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Structural investigation of heteroyohimbine alkaloid
synthesis reveals active site elements that control
stereoselectivity
Anna Stavrinides1,*, Evangelos C. Tatsis1,*, Lorenzo Caputi1, Emilien Foureau2, Clare E.M Stevenson1,

David M. Lawson1, Vincent Courdavault2 & Sarah E. O’Connor1

Plants produce an enormous array of biologically active metabolites, often with stereo-

chemical variations on the same molecular scaffold. These changes in stereochemistry

dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine

alkaloids show diverse pharmacological activities. We reported a medium chain

dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a

heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine

synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures

for three HYSs have been solved, providing insight into the mechanism of reactivity and

stereoselectivity, with mutation of one loop transforming product specificity. Localization and

gene silencing experiments provide a basis for understanding the function of these enzymes

in vivo. This work sets the stage to explore how MDRs evolved to generate structural and

biological diversity in specialized plant metabolism and opens the possibility for metabolic

engineering of new compounds based on this scaffold.
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H
eteroyohimbines are a prevalent subclass of the mono-
terpene indole alkaloids (Corynanthe type skeleton),
having been isolated from many plant species, primarily

from the Apocynaceae and Rubiaceae families1. These
alkaloids exhibit numerous biological activities: ajmalicine is an
a1-adrenergic receptor antagonist2–5, and mayumbine (19-epi-
ajmalicine) is a ligand for the benzodiazepine receptor (Fig. 1)6.
Oxidized beta-carboline heteroyohimbines also exhibit potent
pharmacological activity: serpentine has shown topoisomerase
inhibition activity7 and alstonine has been shown to interact with
5-HT2A/C receptors and shows promise as an anti-psychotic
agent8–13. In addition, heteroyohimbines are biosynthetic
precursors of many oxindole alkaloids, which also display a
wide range of biological activities14. Although a total of 16
heteroyohimbine stereoisomers are possible, only 8 are reported
to be found in nature, at stereocentres C3, C19, C20 (Fig. 1)14–20.
How and why the stereoselectivity is controlled in the
biosynthesis of these alkaloids remains unclear.

The medicinal plant Catharanthus roseus produces three of
these isomers, ajmalicine (raubasine), tetrahydroalstonine and 19-
epi-ajmalicine (mayumbine) (Fig. 1)21. These heteroyohimbines,
along with the majority of monoterpene indole alkaloids,
are derived from deglycosylated strictosidine (strictosidine
aglycone)22. The removal of a glucose unit from strictosidine by
strictosidine glucosidase (SGD) forms a reactive dialdehyde
intermediate that can rearrange to form numerous isomers23.
The stabilization of these isomers by enzyme-catalyzed reduction
is hypothesized to be the stepping stone for the extensive
chemical diversity observed in the monoterpene indole alkaloids
(Fig. 1)21,22. We recently reported the first cloning of a
biosynthetic gene encoding an enzyme that acts on strictosidine
aglycone. This zinc-dependent medium chain dehydrogenase/
reductase (MDR), named tetrahydroalstonine synthase (THAS),
produces the heteroyohimbine tetrahydroalstonine (Fig. 1)24.
Although these studies demonstrated that THAS is a key enzyme
in heteroyohimbine biosynthesis, the mechanism by which this
enzyme controls the stereoselectivity of the reduction remained
unknown. Moreover, it is important to note that strictosidine
aglycone serves as the precursor for many alkaloid scaffolds, and
therefore represents a central branch point in the monoterpene
indole alkaloid biosynthetic pathway. Therefore, we set out to
identify additional heteroyohimbine synthases (HYSs) with
different stereochemical product profiles that would more
clearly define how structural diversity, in this case the
formation of different stereoisomers, is controlled in this system.

In this study, we assayed 14 MDR homologues identified from
the C. roseus transcriptome25,26 that have homology to THAS
(Cr_024553). This screen revealed three additional enzymes with
THAS activity (Cr_010119, Cr_021691, Cr_032583a), and,
importantly, an enzyme that produced a mixture of hetero-
yohimbine diastereomers (Cr_032583b). Crystal structures of
THAS (here referred to as THAS1), a second representative
THAS (Cr_021691, THAS2) and the structure of the promiscuous
homologue (Cr_032583b, HYS) were solved and mutants revealed
key residues that control the stereochemistry of the product
profiles. Notably, analysis of the subcellular localization of some of
these HYSs indicates an unusual nuclear localization pattern and an
interaction with the previous enzyme, SGD. These discoveries
provide insight into the mechanism and evolution of a crucial
branch point in a specialized metabolic pathway with both
pharmacological and evolutionary importance.

Results
Discovery of HYSs. Guided by our initial discovery of THAS1
(ref. 24) we identified candidates from the MDR protein family in

the C. roseus transcriptome25,26 based on amino acid similarity to
this enzyme (Supplementary Table 1). Each of these candidates
was cloned from C. roseus cDNA and expressed in Escherichia
coli, with the exception of Cr_017994, which could not be
expressed and was not considered further. The remaining
candidates were assayed with the substrate strictosidine
aglycone, and product formation was monitored by liquid
chromatography mass spectrometry (LC-MS). Of these, four
(Cr_010119, Cr_021691, Cr_032583a, Cr_032583b) reduced
strictosidine aglycone to a product corresponding to one of the
heteroyohimbines (Fig. 2, Supplementary Fig. 1). The products of
the enzymatic reactions were identified based on LC-MS data and
comparison to authentic standards (Supplementary Fig. 2).
Enzymes that failed to produce a heteroyohimbine product
were not studied further (Supplementary Fig. 1). Three of the
enzymes (Cr_021691, THAS2; Cr_010119, THAS3; Cr_032583a,
THAS4) produced tetrahydroalstonine in B85% yield, with
small amounts of 19-epi-ajmalicine (mayumbine) (o15%) also
observed in these reactions, similar to the previously reported
THAS1. Notably, one enzyme (Cr_032583b, HYS) produced a
dramatically different product profile consisting of a mixture of
ajmalicine/tetrahydroalstonine/mayumbine (55:27:15, at pH 6)
(Fig. 2). The discovery of this enzyme, HYS, now provides a
molecular basis to understand the generation of stereochemical
diversity in this alkaloid family.

Crystallography of three HYSs. To understand the mechanism
of stereochemical control at this crucial biosynthetic branch
point, we crystallized three HYSs. THAS1 and THAS2, which
produce predominantly tetrahydroalstonine, were both crystal-
lized, since their amino acid sequence identity is relatively low
(55%) and the predicted active sites have numerous differences
(Fig. 3). HYS, which has a distinctly different product profile, was
also crystallized to explore the structural basis behind this distinct
stereochemical outcome. Structures (Supplementary Table 3)
were obtained for THAS1 and THAS2 with NADPþ bound
(THAS1, 1.05 Å resolution (Fig. 4a,b; Supplementary Figs 3–5);
THAS2, 2.10 Å resolution (Fig. 4d, Supplementary Fig. 4)) and in
apo form (THAS1, 2.25 Å resolution (Fig. 4c, Supplementary
Fig. 5); THAS2, 2.05 Å resolution (Fig. 4c)), while HYS could only
be crystallized in the apo form (2.25 Å resolution, Fig. 4c).

Structural features of HYS active sites. The five HYS structures
described here are similar to sinapyl alcohol dehydrogenase
(SAD; PDB accession codes 1YQX and 1YQD) and the SAD
homologue cinnamyl alcohol dehydrogenase (CAD; PDB acces-
sion codes 2CF5 and 2CF6)27–29, which reduce the aldehyde
moiety of lignin precursors. Indeed, pairwise superpositions of
subunits from these structures gave RMSD values of o2 Å
(Supplementary Table 4). The biological unit is an elongated
homodimer, with each subunit divided into a substrate and
cofactor-binding domain; the latter also being responsible for
forming the dimer interface (Supplementary Fig. 3). The overall
structure of THAS1, with active site, cofactor and loops
highlighted, is shown in Supplementary Fig. 3.

