17) to (4.20). Note that it is these exact bounds that we will impose in
all explicit calculations in the rest of the present chapter.

Nevertheless, in order to get a feeling for how the above constraints ac-
tually restrict the model’s parameter space, let us have a closer look at their
implications in the decoupling limit θ Ñ 0. On the one hand, perturbative
tree-level unitarity then necessitates

κ4 À 8.4 , |δ2| À 0.029 and
|κ3|

mh
À 4.9 (4.31)

as per equations (4.17), (4.18) and (4.19), respectively. On the other hand,
applying the perturbativity limits from equation (4.20) for θ Ñ 0 yields

κ4 ă
2π

3
» 2.1 and |δ2| ă 4π » 13 . (4.32)

In addition, we require the leading order potential in equation (4.21) to
be bounded from below, thus producing a stable vacuum. A straightforward
calculation (cf. e.g. [175]) yields the following criteria for absolute stability:

λ ě 0 , κ4 ě 0 and δ2 ě ´2
a

λκ4 , (4.33)

where λ is given by equation (4.25) and is automatically positive in the
chosen parameterization. Obviously, the aforementioned stability bounds
must hold for all values of the scalar mixing angle θ.

4.2.2 Decay properties of the light scalar

As we have learned before, the light scalar h in the singlet-extended SM
couples to Standard Model fermions and gauge bosons like the physical Higgs
particle of the minimal SM, but with coupling strengths that are suppressed
by a common factor of sin θ (see equation (4.24) and the ensuing discussion).
The branching fractions for decays of h are therefore independent of the
mixing angle and correspond precisely to those of a SM Higgs of the same
mass. In determining the decay properties of h, we can thus resort to the
existing literature on this subject. As is to be expected, said decay properties
strongly depend on the light scalar’s mass mh and we will study different
mass regions in turn.

Let us start with the mass range between 360MeV and roughly 1GeV.
Here, the light scalar will predominantly decay into muon and pion pairs, as
well as kaon pairs, provided its mass is larger than the associated threshold
at 2mK « 988MeV, see e.g. [176]. Whereas the leading-order partial width
of the decay into muons is readily computed,

Γph Ñ µ`µ´q “ sin2 θ
m2

µmh

8πv2

˜

1 ´
4m2

µ

m2
h

¸3{2

, (4.34)
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Figure 4.4: Branching fractions of the light scalar in the singlet-extended SM. The
results were obtained based on [176] (panel (a)) and [177] (panel (b)), respectively.
For the low-mass regime, we also plot the maximally allowed mixing angle according
to equation (4.28).

the calculation of both Γph Ñ ππq and Γph Ñ KKq is more intricate and
thus requires advanced techniques. The reason for this is twofold: First,
a simple perturbative treatment of the aforementioned hadronic processes
is not meaningful, as mh is assumed to be of the order of the QCD scale.
Consequently, non-perturbative effects need to be accounted for and suitable
approaches, like e.g. chiral perturbation theory (χPT), must be used. In this
spirit, the partial width of the decay into pions was computed in [178–180]
applying leading-order χPT. It reads

Γph Ñ ππq “ sin2 θ
m3

h

216πv2

ˆ

1 `
11

2

m2
π

m2
h

˙2
d

1 ´
4m2

π

m2
h

. (4.35)

A second complication in calculating the hadronic branching fractions of h
arises from the fact that final-state meson-meson interactions were found
to be non-negligible and to substantially alter results like that in equation
(4.35) [181]. A fully consistent treatment of the problem was given in [176],
where the authors used next-to-leading order χPT supplemented by disper-
sion theory so as to consistently take into account the aforementioned final-
state interactions. Based on these results, we have computed the branching
ratios of the light scalar h in the low-mass regime between 360MeV and
roughly 1GeV. Together with the maximally allowed scalar mixing angle
consistent with the experimental bound of equation (4.28), said branching
fractions are shown in Figure 4.4a. Note that the large enhancement in the
rate of the pion channel just below the kaon mass threshold 2mK originates
from the existence of the scalar isosinglet resonance f0p980q, which induces
a resonant amplification of final-state interactions.
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Figure 4.5: Mass-dependent decay properties of the light scalar in the singlet-
extended SM for various mixing angles θ. The shown results were obtained based
on [176] (mh ď 1.4GeV) and [177] (mh ě 2GeV), respectively. The decay length
in (b) was calculated as per equation (4.36) assuming Eh » mH{3.

For light scalars heavier than roughly 1GeV, non-perturbative effects
from QCD start to become irrelevant, so that the partial decay widths of
h can be calculated in conventional perturbation theory. Notably, larger
values for mh also open up a variety of new final states. We have calculated
the branching ratios for the most important decay modes of h using HDECAY

[177] and display our results in Figure 4.4b.

Having determined the rates of all of the light scalar’s relevant decay
channels, its total width Γh is, of course, straightforward to compute. As
shown in Figure 4.5a, Γh turns out to be relatively small. Especially in
the low-mass regime below 1GeV, where the mixing angle is required to
be small by consistency with experiment and only a few final states are
kinematically accessible, the total decay width is found to be tiny. It is
therefore useful to also determine the light scalar’s typical decay length
L. Assuming that all scalars originating from an initial Higgs decay are
produced with characteristic lab-frame energies of order of the Higgs mass,
Eh » OpmHq " mh, their decay length is approximately given by

L “
Eh

mhΓh
` O

ˆ

m2
h

E2
h

˙

. (4.36)

Setting Eh » mH{3 for the sake of concreteness, the mass dependence of L
is presented in Figure 4.5b. As an example, our findings imply for the decay
length of a 500MeV scalar

L »

ˆ

10´3

sin θ

˙2

¨ 0.55m . (4.37)
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For typical values of the scalar mixing angle in the low-mass regime, sin θ “

Op10´3q, decays of h are thus expected to occur on macroscopic length
scales. Consequently, the associated decay vertices must be anticipated to
be clearly displaced from the primary interaction vertex and searches have
to be performed accordingly. As an aside, let us mention that in the case
of even smaller mixing angles, light scalar decays will happen largely out-
side of a typical detector radius so that scalar Higgs decays may remain
invisible. However, future large surface detectors like the recently proposed
MATHUSLA are designed to observe decays of neutral long-lived particles
and could hence provide a remedy [182].

Figure 4.5b furthermore signifies that displaced vertices are not neces-
sarily produced for larger masses of h. To be more specific, the decay length
for a 5GeV scalar with energy Eh » mH{3 is exemplarily calculated as

L »

ˆ

0.1

sin θ

˙2

¨ 9.1 nm . (4.38)

4.3 Scalar Higgs decays at colliders

In the following section we will study the detection prospects at current
or near-future collider experiments for three-body Higgs decays into light
scalars as predicted by the singlet-extended SM. As already argued in Sec-
tion 4.2, the model’s collider phenomenology will crucially depend on the
light scalar’s mass, which, on the one hand, fixes the maximally allowed
amount of mixing between the model’s CP-even scalar degrees of freedom,
and, on the other hand, determines the light scalar’s major decay modes.
We will therefore distinguish low-, intermediate- and high-mass regimes and
discuss their physics in turn in Sections 4.3.1, 4.3.2 and 4.3.3. In doing
so, we will identify regions of parameter space where the three-body decay
channel can have rates comparable to or larger than those of its two-body
counterpart. We will then calculate the cross-sections of processes which
best lend themselves as potential discovery channels of a light scalar sector
via Higgs decays.

4.3.1 Low-mass regime

Let us start by investigating the case of light scalars with masses between
the kaon decay threshold at pmK ´ mπq « 360MeV and the kaon pair pro-
duction threshold at 2mK « 988MeV. In order to identify phenomenologi-
cally interesting regions of parameter space, we calculate the ratio of partial
Higgs decay widths r “ Γ3{Γ2 introduced in equation (4.8) as a function of
the quartic portal coupling δ2 and the light scalar’s trilinear self-interaction
strength κ3. Our results for a 900MeV scalar boson are shown in Figure 4.6.
Obviously, the presented plots are very similar to those in Figure 4.3 and
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Figure 4.6: Ratio r “ Γ3{Γ2 in the singlet-extended SM as a function of δ2 and
κ3 for mh “ 900MeV. We show contours of constant r as white dashed lines. Ad-
ditionally, contours of constant scalar Higgs branching fraction Bscalar are drawn as
black dash-dotted lines. All points displayed here satisfy the constraints discussed
in Section 4.2.1, in particular that on κ3{mh from equation (4.31). We compare
the cases of finite and vanishing contact coupling λH3h, which are realized by set-
ting θ “ 4.8 ¨ 10´3 and κ4 “ 2.0 (left panel) or θ Ñ 0 and κ4 “ 0.1 (right panel),
respectively.

the associated discussion from Section 4.1.2 can be directly applied to the
present situation. Most importantly, Figure 4.6 explicitly confirms our pre-
vious conclusion that ratios r of order one or larger require the presence
of non-negligible contact interactions contributing to the three-body decay
width via the Feynman diagram in Figure 4.1a. Accordingly, r is found to
not exceed Op10´1q if λH3h vanishes. In view of the importance of con-
tact interactions for the three-body mode’s relevance, it is instructive to
estimate the maximum possible value of the associated coupling λH3h for a
light scalar in the low-mass regime of the singlet-extended SM. Employing
the approximate formula for λH3h from equation (4.27), we obtain

λH3h » pκ4 ´ 1
2δ2qθ À 1.5 ¨ 10´3 ¨ Bph Ñ µ`µ´q´1{2 , (4.39)

where we adopted δ2 “ 0 and applied the relevant constraints on θ and κ4
from equations (4.28) and (4.32), respectively.

Next, let us study the model’s Higgs decay phenomenology in more detail
for a set of appropriately chosen benchmark points, namely

mh “ 500MeV , κ3 “ 2.45GeV , κ4 “ 1.0 , θ “ 2.4 ¨ 10´3 , (4.40a)

mh “ 500MeV , κ3 “ 0.50GeV , κ4 “ 0.1 , θ “ 0.0 . (4.40b)

From a physics point of view, the former parameter point describes a sce-
nario where the singlet sector exhibits sizable self-interactions and is rela-
tively strongly coupled to the SM sector, with the mixing angle saturating
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Point δ2 Γ2 [GeV] Γ3 [GeV] Γ4 [GeV]

(4.40a)
10´3 5.3 ¨ 10´6 1.1 ¨ 10´6 2.0 ¨ 10´7

10´2 4.9 ¨ 10´4 6.4 ¨ 10´5 8.8 ¨ 10´6

(4.40b)
10´3 4.8 ¨ 10´6 2.6 ¨ 10´8 2.8 ¨ 10´10

10´2 4.8 ¨ 10´4 2.6 ¨ 10´6 2.8 ¨ 10´8

Table 4.1: Leading-order partial widths of Higgs decays into multiple light scalars
in the low-mass regime of the singlet-extended SM. Model parameters were set
according to the benchmark points from equation (4.40). The rates Γ2 and Γ3 were
calculated based on equations (4.6) and (4.7), respectively, while CalcHEP [183] was
used for four-body decays.

the relevant experimental bound of equation (4.28). In contrast, the latter
benchmark point is characterized by small self-couplings κ3 and κ4, as well
as by the absence of mixing in the CP-even sector.e

As a first step, it is useful to compute the partial widths of Higgs decays
into two, three and four light scalars for the above benchmark scenarios.
We list our findings in Table 4.1. Crucially, all investigated points satisfy
Γ4 ! Γ3, as is expected based on our model-independent discussion in Sec-
tion 4.1.2. Accordingly, we will ignore four-body decays in the following.

Building on the results of Table 4.1, we are now in the position to cal-
culate typical cross-sections of processes which may help to directly observe
three-body scalar Higgs decays at current and near-future collider experi-
ments. For that purpose, first recall that in the presently considered mass
range, the light scalar will mainly decay into pairs of pions and muons, if
the mixing angle θ is finite. In this case, the presence of the process H Ñ 3h
therefore implies the existence of very interesting signatures, where a single
Higgs boson decays into six SM particles. Most spectacularly, a six-muon
final state is predicted, specifically

H Ñ 3h Ñ 6µ . (4.41)

Apart from their uncommon particle contents, all of the possible six-body
final states exhibit very peculiar kinematics. For one, final-state particles
will occur in pairs of the same invariant mass mh. Besides, the assumed
mass hierarchy mh ! mH leads to highly boosted light scalars, whose de-
cay products will then typically be collimated. In the currently discussed
low-mass regime, the unavoidably small mixing angle and the accompany-
ing sizable decay length of the light scalars additionally suggest that the
muon and pion pairs are produced at clearly displaced secondary vertices

eStrictly speaking, the light scalar h is stable in the decoupling limit θ Ñ 0. Hence,
the event numbers that will be presented in Tables 4.2 and 4.3 for the benchmark point
of equation (4.40b) are to be seen as lower bounds for the case of tiny mixing angles.
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(cf. equation (4.37)). In conclusion, processes like the one in equation (4.41)
are anticipated to offer very clean signatures with virtually no irreducible
SM background.

A more quantitative study now starts with the realization that Γ ! m
holds for both CP-even scalars. Consequently, we can employ the narrow-
width approximation to compute the collider cross sections of interest:

σp2nµqp2mπq :“ σprod ¨ BpH Ñ pn ` mqhq

¨ Bnph Ñ µ`µ´q ¨ Bmph Ñ ππq ¨

ˆ

n ` m
m

˙

,
(4.42)

where the last factor is a binomial coefficient to properly account for com-
binatorics, while σprod denotes an appropriate single-Higgs production cross
section and therefore depends on the collider experiment under consider-
ation. Regardless of the Higgs production channel at hand, σprod in the
singlet-extended SM is given by

σprod “ cos2 θ ¨ σSM
prod ,

with σSM
prod being the corresponding cross section in the minimal SM. Also the

Higgs boson’s total width is modified in the singlet-extended SM, namely

ΓH « cos2 θ ¨ ΓSM
H ` Γ2 ` Γ3 ,

where ΓSM
H “ 4.1MeV [162] and we ignored Higgs decays into four or more

light scalars. We use the above form of ΓH together with the partial widths
from Table 4.1 in order to calculate the Higgs branching ratios needed as in-
put for equation (4.42). Similarly, employing the results from Figure 4.4,
the branching fractions of a 500MeV Higgs-like scalar are found to be
Bph Ñ µ`µ´q “ 9.1% and Bph Ñ ππq “ 90.9%.

Specifying a collider experiment and thereby the relevant Higgs produc-
tion channel as well as the anticipated amount of data to be collected, we
can now use equation (4.42) to numerically calculate expected raw event
numbers of the most interesting processes involving multibody scalar Higgs
decays. At the LHC, for instance, single-Higgs production at 14TeV is
dominated by gluon fusion, whose cross-section in the minimal SM is ap-
proximately σSM

prod « 55 pb [162]. Anticipating an integrated luminosity of
300 fb´1 for the 14TeV run, we list the corresponding event numbers in
Table 4.2. Notably, the upcoming high-luminosity phase of the LHC (HL-
LHC) is planned to deliver a total integrated luminosity of 3000 fb´1 [25, 26]
and will thus provide ten times larger statistics. Most importantly, Table
4.2 now reveals that the six-muon final state may be in reach of the LHC or
its high-luminosity stage, provided that the portal coupling δ2 is sufficiently
large and contact interactions contribute substantially to the three-body
Higgs decay. This is, for instance, the case for the parameter point of equa-
tion (4.40a) supplemented by the choice δ2 “ 10´2, for which we expect
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Collider Point δ2 N4µ N6µ N4µ2π N2µ4π

LHC
(4.40a)

10´3 177 3 99 990
10´2 14 400 171 5100 51 000

(4.40b)
10´3 162 0 2 23
10´2 14 400 7 210 2100

Table 4.2: Expected raw event numbers of selected final states in
?
s “ 14TeV

pp collisions at the LHC with 300 fb´1 of integrated luminosity. Single-Higgs pro-
duction via gluon fusion is assumed.

Op100q events in the full 14TeV run, or Op1000q events after the luminos-
ity upgrade. In contrast, six-muon final states are unlikely to be observed
at the LHC, if the quasi-decoupling scenario (θ Ñ 0) of the second bench-
mark point is realized in Nature. That being said, extending our study to
also include final states involving pions may allow to even probe the afore-
mentioned quasi-decoupling case of equation (4.40b), provided δ2 is not too
small. Specifically, and regardless of the considered parameter point, the
4µ2π and 2µ4π channels are observed to be 30 and 300 times more abun-
dant than the six-muon mode. At the same time, signatures containing
pions are not as experimentally clean as the one consisting exclusively of
muons.

The above discussion already signifies that finding the optimal search
channel for Higgs decays into three light scalars will ultimately require ded-
icated analyses based on event and detector simulations. Only thus can one
reliably compute kinematic spectra for the final-state particles, which are,
in turn, crucial for determining trigger acceptances, as well as track recon-
struction and particle identification efficiencies.f Furthermore, each poten-
tial search channel comes with its own set of relevant SM background modes,
which need to be taken into account. For instance, the six muon final-state
will receive non-negligible contributions from associated tt̄W , tt̄Z and tt̄bb̄
production followed by (semi)leptonic decays of the produced particles. The
corresponding cross-sections are, however, relatively small [186, 187]. Even
more importantly, there exist several cuts which are expected to very ef-
ficiently reject the aforementioned background processes. For one, due to
the signal signature’s very special kinematics, asking the invariant masses
of the three reconstructed muon pairs to be compatible with each other will
already substantially reduce signal contamination. Moreover, events con-
taining muons that originate from b-quark decays can be vetoed by defining
suitable dimuon isolation criteria (see e.g. [188]). The above considerations

fIn particular, collimated pairs of muons or pions that are produced at displaced ver-
tices were seen to pose challenges to the detector’s trigger and reconstruction capabilities
[184, 185].
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Collider Point δ2 N4µ N6µ N4π N6π

ILC
(4.40a)

10´3 2 0 160 31
10´2 130 2 13 000 1550

(4.40b)
10´3 1 0 145 1
10´2 130 0 13 000 65

Table 4.3: Expected raw event numbers of selected final states in
?
s “ 250GeV

e`e´ collisions at the ILC with 500 fb´1 of integrated luminosity. Single-Higgs
production via Higgsstrahlung is assumed.

again stress the particularities of the six-muon final state, which make it a
prime candidate as a search channel for extra light scalars. Still, a more
thorough analysis is indispensable, but beyond the scope of this thesis.

After this short digression on more experimental aspects, let us now
return to our previous discussion of interesting six-body signatures at col-
liders. There we explicitly saw that the large branching ratio of the light
Higgs decay into pions leads to relatively sizable event yields in the corre-
sponding final states 4µ2π or 2µ4π. Although the six-pion channel would
consequently provide an even higher event rate, we did not consider it be-
fore, since it is highly non-trivial to search for at the LHC, due to several
reasons which include but are not limited to the overwhelming amount of
QCD background. Notably, the latter issue is absent in the clean experi-
mental environment of an electron-positron collider. However, the inclusive
Higgs production cross-section is then significantly reduced with respect to
hadron machines. The relatively abundant six-pion final state may therefore
indeed be the most promising signature to look for Higgs decays into three
low-mass scalars at future lepton colliders like the proposed 250GeV Interna-
tional Linear Collider (ILC) [42–47]. Here, a single Higgs is predominantly
produced in association with an on-shell Z (Higgsstrahlung). The corre-
sponding cross-section in the minimal SM is roughly σSM

prod « 300 fb [43].g

Anticipating the targeted integrated luminosity of the full initial 250GeV
run (500 fb´1 [189]), Table 4.3 compiles the expected raw event numbers of
selected decay channels for the previously defined benchmark points from
equation (4.40). Clearly, the six-muon mode is too rare to be observed at
the ILC, even when taking into account the proposed luminosity upgrade
to 2000 fb´1 of accumulated data [189]. Conversely, the six-pion channel is
found to yield Op1000q events in the more optimistic scenario of equation
(4.40a), provided the portal coupling δ2 is of order 10´2. For similar values
of δ2, Op100q six-pion events from three-body Higgs decays are expected in

gFor the sake of simplicity, we will assume throughout the present chapter that the ILC
collects all of its data with polarized beams in the configuration Ppe´, e`

q “ p´0.8,`0.3q.
A more detailed analysis clearly would have to take into account realistic polarization
sharing scenarios as discussed in [189] and Chapter 5 of this thesis.
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the conservative scenario of equation (4.40b), so that an observation may
be in reach of the ILC even in this case.

Lastly, let us remark that six-body final states in the low-mass regime
of the singlet-extended SM are always less abundant than their four-particle
counterparts, so that a discovery of the light scalar in Higgs cascade decays
will most likely occur via one of the latter. However, in the event of an actual
signal in one of the four-body channels, searches for the corresponding six-
particle signatures may help to distinguish the singlet-extended SM from
different BSM scenarios, as well as give information about self-interactions
in the singlet sector.

4.3.2 Intermediate-mass regime

Let us now briefly discuss the case of light scalars with slightly larger masses,
namely between the kaon pair production threshold at 2mK « 988MeV
and the B-meson decay threshold at mB « 5GeV. Note, however, that
direct searches for scalar three-body Higgs decays at the LHC offer only
limited prospects of success in the aforementioned mass region of the singlet-
extended SM: On the one hand, the light scalar’s couplings to SM fermions
and gauge bosons remain severely constrained by precision measurements
of B-meson decays. Accordingly, the mixing angle θ is still not allowed to
exceed Op10´2q and the contact interaction strength λH3h, which was pre-
viously identified to be crucial for generating sizable values of Γ3, cannot
become too large. On the other hand, an increasingmh implies a larger num-
ber of accessible final states for light scalar decays. As a consequence, the
branching ratio of the cleanest decay mode, namely h Ñ µ`µ´, decreases to
Op1%q or below (cf. Figure 4.4). The most abundant final-state signatures
thus unavoidably involve either mesons or jets and therefore suffer from large
QCD backgrounds at a hadron collider like the LHC.

In contrast, the ILC will provide a much cleaner environment, so that
the aforementioned hadronic final states may well be in reach of dedicated
searches. In order to roughly assess the prospects for an observation of
Higgs decays into three light scalars at the ILC, we investigate the following
benchmark point

mh “ 1.2GeV , δ2 “ 0.01 , κ3 “ 5.88GeV , κ4 “ 2.0 , θ “ 4.8 ¨ 10´3 ,
(4.43)

where we assume relatively strong interactions in the spirit of the previously
discussed rather optimistic scenario of equation (4.40a). Our results are
compiled in Table 4.4 and demonstrate that six-meson final states can indeed
occur in reasonably large numbers. However, as before in the low-mass
regime, a more detailed analysis of the detector performance and the relevant
SM background processes will be necessary to arrive at robust statements
about the sensitivity of the ILC to the considered channels.
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B [%]
H Ñ 2h H Ñ 3h h Ñ µ`µ´ h Ñ ππ h Ñ K̄K
12.3 1.77 2.3 10.5 87.2

ILC
N4K N6K N6π N2µ4K N2π4K

14 071 1760 3 139 636

Table 4.4: Higgs boson and light scalar branching ratios for the intermediate-mass
benchmark point (4.43), as well as the corresponding expected raw event numbers
of selected final states in

?
s “ 250GeV e`e´ collisions at the ILC with 500 fb´1

of integrated luminosity. Single-Higgs production via Higgsstrahlung is assumed.

4.3.3 High-mass regime

Let us finally investigate the case of light scalars which are heavier than the
B-meson decay threshold at mB « 5GeV while still satisfying mh ! mH .
Most importantly, the thus defined mass range was previously demonstrated
to allow for relatively large mixing angles of up to θ “ Op0.1q, cf. equation
(4.29). This entails two major consequences for the phenomenology of scalar
Higgs decays in the singlet-extended SM.

On the one hand, the three-body channel can now receive substantial
contributions from the contact interaction diagram of Figure 4.1a. Specif-
ically, applying the aforementioned constraint on θ as well as the pertur-
bativity bound on κ4 from equation (4.32), we can estimate the maximum
possible value of the associated coupling λH3h to be

λH3h » pκ4 ´ 1
2δ2qθ À 0.2 , (4.44)

where we used the approximate formula for λH3h of equation (4.27), and
assumed δ2 to be negligibly small. In the presently discussed scenario, λH3h

may thus attain values which are at least one order of magnitude larger than
in the low- and intermediate-mass regimes, cf. equation (4.39). In particular,
the model-independent bound from equation (4.15) may even be saturated.

On the other hand, larger mixing angles may lead to anomalously small
decay rates for the two-body process H Ñ 2h. To see why, it is instructive
to have a closer look at the small-θ expansion of the corresponding generic
coupling κH2h in equation (4.27). Here, the first-order term can become of
similar size as the leading-order contribution, provided θ is sufficiently large.
Specifically, an explicit calculation reveals that a cancellation up to second
order in θ will occur in κH2h, if the following relation is fulfilled

κH2h
!

“ Opθ2q ô
κ3
mh

» ´0.12 ¨

ˆ

0.1

θ

˙ ˆ

10GeV

mh

˙ ˆ

δ2

10´3

˙

. (4.45)

Notably, for mixing angles much smaller than Op0.1q, the above condition
and the unitarity bound on κ3 in equation (4.31) can only be simultane-
ously satisfied for negligibly small δ2. Cancellations in κH2h are therefore
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Figure 4.7: Illustration of the cancellations in the effective coupling κH2h using
Feynman diagrams involving the scalar gauge eigenstates φ and S. The displayed
graphs are those contributing to the processH Ñ 2h at first order in θ. Correspond-
ingly, we obtained the identity κH2h “ 1

2δ2v ` κ3θ ` Opθ2q in equation (4.27).

phenomenologically irrelevant in the low- and intermediate-mass regimes,
where θ cannot exceed Op10´2q and tiny δ2 were seen to render the rates of
all scalar Higgs decays unobservably small. Let us furthermore remark that
the aforementioned cancellations can also be understood as those between
the leading Feynman diagrams contributing to the effective coupling κH2h

(cf. Figure 4.7).

