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Toxicogenomics is the study of the molecular effects of chemical, biological and
physical agents in biological systems, with the aim of elucidating toxicological
mechanisms, building predictive models and improving diagnostics. The vast majority
of toxicogenomics data has been generated at the transcriptome level, including RNA-
seq and microarrays, and large quantities of drug-treatment data have been made
publicly available through databases and repositories. Besides the identification of
differentially expressed genes (DEGs) from case-control studies or drug treatment time
series studies, bioinformatics methods have emerged that infer gene expression data at
the molecular network and pathway level in order to reveal mechanistic information. In
this work we describe different resources and tools that have been developed by us and
others that relate gene expression measurements with known pathway information such
as over-representation and gene set enrichment analyses. Furthermore, we highlight
approaches that integrate gene expression data with molecular interaction networks
in order to derive network modules related to drug toxicity. We describe the two
main parts of the approach, i.e., the construction of a suitable molecular interaction
network as well as the conduction of network propagation of the experimental data
through the interaction network. In all cases we apply methods and tools to publicly
available rat in vivo data on anthracyclines, an important class of anti-cancer drugs
that are known to induce severe cardiotoxicity in patients. We report the results
and functional implications achieved for four anthracyclines (doxorubicin, epirubicin,
idarubicin, and daunorubicin) and compare the information content inherent in the
different computational approaches.

Keywords: network analysis, protein–protein interaction network, pathways, drug toxicity, toxicogenomics,
transcriptomics, anthracyclines

INTRODUCTION

To thoroughly study the mechanisms behind drug induced toxicity a robust analysis by means of
computational methods is crucial (Liebler and Guengerich, 2005). Understanding the influence
of the compounds on different biological processes is complex and requires sophisticated
interpretations of the data. In the field of toxicogenomics transcriptome data, that were collected
upon drug treatment and that reflect gene expression levels in response to it, is in the focus of the
analysis. Various studies, both in vitro and in vivo, focusing on different compounds and organs,
have been already carried out (Hartung, 2009). Most of the studies were based on microarray
technology (Mei et al., 2010), even though newer technologies, such as high-throughput sequencing
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(RNA-seq), are already in use in other research areas. Such
transcriptomic profiles have previously been used for predicting
toxic drug effects (Gusenleitner et al., 2014; Kohonen and
Parkkinen, 2017; Nystrom-Persson et al., 2017; Rueda-Zarate
et al., 2017), but further analysis for identifying the functional
and molecular mechanisms behind the toxic effects is still much
needed.

Here, we describe different approaches for the analysis of
toxicogenomics data at the molecular network and pathway
levels. We use publicly available data from microarray
experiments and perform a differential expression analysis
in order to identify the genes that are up- or down-regulated
due to the administration of the drug (DEGs: differentially
expressed genes). Suggested methods and tools include (i)
over-representation analysis, (ii) gene set enrichment (pathway)
analysis, and (iii) network propagation. All methods are
complementary and deliver different and complementary
mechanistic views on drug action and drug effects derived
from the underlying gene expression data. Over-representation
analysis provides a first impression on which pathways and
biological functions are involved in the cell’s response to the
drug. This kind of analysis is typically done with statistical tests
that evaluate the list of DEGs interrogating pre-defined gene
sets that represent pathways or Gene Ontology (GO) functions.
Gene set enrichment (pathway) analysis is a complementary
approach in the sense that not only DEGs are investigated but
rather the entire gene expression response. This ensures that
not only those pathways appear interesting that agglomerate
many DEGs but also those that agglomerate subtle but
consistent transcriptome changes of many of their members
(not necessarily DEGs). A third, more unsupervised approach
is network propagation, a mathematical concept that traces
the effects of perturbations (e.g., gene expression changes)
simultaneously across a molecular network according to a
specified rule. It assumes that a perturbation in a certain gene
is not only affecting that particular gene but rather its entire
network neighborhood. The signal induced by a perturbation
is then propagated to the neighbors and the neighbors of the
neighbors until a steady-state (or convergence state) is achieved.
The result of the network propagation is a final state in which
each node is assigned a final weight which can be used to identify
highly affected nodes as well as specific interconnected parts of
the network (network modules) that are mostly affected by the
induced perturbations.

A previous effort to infer functional effects of drug treatments
from gene expression data was done on a pathway level in the
work of Hardt et al. (2016). They assembled the ToxDb database,
which contains gene expression data for more than 400 drugs
and 2000 pathway concepts. This includes the association of
drugs with specific molecular pathways, which can indicate to
which mechanisms of action lead to toxicity. Here, we make
use of this resource and the proposed implementation to extract
pathways that are relevant for the toxic effect of different drugs.
Additionally, we apply the same scoring scheme for measuring
gene and pathway responses from gene expression data and enact
a network analysis in order to identify functional modules that
can also be associated with the toxic effect (see Methods).

Biological interactions are often described using molecular
interaction networks (Barabasi and Oltvai, 2004), where each
node represents a biological player, i.e., gene or protein, and each
edge describes an interaction between a pair of nodes. Analyzing
these networks can help to better elucidate the functional
mechanisms that are being studied (McGillivray et al., 2018).
There are numerous types of biological interaction networks
(Vidal et al., 2011), as they can be based on different types
of interactions and represent various biological actions. They
vary between depicting gene regulatory interactions, viral-host
interactions, metabolic reactions, protein–protein interactions,
and more. Many of these interactions have already been
made publically available through various specific databases,
such as Reactome (Matthews et al., 2009), PID (Schaefer
et al., 2009), KEGG (Kanehisa et al., 2012), and many others.
Furthermore, there have been several attempts to combine
and integrate different resources into one meta-resource, such
as the work by Martha et al. (2011), IntNetDB (Xia et al.,
2006), and ConsensusPathDB. In this work we make use of
ConsensusPathDB (Kamburov et al., 2009), which currently
integrates more than 600,000 interactions of different types
which are collected from 32 public resources (Kamburov et al.,
2013). Furthermore, we restrict our analysis to protein–protein
interactions which are generally based on various experimental
technologies (Walhout and Vidal, 2001).