The active site cavities of the HYSs are framed by helix a2, the
catalytic zinc coordination sphere, and loops 1 and 2, with the
NADP(H) co-substrate binding at the base of the active site (Figs 3
and 4a,b,d, , Supplementary Fig. 4). Loop 2, which is positioned
above the active site, is highly variable in length and sequence
(Figs 3 and 4d). In both THAS1 and THAS2, a network of amino
acids holds NADPþ in place. Most notably, Glu59 of THAS1
anchors NADP(H) through a bidentate interaction with both
ribose hydroxyls, with His59 playing a comparable role in SAD,
although here the interaction is with the 30 OH only (Fig. 4b).
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Glu59 is conserved in HYS, but an aspartate residue (THAS3 and
THAS2) or a tyrosine residue (THAS4) serves this role in other
homologues. MDRs usually contain two zinc ions30, a distal
‘structural’ zinc ion, which in this case is coordinated by four
cysteine residues, and a proximal ‘catalytic’ zinc ion near the active
site, which is coordinated by two cysteines, one histidine and one
glutamate residue (Figs 3 and 4b)27,31. The proximal zinc of

THAS1 is B2 Å further away from the cofactor relative to SAD
and thus may play no direct role in catalysis (Supplementary
Fig. 4). However, it may have a function in maintaining the tertiary
structure since three of the liganding residues are in the substrate-
binding domain and the fourth is in the cofactor-binding domain.
SAD/CAD utilize an active site serine that protonates the alkoxide
that results from reduction of the aldehyde substrate27,29; this
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serine is replaced with a tyrosine residue in THAS1 (Tyr56) and
HYS (Tyr53) (Fig. 3). In THAS2, this tyrosine on helix a2 is
replaced with a tryptophan residue, but a tyrosine at position 120
points into the active site. Interestingly, a non-proline cis-peptide
is present in the THAS1-NADPþ and HYS apo structures
(Supplementary Fig. 5). Closer inspection of this region in
THAS1 shows that when this bond is in the trans conformation,
the side chain of Asp340 is projected into the cofactor-binding site
such that it would prevent NADPH binding.

Strictosidine aglycone binding. Despite extensive efforts, both
product and substrate failed to co-crystallize with any of the
enzymes. Therefore, molecular docking was used to visualize the

position of strictosidine aglycone in THAS1 (Fig. 4b). To ensure
that the correct substrate tautomer was used for docking, we
identified the most predominant strictosidine aglycone isomer
that forms in solution. Although product precipitation prevented
monitoring the SGD reaction in situ under aqueous conditions
(Methods), 1H,15N-HMBC NMR showed that an enamine species
was the predominant product in aqueous methanolic solution
(Supplementary Fig. 6). This is consistent with literature reports
that cathenamine is the major product of SGD, and is the
proposed precursor of ajmalicine and tetrahydroalstonine
(Fig. 1)21,23. In silico docking with THAS1 positions cathenamine
between the nicotinamide of the NADPþ and Tyr56, which is
located on helix a2 (Fig. 4b). THAS1 loop 1 contains Phe65
that also projects into the active site and may interact with the
aromatic cathenamine substrate.

Mechanism of reduction and heteroyohimbine formation. In
tetrahydroalstonine biosynthesis, we hypothesize that cathe-
namine tautomerizes to the iminium form by protonation at C20,
followed by addition of the hydride at C21. Protonation at C20
must occur from the bottom face to yield the S stereochemistry
observed at this position (Fig. 5a). While there does not appear to
be an appropriately positioned active site residue to perform this
role, the crystal structures of these enzymes reveal the presence of
numerous water molecules in the active site that could potentially
protonate this carbon (Fig. 4a). 1H,15N-HMBC measurements of
strictosidine aglycone at different pH values show formation of
the iminium species in solution when the pH was reduced to
B3.5, indicating that this tautomer can readily form in the
presence of an acidic moiety (Supplementary Fig. 6).

To elucidate the stereo and regioselectivity of reduction by
NADPH, we isolated tetrahydroalstonine from reactions using
THAS1 and pro-R-NADPD. Analysis by 1H-NMR showed that
tetrahydroalstonine is labelled with deuterium in the pro-R
position at C21, consistent with previously reported experiments
performed in crude cell extracts (Fig. 6a)32. It is possible that
THAS1 could reduce the enamine directly, in which case hydride
addition would occur at C21, followed by protonation at C20 by a
water molecule as described above. The presence of mayumbine/
19-epi-ajmalicine in some of the enzymatic reactions
suggests that small amounts of cathenamine can open and form
19-epi-cathenamine, either in solution or in the active site.

In the case of HYS, which produces both ajmalicine (R C20)
and tetrahydroalstonine (S C20), protonation must also occur
from the opposite face to yield R stereochemistry at C20 (Fig. 5b).
Products of HYS generated with pro-R-NADPD were also
isolated and analysed by 1H-NMR, and, as for tetrahydroalsto-
nine from THAS1 in each case showed deuterium labelling in the
pro-R position at C21 (Fig. 6a–c). Therefore, the stereochemical
course of hydride addition is not altered in HYS compared with
THAS1.

The major difference between HYS and THAS1/THAS2
appears to be the extended loop over the HYS active site
(D125-GHFGNN-F132 in HYS and D128-SN-Y131 in THAS1,
loop 2 in Fig. 3). The histidine residue in HYS loop 2 (His127)
appears to be positioned appropriately to provide an alternative
proton source for the opposite (‘top’) face of the substrate, which
could explain the appearance of ajmalicine in the product profile
of HYS. Reactions with THAS1 and HYS performed at different
pH conditions (5–8) revealed that while changes in pH did not
substantially impact the product profile of THAS1, HYS
produced increased amounts of ajmalicine relative to tetrahy-
droalstonine at pH 6 compared with higher pH values
(Supplementary Fig. 7). The increased level of ajmalicine in
HYS at lower pH values is consistent with the pKa value of the
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Figure 2 | LC-MS analysis of active MDR candidates against strictosidine

aglycone. Cr033062 exhibited only trace activity. See Supplementary Fig. 1

for chromatograms of assays with inactive enzymes and negative

controls.
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histidine side chain and supports the role of this histidine in
ajmalicine biosynthesis, though attributing pH dependence to
specific residues must be approached with caution33.

Switching stereoselectivity of HYSs. Since the major sequence
and structural difference between HYS and THAS1 is the
extended loop over the HYS active site, loop 2 (Fig. 3), we
swapped these loop regions in THAS1 and HYS to determine
whether the stereochemical product profile could be switched
(Fig. 7a). Loop 1, which is near the active site, was also swapped
(Fig. 7a). While the THAS1 mutant containing the swaps
displayed reduced activity rather than an altered product profile
(Fig. 7c), the HYS mutant containing the shorter THAS1 loop 2
resulted in a product profile similar to that of THAS1 (Fig. 7b,
Supplementary Fig. 8). Since His127 is the only ionizable residue
in this loop, we hypothesized that this residue protonates C20, as
discussed above. Therefore, we mutated this histidine to alanine
or asparagine in HYS. Both of these mutants gave the same
THAS-like profile, suggesting that His127 is required for pro-
ducing the ajmalicine (R C20) stereochemistry (Supplementary
Fig. 9). Mutation of other conserved ionizable residues
in the THAS1 active site (Tyr56, Ser102 and Thr166) did not
result in substantial changes in the distribution of products
(Supplementary Table 6, Supplementary Figs 10 and 11). Muta-
tions to Glu59, which anchors the NADPH cofactor, resulted in a
slight increase in product promiscuity (Supplementary Fig. 11),
perhaps by causing a shift in the cofactor position. The reactivity
of the substrate34 and precipitation at high concentrations
during the assay makes obtaining accurate kinetic constants
challenging24, so end-point assays were used to assess

stereoselectivity and relative activity of the mutant enzymes
(Supplementary Table 6). However, the kcat (observed)
values could be measured for THAS1 (1.518±0.059 s� 1),
THAS2 (0.033±0.001 s� 1), THAS3 (0.102±0.004 s� 1), THAS4
(0.044±0.006 s� 1), HYS (0.083±0.005 s� 1), HYS_loop2 swap
(1.970±0.153 s� 1), THAS1 Y56S (0.118±0.005 s� 1) and
THAS1 E59A (0.061±0.005 s� 1).