As a first step towards assessing the phenomenological relevance of three-
body scalar Higgs decays in the high-mass regime, we again analyze the
behavior of the ratio r “ Γ3{Γ2 in the δ2-κ3 plane. Our results for a 5GeV
and a 10GeV light scalar are shown in Figure 4.8, where we additionally
assumed sizable quartic self-interactions in the singlet sector as well as a
relatively large mixing of the CP-even scalar degrees of freedom, namely

κ4 “ 1.0 and sin θ “ 0.08 . (4.46)

Interestingly, the plots demonstrate that in a substantial part of the vi-
able parameter space, the model predicts three-body decays to be more
abundant than their two-body counterparts, i.e. r ą 1. In particular, the
above-described cancellation in κH2h leads to greatly enhanced values of r
roughly along the line defined by equation (4.45).

Building on the previous results and for the purpose of getting a first hint
on the detection prospects for multi-scalar Higgs decay events at colliders,
we multiply the found Higgs branching fractions by appropriate single-Higgs
production cross-sections. The outcome is presented in Figure 4.9 as a func-
tion of δ2. A few comments on the resulting plots are in order. First, note
that we again study the benchmark point introduced in equation (4.46) sup-
plemented by the choice κ3 “ 0. In doing so, we juxtapose the findings for
a 5GeV with those for a 10GeV light scalar, but do not observe any inter-
esting differences, so that we will discuss the two cases entirely in parallel.
Second, we compare the expected performances of the 14TeV LHC and the
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Figure 4.8: Ratio r “ Γ3{Γ2 in the singlet-extended SM as a function of δ2 and
κ3 for sin θ “ 0.08 and κ4 “ 1.0. The light scalar’s mass was set to 5GeV (left) and
10GeV (right), respectively. Contours of constant scalar Higgs branching fraction
Bscalar are drawn as black dash-dotted lines. The large shaded areas are excluded
by Higgs signal strength measurements as per equation (4.11). Similarly, the thin
dark bands on the bottom of each plot are ruled out by tree-level perturbative
unitarity according to equation (4.19).

250GeV ILC. As before, the ILC results are based on single-Higgs produc-
tion via Higgsstrahlung, whereas those for the LHC now assume the Higgs to
be produced in association with an on-shell W -boson, which is furthermore
supposed to decay leptonically. Although the corresponding cross-section of
only σSM

prod « 0.17 pb [162] is significantly smaller than those of the gluon fu-
sion (ggH) or vector boson fusion (VBF) channels, the presence of the extra
lepton is essential in cases where the Higgs cascade decay produces jets only.
Namely, said lepton can then be employed for providing the trigger and for
rejecting background events. If, however, at least one of the light scalars
decays into a pair of tau leptons, there is a reasonably high chance of an
electron or a muon from tau decays being present in the final state, which
could then be used for the above purposes. Correspondingly, in these cases
it is meaningful to also consider VBF or ggH as possible Higgs production
channels which would enhance the numbers presented here by roughly one
or two orders of magnitude, respectively.

Crucially, Figure 4.9 now reveals two interesting aspects about scalar
Higgs decays in the high-mass regime of the singlet-extended SM. On the one
hand, the three-body channel possesses a considerably large cross section,
which is found to stay roughly constant over the entire investigated δ2 range.
On the other hand, the two-body mode’s rate can become negligibly small,
namely in the vicinity of the point of cancellation approximately defined by
equation (4.45). Consequently, there exist regions in the model’s parameter
space, where direct searches for the light scalar h exploiting six-particle final
states may be successful, while looking for conventional four-body channels
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Figure 4.9: Higgs production cross section times branching fraction for its decays
into two or three scalars in the singlet-extended SM as functions of δ2. The light
scalar’s mass was set to 5GeV (left) and 10GeV (right), respectively, while the
remaining model parameters were fixed at sin θ “ 0.08, κ3 “ 0 and κ4 “ 1.0. The
expectations for the 14TeV LHC (red) are compared to those for the 250GeV ILC.

will inevitably produce null results. Notably, Figure 4.8 suggests that results
similar to those in Figure 4.9 are to be expected for other values of κ3 as
well, but with curves that are appropriately shifted in δ2.

Finally, a more thorough study of scalar Higgs decay phenomenology
clearly requires knowledge about the exclusive cross sections for given four-
or six-body final states. Said cross sections can easily be obtained by mul-
tiplying our previous results from Figure 4.9 by suitable branching ratios of
light scalar decays and by potential combinatorial multiplicities, cf. equation
(4.42). From Figure 4.4 we know that a Higgs-like scalar in the considered
mass range mainly decays into tau leptons or jets. The associated branching
fractions are

Bph Ñ τ`τ´q “ 20.7% , Bph Ñ jjq “ 79.1% for mh “ 5GeV and

Bph Ñ τ`τ´q “ 23.5% , Bph Ñ jjq “ 76.3% for mh “ 10GeV ,

where j denotes any jet regardless of its flavor. While for a 5GeV light
scalar c-quark and gluon jets are most relevant, a 10GeV scalar can ad-
ditionally decay into a pair of b-quarks. Obviously, cascade decays of the
125GeV Higgs boson thus may entail an enormous variety of conceivable
four- or six-body final states, which will all differ in terms of cleanliness and
abundance. Restricting to the case where the initial Higgs decay is into two
light particles, comprehensive overviews of the possible search channels’ sen-
sitivities were given both for the LHC [39] and for future electron-positron
machines [190]. In our study, we also include three-body scalar Higgs decays
and list the expected raw event numbers of selected final states in Table 4.5.
Our findings confirm that there exist scenarios where the four-body modes
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Collider mh δ2 ¨ 103 N4τ N6τ N4τ2j N2τ4j

LHC
5GeV

´2 71 9262 106 500 408 000
5 31 610 8763 100 700 386 000

10GeV
´2 83 11 940 116 100 376 500
5 41 250 11 300 109 900 356 400

(a) Expectations for the 14TeV LHC with 300 fb´1 of accumulated data assuming
single-Higgs production via gluon fusion.

Collider mh δ2 ¨ 103 N4τ N6τ N4τ2j N2τ4j

ILC
5GeV

´2 1 84 968 3709
5 287 80 916 3509

10GeV
´2 1 109 1056 3423
5 375 103 999 3240

(b) Expectations for the 250GeV ILC with 500 fb´1 of accumulated data assuming
single-Higgs production via Higgsstrahlung.

Table 4.5: Expected raw event numbers of selected final states for a 5GeV and
a 10GeV light scalar. The remaining model parameters were fixed at sin θ “ 0.08,
κ3 “ 0 and κ4 “ 1.0.

are strongly suppressed, while their six-body counterparts are reasonably
abundant and may thus be in reach of dedicated searches. As before, de-
riving robust statements about the considered channels’ actual sensitivities
requires event and detector simulations, as well as a thorough discussion of
possible SM background processes.

4.4 Summary and conclusion

Following our original study in [49], this chapter presented a detailed ac-
count on decays of the 125GeV Higgs boson H into multiple light scalar
particles h both from a model-independent point of view and in the context
of a specific theory of new physics, namely the real singlet extension of the
Standard Model (SM). While the existing literature on exotic Higgs decays
either ignores the three-body channel H Ñ 3h completely or discards it as
being irrelevant, we included it in our discussion and systematically identi-
fied scenarios in which it can become important for beyond-the-SM (BSM)
phenomenology.

In our model-independent analysis, we first argued that the three-body
decay process is mediated by two classes of Feynman diagrams (see Figure
4.1). Specifically, apart from renormalizable contact interactions due to the
dimension-four operator Hh3, it is induced by the exchange of virtual light
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scalars. Importantly, contributions of the latter type to the relevant decay
rate Γ3 :“ ΓpH Ñ 3hq were demonstrated to be fundamentally limited by
requiring perturbative unitarity in two-to-two scalar scattering processes. In
the absence of contact interactions, the two-body decay H Ñ 2h was corre-
spondingly found to dominate, with rates exceeding those of the three-body
channel always by at least one order of magnitude. By implication, sizable
yet theoretically consistent contact interactions were proven to be absolutely
crucial for elevating Γ3 beyond its two-body counterpart Γ2. Interestingly, a
comparable enhancement mechanism is missing for Higgs decays into more
than three light scalars. Rather, the lack of renormalizable contact inter-
actions and the still valid restrictions on the scalar couplings imposed by
perturbative unitarity suggest that those processes are always significantly
less abundant than the two- and three-body modes. Non-renormalizable
contact operators of mass dimension n ` 1 may, of course, also contribute
to Higgs decays into n light scalars for n ą 3, but are necessarily suppressed
by some heavy mass scale.

In the second part of the present chapter, we applied our previously
obtained results to the singlet-extended SM. Here, the particles’ quantum
numbers imply the existence of mass mixing between the SM Higgs dou-
blet’s CP-even degree of freedom and the new scalar gauge singlet after
electroweak symmetry breaking. Contributions to the three-body Higgs de-
cay hence come from both contact interactions and h-exchange. As a first
important result, we showed that the size of the former is proportional to
the scalar mixing angle θ, while that of the latter stays finite even in the
decoupling limit θ Ñ 0. A relatively large quartic self-coupling in the singlet
sector was established as a second prerequisite for sizable contact interac-
tions and thereby for substantial values of Γ3. We then argued that collider
phenomenology of multibody scalar Higgs decays strongly depends on the
mass of the light scalar since the latter determines its main decay channels
and also the allowed mixing with the physical 125GeV Higgs boson.

In the low- and intermediate-mass regimes defined by 360MeV À mh À

5GeV, the light scalar predominantly decays into pairs of muons, pions or
kaons, and the mixing angle is tightly limited by high-precision measure-
ments of meson decays, which necessitates the contact contribution to Γ3

to be relatively small. Accordingly, three-body decay rates were found to
be consistently exceeded by their two-body counterparts. Therefore, a po-
tential discovery of the light scalar sector through Higgs decays would likely
proceed via the two-body process in this mass region. However, we demon-
strated that the three-body mode may still be sufficiently abundant to be
observable in various six-particle final states. Specifically, regarding direct
searches at the 14TeV LHC or its high-luminosity upgrade, the most in-
teresting signature was argued to involve six muons. Similarly, the Higgs
cascade decay into six pions was calculated to occur frequently enough to
be potentially in reach of the proposed 250GeV ILC.
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In the high-mass regime characterized by light scalars above the B meson
threshold at roughly 5GeV, experimental constraints on the mixing angle
relax. The light scalar now mainly decays into pairs of tau leptons or jets.
In accordance with expectations, substantial mixing in the scalar sector was
shown to entail large rates of the three-body decay mode, provided quartic
self-interactions of the scalar singlet field were not too small. As a conse-
quence, several six-particle final states were demonstrated to be reasonably
abundant, so that they offer good prospects for direct searches at the 14TeV
LHC or the 250GeV ILC. Interestingly, a sizable mixing angle of order 0.1
was also found to allow for scenarios where the two-body scalar Higgs de-
cay channel has an anomalously small rate and is therefore undetectable.
In these cases, the three-body mode might be the only remaining way to
directly observe extra light scalars in Higgs decays.

Regardless of the light scalar’s mass, there are a few other aspects which
were argued to render three-body scalar Higgs decays particularly suited for
studying the scalar sector of the singlet-extended SM. First, the aforemen-
tioned six-body signatures were seen to exhibit very peculiar kinematics in
that the final-state particles will occur in three pairs of the same invariant
mass mh. This special property can be exploited to effectively reduce signal
contamination due to SM processes in an actual analysis, which lead us to
expect that, for instance, the six-muon final state is virtually free of any SM
background. But also searches for other six-particle signatures would, of
course, profit from said specific kinematic configuration. Second, the three-
body channel was shown to be the only realizable approach towards probing
self-interactions in the singlet sector at current or near-future collider ex-
periments.

Let us stress that Higgs decays into three light scalars as well as the
associated merits just described are by no means exclusive to the singlet-
extended SM. Rather, it is a common feature of a large variety of models
including theories where some light scalar degree of freedom mixes into the
physical Higgs boson. Importantly, the properties of the underlying model
will determine the details of its scalar decay phenomenology, such as the
possible range of the ratio Γ3{Γ2, the light scalar’s dominant decay channels
etc. Correspondingly, information drawn from dedicated searches for three-
body scalar Higgs decays may also be used to discriminate different BSM
scenarios, which would otherwise be indistinguishable. A more systematic
phenomenological investigation of contemplable models is, however, needed
for that purpose.

Although the results presented in this chapter already seem very promis-
ing, deriving robust statements about whether or not three-body scalar
Higgs decays may be observable in near-future collider runs will require
dedicated analyses based on event and detector simulations. Only thus can
one reliably compute kinematic spectra for the final-state particles, which
are, in turn, crucial for determining trigger acceptances, as well as track re-
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construction and particle identification efficiencies. Along the same lines, a
thorough discussion of potential SM background processes will be essential.

In conclusion, the previously ignored Higgs decay into three light scalars
was demonstrated to offer exciting possibilities to search for new physics,
thereby complementing existing approaches which focus exclusively on the
related two-body decay. Specifically, it provides an experimentally straight-
forward option to probe a variety of BSM theories with extended scalar
sectors, as well as to distinguish between different models of said kind.



Chapter 5

Quark-flavor-violating Higgs
boson decays at the ILC

In the previous chapter, we have discussed an example of how the search for
exotic Higgs boson decays may help to directly test new physics at present
and near-future collider experiments. Assuming the existence of additional
light scalar degrees of freedom, it was argued that new final states for Higgs
decays become accessible and that their (non-)observation can be employed
to constrain beyond-the-Standard Model physics scenarios.

In the present chapter, we will take a similar, yet still somewhat com-
plementary approach towards finding new physics via non-standard Higgs
couplings. To be more precise, we will investigate cases where the Higgs
boson decays into well-known particles, but in a way which is not to be
expected in the minimal Standard Model (SM). Observing processes of this
kind would still be a direct proof of physics beyond the SM (BSM), even
though no new particle species are directly detected in this way. Specifically,
such unexpected Higgs interactions would be interpreted as residual effects
of extra heavy particles associated to new physics. This is the usual effective
field theory (EFT) approach to BSM theories.

Concretely, we will study Higgs decays into pairs of different-flavor quarks
in this chapter. In order to understand why processes of this kind are in-
deed worth investigating, recall our discussion of the SM Yukawa sector from
Chapter 2. As we have explicitly shown there, flavor-changing neutral cur-
rents (FCNC) do not exist in the SM at tree-level. In particular, this implies
that the Higgs boson only couples to pairs of same-flavor fermions at the
classical level (cf. equation (2.10)). Nevertheless, the inclusion of quantum
effects does induce flavor-violating Higgs interactions also in the SM. In the
absence of new physics the corresponding processes are, however, not only
loop- but also GIM suppressed [54]. Consequently, the associated rates pre-
dicted by the SM are tiny. For instance, the Higgs decay into a bottom and
an anti-strange quark, H Ñ bs̄, can be calculated to have a branching ratio

99
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of order 10´7 [191], which makes it undetectable at the LHC and all near-
future collider experiments. Obviously, any direct observation of a Higgs
interaction that is non-diagonal in flavor space would therefore be an unam-
biguous sign of physics beyond the SM. Indeed, there exists quite a number
of well-motivated SM extensions which predict sizable flavor-violating Higgs
couplings. Examples include but are not limited to supersymmetric models
[191–194], two-Higgs-doublet models [144, 195–197], models with a compos-
ite Higgs [198] and models of extra dimensions [199, 200].

Correspondingly, the ATLAS and CMS collaborations put great effort
into searching non-diagonal Higgs-fermion interactions. In doing so, they
mostly concentrate on flavor-violating Higgs decays into pairs of charged
leptons. In particular, a dedicated CMS analysis of the 8TeV dataset from
2012 showed a slight excess in the channel H Ñ µτ [201]. However, an AT-
LAS search for the same process and also based on 8TeV data observed no
statistically significant deviation from the SM expectations [202]. Further-
more, a recent CMS study using a data sample collected in proton-proton
collisions at a center-of-mass energy of 13TeV could not confirm the afore-
mentioned indication for a non-zero branching fraction BpH Ñ µτq [203].
Searches for the other leptonic channels, H Ñ eτ and H Ñ eµ, did not find
any evidence of a signal, either [203–205].

In contrast to the leptonic case, quark-flavor-violating (QFV) Higgs in-
teractions receive considerably less attention at the moment. This is mainly
for two reasons. First, indirect constraints on QFV Higgs couplings com-
ing from low-energy flavor measurements are usually much stronger than
comparable bounds in the lepton sector. Accordingly, one generally expects
QFV Higgs decays to occur at a lower rate [41].a Second, when it comes
to the detection of rare processes with final states involving only quarks,
the capabilities of the LHC are inherently limited due to the large amount
of QCD background. Both restrictions are circumvented to some degree in
the case of flavor-violating Higgs couplings to the top quark. Here, low-
energy constraints are the least stringent ones in the quark sector [41] and
the observed mass spectrum allows for searches in exotic top decays t Ñ Hq,
with q being either a charm or an up quark [206, 207]. In contrast, both of
the aforementioned limitations – tiny branching ratios and enormous QCD
background – apply to QFV Higgs decays involving bottom quarks. Hence,
processes like H Ñ bj, with j representing a light quark, are extremely
challenging for the LHC, even taking into account its high-luminosity phase,
where Op3000 fb´1q of data will be collected.

The physical relevance of direct searches for QFV Higgs decays as an ap-
proach complementary to indirect low-energy measurements is still beyond
any doubt. If, for instance, deviations from the SM predictions are observed
in some experiment, only direct measurements are able to pin down their

aWe will quantitatively discuss the corresponding relation in Section 5.2.
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exact origin and to give us a handle on determining the values of the new
couplings involved. Furthermore, conclusions drawn from indirect searches
may be invalidated due to cancellations in relevant processes as they appear
in certain models of new physics (see e.g. [191] or [197]). It is therefore
essential to assess whether proposed future colliders will provide capabilities
for directly searching those QFV processes for which the LHC’s sensitivity
is insufficient. In particular, e`e´ colliders are interesting in this context,
since they offer a much cleaner environment compared to hadron accelera-
tors like the LHC. Of the several e`e´ projects that are currently proposed,
the International Linear Collider (ILC) is certainly the most mature one.

In line with the above discussion, the following chapter will focus on QFV
Higgs decays into a bottom and a light quark and analyze the prospects for
detecting or constraining these processes with the ILC. As our main result,
we will demonstrate that the achievable performance is comparable to or
surpasses that of currently available indirect measurements. The chapter is
thereby organized as follows. Since it is crucial for understanding the rest of
our study, we will begin with a basic introduction to the ILC and its planned
Higgs physics program in Section 5.1. Afterwards, in Section 5.2, we briefly
outline the theoretical background of effective QFV Higgs interactions and
summarize existing indirect limits on the corresponding couplings. Section
5.3 then offers a detailed description of our numerical analysis and contains
the main results of the present chapter. We summarize our findings in
Section 5.4.

5.1 The ILC and Higgs physics

In the introduction we argued that quark-flavor-violating Higgs decays in-
volving bottom quarks are unlikely to be in reach of the LHC considering the
already existing rather stringent indirect constraints and the large amount
of QCD background at a hadron collider. In contrast, electron-positron
machines with their clean experimental environments may offer the ideal
conditions to directly measure the aforementioned exotic Higgs processes.
Indeed, there exist proposals for several high-luminosity e`e´ colliders –
both linear and circular – which we summarize in Table 5.1.

From all proposals, the ILC arguably has the best chance of being real-
ized in the near future, which is why we concentrate on it in the following.
According to its technical design report (TDR), the ILC baseline machine
is planned to operate at center-of-mass energies of up to 500GeV,b with

bAs a measure of cost reduction and to further the realization of the ILC, an alternative
to the baseline 500GeV machine was put forward in late 2017 [47]. This option advocates
to build a 250GeV collider first, which might eventually be extended to higher energies.
The physics case for such a 250GeV stage is summarized in [214, 215]. Note that the
staging report [47] was published after our work [50] had been completed. Correspondingly,
the analyses presented in this chapter will take the 500GeV machine as a basis.
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Name collider
?
s [GeV] beam polarization R&D status

ILC linear 90–1000
|Ppe´q| “ 0.8

TDR [42–47]
|Ppe`q| “ 0.3

CLIC linear 350–3000
|Ppe´q| “ 0.8

CDR [208–211]
|Ppe`q| “ 0.0

CEPC circular 90–250 –
preliminary

CDR [212, 213]

FCC-ee circular 90–350 –
CDR expected by
the end of 2018

Table 5.1: Overview of proposals for future electron-positron colliders. Included
are the International Linear Collider (ILC), the Compact Linear Collider (CLIC),
the Circular Electron Positron Collider (CEPC) and the Future Circular Collider’s
e`e´ mode (FCC-ee).

the accelerating technology being entirely based on superconducting radio
frequency cavities. A possible upgrade to a 1TeV machine is also discussed.
For the ILC’s time of operation different running scenarios are considered,
the most prominent of which is dubbed H-20 and involves physics runs
at 250GeV, 350GeV and 500GeV [189]. One crucial advantage of a lin-
ear collider such as the ILC over a circular machine is the possibility to
realize polarized particle beams. Correspondingly, the baseline design of
the ILC includes both polarized electron and positron beams, specifically
Ppe´q “ ˘0.8 and Ppe`q “ ˘0.3, where the plus (minus) sign means run-
ning mainly with right- (left-)handed particles. From a physics point of
view, beam polarization comes with several benefits. On the one hand, the
cross sections of some interesting processes are enhanced. The prime ex-
ample in this context is, of course, Higgs production (cf. Figure 5.1). At
the same time, the use of polarized beams will suppress certain background
channels. For instance, due to the W boson’s chiral couplings, the rate
of W pair production is greatly reduced in the p`0.8,´0.3q configuration.
On the other hand, there are some observables which are only made acces-
sible by the use of beam polarization. Note furthermore that since all of
the four possible polarization combinations come with their own advantages
and drawbacks, it was proposed to distribute the full integrated luminosity
among the different configurations [189].

Apart from the accelerator, the TDR also provides the baseline designs
for two detectors, which are proposed to be placed in a so-called push-
pull configuration at the single interaction point: the International Large
Detector (ILD) and the Silicon Detector (SiD) [46]. A detailed description
of these detectors and all of their individual components would be beyond
the scope of this section. Rather, we will only briefly mention one particular
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feature provided by both detectors, which will turn out to be crucial in
the search for QFV Higgs decays, namely high-purity and high-efficiency
jet-flavor tagging. In particular, very precise vertex detectors will facilitate
to distinguish displaced charm from bottom vertices and thus enable the
identification of charm jets (c-tagging, see e.g. [46, 216] for details). We
finally remark that both the ILD and the SiD allow to record all events on
tape, i.e. no on-line triggers are required unlike for the detectors at the LHC.

After this short summary of the ILC’s baseline design, let us now review
its physics case. Extensive discussions on the complete physics program at
linear electron-positron colliders in general [217], at the ILC baseline ma-
chine [218] and at its 250GeV stage [214, 215] can be found in the given
references. One of the ILC’s major physics goals is the precise determination
of the Higgs boson’s properties.c For instance, measurements of the Higgs’s
mass and its width can be performed with unprecedented precision and in
a model-independent way by exploiting the so-called recoil mass technique,
which allows to tag a Higgs boson without having to detect any of its decay
products. Of course, also the Higgs boson’s interactions are planned to be
investigated in detail. For one, measurements of its couplings to most of the
known SM fermions and gauge bosons with a precision of Op1%q (or even
better) will become possible. Furthermore, a model-independent determina-
tion of the Higgs trilinear self-coupling [220] will give information about the
exact form of the Higgs potential and may therefore provide further insight
into the nature of electroweak symmetry breaking. Lastly, interactions of
the Higgs not predicted by the SM are of interest as well. In particular,
invisible or other exotic Higgs decays will be searched for. It is this last
category, to which belong the QFV Higgs decays discussed in the present
chapter.

For the sake of learning how to identify these and other Higgs processes
at the ILC, it is important to fully understand the ways in which the Higgs
boson is produced at an e`e´ machine. Correspondingly, we show the most
relevant processes for single Higgs production at the ILC alongside with
their cross-sections in Figure 5.1. The plot demonstrates that the inclusive
production cross section reaches its maximum close to

?
s “ 250GeV, which

explains why running at this center-of-mass energy is crucial for the ILC
to achieve its aforementioned goals. The by far dominant contribution at
250GeV originates from the so-called Higgsstrahlung process, e`e´ Ñ ZH,
where the Higgs is produced in association with a Z boson (Figure 5.1b).
Depending on the Z decay mode, this offers several different event signatures
whose advantages and drawbacks will be discussed in the following.

First, Z decays into pairs of same-flavor quarks are the most frequent
ones with a branching fraction of BpZ Ñ qq̄q » 70% [83] (hadronic channel).
At the same time, they produce the least clean final state, in particular in

cA comprehensive review on Higgs physics at the ILC is given in [219].
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2.4. Higgs measurements at ILC at 250 GeV

Figure 2.7
Production cross
section for the
e+e− → Zh process
as a function of the
center of mass energy
for mh = 125 GeV,
plotted together with
those for the WW and
ZZ fusion processes:
e+e− → ννH and
e+e− → e+e−H.
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the Standard Model Higgs boson, a Higgs boson of a more general theory, or a particle of a different
origin. Particular important for this question are the values of the Higgs boson mass, mh, and the
Higgs production cross sections and branching ratios.

In this section and the following ones, we will present the measurement accuracies for the Higgs
boson properties expected from the ILC experiments. These measurement accuracies are estimated
from full simulation studies with the ILD and SiD detectors described in the Detector Volume, Volume
4 of this report. Because these full-simulation studies are complex and were begun long before the
LHC discovery, the analyses assumed a Higgs boson of mass 120 GeV. In this section and the next two
sections, then, all error estimates refer to 120 GeV Higgs boson. In Section 2.7, we will present a table
in which our results are extrapolated to measurement accuracies for a 125 GeV Higgs boson, taking
into appropriate account the changes in the signal and background levels in these measurements.