One possible use of biological networks is for the identification
of smaller subnetworks (subgraphs within the network), also
referred to as modules, which depict an area that is more
relevant for a specific biological function (Gustafsson et al., 2014).
By integrating experimental data with interaction networks we
can compute subnetworks that better represent the biological
mechanisms which lead to a specific phenotype. There are several
existing algorithms for module detection in biological networks.
For a comprehensive overview of the different methods, see the
recent review by Cowen et al. (2017). Many of these algorithms
are based on a random walk process, where the weights of the
nodes are propagated through the network, until a steady state is
reached. The weighing of the nodes is dependent on the specific
context and can be extracted for example from gene expression
values or genetic mutation data. In this work we make use of
the HotNet2 algorithm (Leiserson et al., 2015) that was originally
developed for identifying subnetworks that result from somatic
mutations. We apply the algorithm to toxicogenomics data and
identify the most significant subnetworks for a drug treatment
based on the gene expression response scoring.

We exemplify our approach on anthracycline drugs.
Anthracyclines are a family of drugs that induce cardiotoxicity
upon cancer treatment, and their use can result in
cardiomyopathy and heart failure in many cases after a long
period of time after treatment (Geisberg and Sawyer, 2010). These
compounds are vastly used as chemotherapy agents, and have
been shown to be extremely effective, but also to cause a major
morbidity in cancer patients due to their toxic effects (Lenneman
and Sawyer, 2016). Every exposure to anthracyclines carries
some risk of resulting in cardiac dysfunction. The symptoms
could present early on as well as at later times, in up to 23% of
the patients (Steinherz et al., 1991). Although it is known that
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anthracyclines disrupt the synthesis of DNA and RNA, mainly
by inhibiting topoisomerase II (Geisberg and Sawyer, 2010) and
that they lead to mitochondrial dysfunction (McGowan et al.,
2017), the mechanisms that cause the cardiotoxic effects still
remain largely unclear (Truong et al., 2014). Previous studies
have tried to elucidate this problem, however, there is still need
for further investigation so that detection and prevention could
be improved (Raschi et al., 2010). We focus our analysis on the
four most widely used compounds: daunorubicin, doxorubicin,
epirubicin, and idarubicin. In addition, we compare the results to
other chemotherapy agents from different drug families, which
are also known to cause cardiotoxic effects.

MATERIALS

DrugMatrix
The toxicogenomics DrugMatrix (Ganter et al., 2005) database
includes gene expression experiments from different rat tissue
types at different time points and drug dosages. Data were
downloaded via the diXa data collection (Hendrickx et al., 2015)
that is available at http://wwwdev.ebi.ac.uk/fg/dixa/index.html.
This data collection includes toxicogenomics profiles for 372
different compounds that were collected using the Affymetrix
whole genome 230 2.0 rat GeneChip array. Data are available for
heart, kidney, liver and muscle tissues, as well as for hepatocytes.
The experiments were conducted for up to five times (after 0.25,
1, 3, 5 and 7 days) with only one dose concentration. In some
cases, more than one dose was tested, and in others only one or
two time points were measured.

Anthracycline Expression Data
The analysis was focused on four different anthracyclines
compounds: daunorubicin (CHEMBL178), doxorubicin
(CHEMBL53463), idarubicin (CHEMBL1117), and 4-
epidoxorubicin (CHEMBL1237042). We downloaded the
CEL files from the DrugMatrix database via the diXa data
collection for these compounds in heart tissue. A full description
of the treatments is given by Table 1. Daunorubicin is the only
compound for which data are available at two doses, a higher
“toxic” dose and a lower “pharmacological” dose (Ganter et al.,
2005). Thus, for the analysis of daunorubicin we used only the
higher dose.

Expression Data From Other Cardiotoxic
Drugs
In order to evaluate the molecular effects that were identified in
this work for the anthracyclines we also applied our workflow

TABLE 1 | Anthracyclines drug treatment experiments from the DrugMatrix
database.

Drug Time points (days) Dosage (mg/kg)

Daunorubicin 1, 3, and 5 2/3.25

Doxorubicin 1, 3, and 5 3

Idarubicin 1, 3, and 5 0.625

4-Epidoxorubicin 1, 3, and 5 2.7

to three other chemotherapy agents that are known to induce
cardiotoxicities (Truong et al., 2014). Out of 41 drugs that are
mentioned in the review by Truong et al., only these three had
data available in the DrugMatrix database. Cyclophosphamide
(CHEMBL88) and ifosfamide (CHEMBL1024) are both
alkylating agents, and imatinib (CHEMBL941) is from a family
of small-molecule targeted therapy drugs. We downloaded the
CEL files from the DrugMatrix database for these compounds
in heart tissue. A full description of the treatments is given
by Table 2. Data for imatinib were available in two different
doses, and so we applied our analysis for the higher dose
only.

ConsensusPathDB – A Molecular
Interaction Network Resource
ConsensusPathDB (Kamburov et al., 2009) is a meta-database
for molecular interactions and pathways that currently integrates
32 public resources (Kamburov et al., 2013) and is composed
of more than 600,000 unique interactions of different types and
holds more than 5,000 human pathway concepts. The database is
available through a web server1 where queries of genes, proteins,
drugs and other types of biomolecules can be made, along with
gene and metabolites analysis, such as enrichment and over-
representation analysis (Herwig et al., 2016).