In planta localization of HYSs. Plants use spatial organization
on the organ, tissue and intracellular levels to control product
distribution (Supplementary Fig. 12). At the subcellular level, we
previously showed that THAS1 has an unusual nuclear localiza-
tion pattern24, which is also where SGD, the enzyme that
synthesizes strictosidine aglycone, is localized34. Physical
interactions using Bimolecular Fluorescence Complementation
(BiFC) were observed between these two enzymes24. THAS2 and
HYS localization were similarly investigated by expressing yellow
fluorescent protein (YFP) fusions in C. roseus cells. Microscopy of
transiently transformed cells revealed that THAS2–YFP (Fig. 8a)
was located in both the cytosol and the nucleus while HYS–YFP
(Fig. 8e), similar to THAS1, displayed a preferential nuclear
localization (Fig. 8 and Supplementary Fig. 13). As reported for
THAS1, this localization relies on the presence of a class V
nuclear localization sequence in HYS (215-KKKR-218) that is
absent from THAS2 (Fig. 3). BiFC assays revealed that both
THAS2 and HYS are capable of self-interactions (Supplementary
Fig. 14).

BiFC assays were used to determine whether THAS2 and HYS
also interact with SGD (Fig. 9). C-terminal split-YFP fragment
fusions of both enzymes (THAS2–YFPC and HYS–YFPC) were
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co-transformed with SGD that was fused to a N-terminal split-
YFP fragment (YFPN–SGD). The formation of a nuclear BiFC
complex suggests that both of these enzymes interact with SGD in
the nucleus (Fig. 9a–d). Interestingly, the emitted fluorescent
signal exhibited a punctated, sickle-shaped aspect as previously
observed for the THAS1/SGD interaction (Fig. 9e,f) and for SGD
localization34. In contrast, no interactions were detected when
the BiFC assay was conducted with a downstream enzyme
from this biosynthetic pathway, 16-hydroxytabersonine 16-O-
methyltransferase (16OMT), that is not expected to interact with
SGD (Fig. 9g,h).

Double BiFC assays were performed to combine the study of
THAS2 and HYS interactions, as well as their interactions with
SGD. After transformation into plant cells (16 h), we noted the
formation of a dual fluorescent signal for THAS2, both in
the cytosol and as punctates in the nucleus that may correspond
to the superposition of the signal observed for THAS2 self-
interactions and THAS2–SGD interaction (Fig. 9i,j) as confirmed
by multicolour BiFC (mBIFC) assays (Supplementary Fig. 15).
Increased time of expression (36 h) progressively resulted in the
disappearance of the cytosolic signal, and it is intriguing to
speculate that this implies a recruitment of THAS2 by SGD
(Fig. 9q,r). A similar phenomenon was observed for HYS and
THAS1 (Fig. 9k–n,s–v- Supplementary Fig. 15). While self-
interactions of 16OMT were detected, no nuclear signal was

recovered, confirming the specificity of THAS1–, THAS2–, HYS–
SGD interactions (Fig. 9o,p).

In planta silencing of HYSs. The expression levels of the HYS
transcripts do not suggest whether a specific HYS is the most
biologically relevant (Supplementary Fig. 12). To establish
whether any of these enzymes synthesize the expected metabolic
product in planta the genes encoding active HYSs were silenced.
For many medicinal plants, including C. roseus, virus-induced
gene silencing (VIGS) is the only established method to silence
genes in the whole plant. In C. roseus, the effect of VIGS is
temporally and spatially limited to the first two leaves that
emerge immediately after infection35. Each of the genes
encoding a biochemically active enzyme (THAS1, THAS2,
THAS3, THAS4 and HYS) was subjected to VIGS in C. roseus
seedlings and the effect on alkaloid production was monitored
by MS. Since HYS and THAS4 were too similar to silence
separately, one common gene fragment was used for silencing
both genes simultaneously. Successful silencing of the genes
was confirmed by quantitative reverse transcription–PCR
(qRT–PCR) (Supplementary Fig. 16). Aside from a small
degree of cross-silencing between THAS2 and THAS3 (12%),
all of the target genes were silenced selectively, as measured by
qRT–PCR (Supplementary Fig. 16).
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Due to the inherent reactivity of the HYS substrate
(strictosidine aglycone), changes in the level of this compound
in planta are difficult to accurately detect. Instead, the effect of
silencing must be established by quantitatively measuring
decreases in heteroyohimbine levels. Previously for THAS1, we
measured the combined peak for heteroyohimbines, since the
diastereomers were difficult to resolve on a reverse phase LC
column under the reported conditions24. However, after
substantial optimization (see Methods), an LC-MS method was
developed to separate ajmalicine and tetrahydroalstonine in crude
leaf extracts (19-epi-ajamlicine/mayumbine is not observed in
C. roseus leaves, Supplementary Fig. 17). Ajmalicine and
particularly tetrahydroalstonine are observed in low levels even
in empty vector control samples compared with the major leaf
monoterpene indole alkaloids vindoline and catharanthine, and
in addition, heteroyohimbine composition varied substantially
among individual leaves. Therefore, accurate measurement of
decreases in ajmalicine and tetrahydroalstonine levels is
challenging. There was no evidence for a decrease of ajmalicine
or tetrahydroalstonine when THAS2 and THAS3 were silenced.
However, for HYS, there was a statistically significant decrease
(t-test 0.0275) in ajmalicine, and no change in tetra-
hydroalstonine levels. Surprisingly, a statistically significant
decrease in ajmalicine, as well as tetrahydroalstonine (t-test
0.0277 and 0.0276, respectively) was also noted for THAS1
(Supplementary Fig. 16). While the results are statistically
significant, the leaf-to-leaf variability, the low level of
endogenous production, and the catalytic redundancy of these

enzymes make it difficult to draw firm conclusions from these
VIGS data. In addition, regulatory factors that impact the ratio of
ajmalicine and tetrahydroalstonine, such as transport
mechanisms and/or further derivatization to other products,
cannot be ruled out. Additional silencing systems, in different
tissues, will be required to more firmly establish the physiological
function of these enzymes. Nevertheless, we can state that
silencing of HYS and THAS1 impacts alkaloid production in C.
roseus leaves.

Discussion
Here we report several medium chain dehydrogenases/
reductases that produce the heteroyohimbine stereoisomers
ajmalicine and/or tetrahydroalstonine, thereby providing a
framework to understand the enzymatic control over stereo-
selectivity in this metabolic pathway. It is notable that we have
identified four enzymes that generate tetrahydroalstonine, yet
ajmalicine is the more abundant isomer in planta
(Supplementary Fig. 17). Expression profile data of the genes
identified in this study suggest that HYS, which produces
ajmalicine, is not expressed at higher levels than the other
synthases (Supplementary Fig. 12). There may be additional
ajmalicine synthases that are not related to the MDR super-
family homologues identified in this study. Alternatively,
tetrahydroalstonine could be shuttled into another pathway or
degraded, thereby resulting in the observed lower levels that
accumulate in planta.
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Importantly, the pharmacological activity of heteroyohimbines
is impacted by the stereochemistry. Ajmalicine has recently been
used in combination with almitrine in post-stroke treatments,

though the side effects caused by almitrine resulted in widespread
withdrawal of the drug in 2013 (ref. 4). While tetrahydroalstonine
has no reported pharmacological function, its oxidized product,
alstonine (Fig. 1), has recently been shown to act by a unique
mechanism for modulating dopamine uptake and shows potential
as an anti-psychotic drug13. The heteroyohimbines have excellent
promise as a scaffold for pharmacological activity. The discovery
of the HYSs, along with recently developed heterologous
production platforms for monoterpene indole alkaloids36, now
allows the possibility of generating these alkaloids and unnatural
derivatives through metabolic engineering/synthetic biology
strategies.