2.4.1 Mass and quantum numbers

We first turn our attention to the measurements of the mass and spin of the Higgs boson, which
are necessary to confirm that the Higgs-like object found at the LHC has the properties expected for
the Higgs boson. We have discussed in the previous section that the LHC already offers excellent
capabilities to measure the mass and quantum numbers of the Higgs boson. However, the ILC offers
new probes of these quantities that are very attractive experimentally. We will review them here.

We first discuss the precision mass measurement of the Higgs boson at the ILC. This measurement
can be made particularly cleanly in the process e+e− → Zh, with Z → µ+µ− and Z → e+e− decays.
Here the distribution of the invariant mass recoiling against the reconstructed Z provides a precise
measurement of mh, independently of the Higgs decay mode. In particular, the µ+µ−X final state
provides a particularly precise measurement as the e+e−X channel suffers from larger experimental
uncertainties due to bremsstrahlung. It should be noted that it is the capability to precisely reconstruct
the recoil mass distribution from Z → µ+µ− that defines the momentum resolution requirement for
an ILC detector.

The reconstructed recoil mass distributions, calculated assuming the Zh is produced with four-
momentum (

√
s, 0), are shown in Fig.2.8. In the e+e−X channel FSR and bremsstrahlung photons

are identified and used in the calculation of the e+e−(nγ) recoil mass. Fits to signal and background
components are used to extract mh. Based on this model-independent analysis of Higgs production
in the ILD detector, it is shown that mh can be determined with a statistical precision of 40 MeV
(80 MeV) from the µ+µ−X (e+e−X) channel. When the two channels are combined an uncertainty
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(a)

(b) Higgsstrahlung

(c) Vector boson fusion

Figure 5.1: Single-Higgs boson production cross-sections at the ILC as functions
of center-of-mass energy

?
s. The most relevant production channels are Higgs-

strahlung or Z-associated Higgs production, e`e´ Ñ ZH (red), W boson fusion,
e`e´ Ñ νeν̄eH (blue) and Z boson fusion, e`e´ Ñ e`e´H (green). Importantly,
all major production modes rely on the Higgs coupling to the massive electroweak
gauge bosons, see equation (2.21). The plot assumes a Higgs mass ofmH “ 125GeV
and a beam polarization of Ppe´, e`q “ p´0.8,`0.3q. Figure (a) taken from [43].

cases where the Higgs boson decays hadronically as well. The resulting
four- or six-jet signatures then suffer from both a large SM background and
from combinatorial ambiguities which arise in associating the jets to the
Z and Higgs decays [221]. We will evaluate the hadronic search channel’s
performance in the context of QFV Higgs decays in Section 5.3.2.

Next, let us consider Z decays into electron or muon pairs (charged lep-
ton channel). Being electrically charged and detector-stable, these particles
can be reconstructed and identified with high efficiency. The aforemen-
tioned recoil mass technique then allows to reliably tag a produced Higgs
regardless of its decay products and only using observables related to lepton
kinematics. Hence, the charged lepton channel plays a crucial role in pre-
cisely determining Higgs couplings and properties in a model-independent
fashion. However, it is statistically limited due to the small branching ratio
BpZ Ñ ```´q :“ BpZ Ñ e`e´q ` BpZ Ñ µ`µ´q » 6.7% [83]. It may there-
fore not be the optimal choice if the sought-after Higgs decay itself only
occurs at a small rate. The sensitivity of a search for the QFV process
H Ñ bj in the charged lepton channel is investigated in Section 5.3.3.B.

Lastly, invisible Z decays into neutrino pairs with a branching fraction
of BpZ Ñ νν̄q » 20% [83] are of interest (neutrino channel). Apart from
the Higgs decay products, the signature then only contains missing energy.
Clearly, the corresponding final states are not as clean as those with a pair
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of charged leptons. At the same time, they do not suffer from the high
jet multiplicity as does the hadronic channel. Accordingly, the neutrino
search mode is usually a reasonable compromise between cleanliness and
event rate. Its performance in the context of QFV Higgs decays will be
studied in Section 5.3.3.C.

As already mentioned earlier, production channels other than Higgs-
strahlung are negligible at a center-of-mass energy of 250GeV. In contrast,
Figure 5.1 demonstrates that during an ILC run at

?
s “ 500GeV most

Higgs bosons are produced through W -fusion, the cross section of which
is then roughly 160 fb. The resulting final-state signature, containing the
Higgs decay products along with missing energy, is obviously very similar to
that of the neutrino mode of Z-associated Higgs production discussed above.
The latter contributes with a cross section of about 20 fb at a 500GeV run.
The sensitivity of a search for the QFV process H Ñ bj in this combined
neutrino channel is evaluated in Section 5.3.3.C.

5.2 Theoretical framework and indirect constraints

As we have seen in the introduction to this chapter, there exist many theo-
ries of beyond-the-SM (BSM) physics, which predict flavor violation in the
Higgs sector. In order to be able to apply our results to a broad range of
BSM scenarios, our analysis should be as model independent as possible.
A first step towards realizing this goal is the following observation: Many
of the aforementioned models have in common that they introduce new
physics associated to extra heavy particles. However, for understanding the
phenomenology of those models at around the electroweak scale, the dy-
namics of such heavy degrees of freedom or, to be more general, the precise
knowledge of the models’ high-energy details should not be relevant. The
theoretical foundation for this heuristic argument is a theorem due to Ap-
pelquist and Carazzone [222] which describes how heavy particles decouple
at energies far below their mass. The corresponding technical implemen-
tation goes by the name of effective field theory (EFT) and offers a way
to parameterize new physics effects at low energies in a model-independent
way.d This parameterization employs non-renormalizable operators invari-
ant under the SM gauge group and composed of SM fields only.

Assuming that just the known SM particles are dynamical degrees of free-
dom below the electroweak scale, while all additional fields are sufficiently
heavy to be integrated out, we can use the EFT language and parameterize
the interactions of the Higgs with two down-type quarks accordingly. The
lowest-order operator is then given by the SM Yukawa term in equation
(2.8). The first operators which potentially lead to non-standard contri-
butions to down-type Yukawa couplings are of mass dimension 6. In the

dFor an introduction to EFT, see e.g. [223].
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so-called Warsaw basis they read [224]

Qij
d “ pQ

i
LΦd

j
RqpΦ:Φq , (5.1a)

Qij
Hq “ pQ

i
Lγ

µQj
LqpΦ:i

Ø
DµΦq , (5.1b)

Q1ij
Hq “ pQ

i
Lσ

kγµQj
LqpΦ:i

Ø
Dk

µΦq and (5.1c)

Qij
Hd “ pd̄iRγ

µdjRqpΦ:i
Ø
DµΦq . (5.1d)

Here, we have used the notation for the SM fields introduced in Chapter 2
(see Table 2.1). Moreover, we have defined Φ:i

Ø
DµΦ “ Φ:iDµΦ ` piDµΦq:Φ

and Φ:i
Ø
Dk

µΦ “ Φ:σkiDµΦ ` piDµΦq:σkΦ with the Pauli matrices σk. Even
though the terms in equations (5.1b) to (5.1d) are of the correct form, it
can be shown that they do not produce Higgs couplings to a quark pair
upon EWSB [41]. Adding the remaining operator Qd to the Lagrangian of
equation (2.8), we must again find the quark mass eigenstates once the Higgs
has acquired a finite vev. However, unlike in the steps that lead to equation
(2.10), the presence of Qd implies that the mass and Yukawa matrices are
in general misaligned and can therefore not be diagonalized simultaneously.
The effective down-type quark Yukawa sector after EWSB in the fermion
mass basis is [41]

´LYukawa Ě mid̄
i
Ld

i
R `

yij
?
2
Hd̄iLd

j
R ` h.c. , (5.2)

where i, j are generation indices and di “ pd, s, bqᵀ is the vector of down-
type quark fields in flavor space.e The corresponding physical current quark
masses are denoted as mi (cf. Table 2.2), while yij is a, in general, complex-
valued and non-diagonal matrix in flavor space. Comparing the above La-
grangian with that of equation (2.10), we notice that the minimal SM is re-
produced in the case of yij “

?
2mi{vδij . Here, we are interested in scenarios

where the existence of new physics induces flavor-violating Higgs couplings,
i.e. yij ‰ 0 for at least one pair i ‰ j. The corresponding non-standard
interaction vertices as well as the associated Feynman rules are shown in
Figure 5.2. From a physics point of view, the presence of the non-diagonal
Yukawa terms has several potentially observable consequences.

First, additional decay channels for the Higgs boson become accessible.
An explicit leading-order calculation based on the effective Lagrangian in
equation (5.2) gives for the squared amplitude of the process H Ñ did̄j

|M2
ij̄

| “
Ncm

2
H

2

”

`

|yij |
2 ` |yji|

2
˘ `

1 ´ m̂2
i m̂

2
j

˘

´ 4m̂im̂j Repyijyjiq
ı

, (5.3)

eThe fields di in equation (5.2) are quark mass eigenstates. Compared to our notation
introduced in equation (2.9) we have, however, removed the primes for the sake of read-
ability. Furthermore, we use a different normalization for the Yukawa matrix yij than the
authors of [41, 50] in order to be consistent with our convention in Chapter 2.
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di

d̄j

H
fl ´ i?

2
pyjiPR ` y˚

ijPLq1c

Figure 5.2: Quark-flavor-violating Higgs coupling to down-type quarks (i ‰ j)
and the corresponding Feynman rule as obtained from the general Lagrangian in
equation (5.2). Here, the chiral projectors P are given by PL,R “ p1 ¯ γ5q{2 and
1c is the unit operator in color space.

where m̂ :“ m{mH with the Higgs mass mH “ 125.09GeV [81], and Nc “ 3
is the number of colors in QCD. The corresponding decay rate can then be
calculated as

ΓpH Ñ did̄jq “
λ1{2p1, m̂2

i , m̂
2
j q

16πmH
¨ |M2

ij̄
| , (5.4)

with λpa, b, cq “ pa ´ b ´ cq2 ´ 4bc being the Källén triangle function. Note
that in a typical collider search for Higgs decays one will not be able to
distinguish between a given final-state quark and its anti-particle. We are
therefore equally interested in the conjugate process H Ñ d̄idj , whose decay
width will, however, be the same as the one presented in equation (5.4), since
the Yukawa sector of equation (5.2) conserves CP symmetry. Incoherently
summing the decay amplitudes of both processes then simply yields

|M2
ij | :“ |M2

ij̄
| ` |M2

īj
| “ 2 ¨ |M2

ij̄
| ,

which implies an analogous identity for the partial widths

ΓpH Ñ didjq :“ ΓpH Ñ did̄jq ` ΓpH Ñ d̄idjq “ 2 ¨ ΓpH Ñ did̄jq . (5.5)

Combining equations (5.3) to (5.5) and employing mi,mj ! mH , i.e. the
limit of a massless final state m̂ Ñ 0, ultimately gives

ΓpH Ñ didjq “
NcmH

16π

`

|yij |
2 ` |yji|

2
˘

. (5.6)

Apart from providing additional decay channels for the Higgs boson, the
flavor-violating couplings in equation (5.2) lead to a second class of poten-
tially observable effects. Specifically, they introduce tree-level FCNCs which
will give contributions to neutral meson oscillations and mixing [41]. Preci-
sion measurements of the aforementioned phenomena thus impose stringent
limits on the non-diagonal entries of yij , which we summarize in Table 5.2.
This summary demonstrates that the couplings in the B0

s sector are the ones
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Observable Coupling Constraint

B0
d oscillations

|ydb|
2, |ybd|2 ă 4.6 ¨ 10´8

|ydbybd| ă 6.6 ¨ 10´9

B0
s oscillations

|ysb|
2, |ybs|2 ă 3.6 ¨ 10´6

|ysbybs| ă 5.0 ¨ 10´7

K0 oscillations

Re y2ds, Re y
2
sd r´1.2 . . . 1.1s ¨ 10´9

Im y2ds, Im y2sd r´5.8 . . . 3.2s ¨ 10´12

Re y˚
dsysd r´1.1 . . . 1.1s ¨ 10´10

Im y˚
dsysd r´2.8 . . . 5.6s ¨ 10´13

Table 5.2: Current 95% confidence level (CL) limits on the quark-flavor-violating
effective Higgs couplings introduced in equation (5.2) as obtained from meson os-
cillation experiments. The reported constraints are taken from [41] and have been
appropriately adjusted to the coupling normalization used here.

with the loosest constraints and therefore the prime candidates to induce
exotic Higgs decays, namely H Ñ bs, with non-negligible rates. To be more
concrete, we can employ equation (5.6) to translate the limits from Table
5.2 into bounds on the corresponding branching ratio. Two examples are

BpH Ñ bsq ă

#

1.8 ¨ 10´3 for ybs “ ysb ,

6.6 ¨ 10´3 for ybs ‰ 0 and ysb “ 0 or vice versa .
(5.7)

Here, we assumed that the combined partial width of non-standard Higgs
decays is sufficiently small such that the Higgs total width is still well ap-
proximated by its SM value, i.e. ΓH » ΓSM

H “ 4.1MeV [162].
When quoting upper limits like those in equation (5.7) one should always

keep in mind that low-energy flavor measurements can only provide indirect
constraints on the effective couplings involved. As we have mentioned before,
such bounds may become invalid if there exist multiple new physics contri-
butions to the relevant neutral meson oscillations, which mutually cancel
to some degree. However, such cancellations typically necessitate a certain
amount of parameter tuning, if the different sources of FCNC are indepen-
dent of each other. For instance, the authors of [197] recently demonstrated
that, within the framework of a two-Higgs-doublet model, an appropriate
tuning of the neutral scalar masses leads to branching fractions for H Ñ bs
of 10% and more, while all indirect constraints are satisfied. Similarly large
values can be obtained in the Minimal Supersymmetric Standard Model,
provided one accepts some fine tuning in the mixing between second and
third generation squarks [191].

A further reason which might invalidate the bounds in equation (5.7) is
the following. The leading order relation between the effective couplings yij
on the one hand and the observable partial width ΓpH Ñ didjq on the other



5.3. Analysis and results 109

hand may be altered by sizable quantum corrections, especially those from
QCD (cf. [225] for the SM counterpart). In particular, the characteristic
energy scales of the two phenomena – meson oscillations and Higgs decays
– differ by two orders of magnitude, so that the running of the yij may play
a role. To our best knowledge, the aforementioned effects have not yet been
investigated in the literature. Their further discussion also goes beyond the
scope of this thesis.

Considering the above caveats concerning equation (5.6), we will take the
branching ratio BpH Ñ bsq as the free parameter for our analyses, instead of
the effective Yukawa couplings ybs and ysb. Notice, however, that there is no
experimental way to distinguish a jet coming from a strange quark from one
originating from a down quark. Hence, the actual observable for which our
analyses will provide a handle is BpH Ñ bjq :“ BpH Ñ bsq ` BpH Ñ bdq.

5.3 Analysis and results

In the following section, we will present the main results of this chapter
and analyze the prospects for discovering or constraining the quark-flavor-
violating Higgs decay H Ñ bj at the ILC. In line with our discussion of
the different Higgs production modes at a e`e´ collider in Section 5.1, we
will split our analysis according to the sought-after signal signature, with
the hadronic and leptonic search channels being studied in Section 5.3.2 and
Section 5.3.3, respectively. We start, however, with a summary of several
aspects that are common to all of our analyses.

5.3.1 General aspects of the analyses

Let us first summarize the tools we employed for the purpose of perform-
ing our detector-level analyses. We started by implementing the effective
Yukawa interactions of equation (5.2) in the UFO format [226] with the help
of the FeynRules package [227]. Based on the produced model file, we then
generated parton-level events for the signal processes using Whizard 2.5.0

[228] supplemented by the O’Mega matrix element generator [229]. Back-
ground events were created in the same way, but based on a UFO implemen-
tation of the minimal SM. Note that O’Mega provides tree-level scattering
amplitudes only. Correspondingly, all cross sections were, in general, cal-
culated at leading order. One exception is given by background processes
where an on-shell Higgs decays to a pair of same-flavor quarks. Here, we
used the higher-order-corrected SM Higgs branching fractions from [162],
since their tree-level counterparts are far off due to neglecting substantial
QCD corrections [225]. In the same spirit, we also included the sizable effec-
tive coupling of the SM Higgs to a pair of gluons. For illustrative purposes
and later reference, we collect all tree-level Feynman diagram topologies rel-
evant to our analyses in Figure 5.3. In order to reproduce the situation at
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: Tree-level Feynman diagrams for signal and background processes
relevant to our analyses of the QFV Higgs decay H Ñ bj. Incoming fermions lines
always represent an electron-positron pair. The fermion pair originating from the
Higgs in diagrams (a) to (c) and from the gluon in diagram (d) can be replaced by
a gluon pair to produce further relevant diagrams. Lastly, both gluons in diagram
(e) can also be on the same outgoing quark leg.

the ILC as realistic as possible, we furthermore took into account beam po-
larization and non-trivial beam energy spectra due to initial state radiation
and beamstrahlung.f Parton showering and hadronization was carried out
using PYTHIA8 [231], while a fast detector simulation was performed with
Delphes 3 [232]. Details about the specifications of the proposed ILC de-
tectors were provided by the dedicated DSiD detector card [233], which is
based on the information given in the TDR [46]. Jets were reconstructed
with FastJet [234] via the anti-kT algorithm [235] with a cone radius pa-
rameter of R “ 0.4. Detector-level events were finally analyzed employing
MadAnalysis5 [236].

Distinguishing the sought-after signal involving the Higgs decay H Ñ bj
from SM background processes like H Ñ bb̄ makes reliable flavor identifi-
cation of final-state quarks particularly important. Realistic values for the

fWhile Whizard itself provides functionalities to include effects from beam polarization
and initial state radiation, beamstrahlung is accounted for by the CIRCE package [230].
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tagging efficiencies at the ILC experiments are

Ppb-tag | bq “ 0.80 , Ppc-tag | cq “ 0.70 . (5.8a)

According to the expected performance of the LCFIPlus software [216],
which is used by both ILC detector concept groups for jet flavor tagging
[46], the corresponding misidentification rates are then given by

Ppb-tag | cq “ 0.08 , Ppb-tag | jq “ 0.01 ,

Ppc-tag | bq “ 0.17 , Ppc-tag | jq “ 0.10 .
(5.8b)

As we have already mentioned in the introduction to this chapter, flavor
tagging at the ILC will still not allow to differentiate between s and d jets.
The QFV Higgs decays to bs and bd final states therefore effectively induce
the same signature such that our analysis will only be sensitive to the com-
bined quantity BpH Ñ bjq :“ BpH Ñ bsq ` BpH Ñ bdq rather than to the
branching ratios of the two modes separately.

A further aspect that is relevant to all of our analyses is that of beam po-
larization, a feature unique to linear colliders and one of their major advan-
tages over circular machines. The ILC is planned to provide both polarized
electron and positron beams with expected specifications Ppe´q “ ˘80%
and Ppe`q “ ˘30%, thus offering four distinct polarization configurations.
Since different physics searches imply different optimal polarization settings,
the data will not be collected using only one combination, but rather accord-
ing to well-motivated sharing scenarios. In order to gain a deeper insight
into the performance of the individual search channels for QFV Higgs decays
and their dependence on the chosen polarization setting, our results will be
presented in two ways. On the one hand, we will compare the sensitivity
of the four possible combinations thus determining the optimal polarization
setting for each channel. On the other hand, we will analyze two realistic
polarization sharing scenarios of an actual run as proposed in [189], namely

Scenario 1: P´`,`´,``,´´ “
`

67.5%, 22.5%, 5%, 5%
˘

,

Scenario 2: P´`,`´,``,´´ “
`

40%, 40%, 10%, 10%
˘

,
(5.9)

with the first and second sign denoting the polarization of the electron and
positron beams, respectively. For the recently advanced 250GeV stage [47],
a polarization sharing of p45%, 45%, 5%, 5%q was suggested in [214], which
is, however, very similar to our second benchmark scenario from above.

As for the amount of accumulated data itself, we decide to use the spec-
ifications of the previously mentioned H-20 running scenario [189, 214]. Ac-
cordingly, we assume an available integrated luminosity of 2 ab´1 (4 ab´1)
at a center-of-mass energy of 250GeV (500GeV). Besides, initial phases at
both energies are anticipated to collect 500 fb´1 of data each.
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Finally, the statistical evaluation of our simulation results will be based
on a simple cut-and-count analysis. As a measure for the statistical signif-
icance of a given signal, we will employ the standard score z. Expecting a
large number of background events allows us to use its normal approxima-
tion, specifically

z “
S

b

S ` B ` ε2systB
2
, (5.10)

where the number of signal and background events are denoted as S and B,
respectively. Furthermore, we introduced the parameter εsyst which encodes
the systematic uncertainty on the background determination, i.e. εsyst “

∆B{B. Based on equation (5.10), we can also define the 95% CL upper
limit on the number of signal events: For given B and εsyst, it corresponds
to the value S95% for which the right-hand side yields z “ Φ´1p0.95q « 1.64
with Φ´1 being the probit function. Additional details on the statistical
methods relevant to the present work will be provided in Appendix E.

In the following, we present our analyses of the individual search channels
and the corresponding results. Whenever explicit signal rates are needed,
we adopt the benchmark point

?
2 ¨ |ybs| “

?
2 ¨ |ysb| “ 10´3 and |ybd| “ |ydb| “ 0 , (5.11)

giving a total QFV Higgs branching ratio of BpH Ñ bjq “ 0.73% as per
equation (5.6).

5.3.2 Hadronic channel at 250GeV

First, we investigate the case where the Higgs is produced in association
with a Z boson, which decays hadronically to a pair of same-flavor quarks.
The corresponding tree-level Feynman diagram is shown in Figure 5.3a. The
sought-after signal process thus contains four final-state jets, namely

e`e´ Ñ pZ Ñ qq̄q ` pH Ñ bjq . (5.12)

Accordingly, the dominant SM background for this channel originates from
inclusive four-jet production, i.e. e`e´ Ñ kkkk, with k denoting gluons or
any quark flavor barring the top quark. The aforementioned background
process obtains contributions from two fundamentally different classes of
Feynman diagrams, described in the following.

Non-resonant processes in the sense that the Higgs does not propagate
in the corresponding Feynman diagrams. First and foremost, QCD
four-jet production as displayed in Figures 5.3d and 5.3e belong to
the present category. Further examples include double-W or double-Z
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production with the weak bosons both decaying hadronically (cf. Fig-
ures 5.3g and 5.3h). In a slight abuse of notation, we will refer to the
class of non-resonant processes as 4k.

Resonant Higgs processes where an on-shell Higgs is produced in asso-
ciation with two quarks different from the top quark. If the Higgs
then decays to a pair of jets – preferably to bb̄, cc̄ or gg – the four-
jet background signature is reproduced. Note that this category itself
consists of two sub-classes. First, there are Higgsstrahlung type pro-
cesses where the Z decays hadronically (cf. Figure 5.3a). The second
contribution comes from quark pair production with one of the quarks
radiating off a Higgs (cf. Figure 5.3c).

As expected, the non-resonant modes will turn out to constitute by far the
largest background in the hadronic channel due to their huge QCD cross
sections, see Table 5.3.

In order to discriminate the signal process of equation (5.12) from the
aforementioned backgrounds, we define a series of cuts and selection crite-
ria, which are applied to the reconstructed Monte Carlo events. First, the
final state of a signal event is required to consist of exactly four jets. Of
those, at least one must be b-tagged and one must not obtain any flavor
tag thereby being identified as a light jet. All jets are furthermore asked to
have sufficiently large transverse momenta, pT ą 10GeV, and are supposed
to lie within |η| ă 1.8, where η denotes pseudorapidity. Motivated by the
signal topology, we then demand one b jet together with one light jet to
reconstruct the Higgs mass within

∆mH :“ |mbj ´ mH | ă 5GeV , (5.13)

where mbj is the appropriate two-jet invariant mass. Whenever more than
one bj pair fulfills equation (5.13), we choose the one whose invariant mass
is closest to the Higgs mass. Next, the two remaining jets are required to
be of the same flavor k and must reconstruct the Z boson mass within

∆mZ :“ |mkk ´ mZ | ă 10GeV . (5.14)

The numerical values quoted in equations (5.13) and (5.14) were chosen as
to maximize the signal significance according to equation (5.10) assuming a
systematic background uncertainty of 1%. Note, however, that because of
the 4k mode’s large inclusive cross section, applying only the two aforemen-
tioned invariant mass cuts still leaves an unacceptable amount of combina-
torial four-jet background, see Table 5.3. For the sake of further improving
the signal-to-background ratio, we define several additional selection cri-
teria. For one, we demand the transverse momentum of the b-tagged jet
associated with the Higgs boson decay (pbT ) to exceed 50GeV. Moreover, its
angular distance from the light jet that also originates from the Higgs decay
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Figure 5.4: Different kinematic distributions of signal and dominant background
events after the invariant mass cuts for the hadronic channel at 250GeV with
beam polarization P´`. Shown are the angular separation distributions (∆R and
∆φ) between the bottom and the light jet attributed to be coming from the Higgs
decay, as well as the transverse momentum spectrum of the aforementioned b jet.
All histograms were normalized as to have a unit area.

must be sufficiently small, specifically ∆Rbj ă 2.6 and ∆φbj ă 2.5, where φ
is the azimuthal angle while the azimuthal-pseudorapidity separation ∆R is
defined as

p∆Rq2 :“ p∆ηq2 ` p∆φq2 .

Our actual choices of the three last cuts’ numerical values are guided by the
features of the corresponding kinematic distributions of signal and back-
ground events, which are displayed in Figure 5.4.

The cutflow of event yields resulting from the selection procedure out-
lined above is given in Table 5.3 for an integrated luminosity of 2 fb´1 with
polarization sharing scenario 1 and assuming our benchmark point of equa-
tion (5.11). Crucially, it shows that the signal-to-background ratio is rela-
tively small even after all cuts were applied. In particular, the residual com-
binatorial four-jet background is problematic, whereas the resonant modes
are under control.