ConsensusPathDB holds an integrated network which is
comprised of more than 300,000 binary protein–protein
interactions (PPIs) representing a comprehensive model of
the human interactome. These interactions were scored with
a mixture of topology-based and annotation-based measures,
such as the ones described in Goldberg and Roth (2003),
Kuchaiev et al. (2009), Yu et al. (2010), and Kamburov et al.
(2012a). These measures were aggregated into a meta-score
using the IntScore (Kamburov et al., 2012b) approach, which
combines the individual confidence scores, and provides a final
score that better indicates how plausible the interaction is.
The PPI network, along with the quality assessment scores,
can be downloaded via http://cpdb.molgen.mpg.de/download/
ConsensusPathDB_human_PPI.gz.

ToxDB
ToxDB (Hardt et al., 2016) integrates toxicogenomics data from
two large-scale studies, Open TG-GATEs (Uehara et al., 2010)
and DrugMatrix (Ganter et al., 2005), with pathway concepts
from ConsensusPathDB (Kamburov et al., 2009). It contains a
total of 7,464 different treatment data sets, covering 437 drugs,
and 2,694 molecular pathway concepts with response scores.
Its web interface is available at http://toxdb.molgen.mpg.de/and

1http://consensuspathdb.org

TABLE 2 | Other chemotherapy drugs and their experiments information from the
DrugMatrix database.

Drug Time points (days) Dosage (mg/kg)

Cyclophosphamide 3 and 5 25

Ifosfamide 3 and 5 143

Imatinib 1, 3, and 5 15/150
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allows browsing for the effect of a drug treatment on cellular
pathway response. The user can also browse for a specific
pathway and retrieve the treatments that affect it the most.

METHODS

Microarray Data Processing
We processed the microarray data sets of the heart tissues that
were treated with anthracyclines. The oligonucleotide sequences
(oligoprobes) that were downloaded from DrugMatrix were
mapped to the rat genome-build and probe sets were redefined
using the resource at http://brainarray.mbni.med.umich.edu/
CustomCDF such that each probe is assigned to a unique gene,
and each gene is associated with a varying number of probes. It
has been shown that re-mapping of oligoprobes unambiguously
to the latest genome-build increases performance of Affymetrix
Gene Chip transcriptomics platforms (Dai et al., 2005). The
replicates of the different drug treatments were grouped together,
according to their corresponding dosage and time point. The raw
data were normalized using the GC Robust Multi-Array method
in the R package gcrma (Gentry, 2017).

Orthology Mapping
Rat genes had to be mapped to human genes by orthology,
in order to use the human pathway concepts and PPIs from
ConsensusPathDB. This was done via the orthology mapping of
the Ensembl BioMart repository (Yates and Akanni, 2016). We
used only “One2one” and “One2many” homology relationships:
if the rat gene has exactly one orthologous human gene, the
corresponding rat microarray value is assigned to that human
gene. Otherwise, if the rat gene has multiple orthologs in
the human genome, the corresponding rat microarray value is
assigned to all human paralogs.

Differential Gene Expression Analysis
The normalized microarray data were analyzed with the R
package limma (Ritchie et al., 2015) in order to calculate
differentially expressed genes (DEGs), i.e., genes that are up-
or downregulated significantly when comparing compound
treatment against control experiments. It estimates fold-changes
and standard errors by fitting a linear model to each gene profile
and uses an empirical Bayesian approach to smoothen these
errors.

We applied limma for every pair of case-control normalized
microarray values. Therefore, for every gene, given any drug,
dosage and time point combination, we can calculate its fold
change value and a corresponding P-value. Fold change is
computed as the ratio of the mean expression values of treatment
and control. P-value is the significance of the fold change given
the null hypothesis that there is no change in expression between
treatment and control.

Gene Scoring
In order to measure the response of a gene to a drug treatment
experiment we use the following scoring scheme:

for every gene i, every drug j and every time-dosage
treatment k:

Sijk =
∣∣log2 rijk

∣∣ ∣∣log10 Pijk
∣∣ (1)

Here rijk is the fold change between the treatment and the
control experiments, and Pijk is the P-value from the differential
expression analysis. This score describes a weighted fold change
of the gene, such that the more significant the change is, the
higher the weight is. Using this scoring scheme allows us taking
into consideration the rather low sample size of the experiments,
as well as to avoid a pre-selection of the genes based on their
P-values only. The score serves as a measure of how much the
gene was affected by the treatment, regardless of the change
in expression (higher or lower expressed in comparison to the
control).

Pathway Scoring
In previous works (Yildirimman et al., 2011; Hardt et al., 2016)
we have also defined a pathway scoring scheme, which is based on
the scoring of the genes that the pathway is comprised of. Here,
we take all available human pathways from ConsensusPathDB,
and their associated genes. We compute for each pathway a
relative pathway response (RPR) score which serves as a measure
for the response of the pathway to the drug, given gene expression
data. The higher the RPR score is, the more significant is the
response of the pathway to the treatment. A pathway Ml is
defined as a set of m genes: Ml={g1,...,gm}. Given a treatment of
drug j at a time point and dosage k, we can calculate the pathway
score:

Ml,j,k =
1
m

∑
gi∈M

Sijk (2)

Where Sijk is the gene score of gene i, as defined in Equation 1.
The RPR score of the pathway Ml with respect to the drug j
and the time-dosage k is calculated by dividing the pathway
score by Mj,k the median of all pathway scores, given drug j and
time-dosage k:

RPRl,j,k = log2

(
Ml,j,k

Mj,k

)
(3)

In addition, we computed RPR scores for all pathways in all
the different experimental conditions and derived a background
distribution. This background distribution is used to judge the
significance of a given RPR score and reflects the response of the
pathway to the experimental condition.