The crystal structures of three HYSs reveal the potential of
biosynthetic machinery to generate stereochemical variation.
Flexible loop regions can be the key to unlocking chemical
diversity: as we have demonstrated here, mutating the extended
loop over the HYS active site (loop 2 in Fig. 3) impacts
stereochemical outcome. Notably, the MDRs that we have
identified demonstrate high variability at this region (Fig. 3).
Phylogenetic analysis (Supplementary Fig. 18) suggests that these
HYSs, which appear to have originated from a common ancestor,
may have undergone neo-functionalization through mutation in
this loop region. This loop could potentially be harnessed in
protein engineering efforts to generate novel catalytic activity.

While the in planta function of heteroyohimbines is unknown,
deglycosylated strictosidine is toxic and may act as a defense
compound34, similar to the defense roles of the aglycones of the
iridoids from which stictosidine is derived37,38. SGD is expressed
in most tissues (Supplementary Fig. 12), suggesting that the plant
must have evolved mechanisms to control the levels of the toxic
strictosidine aglycone. In directed overflow metabolism, excess
reactive intermediates are converted into non-reactive
byproducts39. It is intriguing to speculate that monoterpene
indole alkaloid biosynthesis may have initially arisen as a
mechanism for handling overflow of strictosidine aglycone. The
HYSs perform a single, chemically straightforward reduction
reaction that immediately neutralizes the reactivity of
strictosidine aglycone/cathenamine. The co-localization and
interaction of THAS1, THAS2 and HYS with SGD reinforces
the hypothesis of an evolutionary mechanism deployed by
strictosidine-accumulating plants to manage the reactivity of
the strictosidine aglycone. It also raises the question of a possible
competition between HYSs for recruitment by SGD when distinct
enzymes are co-expressed in the same tissue/cells. Whether the
heteroyohimbines serve an active biological function in the plant,
or whether they are simply the end product of directed overflow
metabolism, or both, remains to be investigated. Regardless, it is
clear that MDRs play an important role in the generation of a
wide variety of chemical structures. Duplication of the
evolutionary dehydrogenase ancestor may have given rise to
multiple HYSs, along with MDRs with other biosynthetic
activities, such as tabersonine-3-reductase that is involved in
the biosynthesis of the anti-cancer alkaloid vinblastine
(Supplementary Fig. 18)40.

Methods
Selection and cloning of candidate MDRs. The nucleotide and the protein
sequences of THAS1 were subjected to a BLAST search against the C. roseus
Sunstorm Apricot V1.0 Transcript sequences (http://medicinalplantgen-
omics.msu.edu) and the MDR sequences with the highest identity to THAS1 at the
active site and which showed non-negligible expression levels in young and mature
leaves were selected as candidates for cloning and expression. The protein sequence
of SAD was blasted against the same database and MDRs were also selected based
on their active site similarity to that of SAD. The genes coding the candidate MDRs
were amplified from C. roseus leaf cDNA and cloned into the E. coli expression
vector pOPINF using the In-Fusion cloning kit (Clontech Takara)41 by using
primers designed based on the transcript sequences (Supplementary Table 1).
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Site-directed mutagenesis of THAS1 and HYS. THAS1 mutants were generated
by overlap extension PCR. Briefly, the codon to be mutated was selected and two
primers, one reverse and one forward (Supplementary Table 4), were designed to
overlap and introduce the mutation. A first PCR was carried out using the reverse
mutant primer and the 50 forward gene-specific primer (Supplementary Table 1),
thus generating the 50 half of the gene carrying the mutation. In parallel, the 30 half
of the mutated gene was generated by PCR using the forward mutant primer and
the 30 reverse gene-specific primer (Supplementary Table 4). PCR products were
gel purified and used for the second PCR overlap reaction for generation of the full-
length mutated gene, where the 50 and 30 halves of the mutated genes were mixed in
a PCR reaction in equimolar amounts (B100 ng per fragment) and five cycles of
PCR were carried out without including primers. After the 5 overlap PCR cycles,
the forward and reverse gene-specific primers were added to the mix and further 30
cycles were performed. Full-length PCR products were gel purified, ligated into
pOPINF expression vector and transformed into competent E. coli Stellar strain
cells (Clontech Takara). HYS point mutants were obtained as gene fragments
(Integrated DNA Technologies, Belgium) with the H127 or F128 codons mutated

(H127A CAT-4GCA; H127N CAT-4AAC; F128A TTT-4GCT; F128Y TTT-
4TAC) and the pOPINF overhangs included at the 30 and 50 extremities. The
THAS1 and HYS double loop mutants were generated by first making their loop 1
mutant genes and then inserting the second loop 2 swap following the same
procedure described above. Mutant constructs were sequenced to verify the mutant
gene sequence and correct insertion.

Enzyme activity assays. All candidate enzymes and mutants were expressed
in SoluBL21 (DE3) E. coli cells (Genlantis) grown in 2�YT medium. Protein
production was induced by addition of 0.2 mM IPTG and the cultures were shaken
at 18 �C for 16 h. Cells were collected by centrifugation, lysed by sonication in
Buffer A (50 mM Tris-HCl pH 8, 50 mM glycine, 500 mM NaCl, 5% v/v glycerol,
20 mM imidazole) supplemented with EDTA-free protease inhibitor (Roche
Diagnostics) and 0.2 mg ml� 1 lysozyme. Soluble proteins were purified on
Ni-NTA agarose (Qiagen) and eluted with Buffer B (50 mM Tris-HCl pH 8, 50 mM
glycine, 500 mM NaCl, 5% v/v glycerol, 500 mM imidazole). Eluates were analysed
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by SDS–PAGE to verify the purity and the molecular weight of the purified
proteins. All proteins were dialysed in Buffer C (50 mM phosphate pH 7.6, 100 mM
NaCl) and concentrated. Protein concentration was measured with Bradford
reagent (Sigma-Aldrich) according to the manufacturer’s instructions. Purified
proteins were divided in 20 ml aliquots, fast-frozen in liquid nitrogen and stored at
� 20 �C.

Candidate MDR enzymes and the selected mutants were screened for activity
against deglycosylated strictosidine. The substrate was generated by deglycosylating
strictosidine (300 mM) by the addition of purified SGD in the presence of 50 mM
phosphate buffer (pH 6.5) at room temperature for 10 min. The reactions were
started by the addition of MDR enzyme (1mM) and NADPH (5 mM). Caffeine
(50 mM) was used as internal standard. All reactions were performed in triplicate.
Aliquots of the reaction mixtures (10ml) were sampled 1 and 30 min after addition
of MDR enzyme. The reactions were stopped by the addition of 10 ml of 100%
MeOH. Samples were diluted 1:5 in mobile phase (H2Oþ 0.1% formic acid) and
centrifuged for 10 min at 4,000g before UPLC-MS injection (1ml). The activity of
MDR enzymes and mutants was measured by UPLC-MS. Enzymes exhibited a loss
of activity after one freeze thaw cycle.