A more general assessment of the hadronic channel’s performance can
be based on Figure 5.5. Here, we show several contours of interest in the
luminosity-branching ratio plane choosing different beam polarization con-
figurations. First, in the left-hand plot, we contrast the two realistic polar-
ization sharing scenarios from equation (5.9). For both cases, we calculated
the 5σ as well as the 95% CL contours. Whereas the former determines
the minimal signal branching ratio necessary for a discovery, the latter gives
the maximal value for BpH Ñ bjq that can still be excluded at the speci-
fied confidence level in the event of a null result. Second, the right-hand
plot compares the 95% CL contours of the four possible beam polarization
combinations for the sake of finding the optimal one. Adopting a system-
atic background error of 1%, the hadronic channel’s performance can now
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be summarized as follows. With the full amount of accumulated data and
assuming that the experimental outcome is consistent with the SM predic-
tions, the hadronic channel is anticipated to set a 95% CL upper bound of
around 4% on the signal branching fraction. The same data set is expected
to allow a 5σ discovery only for branching ratios larger than 10%. Note
that the two polarization sharing scenarios considered here yield very similar
results for exclusion and discovery limits, respectively. Lastly, the optimal
polarization combination is found to be P`´ in accordance with the fact
that it is this configuration which suppresses the SM four-jet background
the most. In summary, the hadronic channel’s sensitivity is considerably
limited and will not be able to compete with that of the indirect limits in
equation (5.7).

Signal 4k bb̄ cc̄ jj

Reco. 2681 2.8 ¨ 107 1.9 ¨ 105 9490 2.8 ¨ 104

Jet tag 1080 1.9 ¨ 106 6.9 ¨ 104 1150 3470
∆mH 147 1.4 ¨ 105 6730 87 223
∆mZ 21 6946 98 5 2
pbT 14 3503 81 3 1
∆φbj 5 419 15 1 1
∆Rbj 4 165 12 1 0

Table 5.3: Cutflow of signal and background events in the hadronic channel at
250GeV. An integrated luminosity of 2 ab´1 with polarization sharing scenario 1
was assumed. The signal rate was set according to the benchmark point of equation
(5.11), i.e. BpH Ñ bjq » 0.73%. For details on the notation, see the main text.
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5.3.3 Leptonic channels

The analysis of the hadronic channel in the previous section showed that its
sensitivity is inherently limited, mainly due to the large amount of combina-
torial four-jet background. Thus, the hadronic channel alone cannot provide
constraints that are comparable with the ones from indirect searches quoted
earlier, in equation (5.7). Learning from these findings, we now go on to
investigate different search modes, namely ones where the signal signatures
contain only two rather than four jets. Considering the Higgs production
channels relevant at the ILC as discussed in Section 5.1, such signatures nec-
essarily involve either an additional pair of opposite-sign charged leptons,
or missing energy originating from a pair of neutrinos. The corresponding
two search modes will be referred to as charged lepton channel and neutrino
channel, respectively. Obviously, both possibilities will come with their own
advantages and drawbacks that are to be determined. We will present de-
tailed analyses of the leptonic channels including a thorough background
study in later parts of this section.

Here, let us briefly mention one important aspect of the background dis-
cussion which will apply to both of the leptonic channels. To this end, recall
from Table 5.3 that the second largest SM background in the hadronic case is
that from resonant processes where the Higgs decays to two bottom quarks.
Likewise, we expect the dominant background for the leptonic channels to
originate from on-shell Higgs production followed by its SM decay into a
pair of same-flavor quarks. Importantly, the thus produced final states will
exhibit the same kinematics as the sought-after signal and differ from the
latter only in the realized flavor combination. Taking into account imper-
fections in the flavor tagging procedure, resonant processes can thus easily
mimic the signal. Thereby, they become irreducible background which is
only suppressed by flavor tagging requirements. At the same time, the reso-
nant SM modes will typically occur at larger rates as compared to the signal.
Based on these realizations, it is straightforward to give a rough estimate of
the leptonic channels’ reachable sensitivity, on the one hand, and of the rel-
ative importance of the individual resonant background modes, on the other
hand. These estimates will be the subject of the next paragraph. Note that
applying similar estimates to the hadronic search channel is less meaningful
owing to the overwhelming combinatorial four-jet background.

A Estimated performance based on resonant background modes

In line with the reasoning above, the following discussion is dedicated to
estimating the leptonic channels’ performance taking into account only res-
onant background processes. All estimates will be based exclusively on flavor
tagging specifications and Higgs branching ratios, rather than making use
of simulations of any kind.
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If S and BX are numbers of signal and resonant background events, with
X indicating the Higgs decay products, we can write

BX “ L ¨ σprod ¨ α ¨ ε1 ¨ εtag,X ¨ BX , (5.15a)

S “ L ¨ σprod ¨ α ¨ ε1 ¨ εtag,bj ¨ Bbj , (5.15b)

where we have abbreviated BX ” BpH Ñ Xq for the sake of readability.
Furthermore, we have introduced the flavor tagging efficiencies εtag,X defined
as the probability that a given jet pair X is identified as bj, i.e.

εtag,X :“ Ppbj-tag |Xq .

Since signal and resonant background processes only differ by the respective
Higgs decay products all other quantities in equation (5.15) – integrated
luminosity L, Higgs production cross section σprod, detector and analysis
acceptance α and other detection and reconstruction efficiencies ε1 – are the
same in both relations. Dividing equation (5.15a) by (5.15b) therefore yields

rX :“
BX

S
“

B ¨ εtag|X

B ¨ εtag|bj
. (5.16)

The quantities rX obviously still depend on new physics parameters via the
QFV Higgs branching ratio. It is also convenient to define a measure for
the relative importance of the individual resonant background modes that
is independent of Bbj . Such a measure is given by

ρX :“ BX ¨
εtag,X
εtag,bj

. (5.17)

Explicit values for ρX and rX are listed in Table 5.4, demonstrating that
the by far most severe background is expected to come from the bb̄ process.
Furthermore, the resonant cc̄ contribution is anticipated to be of a similar
size as the one due to gg. For our benchmark point of equation (5.11),
Table 5.4 implies that each signal event comes with rbb “ 5.4 irreducible
background events from the bb̄ mode and so on.

As a next step, let us estimate the statistical significance z within reach of
a search in one of the leptonic channels for a given signal branching fraction
Bbj . Again approximating the total background by the resonant processes
only, and ignoring systematic uncertainties for the moment, we can write
(cf. equation (5.10))

z À
S

?
S ` Bres

“
S

a

S `
ř

X BX

“

c

S

1 ` rB
, (5.18)

where we have used equation (5.16) in the last step and defined rB as the
sum of all relative background weights rX . For instance, in the case of our
benchmark point Bbj “ 0.73%, the values from Table 5.4 yield z À

?
S{2.6.
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Process X BpH Ñ Xq [%] εtag [%]
relative weights
r ρ [10´2]

bj 0.73 71.2 1.0 –

bb 58.09 4.80 5.4 3.9
cc 2.884 3.52 0.20 0.14
gg 8.180 1.78 0.28 0.20

Table 5.4: Relative weights of the different irreducible background modes.
Whereas ρ is independent of any BSM parameter, the given values for r were calcu-
lated using the benchmark point Bbj “ 0.73%. Assuming that non-standard Higgs
decays have a sufficiently small rate, SM Higgs branching fractions were adopted
(see [162]). Tagging efficiencies εtag are computed on the basis of equation (5.8).

Note that the result thus obtained is merely a very rough approximation
for z, which will typically overestimate its true value. Still, we can apply
the logic from above in order to get a first quantitative indication of the im-
portance of flavor identification for our analyses. Specifically, let us for now
assume a degraded c tagging efficiency of only 60% with the correspond-
ing misidentification rates adjusted according to the LCFIPlus specifications
[216]. Adopting the b tagging performance from equation (5.8) as before and
re-calculating the relative weight factors, shows a significant enhancement in
the bb̄ mode, rbb “ 13.5. The charm weight also increases, but only slightly
to rcc “ 0.269, while the gluon weight rgg remains unchanged with respect
to Table 5.4. According to equation (5.18) the estimated signal significance
is now reduced to z À

?
S{3.9, which corresponds to a degradation by more

than 30%. This result clearly demonstrates the potentially strong depen-
dence of the sensitivity of searches for QFV Higgs decays on the available
flavor identification capabilities. At the same time, it motivates a more thor-
ough study to find the optimal flavor tagging specifications given the existing
software packages like LCFIPlus. Such a study, however, goes beyond the
scope of the present thesis.

Finally, let us estimate the maximally achievable sensitivity of the lep-
tonic channels. To put it differently, we are interested in the signal branch-
ing fraction needed to obtain a given statistical significance z. Starting
again from the approximation in equation (5.18) and using the relation
ρB “ rBBbj , we can write

z2 À
S

1 ` ρB{Bbj
, (5.19)

which we now want to solve for Bbj . In doing so, we have to keep in mind
that the number of observable signal events S is a function of Bbj , as well, see
equation (5.15b). However, their relation contains quantities which encode
details about the experiment and the analysis, such that their values are in
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general not known without having performed a dedicated simulation. (An
exception is the case where one assumes an ideal detector and a trivial
analysis, i.e. α “ ε1 “ 1.) Alternatively, we may for the moment assume
to know the number of observable events S0 which are induced by some
reference branching ratio B0. Equation (5.15b) then implies that S{Bbj “

S0{B0. Inserting this into equation (5.19) yields

z2 À
Bbj ¨ S0{B0

1 ` ρB{Bbj
,

which can now readily be solved for the unknown signal branching fraction

Bbjpzq Á
z2B0

2S0

˜

1 `

c

1 `
4ρBS0

z2B0

¸

. (5.20)

Importantly, the quantities characterizing the reference point only enter as
the ratio S0{B0, so that Bbjpzq is independent of any BSM parameters as
expected. Reading off the values of the weight factors ρX from Table 5.4,
one finds ρB “ 4.24 ¨ 10´2. Equation (5.20) can now, for example, be used
to estimate the minimally reachable 95% upper bound on Bbj . Plugging in
z “ z95% « 1.64 yields

B95% Á 1.3 ¨ B0{S0

´

1 `
a

1 ` 0.063 ¨ S0{B0

¯

, (5.21)

A similar lower limit can be obtained for the branching fraction B5σ nec-
essary to get a 5σ discovery. Later, we will compare the estimates derived
above with the outcome of our full analyses, in order to asses how dominant
the resonant background processes truly are.

B Charged lepton channel at 250GeV

Analogous to the hadronic case investigated in Section 5.3.2, let us assume
that the Higgs is produced in association with a Z boson, which, however, is
now supposed to decay leptonically into a pair of electrons or muons.g The
corresponding tree-level Feynman diagram is again that of Figure 5.3a. The
signature of the sought-after signal in the charged lepton channel is then

e`e´ Ñ pZ Ñ ```´q ` pH Ñ bjq , (5.22)

where ` P te, µu. The process e`e´ Ñ ```´bj itself does not exist in the
minimal SM. However, flavor tagging imperfections imply that the SM final
states ```´bb̄, ```´cc̄ or ```´jj may be erroneously identified as the one
of the signal. The corresponding processes e`e´ Ñ ```´bb̄, etc. therefore
constitute the main SM background modes of the charged lepton channel.
To be more precise, we distinguish the following two categories:

gWe do not consider τ leptons here since they are not detector stable, such that their
identification efficiency is significantly less than that of electrons and muons.
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Resonant Higgs processes which have the exact same topology as the
signal, namely a hadronically decaying on-shell Higgs is produced in
association with a Z boson that decays into a pair of charged leptons.
As opposed to the hadronic channel, topologies as in Figure 5.3c are
irrelevant here since they are suppressed by tiny electron or muon
Yukawa couplings.

Non-resonant processes in the sense that the Higgs does not propagate
in the corresponding Feynman diagrams. Imposing appropriate invari-
ant mass cuts will therefore help to reduce their contribution. Possi-
ble origins include ZZ, γγ or Zγ production (cf. Figure 5.3h) as well
as fermion pair production with one of the fermions radiating off an
electroweak gauge boson (cf. Figure 5.3f). In the case of an electron-
positron pair in the final state, also more complex topologies like that
of Figure 5.3i become possible.

As already argued before, the resonant modes are expected to be the domi-
nant ones since they share the signal process’s kinematics. Additional back-
ground contributions may, in principle, arise from charged-current reactions
such as e`e´ Ñ ν``sc (cf. Figure 5.3g), provided the final-state jet pair is
identified as bj and a second charged lepton is detected. Such an extra
lepton will typically originate from hadronic activity within jets. Hence,
requiring all charged leptons to be sufficiently isolated from such activityh

as well as asking them to have sizable transverse momenta, will prove to be
very efficient in rejecting this kind of background (cf. Table 5.5).

In more detail, our event selection consists of the following set of cuts.
First, the final state is required to contain exactly one b jet as well as one
light-flavor jet j, both of which are asked to have sufficiently large transverse
momenta, pqT ą 10GeV, and are supposed to lie within |η| ă 1.8. Motivated
by the signal topology, the jet pair is furthermore required to reconstruct the
Higgs mass within ∆mH ă 30GeV. Apart from the aforementioned jets we
ask the final state to contain precisely one pair of same-flavor and opposite-
sign isolated leptons. As argued above, we restrict ourselves here to the
electron and muon flavors. Each lepton is supposed to satisfy p`T ą 10GeV
and |η| ă 2.44. The invariant mass of the lepton pair must be consistent with
the Z boson mass, specifically ∆mZ ă 20GeV. Lastly, in order to further
reduce the signal contamination due to non-resonant background processes,
the so-called recoil mass is required to reconstruct the Higgs mass within

∆recoil :“ |mrecoil ´ mH | ă 20GeV ,

where the recoil mass is exclusively defined through charged-lepton observ-

hThe DSiD detector card already implements appropriate isolation criteria for electrons,
muons and photons. For details, see [233].
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Signal ``bb̄ ``cc̄ ``jj ν``sc ν``du

Reco. 225 1.2 ¨ 105 1.4 ¨ 105 4.0 ¨ 105 5.2 ¨ 106 5.2 ¨ 105

Jet tag 82 4320 1904 2960 305 152
p`T 79 3616 1552 2419 0 0
∆mZ 77 2784 1051 1746 0 0
∆recoil 71 1272 325 553 0 0
∆mH 51 247 34 66 0 0

Table 5.5: Cutflow of signal and background events in the charged lepton channel
at 250GeV. An integrated luminosity of 2 ab´1 with polarization sharing scenario 1
was assumed. The signal rate was set according to the benchmark point of equation
(5.11), i.e. BpH Ñ bjq » 0.73%. For details on the notation, see the main text.

ables, namely as

mrecoil :“ s ´ 2
?
sE`` ` m2

`` and E`` :“ E`` ` E`´ .

For the above-quoted values of minimal transverse momenta and maximal
pseudorapidity, the invariant mass and recoil mass cuts were chosen as to
maximize the signal significance according to equation (5.10) assuming a
systematic background uncertainty of 1%.

Completely analogous to the hadronic channel analysis, our results are
presented in two steps. First, Table 5.5 contains the cutflow of event yields
resulting from the selection procedure described above. The displayed num-
bers were obtained assuming our benchmark point of equation (5.11) and
2 ab´1 of accumulated data with a polarization splitting according to sce-
nario 1. Most importantly, the final signal-to-background ratio can be seen
to have improved by an order of magnitude with respect to that of the
hadronic channel. Furthermore, note that the relative importance of the
background modes is as anticipated from Table 5.4 – at least qualitatively.
The exact values for the relative weights r introduced in equation (5.16)
are, however, not reproduced. This is mainly due to additional non-resonant
background contributions which are thus shown to be still relevant.

In a second step, we evaluate the charged lepton channel’s performance
based on Figure 5.6,i where we again adopt a systematic background error of
1%. On the one hand, we find that the charged lepton channel is expected to
put a 95% CL upper limit of around 0.5% on the quantity BpH Ñ bjq using
2 ab´1 of data collected at a 250GeV run. Interestingly, this upper bound
turns out to be comparable to the ones from indirect measurements quoted
in equation (5.7). On the other hand, a 5σ discovery would be possible only
for branching ratios larger than roughly 2%. In terms of sensitivity, the

iThe plots displayed here are of the same type as the ones in Figure 5.5 which we
discussed in the context of the hadronic channel in Section 5.3.2. Further details on what
is shown and how to extract useful information can be found there.
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Figure 5.6: Expected performance of the charged lepton channel at
?
s “ 250GeV

as a function of the total integrated luminosity, assuming a systematic error of
εsyst “ 1%. Left : Expected 5σ discovery and 95% CL exclusion reaches on BpH Ñ

bjq for the two polarization scenarios of equation (5.9). Right : Expected exclusion
reaches for the four possible polarization configurations individually.

charged lepton channel thus offers an improvement of an order of magnitude
over the hadronic search mode. Lastly, we remark that results from the two
considered polarization sharing scenarios again almost coincide. However,
in contrast to the hadronic channel, the optimal combination is now found
to be P´`.

C Neutrino channel at 250GeV and 500GeV

Lastly, let us consider the signal signature where the bj jet pair coming from
the QFV Higgs decay is produced in association with missing energy orig-
inating from neutrinos. Importantly, this final state receives contributions
from two Higgs production modes with sizable cross sections, namely Higgs-
strahlung and W boson fusion. (For details see Section 5.1, in particular
Figure 5.1, as well as the tree-level Feynman graphs in Figures 5.3a and
5.3b.) The corresponding reactions are

e`e´ Ñ pZ Ñ νν̄q ` pH Ñ bjq and (5.23a)

e`e´ Ñ νeν̄e ` pH Ñ bjq , (5.23b)

respectively. Other than the hadronic or the charged lepton channel, searches
in the neutrino mode are therefore potentially relevant at both the 250GeV
and the 500GeV run. Since background discussion and signal selection cri-
teria were found to be similar for both energies, the corresponding analyses
as well as their outcome will be presented largely in parallel.

Starting with the relevant Standard Model background, first note that
the process e`e´ Ñ νeν̄ebj indeed exists in the minimal SM (cf. Figure 5.3i),
but has a negligible rate due to GIM suppression. Furthermore, it exhibits
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different kinematics than the signal processes in equation (5.23) since it does
not involve a Higgs decay. Hence, it will not be taken into account during
our present analysis. Instead, the dominant SM backgrounds again do not
have the same final state as the signal, but may still be mistaken for it
due to several reasons. Specifically, we consider the following background
contributions.

Resonant Higgs processes (e`e´ Ñ νν̄bb̄, etc.) which exist in the ex-
act same topologies as the signal, but with final-state flavor combina-
tions that are consistent with the SM. Apart from their suppression by
flavor-tagging requirements, these processes are therefore irreducible
and expected to constitute the dominant background (cf. the discus-
sion in the first part of Section 5.3.3).

Non-resonant processes (e`e´ Ñ νν̄bb̄, etc.) in the sense that the Higgs
boson does not propagate in the corresponding Feynman diagrams, so
that the final-state kinematics will be different from that of the signal.
Double-Z production is one of their possible origins (cf. Figure 5.3h).

Quark pair productions (e`e´ Ñ bb̄, etc.) Since uncertainties in deter-
mining the jets’ four momenta or other detector imperfections may
result in the presence of artificial missing energy, also these processes
are of relevance. However, the aforementioned effects are usually small
and a cut on the minimal amount of missing energy is expected to be
very efficient. Still, the large cross sections involved make this contri-
bution non-negligible.

Charged-current processes (e`e´ Ñ ν``sc, etc.) originate, for instance,
from WW production (cf. Figure 5.3g) and may contribute, provided
the charged lepton remains undetected. Clearly, a veto on the pres-
ence of isolated leptons can be used to reduce the impact of this kind
of background. Furthermore, the corresponding final states typically
contain less missing energy as compared to the signal, since only one
neutrino is present.

Apart from the resonant processes, none of the background modes listed
above involves an actual Higgs decay. Therefore, a cut on the invariant
mass of the final-state jet pair mbj is expected to reject sizable parts of
the total background. In order to asses the effect of such a cut on the
different contributions, we plot the two-jet invariant mass spectra in Figure
5.7b. Similarly, for the purpose of reducing contamination from background
modes with less than two neutrinos in the final state, we will require the
presence of a minimal amount of missing transverse energy. The relevant
distributions are shown in Figure 5.7a.

Our complete event selection procedure consists of the following series of
cuts, which are applied to the reconstructed Monte Carlo events. First, we
require the final state to contain precisely one b-tagged jet, as well as one jet
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Figure 5.7: Different kinematic distributions of signal and dominant background
events in the neutrino channel at 250GeV (left) and 500GeV (right) with beam
polarization P´`. All spectra are normalized to integrated luminosity.

which does not receive any flavor tag and is to be identified with a light-flavor
jet. Both jets are asked to have sufficiently large transverse momenta, pT ą

10GeV, and are supposed to lie within |η| ă 1.8. Next we reject all events
with at least one reconstructed isolated charged lepton in the final state.
As mentioned above, cuts on the two-jet invariant mass and the amount of
missing transverse energy are crucial in discriminating the signal processes of
equation (5.23) from several background sources. Specifically, we only select
events which satisfy {ET ą 35GeV and ∆mH ă 30GeV for

?
s “ 250GeV

or {ET ą 25GeV and ∆mH ă 25GeV for
?
s “ 500GeV, respectively. The

aforementioned values for {E
min
T and ∆max

mH were determined to be the ones
maximizing the signal significance in the presence of an assumed systematic
background uncertainty of εsyst “ 1% (cf. also Figure 5.7). Lastly, we ask
the two final-state jets to be sufficiently close in the azimuthal plane, namely
∆φbj ă 3.0. This cut was seen to further reduce the contamination from
quark pair production events, for which the final-state jets are expected to
be predominantly back-to-back due to momentum conservation.

Similar to the analysis channels discussed before, the presentation of our
results will proceed in two steps. First, the cutflows of event yields resulting
from the selection method detailed above are listed in Table 5.6 assuming
the benchmark point of equation (5.11). The signal-to-background ratio
for the 250GeV case is found to be worse than that of the charged lepton
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Signal pνν̄qbb̄ pνν̄qcc̄ pνν̄qjj ν``sc ν``du

Reco. 879 2.4 ¨ 107 2.4 ¨ 107 7.2 ¨ 107 5.2 ¨ 106 5.2 ¨ 106

Jet tag 435 1.0 ¨ 106 5.2 ¨ 105 8.6 ¨ 105 2.4 ¨ 105 6.7 ¨ 104

No ` 429 9.7 ¨ 105 5.1 ¨ 105 8.5 ¨ 105 7316 2430
{ET 301 2.1 ¨ 104 1.2 ¨ 104 1.3 ¨ 104 4400 1208
∆mH 222 4506 2420 2898 935 402
∆φbj 201 1335 234 202 899 375

(a) Cutflow table for the neutrino channel at 250GeV assuming an integrated
luminosity of 2 ab´1 with polarization sharing scenario 1.

Signal pνν̄qbb̄ pνν̄qcc̄ pνν̄qjj ν``sc ν``du

Reco. 2490 7.5 ¨ 106 8.2 ¨ 106 2.3 ¨ 107 3.6 ¨ 106 3.6 ¨ 106

Jet tag 1147 1.6 ¨ 105 9.8 ¨ 104 1.6 ¨ 105 1.3 ¨ 105 3.6 ¨ 104

No ` 1137 1.6 ¨ 105 9.8 ¨ 104 1.6 ¨ 105 4092 1539
{ET 1040 3.7 ¨ 104 2.0 ¨ 104 2.3 ¨ 104 3450 1217
∆mH 695 4617 568 813 288 116
∆φbj 655 3946 299 522 270 107

(b) Cutflow table for the neutrino channel at 500GeV assuming an integrated
luminosity of 4 ab´1 with polarization sharing scenario 2.

Table 5.6: Cutflows of signal and background events in the neutrino channels.
The signal rate was chosen according to the benchmark point of equation (5.11),
i.e. BpH Ñ bjq » 0.73%. In the columns labeled pνν̄qkk, we summarize contribu-
tions from all background processes involving two final-state jets of flavor k. For
further details on the notation, see the main text.

channel, being mainly limited by large background contributions of processes
involving pairs of b quarks and the sc charged-current mode. In contrast,
the value of S{B at 500GeV is comparable to that in the charged lepton
search. Interestingly, for the 500GeV case the relative background weights r
as defined in equation (5.16) turn out to be reasonably close to the idealized
values from Table 5.4. This finding already indicates that the background in
the 500GeV analysis is dominated by resonant modes. In an analogous way,
non-resonant contributions can be seen to be more relevant in the context
of the search at 250GeV.

In a second step, the neutrino channels’ reachable sensitivity can be read
off from Figure 5.8, where a systematic background error of 1% was adopted
(cf. also the footnote on page 121). The performance of the neutrino channel
at 250GeV is thereby found to be very similar to that of the charged lepton
channel with slightly better expected upper bounds (B95% » 0.4%) and
discovery limits (B5σ » 1%). Therefore, we will largely concentrate on the
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500GeV variant in the following. Here, a 95% CL upper bound of better
than 0.2% on the signal branching ratio is anticipated to be set in the event
of a null result based on the full 4 ab´1 data set. A 5σ discovery could be
expected if BpH Ñ bjq is larger than 0.5%. Hence, given a signal branching
fraction that is not yet entirely disfavored by the indirect constraints from
equation (5.7), the neutrino channel at 500GeV is the only search mode
that may offer the possibility to actually discover the decay H Ñ bj and
thus measure the associated BSM Higgs couplings.

Finally, let us compare our actual findings for the performance of the
neutrino channel at 500GeV with our rough estimate in equation (5.21),
which was obtained taking into account resonant background modes only.
Adopting as a reference branching fraction that of our benchmark point,
i.e. B0 “ 0.73%, we now have to anticipate the corresponding number of
signal events S0, which is schematically given by equation (5.15b), repeated
here for convenience

S0 “ L ¨ σprod ¨ α ¨ ε1 ¨ εtag,bj ¨ B0 .