Network Module Analysis
A network module analysis was carried out by applying the
HotNet2 (Leiserson et al., 2015) algorithm, which was originally
developed to identify significantly mutated subnetworks in
cancer in PPI networks based on somatic mutations data. The
algorithm takes as input a score vector S =(S1,...,Sn), where n is
the number of genes, and a graph G=(V, E). The gene scores
are computed context dependent (see below), and the graph
represents a PPI network, where each node corresponds to a
protein coding gene, and each edge to an interaction between
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their respective proteins. HotNet2 then applies an insulated heat
diffusion process that includes the following steps:

1. Heat diffusion – at each time step heat is diffused from every
node i to every one of its neighbors j. The amount of heat that will
be placed on node j given the initial heat on node i is given by the
entry (i,j) of the diffusion matrix F, which is defined by:

F = β (I− (1− β)W)−1 (4)

Wi,j =
1

deg(j)
if (i,j) are neighbors, otherwise 0.

The parameter β is an insulating parameter and W is the
normalized adjacency matrix of the input graph G such that
deg(j) is the degree (number of neighbors) of node j. I is the
identity matrix.

2. Exchanged heat − the amount of heat that diffuses from
node j to node i when heat Sj is placed on node j is given by the
exchanged heat matrix E which is defined by:

E = FDs (5)

Where Ds is a diagonal matrix with the entries of S.
3. Identification of subnetworks − a new weighted directed

graph H is created using the nodes V. Node i will be connected
to node j in this graph if E(i,j) > δ, where δ is a minimum edge
weight parameter, and their respective edge will have a weight
equal to E(i,j). Then, the strongly connected components of H
are identified and are selected to be the final subnetworks.

4. Statistical test for the subnetworks – a two-stage statistical
test, that is described in the original HotNet algorithm (Vandin
et al., 2011, 2012), is applied to determine the significance of the
number and the sizes of the subnetworks.

To identify functional modules that are associated with
the different drug treatments we used the HotNet2 algorithm
(Leiserson et al., 2015) that is available at http://compbio.cs.
brown.edu/projects/hotnet2/. Since the first step of the algorithm
depends only on the graph G and the chosen parameter β ,
we calculated the diffusion matrix F for the high-confidence
ConsensusPathDB PPI network, while choosing β = 0.5. For the
scoring of the genes, we used our own data-derived scores: for
each drug and treatment, we used as input their gene scores, as
described in Equation 1. The output of the HotNet2 algorithm
depends largely on δ, the minimum edge weight parameter. The
lower its value, the larger are the subnetworks. HotNet2 outputs
four different results, for four different δ values, which are chosen
based on a permutation test in their algorithm [for further details
see (Leiserson et al., 2015)]. In this work we chose for further
analysis the subnetworks which are resulted when taking the
smallest δ parameter from the output of the HotNet2 algorithm.

Over-Representation Analysis (ORA)
ConsensusPathDB allows performing over-representation
analysis (ORA) with different functionally relevant gene sets
(Herwig et al., 2016). Given a set of genes, proteins or metabolites
over-represented sets are searched among three pre-defined
categories: (1) network neighborhood-based sets, (2) pathway-
based sets, and (3) Gene Ontology (GO)-based sets. According
to the hypergeometric test, a P-value is calculated based on the
number of identifiers that are present in the given set and in the

pre-defined sets. As background, the user can choose another
set of identifiers, for example all genes that were measured in
the experiment, or simply use all entities that are annotated in
ConsensusPathDB. In our work, ORA was used to identify only
the pathway based enriched sets, choosing all possible pathways
from ConsensusPathDB and applying a P-value cutoff of 0.01. As
background, we used the full list of genes that were measured in
the corresponding experiment.

RESULTS

Workflow for Analyzing Toxicogenomics
Data in the Context of Networks and
Pathways
We established a computational workflow for analyzing
toxicogenomics data by incorporating pathway and network
information using different complementary approaches in
order to gain functional information from gene expression data
(Figure 1). We exemplify the results on the four anthracyclines
drugs: daunorubicin (DAU), doxorubicin (DOX), idarubicin
(IDA), 4-epidoxorubicin (EPI). We also applied our analysis
to three other anti-cancer drugs that are known to cause
cardiotoxicity: cyclophosphamide (CYC), ifosfamide (IFO), and
imatinib (IMA). We compare our results for the anthracyclines
with our results for these drugs in order to identify differences
and commonalities and distinguish the effects that are explicit
to anthracyclines. The workflow is based on the results of a
differential expression analysis, and combines pathway and
network information from both ConsensusPathDB and ToxDB.
It begins with an over-representation analysis for the DEGs,
using pathway concepts that are collected in ConsensusPathDB,
in order to assign a biological function to the most significantly
changed genes. Next, it continues with a pathway analysis using
ToxDB, extrapolating from DEGs to the entire gene expression
response and from gene lists to pathway concepts. Using
molecular interaction information from ConsensusPathDB,
the workflow also includes a PPI network construction and an
analysis that applies a network propagation algorithm which
combines the DEGs with the PPI network. Finally, it is able to
identify subnetworks that we define as drug toxicity modules.