The initial velocity was determined for the wild-type enzymes that displayed
HYS activity (THAS1-4 and HYS), as well as for the mutants THAS1 Y56S, E59A
and HYS loop 2 swap. Reactions were monitored at 340 nm at room temperature
using a (Cary 50 Bio, Varian) spectrophotometer. Strictosidine (50mM) was
incubated with purified SGD in 50 mM phosphate buffer (pH 7.0) for B30 min at
30 �C. NADPH (100 mM) was added, mixed by pipetting and the absorbance at
340 nm was monitored until stabilized (minimum of 2 min). A predetermined
amount of enzyme (10–400 nM) was then added, mixed and the reaction was
monitored for a minimum of 5 min at 340 nm. The resulting slope was calculated
during the linear reaction range, usually 0–60 s after addition of the enzyme. The
reactions were replicated five times and the initial velocity was calculated for each
replicate after accounting for the background. The concentration of substrate
(50 mM strictosidine) was determined to be saturating for all wild-type enzymes
under these conditions.

Protein crystallization. Proteins for crystallization were purified from 2 l cultures
in 2�YT medium. Protein expression was induced by addition of IPTG and the
cultures were grown for 16 h at 18 �C. Cells were collected by centrifugation and
lysed by sonication in 50 ml Buffer A supplemented with EDTA-free protease
inhibitor and 10 mg of Lysozyme. Lysates were clarified by centrifugation at
17,000g for 20 min. Two-dimensional automated purification was performed on an
AKTAxpress purifier (GE Healthcare). The IMAC step was performed on HisTrap
HP 5 ml columns (GE Healthcare) equilibrated with Buffer A. Proteins were step-
eluted with Buffer B and directly injected on a gel filtration column equilibrated
with Buffer D (20 mM HEPES, 150 mM NaCl, pH 7.5). Fractions were collected
and analysed by SDS–PAGE and those containing pure protein were pooled and
concentrated in a 10 kDa membrane filter—Millipore filter (Merck Millipore).

Purification of HYS required the addition of 1 mM DTT to all purification
buffers and dialysis in Buffer D containing 0.5 mM tris(2-carboxyethyl)phosphine
(TCEP) before crystallization and storage.

Crystallization screens were conducted by sitting-drop vapour diffusion in
MRC2 96-well crystallization plates (Swissci) with a mixture of 0.3 ml well solution
from the PEGs (Qiagen), PACT (Qiagen) and JCSG (Molecular Dimensions) suites
and 0.3 ml protein solution. Protein concentrations were adjusted to 7–10 mg ml� 1

while NADPþ (Sigma-Aldrich) was added to a final concentration of 1 mM for
co-crystallization studies. Solutions were dispensed either by an OryxNano or an
Oryx8 robot (Douglas Instruments).

THAS1 apo crystals were obtained from His6-tag cleaved THAS1 (3C protease)
in a solution containing 0.1 M MES, pH 6.5, 15% w/v PEG 2000. THAS1-NADPþ

crystals were obtained from a solution containing 0.2 M potassium/sodium tartrate
with 20% w/v PEG 3350. THAS2 crystals (with and without NADPþ ) were
obtained from a condition containing 0.2 M lithium chloride and 20% w/v PEG
3350. HYS crystals were obtained after removal of the His6-tag (using 3C protease)
in 0.1 M MMT buffer, pH 5 and 15% w/v PEG 3350. All crystals were
cryoprotected by soaking in crystallization solution containing 25% v/v ethylene
glycol before flash-cooling in liquid nitrogen.

Data collection and structure determination. X-ray data sets were recorded on
one of three beamlines at the Diamond Light Source (Oxfordshire, UK) (2FI3, I04;
2FI5, I03; 5H81 I04-1; 5H82, I04-1; 5H83, I04-1) at wavelengths of 0.9000–0.976 Å
(2FI3, 0.900 Å; 2FI5, 0.976 Å; 5H81, 0.920 Å; 5H82, 0.920 Å; 5H83, 0.920 Å) using
either a Pilatus 6M or 2M detector (Dectris) with the crystals maintained at 100 K
by a Cryojet cryocooler (Oxford Instruments). Diffraction data were integrated
using XDS42 and scaled and merged using AIMLESS43 via the XIA2 expert
system44; data collection statistics are summarized in Supplementary Table 3.
Initially the THAS1-NADPþ data set was automatically processed at the beamline
by fast_dp45 to 1.12 Å resolution and a structure solution was automatically
obtained by single wavelength anomalous dispersion phasing using the SHELX
suite46 via the fast_ep pipeline (Winter, manuscript in preparation). Despite being
collected at a wavelength somewhat remote from the zinc K X-ray absorption edge
(theoretical wavelength 1.284 Å), the anomalous signal was sufficient for fast_ep to
locate four zinc sites and calculate a very clear experimentally phased electron
density map (Fig. 4a). This was available to view at the beamline in the ISPyB
database47 via the SynchWeb interface48 within a few minutes of completing
the data collection. The map was of sufficient quality to enable 94% of the
residues expected for a THAS1 homodimer to be automatically fitted using
BUCCANEER49. The model was finalized by manual rebuilding in COOT50 and
restrained refinement using anisotropic thermal parameters in REFMAC5 (ref. 51)
against the same data set reprocessed to a resolution of 1.05 Å as described above
(Supplementary Table 3), and contained 97% of the expected residues, with one
NADPþ molecule and two zinc ions per subunit. All the remaining structures were
solved by molecular replacement using PHASER.52 In each case, the asymmetric
unit corresponded to the biological dimer and the preliminary models were
obtained by searching for two copies of a monomer template. For THAS1 apo,
THAS2 NADPþ and HYS apo, a THAS1-NADPþ protein-only monomer model
was used as the basis for the template, although in the latter two cases a homology
model of the target structure was generated from the THAS1 template using the
Phyre2 server53 (http://www.sbg.bio.ic.ac.uk/Bphyre2) before running PHASER.
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For solving the THAS2 apo structure, a THAS2 NADPþ monomer was used as the
template. In contrast to THAS1-NADPþ , these four structures were refined in
REFMAC5 with isotropic thermal parameters and TLS group definitions obtained
from the TLS-MD server54. Model geometries were validated with the
MOLPROBITY55 tool before submission to the PDB. The statistics of the final
models are summarized in Supplementary Table 3. Additional statistics for Rpim:
5FI3, 0.020 (0.517); 5FI5, 0.038 (0.600); 5H81, 0.041 (0.349); 5H82, 0.033 (0.439);
5H83, 0.068 (0.664) and CC½: 2FI3, 0.999 (0.510); 2FI5, 0.999 (0.523); 5H81, 0.998
(0.725); 5H82, 0.999 (0.639); 5H83, 0.996 (0.510) (where values in parentheses are for
highest-resolution shell) were also noted. Ramachandran statistics (favoured/allowed/
outlier (%)) are 5FI3, 96.8/3.2/0.0; 5FI5, 96.0/4.0/0.0; 5H81, 96.2/3.8/0.0; 5H82, 96.1/
3.9/0.0; 5H83, 96.6/3.1/0.3. All structural figures were prepared using CCP4mg56.

Simulated annealing omit maps were calculated for the active site regions of all
five structures presented in this study. For all structures, selected residues bordering
the active site (and the cofactors in the case of the two holoenzyme structures) were
deleted from the coordinates of the final models. The resultant PDB files were used
as inputs to simulated annealing refinement with PHENIX (https://www.phenix-
online.org) from a starting temperature of 5,000 K after applying small random
shifts to the model (‘shake’ term set to 0.3). The resultant mFobs–dFcalc difference
electron density maps (contoured at B3.0s) are displayed superposed on the final
coordinates, where the corresponding omitted atoms are shown in stick
representation. In each case, structurally equivalent residues were omitted, with the
exception of HYS where His127 from loop 2 was also omitted.