As a first simplification, we assume that the entire 500GeV run with L “

4 ab´1 of accumulated data uses P´`-polarized beams. The production
cross-section of interest can then be read off from Figure 5.1

σprod ” σpe`e´ Ñ νν̄Hq “ σWBF ` σZH ¨ BpZ Ñ νν̄q « 180 fb .

Additionally setting all acceptances and efficiencies to unity, we end up with
a first approximation for the number of signal events to be produced, namely
S0 « 5256. At least factoring in the chosen tagging efficiency from Table
5.4 in a consistent way, we find the refined value of S0 « 3742, which yields
B95% Á 4.7 ¨ 10´4 as per equation (5.21). A more thorough estimate for S0

and hence for B95% can be obtained by appropriate simulations thus addi-
tionally taking into account more realistic detector acceptances α, particle
reconstruction efficiencies ε1 and polarization splitting. Of course, this is
what has been done in the course of our full analysis, so that S0 can be read
off from Table 5.6b. Not applying any kinematic cuts, we find S0 “ 1137
and therefore B95% Á 9 ¨ 10´4. In practice, imposing additional cuts like the
ones listed in Table 5.6b is required for the sake of rejecting events from
non-resonant background processes. Setting S0 “ 655 accordingly, gives
B95% Á 1 ¨ 10´3. Note that the computation of the last two estimates in-
volved simulations to reliably approximate the expected number of signal
events, given some reference branching ratio B0. The results are otherwise
still entirely based on our simple considerations from Section 5.3.3.A. Com-
paring these last estimates with the actual outcome of our full analysis,
B95% « 2 ¨ 10´3, thus demonstrates that the neutrino channel at 500GeV
is indeed dominated by the resonant background modes. Its sensitivity is
therefore mainly limited by flavor tagging capabilities.
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Figure 5.8: Expected performance of the neutrino channels as a function of the
total integrated luminosity, assuming a systematic error of εsyst “ 1%. Left : Ex-
pected 5σ discovery and 95% CL exclusion reaches on BpH Ñ bjq for the two
polarization scenarios of equation (5.9). Right : Expected exclusion reaches for the
four possible polarization configurations individually.
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5.4 Summary and conclusion

In the present chapter, following our original work in [50], we have per-
formed the first thorough study of the prospects for the proposed Interna-
tional Linear Collider (ILC) to discover or constrain flavor-violating decays
of the 125GeV Higgs boson into a bottom and a light-flavor quark via direct
searches. As a basis for our analyses, we adopted the original ILC baseline
program, which includes physics runs at center-of-mass energies of 250GeV
and 500GeV, and assumed appropriate luminosity and beam polarization
sharing scenarios. Taking into account single-Higgs production both via
Higgsstrahlung and via W boson fusion, we then investigated all final state
signatures which potentially lend themselves to dedicated searches for the
process H Ñ bj, and thus identified the most promising channels for each
center-of-mass energy. Our main results are compiled in Figure 5.9.

The plot reveals that the 250GeV ILC is expected to probe branching
fractions down to roughly 0.5% assuming the full targeted integrated lumi-
nosity of 2000 fb´1. Similarly, a discovery at the 5σ level is anticipated to
be feasible for decay rates of order 1%. The above results were obtained
employing search channels, in which the decay products of the Higgs boson
are accompanied by a pair of electrons or muons, or by missing energy from
two neutrinos. We also demonstrated that the sensitivity of the also possi-
ble purely hadronic final state is limited by the large combinatorial four-jet
background.

For the 500GeV run the only relevant search mode was argued to be
that involving a pair of neutrinos. Provided that no deviations from the
Standard Model predictions are observed, a corresponding analysis based
on 4000 fb´1 of accumulated data is expected to exclude branching ratios
larger than approximately 0.2% at 95% CL. A 5σ discovery was shown to
be realistic once BpH Ñ bjq exceeds roughly 0.5%. Interestingly, even an
initial run collecting only 500 fb´1 of data is anticipated to probe branching
ratios down to about 0.4%.

Of course, more sophisticated analysis techniques or additional cuts may
improve all or some of the aforementioned results. Recall furthermore that
our findings were produced employing fast detector simulations. In order
to provide more accurate predictions for the individual search modes’ ex-
pected performances, full analyses involving dedicated simulations based on
complete models of the proposed ILC detectors are clearly desirable. Still,
the results presented here already offer a first assessment of the feasible sen-
sitivity of direct searches for quark-flavor-violating (QFV) Higgs decays at
future electron-positron colliders. They additionally reveal which of the con-
sidered final states have the most promising prospects for an actual analysis.
In this context, let us also mention our estimate of the leptonic channels’
performances, which was based on a simplified calculation taking into ac-
count only resonant background processes as well as projected flavor tagging
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Figure 5.9: Comparison between the expected performances of all considered
channels. We show 5σ discovery and 95% CL exclusion reaches on BpH Ñ bjq as
functions of total integrated luminosity, assuming a systematic error of εsyst “ 1%.
Polarization sharing scenarios 1 and 2 were adopted for searches at 250GeV and
500GeV center-of-mass energy, respectively.

capabilities. Accordingly, said estimate was argued to yield an inherent up-
per bound on the achievable sensitivity, which was then demonstrated to be
nearly saturated by our results obtained for the neutrino mode at 500GeV.

With our projections for the ILC’s sensitivity to H Ñ bj decays at hand,
it is finally interesting to compare these results with existing indirect con-
straints on the involved QFV Higgs couplings, as well as with theoretical
predictions for the corresponding branching ratios as obtained in specific
models of new physics. In this context, we have previously demonstrated
that naively applying indirect limits coming from high-precision measure-
ments of meson oscillations [41] restricts BpH Ñ bjq to be smaller than
10´3–10´2. Notably, values in said range could still be probed by both the
250GeV and the 500GeV ILC. Furthermore, it is interesting to observe that
both the Minimal Supersymmetric Standard Model and two-Higgs-doublet
models can produce values for BpH Ñ bjq larger than 10%, if one accepts a
certain degree of fine tuning of the models’ couplings or masses [191, 197].
Barring any amount of such parameter tuning, those models may still lead
to branching fractions of order 10´3, which are also in reach of the ILC.

In conclusion, we have seen that direct searches for QFV Higgs cou-
plings via exotic Higgs decays are crucial to fully explore models exhibiting
quark-flavor violation. In particular, identifying the origin of potentially
observed QFV effects and actually measuring the couplings that are used
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to parameterize these effects necessarily require direct measurements. Also
robustly excluding or confirming the aforementioned fine-tuned scenarios
makes direct searches indispensable as an approach complementary to the
well-studied class of indirect measurements, the limits from which are sys-
tematically avoided in these cases. In the present chapter, we have explicitly
shown that future electron-positron colliders are the experiments of choice
to perform such direct searches.



Chapter 6

Final conclusion and outlook

The persistent lack of clear signs of phenomena beyond the Standard Model
(BSM) at the Large Hadron Collider (LHC) is one of the chief problems
that particle physicists are facing today. Even though a major discovery
within the lifespan of the LHC or its upgrades is still entirely conceivable,
it is nevertheless instructive to explore potential underlying causes for a
systematic absence of new physics from the available LHC results. In the
present thesis, we did so by discussing three concrete examples of BSM
scenarios, which current analyses may have failed to uncover for different
reasons. In all three cases, we concentrated on extensions of the minimal
Standard Model (SM) involving modified scalar sectors, meaning that the
properties of the Higgs boson found by ATLAS and CMS in 2012 deviate
from the corresponding SM predictions, or that there exist additional scalar
states. Said modified scalar sectors were argued to be particularly well
motivated since they are an integral part of many different models addressing
one or more problems of contemporary particle physics.

Before we go on to recapitulate some of our principal findings, let us
again draw the reader’s attention to the more complete summaries of all
results obtained in the course of this thesis and their physical impact, which
were already given at the end of the respective chapters for the sake of
coherence (cf. Sections 3.4, 4.4 and 5.4). Here, we instead focus on those
findings which are directly correlated to our original question of how new
physics may hide itself from being discovered. We will also try to give a
somewhat broader outlook on particle physics in general.

Let us start by recalling the first potential reason for the absence of BSM
phenomena from current LHC searches, which was previously phrased as:

We may be looking for the wrong models.

As an example for a category of possibly “right” models, we considered
theories based on classical scale invariance. The latter constitute an alter-
native approach to solving the longstanding gauge hierarchy problem and
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may thus explain the absence of any signs of supersymmetry or other tra-
ditional frameworks to remedy naturalness issues plaguing Higgs sectors of
generic SM embeddings. In a systematic study of a broad class of classically
conformal theories we identified the minimal model consistent with basic
theoretical and experimental requirements to be the SM extension by two
real scalar fields, one of which acquires a finite vacuum expectation value
of order of the electroweak scale. The minimal model’s particle spectrum
was then demonstrated to contain a light scalar boson with a mass of order
10GeV, which couples to SM fermions and gauge bosons via Higgs mixing,
as well as a further scalar state heavier than 300GeV and only interact-
ing with the other scalars via appropriate portal couplings. More generally,
it turned out that, just like conventional solutions to the gauge hierarchy
problem, also the considered class of scale-invariant theories necessarily im-
plies the existence of extra scalar particles at the TeV scale. Nevertheless,
the coupling strengths of those new states to SM fields are considerably less
restricted than, for example, in models based on supersymmetry. Also the
simplest and most natural instances of classically conformal theories like
the aforementioned minimal model can hence be consistent with the LHC’s
current null results.

On the other hand, theoretical consistency was demonstrated to prevent
the light scalar from becoming arbitrarily weakly coupled to the SM sec-
tor. Correspondingly, upcoming runs of the LHC or future lepton machines
(potentially supplemented by appropriate high-precision measurements at
lower energies) are anticipated to nearly fully probe the simplest conformal
models, which would thereby come under significant pressure, if no evidence
for new physics was found. Importantly, though, one or more of our initial
assumptions, which were used to define the investigated class of theories, can
be relaxed (cf. the list on page 22). In particular, the possibly problematic
necessity of additional particles in reach of the LHC or other near-future col-
liders can be traced back to the fact that our study was restricted to models
where scale symmetry is spontaneously broken at around the electroweak
scale. Theories in which radiative symmetry breaking takes place at much
higher energies are therefore attractive alternatives. They are, however,
much less explored in the literature since, if not implemented with great
care, a fine-tuning problem is generally reintroduced. In this context, pre-
liminary results from an ongoing study by the author and his collaborators
indicate that large hierarchies between the scales of spontaneous conformal
and electroweak symmetry breaking can indeed be realized in a classically
scale-invariant model, where all small couplings are technically natural [121].

Let us now move on to the second aspect of how new physics may have
escaped its detection so far, which was previously formulated as:

We may be looking in the wrong channels.

Observing that current LHC searches for light scalar particles h via decays
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of the SM-like Higgs boson H exclusively rely on the two-body channel,
H Ñ 2h, we took a closer look at the related, but yet still unexplored three-
body mode H Ñ 3h. In particular, we discussed a simple model which pre-
dicts the latter decay process, namely the real scalar singlet extension of the
SM. In doing so, we found that for light scalars heavier than roughly 5GeV,
there exist extensive regions of parameter space, where the two-body chan-
nel becomes anomalously rare and thus undetectable. Said behavior could
be traced back to mild cancellations between the amplitudes of two Feyn-
man diagrams contributing to the corresponding effective coupling κH2h.
The three-body decay, on the other hand, was seen to be not affected by the
aforementioned cancellations. Indeed, assuming sufficiently large but still
perturbative self-interactions in the singlet sector, as well as not too small
scalar mixing angles, we showed that Higgs cascade decays via three light
scalars are abundant enough to be observable, even in situations where the
two-body channel is virtually absent. It was therefore argued that many
interesting six-body final states involving pairs of tau leptons and jets are
expected to be in reach of the LHC or future electron-positron colliders. We
thus demonstrated that exotic Higgs decays into three light scalars, which
were previously thought of as phenomenologically irrelevant, can provide
valuable and complementary information on the physics of light scalar sec-
tors. Therefore, we strongly encourage the ATLAS and CMS experiments
to consider including the three-body channel in their corresponding searches
in the future.

We finally also considered the possibility that new physics at the TeV
scale only manifests itself through rare processes with purely hadronic final
states. The absence of BSM phenomena from current LHC searches could
then be attributed to the fact that

we may be looking with the wrong experiment.

As an example for a well-motivated process which is anticipated to belong
to the aforementioned class, we investigated the quark-flavor-violating Higgs
decay into a bottom and a strange quark, as well as its prospects for being
tested at the proposed International Linear Collider (ILC). In doing so, we
found that the ILC is expected to be capable of probing the corresponding
Higgs branching fraction down to the per mill level and would thereby be
sensitive to scenarios which are clearly beyond the reach of the LHC or any
of its upgrades. Specifically, our analyses based on fast detector simulations
revealed that a potential 500GeV run of the ILC collecting 4 ab´1 of data
is anticipated to facilitate a discovery at the 5σ level for branching ratios
larger than roughly 0.5%. Similarly, the same run is expected to lead to a
95% CL upper bound of around 0.2% in the event of a null result. Both
of the above projections rely on studies of the final state signature, where
the bottom and strange quarks are accompanied by missing energy coming
from a pair of neutrinos. For the 250GeV run, the expected sensitivity of
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the ILC was shown to be somewhat reduced, but still of the same order of
magnitude.

Although the presented findings are already promising and very well
demonstrate the ILC’s potential in complementing the LHC’s quest to search
for new physics, there is still a long way to go before actual results become
available. Even if the Japanese government eventually decides to host the
ILC projecta and if the construction of the latter is started in a timely
manner, its operation will not begin before 2028–2030 [215]. Accumulating
the targeted amount of data will then take ten to 20 additional years of
physics runs [214, 218]. But also without the ILC at hand in the immediate
future, there are still ways to receive hints on potential quark-flavor violation
in the Higgs sector. Apart from improved indirect constraints due to ongoing
high-precision measurements of meson oscillations, said hints may even arise
from direct searches at the LHC, namely by looking for the exotic top decays
t Ñ Hc or t Ñ Hu [206, 207, 237].

Let us close with some more general and also more personal remarks
on the current situation in particle physics. In my opinion, the absence
of clear signs of new physics not only from the LHC, but also from other
types of particle physics experiments like those directly searching for various
kinds of dark matter, or those precisely measuring the properties of already
known matter, entails a major difficulty, especially for model building: In
many cases the principal problem is no longer how to accommodate a given
aspect of BSM physics, such as the baryon asymmetry of the universe, the
particle nature of dark matter or the smallness of neutrino masses, but
how to distinguish between the large number of proposed solutions. This
problem is related to the fact that physics in general and particle physics
in particular crucially rely on the interplay between theory and experiment.
The formulation and confirmation of the Standard Model over the last half
century, which was partly sketched in the beginning of Chapter 2, is one
of the prime examples for the success, but also for the necessity of said
interplay.

Notably, uncovering the nature of elementary particles and their interac-
tions at ever more fundamental levels was decisively driven by experiments
at the high-energy frontier. With this in mind and guided by convincing
arguments mainly based on naturalness, many physicists firmly believed
that the LHC would not only detect the long-awaited Higgs boson, but
would also find the first superpartners or other new particles in the TeV
regime. In other words, apart from experimentally confirming the last miss-
ing piece of the SM, the LHC was also expected to determine the scale
of new physics, thereby providing valuable orientation on how to include
various BSM aspects in the particle physics picture. However, this is only
partially what happened so far. Whereas the seminal discovery of the Higgs

aA decision on this matter is anticipated by the end of this year.
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clearly demonstrated the truly remarkable capabilities of the experiments
at the LHC, new particles at the TeV scale are still lacking. The scale of
new physics therefore remains unknown. As a consequence, the TeV regime
as the favored place to search for BSM phenomena is nowadays increasingly
being called into question. This naturally elicits a renewed and enhanced
interest in approaches towards experimental particle physics alternative to
those exploring the high-energy frontier at colliders. Prime examples are
high-precision measurements, like those pursued or planned at numerous
existing and near-future neutrino and flavor physics experiments. Also di-
rect searches for light and potentially long-lived hidden particles at proposed
beam dump facilities such as SHiP [238, 239] fall into this category. These
and other intensity-frontier experiments will certainly help to investigate
otherwise inaccessible BSM scenarios.

In the case of the Higgs boson, however, precision measurements of its
properties do require high-energy colliders. And it is especially these mea-
surements, which in my opinion present a particularly good chance of discov-
ering new physics. On the one hand, the Higgs is the most recent addition
to the family of (presumably) elementary particles and thus the one whose
properties are still the least known, so that enough room is left for all kinds
of BSM phenomena to hide. On the other hand, the Higgs sector is virtually
predestined to host such phenomena, since it offers one of the few possible
portals to an otherwise secluded and perhaps diverse hidden sector of BSM
particles. Searching for and exploring modified scalar sectors should there-
fore remain one of the priorities of particle physics in the future. Ideally, the
results of the present thesis may provide some additional guidance to do so.





Appendix A

Calculating the
Gildener-Weinberg scale

Based on the general discussion of the Gildener-Weinberg (GW) approach
[120] given in Section 3.2, the present appendix will outline a method that
we employed in our studies of classically scale-invariant models in Section
3.3. In particular, it was used to investigate the minimal conformal model
in Section 3.3.3.B (for the notation, see there). Under some assumptions
to be specified below, the described method allows to determine the unique
scale of spontaneous symmetry breaking ΛGW that is consistent with a given
set of model parameters.

The basic idea relies on the observation that the full set of Lagrangian
parameters can be divided into two classes: On the one hand, there are
couplings which are empirically known at some particular scale (class 1 ).
Typically, this will be the set of Standard Model (SM) Yukawa and gauge
couplings whose numerical values are fixed at around the electroweak scale.
On the other hand, there exist parameters whose values are set at ΛGW,
independent of the GW scale itself (class 2 ). All couplings of the scalar
potential as well as possible further new physics parameters belong to that
second category.

In line with the above idea, we first rewrite the B function from equation
(3.6b) separating the contributions due to SM fermions and gauge bosons
(BSM) from those of the scalar sector and potential beyond-the-SM (BSM)
fermions and gauge bosons (Badd)

B “ BSM ` Badd . (A.1)

Next, we observe that in models where the electroweak symmetry is only
broken by the usual Higgs doublet, we have v “ vφ “

?
2n1xϕy. Correspond-

ingly, all SM particle masses apart from that of the Higgs can be brought
into the form

mi “ m̃i n1xϕy for i P SM˚ (A.2)
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for appropriately defined dimensionless coefficients m̃i, that will be functions
of the class-1 parameters only, i.e. of the SM Yukawa and gauge couplings.
The above identity (A.2) allows us to rewrite the loop function B yet again,

BpΛGWq “ n4
1B̃SMpΛGWq ` Badd , (A.3)

with the newly defined function

B̃SMpΛGWq “
1

64π2

ÿ

iPSM˚

p´1q2sidi ¨ m̃4
i pΛGWq .

The feature making equation (A.3) particularly useful is that all dependence
on ΛGW is now encoded in B̃SM which, in turn, does not contain any scalar or
BSM (i.e. class-2) parameters. Assuming that the system of beta functions
describing the RG evolution of the couplings in B̃SM is closed – as it is the
case for the SM at one loop – the scale dependence of B̃SM can be calculated
before specifying any of the class-2 couplings.

Now, we are finally in the position to calculate the Gildener-Weinberg
scale. Having our application in Chapter 3 in mind, we assume here that the
125GeV Higgs boson is not identified with the pseudo-Goldstone boson of
broken scale invariance. The alternative case, however, can be treated sim-
ilarly. For a numerical implementation of the computation, it is convenient
to define the following scale-dependent function

GpΛq :“ n4
1B̃SMpΛq ` B1

add `
n4
1

16π2

m4
H

v4
looooooooomooooooooon

“Badd

´
n2
1

4

m2
PGB

v2
.

(A.4)

Inserting equation (A.3) into the expression for the scalon mass shown in
equation (3.8) then implies that the uniquea solution for ΛGW, which is
consistent with the given parameter point, is

GpΛGWq
!

“ 0 . (A.5)

In order to verify that the parameter point under consideration is indeed
viable, the scale computed via equation (A.5) must pass two more sanity
checks. First, it has to be reasonably close to the electroweak scale v in ac-
cordance with our initial assumption 2 on page 22 (cf. also the corresponding
discussion on page 23). Second, we are to test whether the obtained ΛGW

actually reproduces the correct value for v, which we implicitly assumed up
to now. If the result of equation (3.7),

v “
?
2n1ΛGW ¨ exp

ˆ

´
1

4
´

A

2B

˙

, (A.6)

aThe uniqueness property is guaranteed, as the function B̃SMpΛq was found to mono-
tonically increase with the energy scale Λ.



139

does not coincide with the empirically known value, the parameter point has
to be discarded as inconsistent.

In summary, the self-consistent solution of equations (A.5) and (A.6) for
given v and mPGB allows to fix two formerly free parameters at the GW
scale, namely ΛGW itself and B1

add. The latter will typically be a function of
all BSM particle masses and thus depend on the model under investigation.
For instance, for the minimal conformal model discussed in Section 3.3.3.B,
one finds

B1
add “

m4
R

64π2xϕy
4 “

`

κφRn
2
1 ` κSRn

2
2

˘2

16π2
.





Appendix B

One-loop renormalization
group equations

The aim of the present appendix is to collect the renormalization group
equations (RGE) relevant to our studies of minimal conformal extensions
of the Standard Model (SM) Higgs sector in Chapter 3. Correspondingly,
we will exclusively be interested in the beta functions of dimensionless cou-
plings and concentrate on scenarios where the SM is supplemented by either
two real scalars (Section B.1) or one complex scalar (Section B.2). Further-
more, the extra scalars are assumed to be colorless SU(2)L multiplets with
hypercharge Y .a Some of the RGEs will therefore contain invariants of the
appropriate SU(2) representations – namely the quadratic Casimir C and
the Dynkin index D – which are given by

C “ 1
4pN2 ´ 1q , D “ 1

3NC “ 1
12NpN2 ´ 1q (B.1)

in case of an SU(2) N -plet. The beta functions themselves are presented
employing the following notation which makes the underlying perturbative
expansion manifest

βpgq ”
dg

d log µ
“

βp1qpgq

16π2
`

βp2qpgq

p16π2q2
` . . . .

Finally, let us remark that all one-loop RGEs presented here are based
on calculations by the author, which were cross-checked with the outcome of
dedicated computer programs [240, 241] whenever possible. These programs,
in turn, implement the general two-loop results from the original papers by
Machacek and Vaughn [242–244].

aNote that real scalars necessarily have zero hypercharge.

141



142 Appendix B. One-loop renormalization group equations

B.1 SM + real scalar representation(s)

Let us start with the Higgs sector of the SM enlarged by up to two real
scalar SU(2)L multiplets, denoted as χ and ξ, respectively. In line with our
discussion in Chapter 3, we will assume the underlying scalar potential to be
of the form given in equation (3.34). Apart from classical scale invariance,
the potential thus exhibits a global O(4) ˆ O(Nχ) ˆ O(Nξ) symmetry. The
corresponding scalar-sector RGEs are then calculated to be

β
p1q

λφ
“ 24λ2

φ ` 2Nχκ
2
φχ ` 2Nξκ

2
φξ ,

β
p1q

λχ
“ 8pNχ ` 8qλ2

χ ` 2κ2φχ ` 2Nξκ
2
χξ ,

βp1q
κφχ

“ 8κφχ

”

3
2λφ ` pNχ ` 2qλχ ` κφχ

ı

` 4Nξκφξκχξ ,

βp1q
κχξ

“ 8κχξ

”

pNχ ` 2qλχ ` pNξ ` 2qλξ ` 2κχξ

ı

` 4κφχκφξ ,

(B.2)

with Φ being the usual Higgs doublet. The beta functions of λξ and κφξ
emerge from those of λχ and κφχ upon exchanging χ Ø ξ as well as identi-
fying κχξ ” κξχ.

Of course, the scalars are not only mutually coupled, but generally also
interact with the electroweak gauge bosons. Taking into account these ef-
fects, one finds additional contributions to the above RGEs, namely

∆β
p1q

λφ
“ ´ 3λφpg21 ` 3g22q ` 3

8pg41 ` 3g42 ` 2g21g
2
2q ,

∆β
p1q

λχ
“ ´ 12Cχλχg

2
2 ` 3

32

”

T pNχ, Nχq ` 8δNχ,3

ı

g42 ,

∆βp1q
κφχ

“ ´ 3
2κφχ

”

g21 ` p4Cχ ` 3qg22

ı

` 3
2Cχg

4
2 ,

∆βp1q
κχξ

“ ´ 6pCχ ` Cξqκχξg
2
2 ` 3

16T pNχ, Nξqg42 ,

(B.3)

where we introduced the abbreviation

T pNχ, Nξq “ pNχ ´ 1qpNξ ´ 1q

”

NχNξ ´ pNχ ` Nξq ` 3
ı

.