Assigning Biological Function to Gene
Lists With Over-Representation Analysis
A first step in functional interpretation of toxicogenomics results
is to interrogate the lists of DEGs (see Methods) for known
annotation sets such as pathways or GO terms using Fisher’s
test or similar statistics (see Methods). Summarizing the different
experiments (time points and dosages) for the four anthracyclines
(DOX, DAU, EPI and IDA) results in 1,883 DEGs for EPI, 1,555
for DOX and 1,062 for DAU whereas IDA shows a much weaker
response with 388 genes (Figure 2A). In all cases, human genes
were inferred based on homology mapping of the corresponding
rat microarray probes. All anthracyclines were administered
at maximum tolerated doses (MTDs) and, thus should be of
comparable toxicity (DOX 3 mg/kg; DAU 3.25 mg/kg; EPI
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FIGURE 1 | Workflow for analyzing toxicogenomics data at the network and pathway level. Gene expression data, following a drug perturbation, is collected and
analyzed to identify differentially expressed genes. Pathway concepts and interaction network are extracted from ConsensusPathDB. Identification of relevant
pathways is done via ToxDB, while functional modules are detected by applying a network propagation algorithm that combines both the gene expression data and
the PPI network. The workflow allows us to identify: (i) differentially expressed genes that could be candidates for further experiments, (ii) relevant pathways that are
disrupted in response to the treatment, and (iii) network toxicity modules that hold functional information about the mechanisms of action.
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FIGURE 2 | Anthracycline over-representation analysis. (A) Summary of the number of DEGs from the different experimental conditions: DOX (3 mg/kg at 1, 3, and
5 days), DAU (3.25 and 2 mg/kg at 1, 3, and 5 days), EPI (2.7 mg/kg at 1, 3, and 5 days), and IDA (0.625 mg/kg at 1, 3, and 5 days). (B) VENN diagram of DEGs
with respect to the four compound treatments. (C) 27 KEGG pathways that were found significantly over-represented with respect to the 1555 DEGs after DOX
treatment using the Fisher test statistic with the ConsensusPathDB. Y-axis = –log10(P-value). (D) Interdependency of significant pathways from (C) (blue label) and
GO categories (magenta label) computed with ConsensusPathDB. Size of balls indicates pathway size, shade of balls indicate overlap with DEG list. (E) “Adrenergic
signaling in cardiomyocytes” pathway found significantly over-represented (P = 3.49E−07) and expression data of 32 DEGs overlaid with the pathway. Mapping of
gene expression fold-changes to pathway has been done with Pathview (Luo et al., 2017).

2.7 mg/kg and IDA 0.625 mg/kg). Also, it has been shown that
gene expression signatures are predictive of toxicity and that
number of DEGs is indicative of phenotypically observed injury
of the organ (Paules, 2003; Andersen et al., 2008; Holmgren
et al., 2015) which has given rise to the concept of phenotypic
anchoring, i.e., the association of gene expression signatures to
toxic phenotypes. The difference in DEGs between DOX and IDA

is in line with previous findings: For example, Platel et al. (1999)
showed that in rat the MTDs for DOX and IDA were 3 mg/kg and
0.75 mg/kg, i.e., comparable to the levels used in the DrugMatrix
screen, and that at these MTDs IDA showed significantly lower
cardiotoxicity than DOX. Anthracyclines show highly specific
response at the gene expression level (Figure 2B) with 40–50% of
all DEGs specific for a certain compound. The strongest relative
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agreement in gene expression response was observed between
DOX and EPI (45%), whereas the relative agreement between
IDA and the other three compounds is much lower (12–15%).
DOX response can be characterized at the pathway level using
ORA analysis (see Methods). Figure 2C exemplifies the results for
DOX using gene sets that represent KEGG (Kanehisa et al., 2012)
pathways and that might reflect the cell’s response to the drug
treatment. In total, 27 KEGG pathways are significantly over-
represented (Q-value < 0.05 and at least 10 DEGs overlapping
with the pathway gene set). A number of disease gene sets
have been identified such as “Hypertrophic cardiomyopathy”
(Q = 0.0115), “Dilated cardiomyopathy“(Q = 0.0158) or “Cardiac
muscle contraction” (Q = 0.0032). Interestingly, these pathways
were also found in a recent study investigating cardio-toxicity
in human pluripotent stem cell derived-cardiomyocytes (Maillet
et al., 2016) and thus seem to extrapolate from rat in vivo
to human in vitro studies. The top-enriched pathway in our
setting is “Adrenergic signaling in cardiomyocytes” (Q = 4.54E-
05). 32 genes of that pathway are differentially expressed
including troponins (TNNC1 and TNNI3), tropomyosins (TPM1
and TPM2), and other well-known toxicity-associated genes
such as RYR2 (ryanodine receptor 2). Figure 2D displays the
interdependencies of these and other disease-related gene sets.

An important feature in the analysis is the visualization of the
gene expression changes in the pathway map. Pathway maps can
be retrieved by pathway resources such as KEGG. There are many
tools that allow visualizing gene expression fold-changes on these
pathways which is exemplified in Figure 2E with the “Adrenergic
signaling in cardiomyocytes” and the expression fold changes of
the DOX treatment.

From Genes to Pathways – Pathway
Analysis Using the ToxDB
The next level of analysis is to extrapolate the gene expression
values from single genes to entire pathways. We have built
a tool, ToxDB that combines gene expression data and
pathway concepts. ToxDB builds on three components: (i) a
comprehensive collection of pathway concepts along with drug
treatment microarray data, (ii) a numerical method to compute
pathway responses from genome-scale expression data, and (iii)
a web interface that allows user interaction. By this procedure
each pathway is assigned a numerical value that reflects its
response to the treatment (see Methods). ToxDB contains pre-
calculated pathway scores for ca. 2,700 different pathways and
ca. 7,500 experimental conditions mainly extracted from two
large toxicogenomics studies, TG-GATES and DrugMatrix (see
Methods). A background distribution of pathway scores is
used to infer statistical significance. ToxDB can be used in
different views. The drug view allows drug centric analysis:
by selecting a compound, for example DOX, and a specific
experiment all responding pathways can be viewed (Figure 3A).
By further clicking on a specific response pathway [here
“Hypertrophic cardiomyopathy (HCM)”] the expression results
of all genes can be inspected that are associated with this pathway
(Figure 3B). DEGs of this pathway are known cardiac-relevant
genes such as MYH7 (myosin, heavy chain 7, cardiac muscle,