UPLC-MS analysis. Enzyme assays and plant tissue samples from VIGS experi-
ments on C. roseus plants were analysed by UPLC-MS. UPLC-MS analysis was
carried out on a UPLC (Waters) equipped with an Acquity BEH C18 1.7 mm
2.1� 50 mm column connected to Xevo TQS (Waters). MS detection was
performed in positive ESI. Capillary voltage was 3.0 kV; the source was kept at
150 �C; desolvation temperature was 500 �C; cone gas flow, 50 l h� 1; and
desolvation gas flow, 800 l h� 1. Unit resolution was applied to each quadrupole.
Multiple reaction monitoring signals were used for detection and quantification of
caffeine (m/z 1954110, 138) and heteroyohimbine alkaloids (3534117, 14).

For rapid dereplication of active enzymes and mutants, a linear gradient
method (Method 1) was used at a flow rate of 0.6 ml min� 1 using a binary solvent
system in which solvent A1 was 0.1% formic acid in water and solvent B1 was
acetonitrile. The gradient profile was: 0 min, 5% B1; from 0 to 3.5 min, linear
gradient to 35% B1; from 3.5 to 3.75 min, linear gradient to 100% B1; from 3.75 to
4 min, wash at 100% B1; back to the initial conditions of 5% B1 and equilibration
for 1 min before the next injection. Column temperature was held at 30 �C. The
injection volume for both the solutions of standard compounds and the samples
was 1 ml. Samples were kept at 10 �C during the analysis.

For separation of the different heteroyohimbines, a different chromatographic
method was applied that was adapted from the work of Sun J. et al.57 In this method
(Method 2) solvent A2 was 0.1% NH4OH and solvent B2 was 0.1% NH4OH in
acetonitrile. A linear gradient from 0 to 65% B2 in 17.5 min was applied for separation
of the compounds followed by an increase to 100% B2 at 18 min, a 2-min wash step
and a re-equilibration at 0% B2 for 3 min before the next injection. The column was
kept at 60 �C throughout the analysis and the flow rate was 0.6 ml min� 1.

2H labelling experiments. Deuterated Pro-R-NADPD was regenerated in solution
by Thermoanaerobacter brockii alcohol dehydrogenase (50 U, Sigma) using 400 mM
NADPþ and 1% v/v [2H6]-isopropanol (CIL). The NADPD regeneration was
monitored by ultraviolet spectroscopy at 340 nm. Strictosidine (19.9 mg) was
incubated with 1.27 nM SGD in 94 ml of 50 mM phosphate buffer (pH 6.5). THAS1
enzyme was added to the reaction (final concentration of 1.65 mM) and the
mixture was incubated at 35 �C. The reaction was monitored for completeness by
UPLC-MS and after 5 h no strictosidine or deglycosylated strictosidine was
observed. The reaction was stopped by addition of 100 ml of methanol and reaction
mixture was concentrated to dryness. The dried reaction mixture was resuspended
in 15 ml H2O and extracted with 3� 15 ml of ethyl acetate and the EtOAc
fraction was dried. [21a-2H1]-tetrahydroalstonine was isolated by preparative
TLC (nano-silica plate, Sigma-Aldrich), as previously described24. The band of
[21a-2H1]-tetrahydroalstonine was excised from the plate and THA was extracted
with EtOAc multiple times (total volume 40 ml). The EtOAc fraction was filtered
and dried under high-vacuum overnight. The [21a-2H1]-tetrahydroalstonine was
dissolved in 600ml of CDCl3 and 1H-NMR was measured.

Strictosidine (39.3 mg) was incubated with 1 nM of SGD and 500mM NADPþ

with 50 U of T. brockii ADH and 1% v/v [2H6]-isopropanol in a total volume of
148 ml of 50 mM HEPES buffer (pH 7.5). HYS was added (final concentration
1.71 mM) and the reaction was incubated at 37 �C with shaking and monitored for
completeness by UPLC-MS. After 6 h, the reaction was complete and was stopped
by addition of 150 ml of methanol. [21a-2H1]-tetrahydroalstonine, [21a-2H1]-
ajmalicine and [21a-2H1]-mayumbine were isolated by preparative TLC and 1H-
NMR spectra measured as described above.

15N labelling experiments. C. roseus tryptophan decarboxylase (TDC) was cloned
into pOPINF vector, expressed in E. coli and purified as described above for the
MDRs. [alpha-15N]-tryptophan (CIL, 50 mg) was incubated with 500 nM of TDC,

400 mM pyridoxal-50-phosphate in 100 ml 50 mM phosphate buffer (pH 7.5) at
35 �C. The reaction was monitored by MS, continued through completion after 4 h
and terminated by addition of 50 ml MeOH. [alpha-15N]-tryptamine (34 mg) was
isolated by preparative HPLC. The isolated [alpha-15N]-tryptamine was incubated
with 3 mM secologanin and 200 nM strictosidine synthase in 100 ml 50 mM
phosphate buffer (pH 7.0) at 30 �C overnight. The reaction was terminated by
addition of 50 ml MeOH. [4-15 N]-strictosidine (62 mg) was isolated by preparative
HPLC. [4-15N]-strictosidine was then assayed with SGD and the product was
extracted the ethyl acetate, dissolved in MeOH-d4 and characterized by 1H,15N-
HMBC as described above.

Compound characterization. High-resolution electrospray ionization MS spectra
were measured with a Shimadzu IT-TOF mass spectrometer. NMR spectra were
acquired using a Bruker Advance NMR instrument operating at 400 MHz for 1H
equipped with a BBFO plus 5-mm probe. The number of scans depended on the
concentration of the sample. The 1H,15N-HMBC experiment was acquired with a
spectral width 6,009 Hz in the F2 (1H) dimension and 30,410 Hz in the F1 (15N),
with an acquisition time of 0.09 s and 360 scans per increment. The long range
delay was optimized after a series of experiments with [4-15N]-strictosidine using a
range of different mixing times and finally was adjusted for a coupling of 5 Hz. The
relaxation delay was 2.5 s, the data collection matrix was 1024� 64, the t1
dimension was zero filled to 1k real data points and a p/2 square sine bell window
was applied in both dimensions. The 1H-NMR spectra were compared with those
of standards and literature data.

[21a-2H1]-tetrahydroalstonine. TLC (EtOAc: C6H14: Et3N, 24: 75: 1 v/v):
Rf¼ 0.58; HR-MS (IT-TOF): found for [MþH]þ : [C21H24DN2O3]þ ¼ 354.1921:
calcd 354.19225; 1H-NMR (400 MHz, CDCl3): d 7.80 (br s, 1H), 7.56 (s, 1H), 7.45
(dd, J¼ 7.6 Hz, J¼ 1.8 Hz, 1H), 7.28 (dd, J¼ 7.6 Hz, J¼ 1.8 Hz, 1H), 7.12
(ddd, J¼ 7.6 Hz, J¼ 7.6 Hz, J¼ 1.8 Hz, 1H), 7.07 (ddd, J¼ 7.6 Hz, J¼ 7.6 Hz,
J¼ 1.8 Hz, 1H), 4.50 (dq, J¼ 10.4 Hz, J¼ 6.3 Hz, 1H), 3.74 (s, 3H), 3.36
(dd, J¼ 12.0 Hz, J¼ 3.0 Hz, 1H), 3.08 (d, J¼ 2.0 Hz, 1H), 2.95 (ddd, J¼ 12.2 Hz,
J¼ 6.1 Hz, J¼ 2.5 Hz, 1H), 2.89 (ddd, J¼ 14.3 Hz, J¼ 6.1 Hz, J¼ 2.5 Hz, 1H), 2.77
(ddd, J¼ 12.0 Hz, J¼ 4.5 Hz, J¼ 3.0 Hz, 1H), 2.69 (ddd, J¼ 14.3 Hz, J¼ 10.7 Hz,
J¼ 3.6 Hz, 1H), 2.56 (ddd, J¼ 12.2 Hz, J¼ 10.4 Hz, J¼ 4.8 Hz, 1H), 2.49
(ddd, J¼ 12.0 Hz, J¼ 4.5 Hz, J¼ 3.0 Hz, 1H). 1.70 (ddd, J¼ 10.4 Hz, J¼ 4.7 Hz,
J¼ 2.0 Hz, 1H), 1.53 (dd, J¼ 12.0 Hz, J¼ 12.0 Hz, 1 H), 1.40 (d, 6.3, 3H).