Furthermore, the Higgs doublet also interacts with SM fermions. However,
only the Yukawa coupling y to the top quark is sizable modifying the scalar
RGEs in the following way

∆β
p1q

λφ
“ 6p2λφ ´ y2qy2 , ∆βp1q

κφχ
“ 6κφχy

2 . (B.4)

Finally, the presence of the extra SU(2)L multiplets alters the beta function
of the associated gauge coupling g2, which now reads

βp1q
g2 “

“

1
6pDχ ` Dξq ´ 19

6

‰

g32 . (B.5)

All other SM beta functions are not modified at the one-loop level.
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B.2 SM + one complex scalar representation

In this section, we consider an SM-like Higgs sector enlarged by one com-
plex scalar SU(2)L multiplet χ with hypercharge Y . The underlying scalar
potential is assumed to be of the form displayed in equation (3.10) supple-
mented by the κ3-term introduced in equation (3.28). The associated scalar
RGEs then turn out to be

β
p1q

λ1
“ 24λ2

1 ` Nκ21 ` 1
4Dκ22 ` 2Dκ23 ,

β
p1q

λ2
“ 4pN ` 4qλ2

2 ` 1
2pN ´ 1q2

”

Np10 ´ Nq ´ 13
ı

λ2
3

` 8Cλ2λ3 ` 2κ21 `

´

δN,2 ` 9
2δN,4

¯

κ23 ,

β
p1q

λ3
“ 1

3pN ´ 2q

”

NpN ` 20q ´ 33
ı

λ2
3

` 24λ2λ3 ` 1
2κ

2
2 ´ 2δN,4κ

2
3 ,

βp1q
κ1

“ 4κ1

”

3λ1 ` pN ` 1qλ2 ` Cλ3 ` κ1

ı

` Cκ22 ` 8Cκ23 ,

βp1q
κ2

“ 4κ2

”

λ1 ` λ2 ` pD ` C ´ 1qλ3 ` 2κ1

ı

´ 16κ23 ,

βp1q
κ3

“ 4κ3

”

λ1 ` λ2 ´ pC ´ 1qλ3 ` 8κ1 ´ 4κ2

ı

,

with N , C and D denoting dimension and invariants of the SU(2) represen-
tation under which the extra scalar transforms. Again, incorporating SM
Yukawa and electroweak gauge interactions yields additional contributions
to the above scalar beta functions, which are found to be

∆β
p1q

λ1
“ 6p2λ1 ´ y2qy2 , ∆βp1q

κi
“ 6κiy

2 ,

and

∆β
p1q

λ1
“ ´ 3λ1

`

g21 ` 3g22
˘

` 3
8g

4
1 ` 9

8g
4
2 ` 3

4g
2
1g

2
2 ,

∆β
p1q

λ2
“ ´ 3λ2

”

4Y 2g21 ` pN2 ´ 1qg22

ı

` 6Y 4g41

` 3
8pN ´ 1q2

”

Np10 ´ Nq ´ 13
ı

g42 ,

∆β
p1q

λ3
“ ´ 3λ3

”

4Y 2g21 ` pN2 ´ 1qg22

ı

` 12Y 2g21g
2
2

` 3
”

pN ´ 3q2 ´ 1
ı

g42 ,

∆βp1q
κ1

“ ´ 3
2κ1

”

p4Y 2 ` 1qg21 ` pN2 ` 2qg22

ı

` 12Y 4g41 ` 3Cg42 ,

∆βp1q
κ2

“ ´ 3
2κ2

”

p4Y 2 ` 1qg21 ` pN2 ` 2qg22

ı

` 24Y 2g21g
2
2 ,

∆βp1q
κ3

“ ´ 3
2κ3

”

p4Y 2 ` 1qg21 ` pN2 ` 2qg22

ı

.
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Lastly, since χ is generally charged under the electroweak group, the RGEs
of the associated gauge couplings g1 and g2 are modified with respect to the
minimal SM, namely

βp1q
g1 “

´

41
6 ` 1

3NY 2
¯

g31 , βp1q
g2 “

”

1
3D ´ 19

6

ı

g32 . (B.6)

All other SM beta functions again remain unaltered.



Appendix C

Phase space threshold
functions

The scalar-to-scalar multibody decay rates presented in equations (4.6) and
(4.7) of Chapter 4 were formulated employing a certain set of auxiliary
functions `i. These so-called threshold functions encode information about
the processes’ final-state kinematics and are obtained by performing the
respective phase space integrals. A detailed discussion on the kinematics of
particle decays can, for instance, be found in [83].

In this appendix, we will exclusively be interested in scenarios where
the decaying particle is a scalar. Hence, the associated matrix elements do
not depend on any angular variables, which greatly simplifies all calcula-
tions. In particular, the phase space integration for the two-body case is
straightforward and yields

`2pxq “
a

1 ´ 4x2 .

In contrast, an analytic expression is in general not available for a three-body
final state and one has to resort to appropriate integral representations. For
the relevant case of degenerate final-state masses, the corresponding function
`3 can be brought into the following form (see e.g. [83]):

`
pn,mq

3 pxq “ 2

ż ε`

ε´

dε

ż η`

η´

dη
`

ε ´ x2
˘´n `

η ´ x2
˘´m

,

where n,m P N0. The integration boundaries are calculated to be

ε´ “ 4x2 , ε` “ p1 ´ xq2 ,

η¯ “
1

4ε

„

p1 ´ x2q2 ´

´

λ
1{2pε, x2, x2q ˘ λ

1{2p1, ε, x2q

¯2


,

with λpa, b, cq ” pa ´ b ´ cq2 ´ 4bc being the Källén triangle function. In
case of vanishing m (or n) the η-integration can be carried out such that
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the three-body threshold function simplifies to

`
pnq

3 pxq “

ż ε`

ε´

dε
L3pε, x2q

pε ´ x2qn
,

where the integral kernel L3 is given by

L3pε, x2q ” 2pη` ´ η´q “
2

ε
λ

1{2pε, x2, x2qλ
1{2p1, ε, x2q .

The threshold functions discussed in the present appendix exhibit two
particular properties that are worth noting. For one, they are normalized
such that they evaluate to unity in case of a massless final state:

`2p0q “ `
p0q

3 p0q “ 1 .

Furthermore, all `i vanish identically at the respective kinematic production
threshold,

`2
`

1
2

˘

“ `
pn,mq

3

`

1
3

˘

“ 0 ,

but are positive above it, i.e.

`2pxq ą 0 @x ą 1
2 and `

pn,mq

3 pxq ą 0 @x ą 1
3 .

The aforementioned feature also explains the nomenclature.



Appendix D

Tree-level perturbative
unitarity

In Chapter 4, we employed arguments based on unitarity to set limits on the
parameter space of a general model involving two scalar degrees of freedom.
The present appendix is aimed at providing details on the corresponding
calculations, thereby complementing our discussion in the main part of the
text.

Starting from the unitarity of the scattering matrix (or S-matrix) of any
well-behaved quantum field theory, one can derive a relation for its invariant
matrix elements M, the so-called optical theorem, which can schematically
be written as (see e.g. [65])

´i
“

Mpi Ñ fq ´ M˚pf Ñ iq
‰

“
ÿ

x

1

ηx

ż

dLIPSx M˚pf Ñ xqMpi Ñ xq .

(D.1)

A few comments on the notation are in order. First, the labels i, f and x
not only encode some initial or final state’s particle content, but also said
particles’ kinematic variables such as four-momenta p, etc. In particular,
equation (D.1) implicitly assumes overall four-momentum conservation, pi “

pf . Second, the sum on the right-hand side runs over all viable combinations
of final-state particles. For a given state x containing N particles, dLIPSx
is then the N -particle Lorentz-invariant phase space, which, among other
things, parameterizes all possible momentum configurations of the particles
in x. Lastly, the real number ηx is a symmetry factor introduced to avoid
the double counting of equivalent momentum configurations in the presence
of multiple identical particles in x.

In Chapter 4, we applied the generalized optical theorem of equation
(D.1) to the case of two-to-two processes. Invariant matrix elements M can
then be parameterized by only two kinematic variables, namely the squared
center-of-mass energy s and one scattering angle ϑ. As a next step, it is
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h

h h

h

(a)

h

h

h

h

h,H

(b)

Figure D.1: Leading-order Feynman graphs contributing to light scalar elastic
scattering hh Ñ hh: (a) contact interaction and (b) s-channel scalar exchange.
Similar to (b), also the t- and u-channel diagrams exist, but are not shown.

convenient to expand the matrix elements in a complete set of Legendre
polynomials Pjpcosϑq, i.e.

Mps, ϑq “ 16π
8
ÿ

j“0

p2j ` 1qajpsqPjpcosϑq . (D.2)

The above re-writing is commonly referred to as partial-wave expansion,
with the coefficients ajpsq being the partial-wave amplitudes. The latter
can be obtained by inverting equation (D.2), which yields

ajpsq “
1

32π

ż 1

´1
d cosϑ PjpcosϑqMps, cosϑq (D.3)

for all j ě 0.
In the context of our generic model introduced in Section 4.1, a review

of all possible two-to-two processes involving the scalar degrees of freedom h
and H demonstrated that the most interesting constraints on the parameter
space arise from elastic scattering of low-mass scalars, hh Ñ hh, specifically
from the associated s-wave amplitude a0psq. Namely, the aforementioned
amplitude has to satisfy the unitarity bound

|ξpsqRe a0psq| ď 1 with ξpsq “

d

1 ´
4m2

h

s
, (D.4)

which can be derived based on the optical theorem of equation (D.1) and the
partial-wave expansion in equation (D.2) (see e.g. [163]). The leading-order
Feynman diagrams that are needed to calculate a0psq via equation (D.3)
are displayed in Figure D.1. Importantly, the unitarity bound of equation
(D.4) must be fulfilled for kinematically accessible center-of-mass energies
?
s ą 2mh. The constraints on λ4h, κH2h and κ3h presented in equations

(4.17) to (4.19) will now be shown to derive from different energy ranges.
Let us first investigate energies close to the Higgs pole, i.e. s » m2

H .
The s-channel Higgs exchange diagram of Figure D.1b is then resonantly
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enhanced so that all other contributions are negligible. Consequently, the
full matrix element of light scalar elastic scattering can be approximated as

Mps » m2
H , cosϑq » ´

4κ2H2h

s ´ m2
H ´ imHΓH

.

Using equation (D.3) together with P0pcosϑq ” 1, and defining δs :“ s´m2
H ,

the associated s-wave amplitude is readily calculated as

|Re a0| “
κ2H2h

4π

|δs|

δs2 ` m2
HΓ2

H

, (D.5)

where we additionally employed ξpm2
Hq » 1, which holds for the considered

mass hierarchy m2
h ! m2

H . The right-hand side of equation (D.5) attains a
maximum at δs0 “ mHΓH . Applying the unitarity bound of equation (D.4)
to said maximum enables us to set an upper limit on the trilinear portal
coupling κH2h, namely

|κH2h|

mH
ď

c

8π
ΓH

mH
, (D.6)

thus reproducing equation (4.18).
Next, we consider energies far away from the Higgs pole at s “ m2

H .
All contributions involving the exchange of a virtual Higgs H are then sup-
pressed by the large massmH and can therefore be neglected. Hence, the full
matrix element of light scalar elastic scattering can now be approximated as

Mps, cosϑq » ´24λ4h ´ 36κ23h

«

1

s ´ m2
h

´
1

p1 ´ cosϑqsξpsq2{2 ` m2
h

´
1

p1 ` cosϑqsξpsq2{2 ` m2
h

ff

,

where the first term arises from the contact interaction diagram of Figure
D.1a, while the second, third and fourth terms correspond to s-, t- and u-
channel h-exchange contributions, respectively. Additionally, we assumed
that Γh ! mh. Using the above expression for the matrix element, the polar
angle integral in equation (D.3) for j “ 0 can be evaluated analytically.
Defining the dimensionless quantity y :“ 2mh{

?
s, the final result for the

s-wave amplitude far away from the Higgs pole is conveniently written as

|ξpyqRe a0pyq| “
3ξpyq

2π

ˇ

ˇ

ˇ

ˇ

ˇ

λ4h ´
3κ23h
2m2

h

¨ gpyq

ˇ

ˇ

ˇ

ˇ

ˇ

, (D.7)

with ξ2pyq “ 1 ´ y2. Furthermore, the auxiliary function gpyq is given by

gpyq :“ ´
y2

4 ´ y2
`

y2

2ξ2pyq
log

ˆ

1 `
4ξ2pyq

y2

˙

.
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Here, the first term originates from the s-channel h-exchange graph, while
the second term combines t- and u-channel contributions. Note that the
variable y ranges from zero at asymptotically high energies to one at the
kinematic threshold s “ 4m2

h. In this domain, the function g has some in-
teresting properties, all of which are straightforward to prove. First, gpyq

is non-negative thus demonstrating that t- and u-channel amplitudes al-
ways dominate over their s-channel counterpart. Second, gpyq is strictly
monotonously increasing and vanishes only in the high-energy limit y Ñ 0,
where both terms independently tend to zero. From a physical point of view,
this behavior reflects the fact that just the momentum-independent contact
interaction from Figure D.1a stays finite at large

?
s. Imposing the general

unitarity bound of equation (D.4) to equation (D.7) evaluated at y Ñ 0
therefore results in an upper limit on the quartic coupling λ4h, namely

λ4h ď
2π

3
,

where we used ξpyq Ñ 1 for y Ñ 0.
Finally, given the discussed properties of the functions gpyq and ξpyq, the

right-hand side of equation (D.7) can be shown to attain a local maximum
at some interior point y0 P p0, 1q, provided the dimensionless ratio κ3h{mh

is large enough. Clearly, the precise location of y0 depends on the value
of λ4h. Assuming for the moment that λ4h is negligible, one numerically
obtains the extremal point y0 “ 0.85. Evaluating equation (D.7) at y0 and
again imposing the general unitarity bound of equation (D.4) yields an upper
limit on the trilinear light scalar self-coupling, specifically

|κ3h|

mh
À 1.64 . (D.8)

Finite quartic couplings λ4h ą 0 were found to relax the aforementioned
limit. For instance, adopting λ4h “ 1

2 implies a slightly less strict upper
bound of |κ3h|{mh À 1.73.



Appendix E

Statistical methods

In the present appendix, we provide additional information on the statis-
tical methods which we used in Chapter 5 to analyze the prospects for
constraining or discovering quark-flavor-violating Higgs decays at the ILC.
Specifically, we will discuss how to calculate expected upper limits and the
expected statistical significance of a given signal in Sections E.1 and E.2,
respectively.

E.1 Setting upper limits

Let us start by demonstrating how to obtain an expected upper limit Slimit

on the number of signal events for a given number of background events
B0 and at a given confidence level (CL). Motivated by our application in
Chapter 5, we consider a simple counting experiment. The corresponding
statistical model is based on a Poisson distribution with random variable
n, which represents the total number of events occurring in a given time
interval. Assuming a knowna number of background events B0, the model
is described by one parameter S ě 0, specifying the number of events due
to an unknown beyond-the-Standard Model (BSM) signal which is to be
constrained. The statistical model can then be summarized as

Poissonpn;Sq :“
pS ` B0qn

n!
e´pS`B0q . (E.1)

The computation of an upper limit Slimit is now based on a particular
form of a statistical hypothesis test. The latter offers a procedure to decide
whether or not to reject a given null hypothesis in favor of an alternative
hypothesis on grounds of an actual observation. In the context of setting
an upper limit within the framework of a counting experiment, we make the
following identifications:

aIn practice, the background B0 is typically obtained by means of appropriate simula-
tions. At the moment, we neglect effects due to systematic uncertainties in the background
determination.
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The null hypotheses (denoted as H piq

0 ) are the different signal hypotheses
with an appropriate choice for the model parameter S “ Si.

The alternative hypotheses (denoted as H piq

1 ) state that the number of
signal events is smaller than it is according to the null hypothesis H piq

0 ,
i.e. S ă Si.

We also introduce the notion of a type-I error which corresponds to rejecting
the null hypothesis when it is actually true. The probability to make such a
type-I error is called the significance level and will be denoted as α. Its value
characterizes the associated hypothesis test. A further crucial quantity is
the so-called p-value. In the present context, it is defined as follows: Given
a number of actually observed events nobs, the p-value is the probability to
obtain an experimental outcome containing an equal number of events or
even less than found, assuming the null hypothesis H piq

0 is in fact true, i.e.

ppSiq :“ Ppn ď nobs |H piq

0 trueq ” Ppn ď nobs |S “ Siq . (E.2)

The null hypothesis is now said to be rejected at significance level α (or
confidence level CL “ 1 ´ α), if and only if the p-value ppSiq is not larger
than the specified type-I error rate,

H piq

0 is rejected ô ppSiq ď α .

The upper limit Slimit on the number of signal events is then the smallest
number, for which the corresponding null hypothesis can still be rejected in
the above sense. All Si ă Slimit will produce a p-value larger than α and can
therefore not be rejected at the given significance level. Hence, the upper
limit is implicitly defined via

ppSlimitq
!

“ α . (E.3)

The above procedure to compute an upper limit is referred to as the Neyman
construction.

For a counting experiment based on the statistical model in equation
(E.1), the p-value of equation (E.2) can be explicitly calculated as the sum

ppSiq “

nobs
ÿ

n“0

Poissonpn;Siq . (E.4)

In Chapter 5, we only encountered cases with large numbers of (background)
events. This allows us to employ the well-known Gaussian approximation
of the Poisson distribution

Poissonpn;Sq » Gausspn;S ` B0,
a

S ` B0q , (E.5)
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where the normal distribution is given by

Gausspx;µ, σq “
1

?
2πσ

e´
px´µq2

2σ2 .

Equation (E.4) can now be approximately written as

ppSiq »

ż nobs

0
dn Gausspn;

“: µ
hkkkikkkj

Si ` B0,

“: σ
hkkkkikkkkj

a

Si ` B0q

»

ż nobs

´8

dn Gausspn;µ, σq

“

ż pnobs´µq{σ

´8

dx Gausspx; 0, 1q

“ Φ

ˆ

nobs ´ Si ´ B0
?
Si ` B0

˙

.

A few comments on the above calculation are in order. In going from the
first to the second line, we used the fact that the integrand is peaked around
a large, positive value µ and is thus negligible for negative numbers. In the
next step, we performed a substitution of the integration variable, specif-
ically x “ pn ´ µq{σ. Afterwards, we simply insert the definition of the
cumulative distribution function (CDF) Φ of the standard normal distribu-
tion. Using this final form of the p-value together with equation (E.3), we
can isolate the upper limit

nobs ´ Slimit ´ B0
?
Slimit ` B0

“ Φ´1pαq . (E.6)

Obviously, when it comes to future searches for new physics, the actual
number of observations nobs is not yet available. We must therefore make
an assumption on the expected data sample. To this end, one introduces

the expected hypothesis (denoted as He). Assuming that the actual ex-
periment yields a result that can be described without invoking new
physics, He is the background-only hypothesis corresponding to the
choice S “ 0 for the model parameter.

Based on the expected hypothesis, one now defines the expected number of
observations in an actual experiment to be

xnobsy :“ median pPoissonpn; 0qq » median
´

Gausspn;B0,
a

B0q

¯

“ B0 ,

where the Gaussian approximation of equation (E.5) was used in the second
step. Inserting the expected number of observations in equation (E.6), we
obtain

´Slimit
?
Slimit ` B0

“ Φ´1pαq ô
Slimit

?
Slimit ` B0

“ Φ´1p1 ´ αq , (E.7)
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⟨nobs⟩ = B0

p
ro
b
ab

il
it
y

B 0
+
S 1

B 0
+
S 2

B 0
+
S 3

He

Si ruled out at 95% CL :⇐⇒ H (i)

0 rejected ⇐⇒ p(Si) ≤ 5%

Figure E.1: Graphical illustration of the Neyman construction. The shaded areas
correspond to the p-values associated with the null hypotheses Hpiq

0 . In line with the
expected hypothesis He, we assume that B0 events are observed in an experiment.

Here, we used the identity for the quantile function Φ´1pxq “ ´Φ´1p1 ´ xq

which derives from the following property of the CDF: Φp´xq “ 1 ´ Φpxq.
Calculating an upper limit at 95% CL (equivalent to α “ 0.05), the right-
hand side of the second relation in equation (E.7) gives Φ´1p0.95q « 1.64
thus reproducing the result that was quoted in Chapter 5 below equation
(5.10).

In Figure E.1, we illustrate the concepts previously discussed. Specif-
ically, we schematically display the probability distribution for the total
number of events occurring in a given time interval under the expected hy-
pothesis He, alongside with those distributions under three exemplary null
hypotheses H piq

0 , namely

H p1q

0 for which the p-value is expected to be nearly zero so that the
hypothesis can be rejected and the corresponding number of signal
events S1 can be excluded.

H p2q

0 for which the p-value is expected to be larger than 5% so that the
hypothesis cannot be rejected at 95% CL.

H p3q

0 for which the p-value is expected to be equal to 5% implying that
S3 is the smallest value that can still be ruled out at 95% CL. In line
with our definition in equation (E.3), we then set Slimit “ S3.

E.2 Discovering signals

Let us also briefly recapitulate how to obtain the expected statistical sig-
nificance of a given number of signal events S0 in the context of a simple
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counting experiment with a known number of Standard Model (SM) back-
ground events B0. The relevant statistical model is again that based on the
Poisson distribution, which was introduced in equation (E.1). The logic of
the hypothesis test is, however, inverted with respect to before. Specifically,
we now make the following identifications:

The null hypothesis (denoted as H0) is the background-only hypothesis
characterized by S “ 0.

The alternative hypothesis (denoted as H1) states that there exists a
non-vanishing signal, i.e. S ą 0.

The p-value is again defined as the probability to obtain an experimental
outcome that is equally or more “extreme” as compared to an actual obser-
vation, assuming that the null hypothesis H0 is in fact true. In the present
context, this implies

p :“ Ppn ě nobs |H0 trueq ” Ppn ě nobs |S “ 0q , (E.8)

with nobs being the number of actually detected events. As before, we can
explicitly calculate the p-value, namely

p “

8
ÿ

n“nobs

Poissonpn; 0q »

ż 8

nobs

dn Gausspn;B0,
a

B0q

“ 1 ´

ż nobs

´8

dn Gausspn;B0,
a

B0q

“ 1 ´

ż pnobs´B0q{
?
B0

´8

dx Gausspx; 0, 1q

“ 1 ´ Φ

ˆ

nobs ´ B0
?
B0

˙

,

where we again employed the normal approximation from equation (E.5).
The p-value decreases with growing argument of the CDF,

z :“
nobs ´ B0

?
B0

, (E.9)

which therefore lends itself as a measure of the observed signal’s signifi-
cance. Intuitively, the thus-defined Gaussian z-score counts the standard
deviations

?
B0 by which the observed event number nobs differs from the

mean of the background-only distribution B0. The convention in particle
physics is now to reject H0, and thus to declare a discovery of a signal, if
the observed significance is z “ 5 or larger, corresponding to a p-value of
maximally 2.87 ¨ 10´7.

Since real data are absent at this point, we again have to decide on
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⟨nobs⟩ = B0 + S0

p
ro
b
ab

il
it
y

B0

σ =
√

B0

# of σ’s

He

background-only hypo H0 rejected at 5σ :⇐⇒ p ≲ 2.87 · 10−7

Figure E.2: Graphical illustration of how to determine a signal’s statistical sig-
nificance. The shaded area correspond to the p-values associated with the null
hypothesis H0. In line with the expected hypothesis He, we assume that B0 ` S0

events are observed in an experiment.

the expected hypothesis (denoted as He). In the present case, we as-
sume that the actual experiment yields a result that cannot be de-
scribed by the minimal SM alone. Instead, BSM physics is supposed
to induce S “ S0 signal events and we fix He accordingly.

The expected number of observations nobs is then defined based on He as

xnobsy :“ median pPoissonpn;S0qq

» median
´

Gausspn;S0 ` B0,
a

S0 ` B0q

¯

“ S0 ` B0 ,

where the Gaussian approximation from equation (E.5) was employed in
going from the first to the second line. Using the above result together with
equation (E.9), we arrive at the formula for the expected signal significance

z “
S0

?
B0

.

For S0 ! B0 and negligible systematic errors on signal and background de-
termination, this reproduces the expression quoted in Chapter 5, equation
(5.10).

In complete analogy to Figure E.1, Figure E.2 illustrates the central con-
cepts in determining the expected statistical significance of a given number
of signal events S0 over a known number of background events B0.
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L. Rossi, and L. Tavian, High-Luminosity Large Hadron Collider
(HL-LHC): Technical Design Report V. 0.1. CERN Yellow Reports:
Monographs. CERN, Geneva, 2017.
http://cds.cern.ch/record/2284929.

[27] E. Todesco and F. Zimmermann, eds., The High-Energy Large
Hadron Collider. CERN, Geneva, 2011. arXiv:1111.7188
[physics.acc-ph]. http://cds.cern.ch/record/1344820.

[28] P. W. Graham, D. E. Kaplan, and S. Rajendran, “Cosmological
Relaxation of the Electroweak Scale,” Phys. Rev. Lett. 115 no. 22,
(2015) 221801, arXiv:1504.07551 [hep-ph].

[29] Z. Chacko, H.-S. Goh, and R. Harnik, “The Twin Higgs: Natural
electroweak breaking from mirror symmetry,” Phys. Rev. Lett. 96
(2006) 231802, arXiv:hep-ph/0506256 [hep-ph].

[30] N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook, H. D. Kim,
and D. Pinner, “Solving the Hierarchy Problem at Reheating with a
Large Number of Degrees of Freedom,” Phys. Rev. Lett. 117 no. 25,
(2016) 251801, arXiv:1607.06821 [hep-ph].

[31] G. F. Giudice and M. McCullough, “A Clockwork Theory,” JHEP 02
(2017) 036, arXiv:1610.07962 [hep-ph].

[32] W. A. Bardeen, “On naturalness in the standard model,” in Ontake
Summer Institute on Particle Physics. 1995.
http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-95-391.

[33] R. Hempfling, “The Next-to-minimal Coleman-Weinberg model,”
Phys. Lett. B379 (1996) 153–158, arXiv:hep-ph/9604278
[hep-ph].

[34] K. A. Meissner and H. Nicolai, “Conformal Symmetry and the
Standard Model,” Phys. Lett. B648 (2007) 312–317,
arXiv:hep-th/0612165 [hep-th].

[35] K. A. Meissner and H. Nicolai, “Effective action, conformal anomaly
and the issue of quadratic divergences,” Phys. Lett. B660 (2008)
260–266, arXiv:0710.2840 [hep-th].

[36] K. A. Meissner and H. Nicolai, “Conformal invariance from
non-conformal gravity,” Phys. Rev. D80 (2009) 086005,
arXiv:0907.3298 [hep-th].