FIGURE 3 | Pathway analysis using the ToxDB. (A) Drug view contains links
to chemical information (top left), specification of the experimental data (top
right) and the display of the response pathways for that experiment in form of
an interactive bar plot. Bars indicate the strength of the response, with mouse
over the user can display further information of the pathway. The background
distribution of the response scores is displayed as density plot next to the
plot. (B) Gene view. Once a pathway is selected, user can inspect the
experimental results of the genes. In this case the log2 fold-changes of the
genes associated with the pathway “Hypertrophic cardiomyopathy (HCM)”
from the KEGG database are shown. Stars indicate differentially expressed
genes (DEGs). (C) Pathway view. Users can infer specific pathways (here
“Cardiac muscle contraction”). The interactive bar plots represents the
response of that pathway in different experiments (e.g., DOX and EPI at 3 and
5 days experiments).

beta; log2−FC = 3.65, P = 9.05E−06), DES (desmin; log2-
FC = 0.264, P = 7.55E−02), TPM4 (tropomyosin 4; log2-FC = -
1.07, P = 9.14E−04), or RYR2 (ryanodine receptor 2; log2-
FC = −1.98, P = 5.43E−07). A second view is the pathway
view: the user can select a single pathway (here “Cardiac muscle
contraction”) and as a result all experiments are shown in which
this pathway responded significantly (Figure 3C). Pathways
can be selected from ten different resources which comprise
most widely used pathway resources such as KEGG, Reactome
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or BioCarta. It can be seen from the view that anthracycline
experiments (DOX and EPI at different time points) are among
the compounds that induce the most significant responses of
cardiac muscle contraction.

Protein–Protein Interaction Network
Construction
Protein–protein interaction networks are typically used as
scaffolds for drawing network propagation of gene expression
data on. The underlying argument is “guilt-by-association,” i.e.,
the assumption that genes/proteins that interact with each other
usually share function and, thus, that network modules computed
from these PPI networks amplify functional information. Thus,
the PPI network needs to be properly selected in the sense that it
should be sufficiently comprehensive and that the false-positive
rate of interactions should be low.

In this work we make use of the PPI network from
ConsensusPathDB (release 32) and reduce it to a high-confidence
network by taking only the interactions with a confidence score
of 0.95 or higher (Figure 4C). This network is comprised of
10,707 proteins and 114,516 unique interactions (Figure 4A).
Biological networks are normally characterized with a power
law distribution of the node degree (Barabasi and Oltvai, 2004).
This means that most of the nodes in the network are only
connected to a few other nodes, while a small majority is very
highly connected, with more than 400 neighbors (Figure 4B).
We make use of this high-confidence interaction network in our
workflow in order to identify subnetworks that are highly relevant
to the drug treatments.

Toxicity Network Modules Are Identified
by Applying Network Propagation
Toxicity modules were calculated using the HotNet2 algorithm
for each drug and time point independently. A detailed list
of all the toxicity modules is provided in Supplementary
Table 1. Here we discuss the results when using the gene
expression values for DOX only. The modules for the other
anthracyclines are provided in Supplementary Figures 1–3.
Since the drug treatments of DOX were measured three times
over the course of 5 days, we derived one module for each
one of the time points (Figure 5A). Looking at each one of
the modules, and at all of them together, allows us to analyze
the changes over time. We identified that the effect becomes
stronger after 3 days, as the size of the module grows, but
also that it is again much lower after 5 days. This could be
due to the toxic effect of the drugs on the cells, i.e., the
cells might already be dying. We confirmed this by looking at
the over-represented pathways for the genes in the “5 days”
module (Figure 5B). We observed two pathways that indicate
cell death: “Apoptosis” and “Apoptotic Signaling Pathway.” In
addition, we identified another pathway that might be involved
in cardiotoxicity: “Cardiac Progenitor Differentiation” (from the
WikiPathways database). This pathway includes several factors
that are involved in cardiac differentiation, such as TNNI3 that
we also detected as differentially expressed, and is based on two
recent reviews (Burridge et al., 2012; Stillitano et al., 2012). The

module also includes the genes IGF1 and IGF2 that are involved
in the differentiation of immature cardiomyocytes and have been
associated with cardiac hypertrophy (Wang et al., 2012). Other
genes that might be involved in cardiotoxicity and are present in
the “1 day” and “3 days” modules are APOA1, that have been
previously associated with hereditary amyloid cardiomyopathy
(Hamidi Asl et al., 1999), and ELN that has been involved in both
progressive aortic valve malformation and latent valve disease in
mice (Hinton et al., 2010).

Network Modules Amplify Functional
Information
We compared the over-represented pathways when using only
the high scoring genes (genes with a score above the 99th quantile
of the background distribution of all scores), and when using the
genes from the network modules (Figure 6). In 8 out of 12 drug-
treatment conditions the enrichment scores when using the genes
from the network modules, were higher than the scores when
using the high scoring genes only. Furthermore, when comparing
the significance of the enrichment, by looking at the means of
the Q-values (FDR corrected P-values), in all but one case we
observed a higher enrichment when using the genes from the
modules. This suggests that the network modules are enriched
in more functional information, and therefore they serve as a
powerful mean for studying systemic processes, such as drug
induced toxicity.

Differences and Commonalities Between
Anthracyclines and Other
Chemotherapeutic Drugs
To assess the specificity of our results for anthracycline-induced
cardiotoxicity, we applied the same workflow (Figure 1)
to three other anti-cancer drugs which are known to cause
cardiotoxic phenotypes: cyclophosphamide, ifosfamide
and imatinib (see Materials). Looking only at the high
scoring genes (genes with a score above the 99th quantile),
with gene scores computed according to section 3.4, we
observe hardly any common genes between the three drugs
(Figure 7A). Interestingly the 17 genes that are common
between these three drugs are also common with all the other
anthracyclines drugs. However, when we compare the genes
that are present in the toxicity modules of these drugs and
the toxicity modules of all anthracyclines (Figure 7B) we
detect 214 common genes. This highlights the fact that the
network propagation approach amplifies gene expression
responses toward relevant cardiotoxic mechanisms and
phenotypes that are shared by the different drugs so that
different gene expression responses can result in similar
pathway responses. Evidently the number of genes in the
anthracyclines modules is much higher as they are derived from
more drugs and experiments, but nonetheless the percentage
of number of genes that are shared is much higher. This
could again indicate to the functional information that is
inherent within the toxicity modules, which might suggest
to the mechanisms that are involved in causing the toxic
effect.
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FIGURE 4 | PPI Network construction from ConsensusPathDB. (A) High-confidence PPI network extracted from the ConsensusPathDB database with 10,707
nodes and 114,516 undirected edges. (B) Node degree distribution of the PPI network. (C) Distribution of all IntScore confidence scores from all ConsensusPathDB
unique interactions. In blue are the confidence scores below 0.95 and in red are those above it. The high-confidence network includes only the red interactions.