[21a-2H1]-ajmalicine. TLC (EtOAc: C6H14: Et3N, 24: 75: 1 v/v): Rf¼ 0.41;
HR-MS (IT-TOF): found for [MþH]þ : [C21H24DN2O3]þ ¼ 354.1921: calcd
354.19225; 1H-NMR (400 MHz, CDCl3): d 7.94 (br s, 1H), 7.53 (d, J¼ 1.8 Hz 1H),
7.46 (dd, J¼ 7.7 Hz, J¼ 1.5 Hz, 1H), 7.30 (dd, J¼ 7.7 Hz, J¼ 1.5 Hz, 1H), 7.13 (ddd,
J¼ 7.7 Hz, J¼ 7.7 Hz, J¼ 1.5 Hz, 1H), 7.08 (ddd, J¼ 7.7 Hz, J¼ 7.7 Hz, J¼ 1.5 Hz,
1H), 4.43 (dq, J¼ 13.3 Hz, J¼ 6.7 Hz, 1H), 3.74 (s, 3H), 3.41 (ddd, J¼ 11.3 Hz,
J¼ 4.3 Hz, J¼ 1.8 Hz 1H), 3.22 (m, 1H), 3.10 (m, 1H), 3.00 (m, 1H), 2.95
(d, J¼ 3.1 Hz, 1H), 2.75 (m, 1H), 2.68 (m, 1H), 2.42 (m, 1H), 2.14 (ddd,
J¼ 13.3 Hz, J¼ 11.4 Hz, J¼ 3.1 Hz, 1H), 1.32 (dd, J¼ 11.4 Hz, J¼ 11.4 Hz, 1H),
1.19 (d, 6.7, 3H).

[21a-2H1]-mayumbine. TLC (EtOAc: C6H14: Et3N, 24: 75: 1 v/v): Rf¼ 0.45;
HR-MS (IT-TOF): found for [MþH]þ : [C21H24DN2O3]þ ¼ 354.1921: calcd
354.19225; 1H-NMR (400 MHz, CDCl3): d 7.96 (br s, 1H), 7.56 (d, J¼ 1.8 Hz 1H),
7.46 (dd, J¼ 7.6 Hz, J¼ 1.6 Hz, 1H), 7.30 (dd, J¼ 7.6 Hz, J¼ 1.6 Hz, 1H), 7.13 (ddd,
J¼ 7.6 Hz, J¼ 7.6 Hz, J¼ 1.6 Hz, 1H), 7.09 (ddd, J¼ 7.6 Hz, J¼ 7.6 Hz, J¼ 1.6 Hz,
1H), 3.88 (dq, J¼ 12.0 Hz, J¼ 6.2 Hz, 1H), 3.73 (s, 3H), 3.40 (dd, J¼ 11.1 Hz,
J¼ 4.4 Hz, 1H), 3.16 (ddd, J¼ 12.6, Hz J¼ 3.0 Hz, J¼ 3.0 Hz, 1H), 3.14
(dd, J¼ 12.0 Hz, J¼ 6.0 Hz, 1H), 3.10 (d, J¼ 3.1 Hz, 1H), 3.03 (ddd, J¼ 14.8 Hz,
J¼ 10.9 Hz, J¼ 2.5 Hz, 1H), 2.72 (dd, J¼ 16.3 Hz, J¼ 6.7 Hz, 1H), 2.40
(ddd, J¼ 13.8 Hz, J¼ 10.5 Hz, J¼ 3.4 Hz, 1H), 1.76 (ddd, J¼ 10.3 Hz, J¼ 10.3 Hz,
J¼ 3.3 Hz, 1H), 1.37 (d, 6.3, 3H), 1.30 (dd, J¼ 14.6 Hz, J¼ 11.0 Hz, 1H), 1.21
(dd, J¼ 16.2 Hz, J¼ 6.7 Hz, 1 H).

[4-15N]-strictosidine. HR-MS (IT-TOF): found for [MþH]þ :
[C27H35N15NO9]þ ¼ 532.2304: calcd 532.23074; 1H-NMR (400 MHz, CD3OD):
d 10.5 (br s, 1H), 7.77 (s, 1H), 7.44 (dd, J¼ 7.8 Hz, J¼ 1.9 Hz, 1H), 7.30 (dd,
J¼ 8.1 Hz, J¼ 1.6 Hz, 1H), 7.11 (ddd, J¼ 8.1 Hz, J¼ 7.0 Hz, J¼ 1.9 Hz, 1H), 7.02
(ddd, J¼ 7.8 Hz, J¼ 7.0 Hz, J¼ 1.6 Hz, 1H), 5.84 (ddd, J¼ 17.5 Hz, J¼ 10.4 Hz,
J¼ 7.5 Hz, 1H), 5.83 (d, J¼ 9.0 Hz, 1H), 5.34 (dd, J¼ 17.4 Hz, J¼ 2.7 Hz, 1H), 5.26
( dd, J¼ 10.6 Hz, J¼ 2.6 Hz, 1H), 4.79 (d, J¼ 7.9 Hz, 1H), 3.96 (dd J¼ 12.0 Hz,
J¼ 2.2 Hz, 1H), 3.78 (s, 3H), 3.64 (dd, J¼ 11.8 Hz, J¼ 6.9 Hz, 1H), 3.42–3.30
(m, 3H), 3.23 (dd, J¼ 9.8 Hz, J¼ 8.9 Hz, 1H), 3.22 (dd, J¼ 9.3 Hz, J¼ 7.9 Hz, 1H),
3.10-3.00 (m, 2H), 2.97 (ddd, J¼ 15.9 Hz, J¼ 4.9 Hz, J¼ 1.3 Hz, 1H), 2.72 (ddd,
J¼ 8.5 Hz, J¼ 7.9 Hz, J¼ 4.6 Hz, 1H), 2.27 (dd, J¼ 14.6 Hz, J¼ 11.5, 1H), 2.18 (dd,
J¼ 11.4 Hz, J¼ 3.8, 1H); 15N-NMR (40 MHz, CD3OD): d 44.8.

Subcellular localizations and analysis of protein–protein interactions by BiFC.
Subcellular localization of THAS2 and HYS were studied by creating fluorescent
fusion proteins using the pSCA-cassette YFPi plasmid58. The full-length open
reading frame of THAS2 was amplified using the specific primers 50-CTGAGAA
CTAGTATGTCTTCAAAATCAGCAAAACCAGTG-30 and 50-CTGAGAACTA
GTAGCAGATTTCAATGTGTTTTCTATGTCAAT-30 , and HYS ORF with
primers 50-CTGAGAACTAGTATGGCTGCAAAGTCACCTGAAAATGT
ATAC-30 and 50-CTGAGAACTAGTGAAAGATGGGGATTTGAGAGTG
TTTCCTAC-30 , which were designed to introduce the SpeI restriction site at both
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cDNA extremities. PCR products were sequenced and cloned at the 50 end of the
YFP-coding sequence to generate the THAS2–YFP, HYS–YFP fusion proteins or at
the 30 end to express the YFP–THAS2 and YFP–HYS fusions.

The interaction of THAS2 and HYS with SGD were characterized by BiFC
assays using the previously amplified THAS2 and HYS PCR products cloned via
SpeI into the pSPYCE (M) vector34, which allows expression of THAS2 and HYS
fused to the amino-terminal extremity of the split-YFPC fragment (THAS2–YFPC,
HYS–YFPC, respectively), and into the pSPYNE(R)173-SGD plasmid34 expressing
SGD fused to the carboxy-terminal extremity of the split YFPN fragment
(YFPN–SGD). Plasmids encoding THAS1–YFPN, THAS1–YFPC, YFPC–THAS1
and plasmids expressing 16OMT–YFPN and 16OMT–YFPC were used as controls
and were constructed previously24,59.