[37] R. Foot, A. Kobakhidze, and R. R. Volkas, “Electroweak Higgs as a
pseudo-Goldstone boson of broken scale invariance,” Phys. Lett.
B655 (2007) 156–161, arXiv:0704.1165 [hep-ph].

http://cds.cern.ch/record/2284929
http://dx.doi.org/10.5170/CERN-2011-003
http://dx.doi.org/10.5170/CERN-2011-003
http://arxiv.org/abs/1111.7188
http://arxiv.org/abs/1111.7188
http://cds.cern.ch/record/1344820
http://dx.doi.org/10.1103/PhysRevLett.115.221801
http://dx.doi.org/10.1103/PhysRevLett.115.221801
http://arxiv.org/abs/1504.07551
http://dx.doi.org/10.1103/PhysRevLett.96.231802
http://dx.doi.org/10.1103/PhysRevLett.96.231802
http://arxiv.org/abs/hep-ph/0506256
http://dx.doi.org/10.1103/PhysRevLett.117.251801
http://dx.doi.org/10.1103/PhysRevLett.117.251801
http://arxiv.org/abs/1607.06821
http://dx.doi.org/10.1007/JHEP02(2017)036
http://dx.doi.org/10.1007/JHEP02(2017)036
http://arxiv.org/abs/1610.07962
http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-95-391
http://dx.doi.org/10.1016/0370-2693(96)00446-7
http://arxiv.org/abs/hep-ph/9604278
http://arxiv.org/abs/hep-ph/9604278
http://dx.doi.org/10.1016/j.physletb.2007.03.023
http://arxiv.org/abs/hep-th/0612165
http://dx.doi.org/10.1016/j.physletb.2007.12.035
http://dx.doi.org/10.1016/j.physletb.2007.12.035
http://arxiv.org/abs/0710.2840
http://dx.doi.org/10.1103/PhysRevD.80.086005
http://arxiv.org/abs/0907.3298
http://dx.doi.org/10.1016/j.physletb.2007.06.084
http://dx.doi.org/10.1016/j.physletb.2007.06.084
http://arxiv.org/abs/0704.1165


166 Bibliography

[38] R. Foot, A. Kobakhidze, K. L. McDonald, and R. R. Volkas,
“Neutrino mass in radiatively-broken scale-invariant models,” Phys.
Rev. D76 (2007) 075014, arXiv:0706.1829 [hep-ph].

[39] D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson,” Phys.
Rev. D90 no. 7, (2014) 075004, arXiv:1312.4992 [hep-ph].

[40] R. Aggleton, D. Barducci, N.-E. Bomark, S. Moretti, and
C. Shepherd-Themistocleous, “Review of LHC experimental results
on low mass bosons in multi Higgs models,” JHEP 02 (2017) 035,
arXiv:1609.06089 [hep-ph].

[41] R. Harnik, J. Kopp, and J. Zupan, “Flavor Violating Higgs Decays,”
JHEP 03 (2013) 026, arXiv:1209.1397 [hep-ph].

[42] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, J. M.
Paterson, M. Peskin, M. Stanitzki, N. Walker, and H. Yamamoto,
“The International Linear Collider Technical Design Report - Volume
1: Executive Summary,” arXiv:1306.6327 [physics.acc-ph].

[43] H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura,
J. List, H. E. Logan, A. Nomerotski, M. Perelstein, et al., “The
International Linear Collider Technical Design Report - Volume 2:
Physics,” arXiv:1306.6352 [hep-ph].

[44] C. Adolphsen, M. Barone, B. Barish, K. Buesser, P. Burrows,
J. Carwardine, J. Clark, H. Mainaud Durand, G. Dugan, E. Elsen,
et al., “The International Linear Collider Technical Design Report -
Volume 3.I: Accelerator &amp; in the Technical Design Phase,”
arXiv:1306.6353 [physics.acc-ph].

[45] C. Adolphsen, M. Barone, B. Barish, K. Buesser, P. Burrows,
J. Carwardine, J. Clark, H. Mainaud Durand, G. Dugan, E. Elsen,
et al., “The International Linear Collider Technical Design Report -
Volume 3.II: Accelerator Baseline Design,” arXiv:1306.6328

[physics.acc-ph].

[46] H. Abramowicz et al., “The International Linear Collider Technical
Design Report - Volume 4: Detectors,” arXiv:1306.6329

[physics.ins-det].

[47] Linear Collider Collaboration, L. Evans and S. Michizono, “The
International Linear Collider Machine Staging Report 2017,”
arXiv:1711.00568 [physics.acc-ph].

[48] A. J. Helmboldt, P. Humbert, M. Lindner, and J. Smirnov, “Minimal
conformal extensions of the Higgs sector,” JHEP 07 (2017) 113,
arXiv:1603.03603 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.76.075014
http://dx.doi.org/10.1103/PhysRevD.76.075014
http://arxiv.org/abs/0706.1829
http://dx.doi.org/10.1103/PhysRevD.90.075004
http://dx.doi.org/10.1103/PhysRevD.90.075004
http://arxiv.org/abs/1312.4992
http://dx.doi.org/10.1007/JHEP02(2017)035
http://arxiv.org/abs/1609.06089
http://dx.doi.org/10.1007/JHEP03(2013)026
http://arxiv.org/abs/1209.1397
http://arxiv.org/abs/1306.6327
http://arxiv.org/abs/1306.6352
http://arxiv.org/abs/1306.6353
http://arxiv.org/abs/1306.6328
http://arxiv.org/abs/1306.6328
http://arxiv.org/abs/1306.6329
http://arxiv.org/abs/1306.6329
http://arxiv.org/abs/1711.00568
http://dx.doi.org/10.1007/JHEP07(2017)113
http://arxiv.org/abs/1603.03603


Bibliography 167

[49] A. J. Helmboldt and M. Lindner, “Prospects for three-body Higgs
boson decays into extra light scalars,” Phys. Rev. D95 no. 5, (2017)
055008, arXiv:1609.08127 [hep-ph].

[50] D. Barducci and A. J. Helmboldt, “Quark flavour-violating Higgs
decays at the ILC,” JHEP 12 (2017) 105, arXiv:1710.06657
[hep-ph].

[51] D. Hanneke, S. Fogwell, and G. Gabrielse, “New Measurement of the
Electron Magnetic Moment and the Fine Structure Constant,” Phys.
Rev. Lett. 100 (2008) 120801, arXiv:0801.1134
[physics.atom-ph].

[52] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, “Tenth-Order
QED Contribution to the Electron g-2 and an Improved Value of the
Fine Structure Constant,” Phys. Rev. Lett. 109 (2012) 111807,
arXiv:1205.5368 [hep-ph].

[53] SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD
Heavy Flavour Group, OPAL, LEP Electroweak Working
Group, L3 Collaboration, S. Schael et al., “Precision electroweak
measurements on the Z resonance,” Phys. Rept. 427 (2006) 257–454,
arXiv:hep-ex/0509008 [hep-ex].

[54] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak Interactions with
Lepton-Hadron Symmetry,” Phys. Rev. D2 (1970) 1285–1292.

[55] E598 Collaboration, J. J. Aubert et al., “Experimental Observation
of a Heavy Particle J ,” Phys. Rev. Lett. 33 (1974) 1404–1406.

[56] SLAC-SP-017 Collaboration, J. E. Augustin et al., “Discovery of a
Narrow Resonance in e`e´ Annihilation,” Phys. Rev. Lett. 33 (1974)
1406–1408. [Adv. Exp. Phys.5,141(1976)].

[57] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable
Theory of Weak Interaction,” Prog. Theor. Phys. 49 (1973) 652–657.

[58] S. W. Herb et al., “Observation of a Dimuon Resonance at 9.5-GeV
in 400-GeV Proton-Nucleus Collisions,” Phys. Rev. Lett. 39 (1977)
252–255.

[59] CDF Collaboration, F. Abe et al., “Observation of top quark
production in p̄p collisions,” Phys. Rev. Lett. 74 (1995) 2626–2631,
arXiv:hep-ex/9503002 [hep-ex].

[60] D0 Collaboration, S. Abachi et al., “Observation of the top quark,”
Phys. Rev. Lett. 74 (1995) 2632–2637, arXiv:hep-ex/9503003
[hep-ex].

http://dx.doi.org/10.1103/PhysRevD.95.055008
http://dx.doi.org/10.1103/PhysRevD.95.055008
http://arxiv.org/abs/1609.08127
http://dx.doi.org/10.1007/JHEP12(2017)105
http://arxiv.org/abs/1710.06657
http://arxiv.org/abs/1710.06657
http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://arxiv.org/abs/0801.1134
http://arxiv.org/abs/0801.1134
http://dx.doi.org/10.1103/PhysRevLett.109.111807
http://arxiv.org/abs/1205.5368
http://dx.doi.org/10.1016/j.physrep.2005.12.006
http://arxiv.org/abs/hep-ex/0509008
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1103/PhysRevLett.33.1404
http://dx.doi.org/10.1103/PhysRevLett.33.1406
http://dx.doi.org/10.1103/PhysRevLett.33.1406
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.39.252
http://dx.doi.org/10.1103/PhysRevLett.39.252
http://dx.doi.org/10.1103/PhysRevLett.74.2626
http://arxiv.org/abs/hep-ex/9503002
http://dx.doi.org/10.1103/PhysRevLett.74.2632
http://arxiv.org/abs/hep-ex/9503003
http://arxiv.org/abs/hep-ex/9503003


168 Bibliography

[61] UA1 Collaboration, G. Arnison et al., “Experimental Observation of
Isolated Large Transverse Energy Electrons with Associated Missing
Energy at s**(1/2) = 540-GeV,” Phys. Lett. 122B (1983) 103–116.
[,611(1983)].

[62] UA1 Collaboration, G. Arnison et al., “Experimental Observation of
Lepton Pairs of Invariant Mass Around 95-GeV/c**2 at the CERN
SPS Collider,” Phys. Lett. 126B (1983) 398–410.

[63] UA2 Collaboration, M. Banner et al., “Observation of Single
Isolated Electrons of High Transverse Momentum in Events with
Missing Transverse Energy at the CERN anti-p p Collider,” Phys.
Lett. 122B (1983) 476–485.

[64] UA2 Collaboration, P. Bagnaia et al., “Evidence for Z0 Ñ e+ e- at
the CERN anti-p p Collider,” Phys. Lett. 129B (1983) 130–140.

[65] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum
Field Theory. Westview Press, 1st ed., 1995.

[66] D. H. Perkins, Introduction to High Energy Physics. Cambridge
University Press, 4th ed., 2000.

[67] P. W. Higgs, “Broken symmetries, massless particles and gauge
fields,” Phys. Lett. 12 (1964) 132–133.

[68] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,”
Phys. Rev. Lett. 13 (1964) 508–509.

[69] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge
Vector Mesons,” Phys. Rev. Lett. 13 (1964) 321–323.

[70] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global
Conservation Laws and Massless Particles,” Phys. Rev. Lett. 13
(1964) 585–587.

[71] T. W. B. Kibble, “Symmetry breaking in non-Abelian gauge
theories,” Phys. Rev. 155 (1967) 1554–1561.

[72] T. Nakano and K. Nishijima, “Charge Independence for V-particles,”
Prog. Theor. Phys. 10 (1953) 581–582.

[73] M. Gell-Mann, “The interpretation of the new particles as displaced
charge multiplets,” Nuovo Cim. 4 no. S2, (1956) 848–866.

[74] J. Jaeckel and A. Ringwald, “The Low-Energy Frontier of Particle
Physics,” Ann. Rev. Nucl. Part. Sci. 60 (2010) 405–437,
arXiv:1002.0329 [hep-ph].

http://dx.doi.org/10.1016/0370-2693(83)91177-2
http://dx.doi.org/10.1016/0370-2693(83)90188-0
http://dx.doi.org/10.1016/0370-2693(83)91605-2
http://dx.doi.org/10.1016/0370-2693(83)91605-2
http://dx.doi.org/10.1016/0370-2693(83)90744-X
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRev.155.1554
http://dx.doi.org/10.1143/PTP.10.581
http://dx.doi.org/10.1007/BF02748000
http://dx.doi.org/10.1146/annurev.nucl.012809.104433
http://arxiv.org/abs/1002.0329


Bibliography 169

[75] N. Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev.
Lett. 10 (1963) 531–533. [,648(1963)].

[76] G. ’t Hooft, “The Conceptual Basis of Quantum Field Theory,” in
Philosophy of Physics, J. Butterfield and J. Earman, eds., Handbook
of the Philosophy of Science, pp. 661 – 729. North-Holland,
Amsterdam, 2007. https://www.sciencedirect.com/science/
article/pii/B9780444515605500105.

[77] C.-N. Yang and R. L. Mills, “Conservation of Isotopic Spin and
Isotopic Gauge Invariance,” Phys. Rev. 96 (1954) 191–195.

[78] G. ’t Hooft, “Renormalization of Massless Yang-Mills Fields,” Nucl.
Phys. B33 (1971) 173–199.

[79] G. ’t Hooft, “Renormalizable Lagrangians for Massive Yang-Mills
Fields,” Nucl. Phys. B35 (1971) 167–188.

[80] G. C. Branco, L. Lavoura, and J. P. Silva, “CP Violation,” Int. Ser.
Monogr. Phys. 103 (1999) 1–536.

[81] ATLAS, CMS Collaboration, G. Aad et al., “Combined
Measurement of the Higgs Boson Mass in pp Collisions at

?
s “ 7

and 8 TeV with the ATLAS and CMS Experiments,” Phys. Rev.
Lett. 114 (2015) 191803, arXiv:1503.07589 [hep-ex].

[82] E. Fermi, “Versuch einer Theorie der beta-Strahlen. I,” Z. Phys. 88
(1934) 161–177.

[83] Particle Data Group Collaboration, C. Patrignani et al., “Review
of Particle Physics,” Chin. Phys. C40 no. 10, (2016) 100001.

[84] P. A. M. Dirac, “The Cosmological constants,” Nature 139 (1937)
323.

[85] P. A. M. Dirac, “New basis for cosmology,” Proc. Roy. Soc. Lond.
A165 (1938) 199–208.

[86] ATLAS, CMS Collaboration, A. Ventura, “Searches for
Supersymmetry,” Tech. Rep. ATL-PHYS-PROC-2017-266, CERN,
Geneva, Dec, 2017. http://cds.cern.ch/record/2296588.

[87] R. Barbieri and G. F. Giudice, “Upper Bounds on Supersymmetric
Particle Masses,” Nucl. Phys. B306 (1988) 63–76.

[88] H. E. Haber, R. Hempfling, and A. H. Hoang, “Approximating the
radiatively corrected Higgs mass in the minimal supersymmetric
model,” Z. Phys. C75 (1997) 539–554, arXiv:hep-ph/9609331
[hep-ph].

http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/https://doi.org/10.1016/B978-044451560-5/50010-5
https://www.sciencedirect.com/science/article/pii/B9780444515605500105
https://www.sciencedirect.com/science/article/pii/B9780444515605500105
http://dx.doi.org/10.1103/PhysRev.96.191
http://dx.doi.org/10.1016/0550-3213(71)90395-6
http://dx.doi.org/10.1016/0550-3213(71)90395-6
http://dx.doi.org/10.1016/0550-3213(71)90139-8
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://arxiv.org/abs/1503.07589
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1038/139323a0
http://dx.doi.org/10.1038/139323a0
http://dx.doi.org/10.1098/rspa.1938.0053
http://dx.doi.org/10.1098/rspa.1938.0053
http://cds.cern.ch/record/2296588
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://dx.doi.org/10.1007/s002880050498
http://arxiv.org/abs/hep-ph/9609331
http://arxiv.org/abs/hep-ph/9609331


170 Bibliography

[89] M. Papucci, J. T. Ruderman, and A. Weiler, “Natural SUSY
Endures,” JHEP 09 (2012) 035, arXiv:1110.6926 [hep-ph].

[90] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The Hierarchy
problem and new dimensions at a millimeter,” Phys. Lett. B429
(1998) 263–272, arXiv:hep-ph/9803315 [hep-ph].

[91] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “Phenomenology,
astrophysics and cosmology of theories with submillimeter
dimensions and TeV scale quantum gravity,” Phys. Rev. D59 (1999)
086004, arXiv:hep-ph/9807344 [hep-ph].

[92] L. Randall and R. Sundrum, “A Large mass hierarchy from a small
extra dimension,” Phys. Rev. Lett. 83 (1999) 3370–3373,
arXiv:hep-ph/9905221 [hep-ph].

[93] S. Dimopoulos and L. Susskind, “Mass Without Scalars,” Nucl.
Phys. B155 (1979) 237–252. [2,930(1979)].

[94] E. Eichten and K. D. Lane, “Dynamical Breaking of Weak
Interaction Symmetries,” Phys. Lett. 90B (1980) 125–130.

[95] W. A. Bardeen, C. T. Hill, and M. Lindner, “Minimal Dynamical
Symmetry Breaking of the Standard Model,” Phys. Rev. D41 (1990)
1647.

[96] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, “Electroweak
symmetry breaking from dimensional deconstruction,” Phys. Lett.
B513 (2001) 232–240, arXiv:hep-ph/0105239 [hep-ph].

[97] N. Arkani-Hamed, A. G. Cohen, T. Gregoire, and J. G. Wacker,
“Phenomenology of electroweak symmetry breaking from theory
space,” JHEP 08 (2002) 020, arXiv:hep-ph/0202089 [hep-ph].

[98] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, “The
Littlest Higgs,” JHEP 07 (2002) 034, arXiv:hep-ph/0206021
[hep-ph].

[99] D. E. Kaplan and M. Schmaltz, “The Little Higgs from a simple
group,” JHEP 10 (2003) 039, arXiv:hep-ph/0302049 [hep-ph].

[100] D. J. Gross and J. Wess, “Scale invariance, conformal invariance, and
the high-energy behavior of scattering amplitudes,” Phys. Rev. D2
(1970) 753–764.

[101] C. G. Callan, Jr., S. R. Coleman, and R. Jackiw, “A new improved
energy-momentum tensor,” Annals Phys. 59 (1970) 42–73.

http://dx.doi.org/10.1007/JHEP09(2012)035
http://arxiv.org/abs/1110.6926
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://arxiv.org/abs/hep-ph/9803315
http://dx.doi.org/10.1103/PhysRevD.59.086004
http://dx.doi.org/10.1103/PhysRevD.59.086004
http://arxiv.org/abs/hep-ph/9807344
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://arxiv.org/abs/hep-ph/9905221
http://dx.doi.org/10.1016/0550-3213(79)90364-X
http://dx.doi.org/10.1016/0550-3213(79)90364-X
http://dx.doi.org/10.1016/0370-2693(80)90065-9
http://dx.doi.org/10.1103/PhysRevD.41.1647
http://dx.doi.org/10.1103/PhysRevD.41.1647
http://dx.doi.org/10.1016/S0370-2693(01)00741-9
http://dx.doi.org/10.1016/S0370-2693(01)00741-9
http://arxiv.org/abs/hep-ph/0105239
http://dx.doi.org/10.1088/1126-6708/2002/08/020
http://arxiv.org/abs/hep-ph/0202089
http://dx.doi.org/10.1088/1126-6708/2002/07/034
http://arxiv.org/abs/hep-ph/0206021
http://arxiv.org/abs/hep-ph/0206021
http://dx.doi.org/10.1088/1126-6708/2003/10/039
http://arxiv.org/abs/hep-ph/0302049
http://dx.doi.org/10.1103/PhysRevD.2.753
http://dx.doi.org/10.1103/PhysRevD.2.753
http://dx.doi.org/10.1016/0003-4916(70)90394-5


Bibliography 171

[102] S. R. Coleman and R. Jackiw, “Why dilatation generators do not
generate dilatations?,” Annals Phys. 67 (1971) 552–598.

[103] T. Hambye and M. H. G. Tytgat, “Electroweak symmetry breaking
induced by dark matter,” Phys. Lett. B659 (2008) 651–655,
arXiv:0707.0633 [hep-ph].

[104] S. Iso, N. Okada, and Y. Orikasa, “Classically conformal B ´ L
extended Standard Model,” Phys. Lett. B676 (2009) 81–87,
arXiv:0902.4050 [hep-ph].

[105] S. Iso, N. Okada, and Y. Orikasa, “The minimal B ´ L model
naturally realized at TeV scale,” Phys. Rev. D80 (2009) 115007,
arXiv:0909.0128 [hep-ph].

[106] M. Holthausen, M. Lindner, and M. A. Schmidt, “Radiative
Symmetry Breaking of the Minimal Left-Right Symmetric Model,”
Phys. Rev. D82 (2010) 055002, arXiv:0911.0710 [hep-ph].

[107] L. Alexander-Nunneley and A. Pilaftsis, “The Minimal Scale
Invariant Extension of the Standard Model,” JHEP 09 (2010) 021,
arXiv:1006.5916 [hep-ph].

[108] M. Holthausen, J. Kubo, K. S. Lim, and M. Lindner, “Electroweak
and Conformal Symmetry Breaking by a Strongly Coupled Hidden
Sector,” JHEP 12 (2013) 076, arXiv:1310.4423 [hep-ph].

[109] A. Farzinnia, H.-J. He, and J. Ren, “Natural Electroweak Symmetry
Breaking from Scale Invariant Higgs Mechanism,” Phys. Lett. B727
(2013) 141–150, arXiv:1308.0295 [hep-ph].

[110] A. Farzinnia and J. Ren, “Higgs Partner Searches and Dark Matter
Phenomenology in a Classically Scale Invariant Higgs Boson Sector,”
Phys. Rev. D90 no. 1, (2014) 015019, arXiv:1405.0498 [hep-ph].

[111] E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal,
and C. Spethmann, “Towards Completing the Standard Model:
Vacuum Stability, EWSB and Dark Matter,” Phys. Rev. D89 no. 1,
(2014) 015017, arXiv:1309.6632 [hep-ph].

[112] J. Kubo, K. S. Lim, and M. Lindner, “Electroweak Symmetry
Breaking via QCD,” Phys. Rev. Lett. 113 (2014) 091604,
arXiv:1403.4262 [hep-ph].

[113] M. Lindner, S. Schmidt, and J. Smirnov, “Neutrino Masses and
Conformal Electro-Weak Symmetry Breaking,” JHEP 10 (2014) 177,
arXiv:1405.6204 [hep-ph].

http://dx.doi.org/10.1016/0003-4916(71)90153-9
http://dx.doi.org/10.1016/j.physletb.2007.11.069
http://arxiv.org/abs/0707.0633
http://dx.doi.org/10.1016/j.physletb.2009.04.046
http://arxiv.org/abs/0902.4050
http://dx.doi.org/10.1103/PhysRevD.80.115007
http://arxiv.org/abs/0909.0128
http://dx.doi.org/10.1103/PhysRevD.82.055002
http://arxiv.org/abs/0911.0710
http://dx.doi.org/10.1007/JHEP09(2010)021
http://arxiv.org/abs/1006.5916
http://dx.doi.org/10.1007/JHEP12(2013)076
http://arxiv.org/abs/1310.4423
http://dx.doi.org/10.1016/j.physletb.2013.09.060
http://dx.doi.org/10.1016/j.physletb.2013.09.060
http://arxiv.org/abs/1308.0295
http://dx.doi.org/10.1103/PhysRevD.90.015019
http://arxiv.org/abs/1405.0498
http://dx.doi.org/10.1103/PhysRevD.89.015017
http://dx.doi.org/10.1103/PhysRevD.89.015017
http://arxiv.org/abs/1309.6632
http://dx.doi.org/10.1103/PhysRevLett.113.091604
http://arxiv.org/abs/1403.4262
http://dx.doi.org/10.1007/JHEP10(2014)177
http://arxiv.org/abs/1405.6204


172 Bibliography

[114] W. Altmannshofer, W. A. Bardeen, M. Bauer, M. Carena, and J. D.
Lykken, “Light Dark Matter, Naturalness, and the Radiative Origin
of the Electroweak Scale,” JHEP 01 (2015) 032, arXiv:1408.3429
[hep-ph].

[115] P. Humbert, M. Lindner, and J. Smirnov, “The Inverse Seesaw in
Conformal Electro-Weak Symmetry Breaking and Phenomenological
Consequences,” JHEP 06 (2015) 035, arXiv:1503.03066 [hep-ph].

[116] P. Humbert, M. Lindner, S. Patra, and J. Smirnov, “Lepton Number
Violation within the Conformal Inverse Seesaw,” JHEP 09 (2015)
064, arXiv:1505.07453 [hep-ph].

[117] A. Ahriche, K. L. McDonald, and S. Nasri, “The Scale-Invariant
Scotogenic Model,” JHEP 06 (2016) 182, arXiv:1604.05569
[hep-ph].

[118] A. Ahriche, A. Manning, K. L. McDonald, and S. Nasri,
“Scale-Invariant Models with One-Loop Neutrino Mass and Dark
Matter Candidates,” Phys. Rev. D94 no. 5, (2016) 053005,
arXiv:1604.05995 [hep-ph].

[119] S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the
Origin of Spontaneous Symmetry Breaking,” Phys. Rev. D7 (1973)
1888–1910.

[120] E. Gildener and S. Weinberg, “Symmetry Breaking and Scalar
Bosons,” Phys. Rev. D13 (1976) 3333.

[121] V. Brdar, Y. Emonds, A. J. Helmboldt, and M. Lindner, “The
conformal neutrino option.” in preparation, 2018.

[122] S. Coleman, Aspects of Symmetry: Selected Erice Lectures.
Cambridge University Press, 1st ed., 1988.

[123] K. G. Wilson, “Anomalous Dimensions and the Breakdown of Scale
Invariance in Perturbation Theory,” Phys. Rev. D2 (1970) 1478.

[124] R. J. Crewther, “Nonperturbative evaluation of the anomalies in
low-energy theorems,” Phys. Rev. Lett. 28 (1972) 1421.

[125] M. S. Chanowitz and J. R. Ellis, “Canonical Anomalies and Broken
Scale Invariance,” Phys. Lett. 40B (1972) 397–400.