In order to identify biological functions that are specific
for anthracyclines we performed enrichment analysis with
the set of 330 genes that are solely part of the anthracycline
toxicity modules (Figure 7C). We observe enrichment
of cardiac disease pathways such as “Viral myocarditis,”
“Hypertrophic cardiomyopathy,” and “Dilated cardiomyopathy,”
mainly through the inclusion of ITGB and TGFB gene family
members and RYR2. Another strong signal is the presence of
immune response pathways. It is well-known that anthracycline
treatment can induce systemic inflammation mediated through
interleukins (Mills et al., 2008; Sauter et al., 2011). Interestingly,
many inflammatory and immune response pathways are
enriched with the anthracycline toxicity modules, in particular
through interleukins (IL1A, IL12A, IL12B, IL23A, IL33, and
IL27RA) that are not included in the modules of the other
drugs.

DISCUSSION

Combining the information from ConsensusPathDB and ToxDB,
including pathway concepts and a PPI network, together with

experimental data, allows for a more comprehensive view of the
effects of the drug treatments. Firstly, by using ToxDB we are
able to identify pathway concepts and by that suggest specific
mechanisms that may be either the cause or the consequences of
the toxic effects. In addition, by using the information from the
PPI network and a propagation algorithm, we can also identify
specific interactions that could be highly relevant for further
experiments. These network modules carry out more functional
information, since their genes and interactions represent parts
of different pathways, and thus they are enriched in more
information about specific biological mechanisms. Indeed, by
propagating perturbation data across a network it is possible
to gain information not only for the genes that were actually
measured by the experiment but in addition also for the
genes that haven’t been measured experimentally but that are
connected with many measured neighbors in the network.

When looking only at DEGs, it is very difficult to describe the
toxic effects of a drug given a specific treatment. Usually, this
list of genes is comprised of hundreds of possible candidates,
and it can be very challenging to distinguish which ones are
involved in causing toxicity. Other works have tried to reduce
the number of genes by looking at a smaller toxicogenomics
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FIGURE 5 | Toxicity Modules. (A) Toxicity modules were identified using the HotNet2 propagation algorithm for DOX drug treatments after 1, 3, and 5 days. Each
node corresponds to a protein coding gene (the nodes are named using their HGNC symbol) and each edge is an interaction as defined by the PPI network of
ConsensusPathDB (see Methods). The colors of the nodes indicate the time point. Nodes that are colored in green only are present in the “1 day” module only. In the
same way for orange and purple. Nodes that are colored in two colors are present in the two corresponding modules. Nodes that are colored in three colors are
present in all modules. (B) The top 20 over-represented pathways for the “5 days” module, based on the ORA of the genes in the module with ConsensusPathDB
(see Methods). The purple color represents the overlap of genes from the pathway and the module. The green are the rest of the genes from the pathway (that are
not in the module). The number next to each bar displays the significance of the over-representation [–log10(Q-value) of the corresponding pathway].

space (Kohonen and Parkkinen, 2017). By defining a more
complex gene score, we were able to reduce the number
of genes such that it becomes easier to extract plausible
candidates for further studies. Furthermore, by applying a
network propagation scheme to the gene scores and the high-
confidence PPI network, we were able to both reduce the
list even further, and also identify functional modules within
PPI networks. These functional modules can better reflect the
mechanisms that lead to toxicity, as they contain not only the
obvious candidate genes based on the differential expression
analysis, but also other genes that might be associated with the
toxic effect, and are also connected to the more significantly
changed genes.

ConsensusPathDB is a meta-database that agglomerates
information from multiple resources and therefore includes
different kinds of interactions: protein–protein, genetic,
metabolic, signaling, gene regulatory and drug-target. In

addition, it also holds information about biochemical molecules
and pathways. The high confidence PPI network that we have
constructed is comprised solely of highly scored protein–
protein interactions that are extracted from several resources,
such as BIND, INTACT, HPRD. However, the ORA that
is provided within ConsensusPathDB, searches for over
representation of genes within cellular pathways. These
pathways are derived from other resources, such as KEGG,
Reactome, WikiPathways, etc. The different resources are
completely independent data sets and the ConsensusPathDB
simply serves as a common analysis platform. Therefore,
when we apply the ORA to the extracted network modules,
we can identify how enriched they are not only with protein–
protein interactions, but also with pathway information. As
we have illustrated in Figure 6, network modules contain
not only protein–protein interaction information (that
is inherent within its structure) but also are enriched in
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FIGURE 6 | Network modules amplify functional information. We compared the scores of the over-represented pathways when using the highly scoring genes (score
>99th quantile) (in red) and when using the genes from the HotNet2 modules (in blue), for all four anthracyclines and in the three time points of the experiments. The
scores of the pathways are the –log10(Q-value) of the Q-values from the ORA that was done via ConsensusPathDB (Q-values are the FDR corrected P-values from
the hypergeometric test). Below the boxplots, the numbers indicate the number of the significantly (P-value < 0.01) over-represented pathways, for each one of the
conditions.

other functional information that is represented in various
pathways.

It should be noted that besides the described publicly
available tools for pathway annotation and analysis, there are
commercially available tools that hold functionality for pathway
and network analysis such as IPA (Ingenuity/Qiagen), TransPath
(geneXplain), or MetaCore (Thomson Reuters). These and
other commercial and publicly available tools can be used to
construct suitable molecular networks and perform enrichment
analysis and module computation. A survey of databases and
resources is given by Pathguide (Bader et al., 2006), a recent
review and comparison of pathway tools has been published
for example for metabolomics data (Marco-Ramell et al.,
2018).

Toxicology studies often explore the effects of compounds
over time and varying dosages (Hartung, 2009). Here, we
analyzed gene expression levels for three different time points:
after 1, 3, and 5 days. Every time point experiment was
independently compared to the control experiment, such that
a network module was constructed for every time point. To
discern the effect over time, we compared between the modules,
and determined the possible changes due to time. We were
able to identify the toxic effect over time by looking at the
different modules and also the genes within the module that
could implicate the pathways that are leading to toxicity. In
the future, one could try to first integrate the experimental
data from the different time points, such that the change in
expression levels over time is taken under consideration. For
example by applying a mathematical model to detect differential

expression over time, like the one suggested by Conesa et al.
(2006). We could further use the results of such model and
incorporate them into the network propagation algorithm in
order to identify a module that encompasses data from all the
time points together.

The approach we applied in this work consists of three
main components: gene expression analysis, a PPI network and
a network propagation algorithm. All of these have several
alternatives, and could be further incorporated in future analysis.
Firstly, the PPI network can be replaced with other genetic
interaction networks, for example a gene regulatory network that
is derived from experimental data (Zheng and Huang, 2018).
Secondly, different types of experimental data can be used for
ranking the genes and using their ranks as scores for the chosen
propagation algorithm. Gene expression values from RNA-seq
experiments could easily be investigated in the same manner,
along with protein abundance data, mutation data or epigenetic
data. Finally, there already exist different approaches for applying
propagation algorithms to detect network modules. Here we have
chosen to use the HotNet2 algorithm, but several others, like
the ones in the review by Cowen et al. (2017), might also be
considered.

In our work we focus on anthracyclines, a group of
commonly used chemotherapy drugs. We used the data
that are available in the DrugMatrix (Ganter et al., 2005)
database and applied our workflow (Figure 1). This workflow
could easily be applied to other data resources as well as
other groups of drugs. Some previous works have already
been developed to analyze toxicogenomics data from
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FIGURE 7 | Cardiotoxic effects of anthracyclines in comparison to other drugs. (A) VENN diagram of high-scoring genes (genes with a score above the 99th
percentile) with respect to the three other compounds (CYC, IFO, and IMA) and all anthracyclines together (ANTH). (B) VENN diagram of genes in the toxicity
modules, with respect to all anthracyclines (ANTH) together and all other drugs together (OTHER). (C) Significantly enriched KEGG pathways (P < 0.01) with the 330
genes that are contained in the computed anthracycline toxicity modules and not contained in the toxicity modules of the other cardiotoxic drugs. Bars indicate an
enrichment score computed as –log10(Q-value), where Q-value is the FRD-corrected P-value of the enrichment.

DrugMatrix and were applied for identifying different types
of drug induced toxicities. For example, Tawa et al. (2014)
characterized liver induced drug toxicity by identifying
gene co-expression modules that are associated with a
toxic response. They defined these gene modules using
six different methods, including Pearson correlations and
PPI information. A similar approach was also applied to
identify gene co-expression modules for kidney induced
drug toxicity (AbdulHameed et al., 2016). In another
work, AbdulHameed et al. (2014) also tried to identify
liver induced drug toxicity by integrating toxicogenomics

data with pathway and PPI network information. They
performed a differential expression analysis and identified
relevant gene modules by applying the KeyPathwayMiner
(Alcaraz et al., 2012) algorithm. Other network based
approaches have also been suggested for the analysis of
toxicogenomics data from the DrugMatrix database. For
instance, Sutherland et al. (2017) have constructed gene co-
expression networks using WGCNA (Zhang and Horvath,
2005) and associated modules with different drug toxicity
phenotypes. Mulas et al. (2017) compiled a pipeline for
network comparison and used it to identify drugs with similar
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toxicity profiles. In our workflow, we chose to apply a network
propagation algorithm that is based on a random walk model.
We showed that this approach allows for the identification of
drug toxicity modules that are highly enriched in functional
information and provide new insights into the toxic causing
mechanisms.

Gene expression signatures have been associated with toxicity
phenotypes with the concept of phenotypic anchoring (Paules,
2003). Here, the idea is that specific signatures emerge over time
and dose that can be related to distinguishable phenotypes. We
have observed that, for example the number of DEGs in DOX
and IDA at MTDs reflect previously observed differences in
the toxicity of both compounds. Additionally, when comparing
enrichment scores in heart-related diseases pathways, DOX
appears as the most toxic compound followed by EPI, while
IDA and DAU show basically no enrichment in these pathways
(Supplementary Figure 4).

Associating genotype with phenotype, and specifically
predicting a toxic phenotype that rises due to drug treatment,
still remains an intricate challenge. Integrating experimental
data with prior knowledge in the form of biological networks,
as suggested in our work, is a suitable step when trying to
describe the molecular effects of drug treatments. However,
there is still much to be improved. The PPI networks still hold
a high bias in interactions due to annotation (Schramm et al.,
2013; Luecken et al., 2018) and will keep getting refined as
our understanding of the biological systems increases. Better
experimental techniques become more and more available, and
data from those will need to be integrated for an even more
comprehensive analysis (Hasin et al., 2017; Yan et al., 2017;

Karczewski and Snyder, 2018). And finally, better computational
approaches for differentiating between cases and controls, as
well as for analyzing big networks such as PPIs, are still to be
developed.
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