[126] M. S. Chanowitz and J. R. Ellis, “Canonical Trace Anomalies,”
Phys. Rev. D7 (1973) 2490–2506.

[127] P. Minkowski, “On the Anomalous Divergence of the Dilatation
Current in Gauge Theories,” PRINT-76-0813 (BERN) (1976) .

http://dx.doi.org/10.1007/JHEP01(2015)032
http://arxiv.org/abs/1408.3429
http://arxiv.org/abs/1408.3429
http://dx.doi.org/10.1007/JHEP06(2015)035
http://arxiv.org/abs/1503.03066
http://dx.doi.org/10.1007/JHEP09(2015)064
http://dx.doi.org/10.1007/JHEP09(2015)064
http://arxiv.org/abs/1505.07453
http://dx.doi.org/10.1007/JHEP06(2016)182
http://arxiv.org/abs/1604.05569
http://arxiv.org/abs/1604.05569
http://dx.doi.org/10.1103/PhysRevD.94.053005
http://arxiv.org/abs/1604.05995
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.13.3333
http://dx.doi.org/10.1103/PhysRevD.2.1478
http://dx.doi.org/10.1103/PhysRevLett.28.1421
http://dx.doi.org/10.1016/0370-2693(72)90829-5
http://dx.doi.org/10.1103/PhysRevD.7.2490


Bibliography 173

[128] N. Nielsen, “The Energy Momentum Tensor in a Nonabelian Quark
Gluon Theory,” Nucl.Phys. B120 (1977) 212–220.

[129] S. L. Adler, J. C. Collins, and A. Duncan,
“Energy-Momentum-Tensor Trace Anomaly in Spin 1/2 Quantum
Electrodynamics,” Phys.Rev. D15 (1977) 1712.

[130] J. C. Collins, A. Duncan, and S. D. Joglekar, “Trace and Dilatation
Anomalies in Gauge Theories,” Phys.Rev. D16 (1977) 438–449.

[131] H. Osborn, “Weyl consistency conditions and a local renormalization
group equation for general renormalizable field theories,” Nucl. Phys.
B363 (1991) 486–526.

[132] G. Mack and A. Salam, “Finite component field representations of
the conformal group,” Annals Phys. 53 (1969) 174–202.

[133] K. G. Wilson, “Renormalization group and critical phenomena. 1.
Renormalization group and the Kadanoff scaling picture,” Phys. Rev.
B4 (1971) 3174–3183.

[134] K. G. Wilson, “Renormalization group and critical phenomena. 2.
Phase space cell analysis of critical behavior,” Phys. Rev. B4 (1971)
3184–3205.

[135] K. G. Wilson and J. B. Kogut, “The Renormalization group and the
epsilon expansion,” Phys. Rept. 12 (1974) 75–200.

[136] D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Nonabelian
Gauge Theories,” Phys. Rev. Lett. 30 (1973) 1343–1346.

[137] H. D. Politzer, “Reliable Perturbative Results for Strong
Interactions?,” Phys. Rev. Lett. 30 (1973) 1346–1349.

[138] Y. Hamada, K. Kawana, and K. Tsumura, “Landau pole in the
Standard Model with weakly interacting scalar fields,” Phys. Lett.
B747 (2015) 238–244, arXiv:1505.01721 [hep-ph].

[139] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, “The Higgs
Hunter’s Guide,” Front. Phys. 80 (2000) 1–404.

[140] T. Hambye, F. S. Ling, L. Lopez Honorez, and J. Rocher, “Scalar
Multiplet Dark Matter,” JHEP 07 (2009) 090, arXiv:0903.4010
[hep-ph]. [Erratum: JHEP05,066(2010)].

[141] N. G. Deshpande and E. Ma, “Pattern of Symmetry Breaking with
Two Higgs Doublets,” Phys. Rev. D18 (1978) 2574.

http://dx.doi.org/10.1016/0550-3213(77)90040-2
http://dx.doi.org/10.1103/PhysRevD.15.1712
http://dx.doi.org/10.1103/PhysRevD.16.438
http://dx.doi.org/10.1016/0550-3213(91)80030-P
http://dx.doi.org/10.1016/0550-3213(91)80030-P
http://dx.doi.org/10.1016/0003-4916(69)90278-4
http://dx.doi.org/10.1103/PhysRevB.4.3174
http://dx.doi.org/10.1103/PhysRevB.4.3174
http://dx.doi.org/10.1103/PhysRevB.4.3184
http://dx.doi.org/10.1103/PhysRevB.4.3184
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1016/j.physletb.2015.05.072
http://dx.doi.org/10.1016/j.physletb.2015.05.072
http://arxiv.org/abs/1505.01721
http://dx.doi.org/10.1007/JHEP05(2010)066, 10.1088/1126-6708/2009/07/090
http://arxiv.org/abs/0903.4010
http://arxiv.org/abs/0903.4010
http://dx.doi.org/10.1103/PhysRevD.18.2574


174 Bibliography

[142] R. Barbieri, L. J. Hall, and V. S. Rychkov, “Improved naturalness
with a heavy Higgs: An Alternative road to LHC physics,” Phys.
Rev. D74 (2006) 015007, arXiv:hep-ph/0603188 [hep-ph].

[143] L. Lopez Honorez, E. Nezri, J. F. Oliver, and M. H. G. Tytgat, “The
Inert Doublet Model: An Archetype for Dark Matter,” JCAP 0702
(2007) 028, arXiv:hep-ph/0612275 [hep-ph].

[144] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher,
and J. P. Silva, “Theory and phenomenology of two-Higgs-doublet
models,” Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034
[hep-ph].

[145] S. L. Glashow and S. Weinberg, “Natural Conservation Laws for
Neutral Currents,” Phys.Rev. D15 (1977) 1958.

[146] K. Kannike, “Vacuum Stability Conditions From Copositivity
Criteria,” Eur. Phys. J. C72 (2012) 2093, arXiv:1205.3781
[hep-ph].

[147] M. Sher, “Electroweak Higgs Potentials and Vacuum Stability,”
Phys. Rept. 179 (1989) 273–418.

[148] M. Cirelli, N. Fornengo, and A. Strumia, “Minimal dark matter,”
Nucl. Phys. B753 (2006) 178–194, arXiv:hep-ph/0512090
[hep-ph].

[149] M. Cirelli and A. Strumia, “Minimal Dark Matter: Model and
results,” New J. Phys. 11 (2009) 105005, arXiv:0903.3381
[hep-ph].

[150] P. Minkowski, “µ Ñ eγ at a Rate of One Out of 109 Muon Decays?,”
Phys. Lett. 67B (1977) 421–428.

[151] T. Yanagida, “Horizontal Symmetry and Masses of Neutrinos,” Conf.
Proc. C7902131 (1979) 95–99.

[152] M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and
Unified Theories,” Conf. Proc. C790927 (1979) 315–321,
arXiv:1306.4669 [hep-th].

[153] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and
Spontaneous Parity Violation,” Phys. Rev. Lett. 44 (1980) 912.

[154] M. Maniatis, “The Next-to-Minimal Supersymmetric extension of
the Standard Model reviewed,” Int. J. Mod. Phys. A25 (2010)
3505–3602, arXiv:0906.0777 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.74.015007
http://dx.doi.org/10.1103/PhysRevD.74.015007
http://arxiv.org/abs/hep-ph/0603188
http://dx.doi.org/10.1088/1475-7516/2007/02/028
http://dx.doi.org/10.1088/1475-7516/2007/02/028
http://arxiv.org/abs/hep-ph/0612275
http://dx.doi.org/10.1016/j.physrep.2012.02.002
http://arxiv.org/abs/1106.0034
http://arxiv.org/abs/1106.0034
http://dx.doi.org/10.1103/PhysRevD.15.1958
http://dx.doi.org/10.1140/epjc/s10052-012-2093-z
http://arxiv.org/abs/1205.3781
http://arxiv.org/abs/1205.3781
http://dx.doi.org/10.1016/0370-1573(89)90061-6
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.012
http://arxiv.org/abs/hep-ph/0512090
http://arxiv.org/abs/hep-ph/0512090
http://dx.doi.org/10.1088/1367-2630/11/10/105005
http://arxiv.org/abs/0903.3381
http://arxiv.org/abs/0903.3381
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://arxiv.org/abs/1306.4669
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1142/S0217751X10049827
http://dx.doi.org/10.1142/S0217751X10049827
http://arxiv.org/abs/0906.0777


Bibliography 175

[155] U. Ellwanger, C. Hugonie, and A. M. Teixeira, “The
Next-to-Minimal Supersymmetric Standard Model,” Phys. Rept. 496
(2010) 1–77, arXiv:0910.1785 [hep-ph].

[156] ATLAS Collaboration, G. Aad et al., “Constraints on new
phenomena via Higgs boson couplings and invisible decays with the
ATLAS detector,” JHEP 11 (2015) 206, arXiv:1509.00672
[hep-ex].

[157] CMS Collaboration, V. Khachatryan et al., “Searches for invisible
decays of the Higgs boson in pp collisions at

?
s = 7, 8, and 13 TeV,”

JHEP 02 (2017) 135, arXiv:1610.09218 [hep-ex].

[158] S. Dawson et al., “Working Group Report: Higgs Boson,” in
Proceedings, 2013 Community Summer Study on the Future of U.S.
Particle Physics: Snowmass on the Mississippi (CSS2013):
Minneapolis, MN, USA, July 29-August 6, 2013. 2013.
arXiv:1310.8361 [hep-ex].

[159] J. D. Clarke, R. Foot, and R. R. Volkas, “Phenomenology of a very
light scalar (100MeV ă mh ă 10GeV) mixing with the SM Higgs,”
JHEP 02 (2014) 123, arXiv:1310.8042 [hep-ph].

[160] B. Batell, N. Lange, D. McKeen, M. Pospelov, and A. Ritz, “Muon
anomalous magnetic moment through the leptonic Higgs portal,”
Phys. Rev. D95 no. 7, (2017) 075003, arXiv:1606.04943 [hep-ph].

[161] LHC Higgs Cross Section Working Group Collaboration,
A. David, A. Denner, M. Duehrssen, M. Grazzini, C. Grojean,
G. Passarino, M. Schumacher, M. Spira, G. Weiglein, and M. Zanetti,
“LHC HXSWG interim recommendations to explore the coupling
structure of a Higgs-like particle,” arXiv:1209.0040 [hep-ph].

[162] LHC Higgs Cross Section Working Group Collaboration,
D. de Florian et al., “Handbook of LHC Higgs Cross Sections: 4.
Deciphering the Nature of the Higgs Sector,” arXiv:1610.07922

[hep-ph].

[163] D. A. Dicus and H.-J. He, “Scales of fermion mass generation and
electroweak symmetry breaking,” Phys. Rev. D71 (2005) 093009,
arXiv:hep-ph/0409131 [hep-ph].

[164] A. Schuessler and D. Zeppenfeld, “Unitarity constraints on MSSM
trilinear couplings,” in SUSY 2007 Proceedings, pp. 236–239. 2007.
arXiv:0710.5175 [hep-ph]. http://www.susy07.uni-karlsruhe.
de/Proceedings/proceedings/susy07.pdf.

http://dx.doi.org/10.1016/j.physrep.2010.07.001
http://dx.doi.org/10.1016/j.physrep.2010.07.001
http://arxiv.org/abs/0910.1785
http://dx.doi.org/10.1007/JHEP11(2015)206
http://arxiv.org/abs/1509.00672
http://arxiv.org/abs/1509.00672
http://dx.doi.org/10.1007/JHEP02(2017)135
http://arxiv.org/abs/1610.09218
http://arxiv.org/abs/1310.8361
http://dx.doi.org/10.1007/JHEP02(2014)123
http://arxiv.org/abs/1310.8042
http://dx.doi.org/10.1103/PhysRevD.95.075003
http://arxiv.org/abs/1606.04943
http://arxiv.org/abs/1209.0040
http://arxiv.org/abs/1610.07922
http://arxiv.org/abs/1610.07922
http://dx.doi.org/10.1103/PhysRevD.71.093009
http://arxiv.org/abs/hep-ph/0409131
http://arxiv.org/abs/0710.5175
http://www.susy07.uni-karlsruhe.de/Proceedings/proceedings/susy07.pdf
http://www.susy07.uni-karlsruhe.de/Proceedings/proceedings/susy07.pdf


176 Bibliography

[165] V. Silveira and A. Zee, “Scalar Phantoms,” Phys. Lett. B161 (1985)
136–140.

[166] N. V. Krasnikov, “Invisible scalars visible in Higgs decay,” Phys.
Lett. B291 (1992) 89–91.

[167] R. Schabinger and J. D. Wells, “A Minimal spontaneously broken
hidden sector and its impact on Higgs boson physics at the large
hadron collider,” Phys. Rev. D72 (2005) 093007,
arXiv:hep-ph/0509209 [hep-ph].

[168] B. Patt and F. Wilczek, “Higgs-field portal into hidden sectors,”
arXiv:hep-ph/0605188 [hep-ph].

[169] D. O’Connell, M. J. Ramsey-Musolf, and M. B. Wise, “Minimal
Extension of the Standard Model Scalar Sector,” Phys. Rev. D75
(2007) 037701, arXiv:hep-ph/0611014 [hep-ph].

[170] R. S. Chivukula and A. V. Manohar, “Limits On A Light Higgs
Boson,” Phys. Lett. B207 (1988) 86. [Erratum: Phys.
Lett.B217,568(1989)].

[171] F. Wilczek, “Decays of Heavy Vector Mesons Into Higgs Particles,”
Phys. Rev. Lett. 39 (1977) 1304.

[172] ALEPH Collaboration, D. Buskulic et al., “Search for a nonminimal
Higgs boson produced in the reaction e`e´ Ñ h Z˚,” Phys. Lett.
B313 (1993) 312–325.

[173] L3 Collaboration, M. Acciarri et al., “Search for neutral Higgs boson
production through the process e+ e- Ñ Z* H0,” Phys. Lett. B385
(1996) 454–470.

[174] OPAL Collaboration, G. Abbiendi et al., “Decay mode independent
searches for new scalar bosons with the OPAL detector at LEP,” Eur.
Phys. J. C27 (2003) 311–329, arXiv:hep-ex/0206022 [hep-ex].

[175] C.-Y. Chen, S. Dawson, and I. M. Lewis, “Exploring resonant
di-Higgs boson production in the Higgs singlet model,” Phys. Rev.
D91 no. 3, (2015) 035015, arXiv:1410.5488 [hep-ph].

[176] J. F. Donoghue, J. Gasser, and H. Leutwyler, “The Decay of a Light
Higgs Boson,” Nucl. Phys. B343 (1990) 341–368.

[177] A. Djouadi, J. Kalinowski, and M. Spira, “HDECAY: A Program for
Higgs boson decays in the standard model and its supersymmetric
extension,” Comput. Phys. Commun. 108 (1998) 56–74,
arXiv:hep-ph/9704448 [hep-ph].

http://dx.doi.org/10.1016/0370-2693(85)90624-0
http://dx.doi.org/10.1016/0370-2693(85)90624-0
http://dx.doi.org/10.1016/0370-2693(92)90123-L
http://dx.doi.org/10.1016/0370-2693(92)90123-L
http://dx.doi.org/10.1103/PhysRevD.72.093007
http://arxiv.org/abs/hep-ph/0509209
http://arxiv.org/abs/hep-ph/0605188
http://dx.doi.org/10.1103/PhysRevD.75.037701
http://dx.doi.org/10.1103/PhysRevD.75.037701
http://arxiv.org/abs/hep-ph/0611014
http://dx.doi.org/10.1016/0370-2693(88)90891-X
http://dx.doi.org/10.1103/PhysRevLett.39.1304
http://dx.doi.org/10.1016/0370-2693(93)91228-F
http://dx.doi.org/10.1016/0370-2693(93)91228-F
http://dx.doi.org/10.1016/0370-2693(96)00987-2
http://dx.doi.org/10.1016/0370-2693(96)00987-2
http://dx.doi.org/10.1140/epjc/s2002-01115-1
http://dx.doi.org/10.1140/epjc/s2002-01115-1
http://arxiv.org/abs/hep-ex/0206022
http://dx.doi.org/10.1103/PhysRevD.91.035015
http://dx.doi.org/10.1103/PhysRevD.91.035015
http://arxiv.org/abs/1410.5488
http://dx.doi.org/10.1016/0550-3213(90)90474-R
http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://arxiv.org/abs/hep-ph/9704448


Bibliography 177

[178] M. B. Voloshin and V. I. Zakharov, “Measuring QCD Anomalies in
Hadronic Transitions Between Onium States,” Phys. Rev. Lett. 45
(1980) 688.

[179] M. B. Voloshin, “Once Again About the Role of Gluonic Mechanism
in Interaction of Light Higgs Boson with Hadrons,” Sov. J. Nucl.
Phys. 44 (1986) 478. [Yad. Fiz.44,738(1986)].

[180] R. S. Chivukula, A. G. Cohen, H. Georgi, B. Grinstein, and A. V.
Manohar, “Higgs decay into Goldstone bosons,” Annals Phys. 192
(1989) 93–103.

[181] S. Raby and G. B. West, “The Branching Ratio for a Light Higgs to
Decay Into µ`µ´ Pairs,” Phys. Rev. D38 (1988) 3488.

[182] J. P. Chou, D. Curtin, and H. J. Lubatti, “New Detectors to Explore
the Lifetime Frontier,” Phys. Lett. B767 (2017) 29–36,
arXiv:1606.06298 [hep-ph].

[183] A. Belyaev, N. D. Christensen, and A. Pukhov, “CalcHEP 3.4 for
collider physics within and beyond the Standard Model,” Comput.
Phys. Commun. 184 (2013) 1729–1769, arXiv:1207.6082 [hep-ph].

[184] ATLAS Collaboration, “Expected performance for displaced Lepton
Jets: ATLAS trigger and reconstruction efficiency in LHC 2015
run.,” ATL-PHYS-PUB-2016-010 (2016) .
https://cds.cern.ch/record/2153376.

[185] ATLAS Collaboration, “Search for long-lived neutral particles
decaying into displaced lepton jets in proton–proton collisions at

?
s

= 13 TeV with the ATLAS detector,” ATLAS-CONF-2016-042
(2016) . https://cds.cern.ch/record/2206083.

[186] S. Frixione, V. Hirschi, D. Pagani, H. S. Shao, and M. Zaro,
“Electroweak and QCD corrections to top-pair hadroproduction in
association with heavy bosons,” JHEP 06 (2015) 184,
arXiv:1504.03446 [hep-ph].

[187] A. Bredenstein, A. Denner, S. Dittmaier, and S. Pozzorini, “NLO
QCD corrections to pp —&gt; t anti-t b anti-b + X at the LHC,”
Phys. Rev. Lett. 103 (2009) 012002, arXiv:0905.0110 [hep-ph].

[188] CMS Collaboration, V. Khachatryan et al., “A search for pair
production of new light bosons decaying into muons,” Phys. Lett.
B752 (2016) 146–168, arXiv:1506.00424 [hep-ex].

[189] T. Barklow, J. Brau, K. Fujii, J. Gao, J. List, N. Walker, and
K. Yokoya, “ILC Operating Scenarios,” arXiv:1506.07830

[hep-ex].

http://dx.doi.org/10.1103/PhysRevLett.45.688
http://dx.doi.org/10.1103/PhysRevLett.45.688
http://dx.doi.org/10.1016/0003-4916(89)90119-X
http://dx.doi.org/10.1016/0003-4916(89)90119-X
http://dx.doi.org/10.1103/PhysRevD.38.3488
http://dx.doi.org/10.1016/j.physletb.2017.01.043
http://arxiv.org/abs/1606.06298
http://dx.doi.org/10.1016/j.cpc.2013.01.014
http://dx.doi.org/10.1016/j.cpc.2013.01.014
http://arxiv.org/abs/1207.6082
https://cds.cern.ch/record/2153376
https://cds.cern.ch/record/2206083
http://dx.doi.org/10.1007/JHEP06(2015)184
http://arxiv.org/abs/1504.03446
http://dx.doi.org/10.1103/PhysRevLett.103.012002
http://arxiv.org/abs/0905.0110
http://dx.doi.org/10.1016/j.physletb.2015.10.067
http://dx.doi.org/10.1016/j.physletb.2015.10.067
http://arxiv.org/abs/1506.00424
http://arxiv.org/abs/1506.07830
http://arxiv.org/abs/1506.07830


178 Bibliography

[190] Z. Liu, L.-T. Wang, and H. Zhang, “Exotic decays of the 125 GeV
Higgs boson at future e`e´ lepton colliders,” Chin. Phys. C41 no. 6,
(2017) 063102, arXiv:1612.09284 [hep-ph].

[191] S. Bejar, F. Dilme, J. Guasch, and J. Sola, “Higgs boson flavor
changing neutral decays into bottom quarks in supersymmetry,”
JHEP 08 (2004) 018, arXiv:hep-ph/0402188 [hep-ph].

[192] G. Barenboim, C. Bosch, J. S. Lee, M. L. López-Ibáñez, and
O. Vives, “Flavor-changing Higgs boson decays into bottom and
strange quarks in supersymmetric models,” Phys. Rev. D92 no. 9,
(2015) 095017, arXiv:1507.08304 [hep-ph].
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[231] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten,
S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An
Introduction to PYTHIA 8.2,” Comput. Phys. Commun. 191 (2015)
159–177, arXiv:1410.3012 [hep-ph].

[232] DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin,
A. Giammanco, V. Lemâıtre, A. Mertens, and M. Selvaggi,
“DELPHES 3, A modular framework for fast simulation of a generic
collider experiment,” JHEP 02 (2014) 057, arXiv:1307.6346
[hep-ex].

[233] C. T. Potter, “DSiD: a Delphes Detector for ILC Physics Studies,” in
Proceedings, International Workshop on Future Linear Colliders
(LCWS15): Whistler, B.C., Canada, November 02-06, 2015. 2016.
arXiv:1602.07748 [hep-ph].

[234] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual,”
Eur. Phys. J. C72 (2012) 1896, arXiv:1111.6097 [hep-ph].

[235] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering
algorithm,” JHEP 04 (2008) 063, arXiv:0802.1189 [hep-ph].

[236] E. Conte, B. Fuks, and G. Serret, “MadAnalysis 5, A User-Friendly
Framework for Collider Phenomenology,” Comput. Phys. Commun.
184 (2013) 222–256, arXiv:1206.1599 [hep-ph].

http://dx.doi.org/10.1016/j.physrep.2007.10.004
http://dx.doi.org/10.1016/j.physrep.2007.10.004
http://arxiv.org/abs/hep-ph/0503172
http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1108.2040
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/0708.4233
http://arxiv.org/abs/hep-ph/0102195
http://dx.doi.org/10.1016/S0010-4655(96)00167-1
http://arxiv.org/abs/hep-ph/9607454
http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://arxiv.org/abs/1307.6346
http://arxiv.org/abs/1602.07748
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1016/j.cpc.2012.09.009
http://dx.doi.org/10.1016/j.cpc.2012.09.009
http://arxiv.org/abs/1206.1599


182 Bibliography

[237] ATLAS Collaboration, “Expected sensitivity of ATLAS to FCNC
top quark decays t Ñ Zu and t Ñ Hq at the High Luminosity LHC,”
ATL-PHYS-PUB-2016-019 (2016) .
https://cds.cern.ch/record/2209126.

[238] SHiP Collaboration, M. Anelli et al., “A facility to Search for
Hidden Particles (SHiP) at the CERN SPS,” arXiv:1504.04956

[physics.ins-det].

[239] S. Alekhin et al., “A facility to Search for Hidden Particles at the
CERN SPS: the SHiP physics case,” Rept. Prog. Phys. 79 no. 12,
(2016) 124201, arXiv:1504.04855 [hep-ph].

[240] F. Lyonnet and I. Schienbein, “PyR@TE 2: A Python tool for
computing RGEs at two-loop,” Comput. Phys. Commun. 213 (2017)
181–196, arXiv:1608.07274 [hep-ph].

[241] F. Staub, “SARAH 4 : A tool for (not only SUSY) model builders,”
Comput. Phys. Commun. 185 (2014) 1773–1790, arXiv:1309.7223
[hep-ph].

[242] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization
Group Equations in a General Quantum Field Theory. 1. Wave
Function Renormalization,” Nucl. Phys. B222 (1983) 83–103.

[243] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization
Group Equations in a General Quantum Field Theory. 2. Yukawa
Couplings,” Nucl. Phys. B236 (1984) 221–232.

[244] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization
Group Equations in a General Quantum Field Theory. 3. Scalar
Quartic Couplings,” Nucl. Phys. B249 (1985) 70–92.

https://cds.cern.ch/record/2209126
http://arxiv.org/abs/1504.04956
http://arxiv.org/abs/1504.04956
http://dx.doi.org/10.1088/0034-4885/79/12/124201
http://dx.doi.org/10.1088/0034-4885/79/12/124201
http://arxiv.org/abs/1504.04855
http://dx.doi.org/10.1016/j.cpc.2016.12.003
http://dx.doi.org/10.1016/j.cpc.2016.12.003
http://arxiv.org/abs/1608.07274
http://dx.doi.org/10.1016/j.cpc.2014.02.018
http://arxiv.org/abs/1309.7223
http://arxiv.org/abs/1309.7223
http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://dx.doi.org/10.1016/0550-3213(84)90533-9
http://dx.doi.org/10.1016/0550-3213(85)90040-9


Acknowledgements

The completion of the present thesis would have been impossible, if it were
not for the help and support of many people. First and foremost, I am very
grateful to my advisor Prof. Manfred Lindner for his guidance and contin-
uous support throughout my PhD studies, for triggering many interesting
discussions and for providing a truly stimulating work environment. I would
also like to thank Prof. Tilman Plehn not only for kindly accepting to be the
second referee, but also for encouraging me to pursue the idea of three-body
Higgs decays. Likewise, I thank Prof. Hans-Christian Schultz-Coulon and
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