THAS2 and HYS self-interactions were analysed via additional cloning of the
THAS2 and HYS PCR products into the pSCA-SPYNE173, pSPYNE(R)173 and
pSCA-SPYCE (MR) plasmids34,60, to express THAS2–YFPN, HYS–YFPC and
YFPC–THAS2, YFPC–HYS, respectively.

The capacities of THAS2 and HYS to interact with SGD were also characterized
by double BiFC and mBIFC. The previously amplified THAS2 and HYS PCR
products were fused to the coding sequences of the amino-terminal or carboxy-
terminal of the split YFP fragments into the pSCA-SPYNE173, pSCA-SPYCE (M)
and pSCA-SPYCE (MR) plasmids34,60, allowing expression of THAS2–YFPN,
YFPC–THAS2 HYS–YFPN and HYS–YFPC respectively. SGD was subsequently
fused to the carboxy-terminal extremity of the split YFPN fragment (YFPN–SGD)
and the CFPN fragment (CFPN-SGD).

Transient transformation of C. roseus cells by particle bombardment and
fluorescence imaging were performed following the procedures previously
described58. Briefly, C. roseus-plated cells were bombarded with DNA-coated gold
particles (1mm) and 1,100 psi rupture disc at a stopping-screen-to-target distance of
6 cm, using the Bio-Rad PDS1000/He system. Cells were cultivated for 16–38 h before
being harvested and observed. The subcellular localization was determined using an
Olympus BX-51 epifluorescence microscope equipped with an Olympus DP-71
digital camera and a combination of YFP and CFP filters. The pattern of localization
presented in this work is representative of circa 50 observed cells. The nuclear
localizations of the different fusion proteins were confirmed by co-transformation
experiments using a nuclear-CFP marker34. Such plasmid transformations were
performed using 400 ng of each plasmid or 100 ng for BiFC assays.

Agrobacterium VIGS and qPCR. The THAS1, THAS2, THAS3 and THAS4-HYS
silencing fragments were amplified with primers (Supplementary Table 6) and the
resulting fragments were cloned into the pTRV2u vector as described61. Since
THAS4 and HYS are B91% identical it was not possible to design silencing
fragments to avoid cross-silencing. Therefore, a common silencing fragment for both
of the two genes was designed. The resulting pTRV2u constructs were used to silence
the different THASs and HYS in C. roseus seedlings essentially as described before35.
Leaves from the first two pairs to emerge following inoculation were harvested from
eight plants transformed with the empty pTRV2u and pTRV2u carrying the
silencing fragment. The collected leaves were frozen in liquid nitrogen, powdered
using a pre-chilled mortar and pestle, and subjected to LC-MS and qRT–PCR
analysis. The heteroyohimbine content of silenced leaves was determined by LC-MS.
Leaf powder was weighed (10–20 mg), extracted with methanol (2 ml) and vortexed
for 1 min. After a 10-min centrifugation step at 17,000g, an aliquot of the
supernatant (20ml) was diluted to 200ml with methanol, filtered through 0.2-mm
PTFE filters and analysed on Waters Xevo TQ-MS. The chromatographic separation
and MS measurements were carried out as described above (method 2). To more
comprehensively assess the global effect of silencing the HYS genes by VIGS on C.
roseus metabolism, an untargeted metabolomics analysis by LC-MS was performed
as previously reported.24 However, aside from the changes in the heteroyohimbines
reported in Supplementary Fig. 16, no substantial differences in metabolic profiles
were noted using this approach.

Gene silencing was confirmed by qRT–PCR. qRT–PCR was also used to check
the expression of the other HYS genes to ensure that no cross-silencing occurred.
RNA extraction was performed using the RNeasy Plant Mini Kit (Qiagen). RNA
(1mg) was used to synthesize cDNA in 20-ml reactions using the iScript cDNA
Synthesis Kit (Bio-Rad). The cDNA served as template for quantitative PCR
performed using the CFX96 Real Time PCR Detection System (Bio-Rad) using the
SSO Advanced SYBR Green Supermix (Bio-Rad). Each reaction was performed in a
total reaction volume of 20ml containing an equal amount of cDNA, 0.25 mM
forward and reverse primers and 1� Sso Advanced SYBR Green Supermix (Bio-
Rad). The reaction was initiated by a denaturation step at 95 �C for 10 min followed
by 41 cycles at 95 �C for 15 s and 60 �C for 1 min. Melting curves were used to
determine the specificity of the amplifications. Relative quantification of gene
expression was calculated according to the
delta–delta cycle threshold method using the 40 S ribosomal protein S9 (RPS9). All
primer pair (Supplementary Table 7) efficiencies were between 98 and 108%, and the
individual efficiency values were considered in the calculation of normalized relative
expression, which was performed using the Gene Study feature of CFX Manager
Software. All biological samples were measured in technical duplicates.

pH effect on product profile. Strictosidine was deglycosylated using purified SGD
for 25 min at room temperature using assay conditions as described above.

Strictosidine aglycone was then incubated at a final concentration of 300 mM at pH
5, 6, 7 and 8 in a buffer mix to avoid buffer ingredient effect on activity ((50 mM
phosphate buffer, 50 mM citric acid, 50 mM HEPES). Caffeine (50 mM) was used as
an internal standard.

At time 0 the enzyme, either THAS1 or HYS (1mM final concentration),
premixed with NADPH (500 mM) was added to the substrate solution. In parallel, a
chemical reducing agent, NaBH4 (3 mM final concentration), was added to
deglycosylated strictosidine as a control reaction. All reactions were carried out in
triplicate. An end-point sample (10 ml) was taken for each assay and prepared for
UPLC-MS by addition of 10 ml of 100% MeOH to stop the reaction, and then
diluted 1:5 with H2O, and centrifuged for 10 min at 4,000 r.p.m. UPLC-MS and
data collection were performed as described above for heteroyohimbine separation
and quantification.

CD spectra and analysis. Far ultraviolet CD spectra of the wild-type enzymes
THAS1 and HYS, as well as the loop mutants of THAS1 and HYS were recorded
on a Chirascan Plus spectropolarimeter (Applied Photophysics) at 20 �C in 10 mM
potassium phosphate buffer pH 7.0. Samples were analysed from 180 to 260 nm
using a 0.5-nm step at a speed of 1 s per step. Four replicate measurements were
performed on each sample and baseline correction was applied to all data. Spectra
are presented as the CD absorption coefficient calculated on a mean residue
ellipticity basis.

Melting curves of HYS and the HYS loop 2 swap mutant were also acquired by
CD. The samples were subjected to temperature ramping at the rate of 1 �C min� 1

from 20 to 90 �C. Data collection was done from 260 to 201 nm using a 1-nm step
and 0.75 s time per point. Data were analysed using the Global 3 software. HYS
melting point was measured as 61.0±0.1 �C; enthalpy 351.5±3.6 KJ mol� 1. HYS
loop 2 swap melting point was measured at 62.0±0.1 �C; enthalpy
535.8±4.5 KJ mol� 1.

Protein sequence alignments and phylogenetic tree. Protein sequence align-
ment was generated using ClustalW algorithm with Geneious v.8 (http://
www.geneious.com)62,63. The alignment was edited manually using Seaview
V4 (ref. 64) and secondary structure depiction was added using ESPript V3
(http://espript.ibcp.fr)65. Phylogenetic analysis was performed using the neighbour-
joining66 algorithm and Bootstrap analysis with 1,000 replicates.

Docking of cathenamine in THAS1-NADPþ structure. Cathenamine was
docked into the THAS1-NADPþ crystal structure using Autodock 4.2 (ref. 67).
The ligand (cathenamine) was prepared with two torsions at the C16, the rest of the
molecule being rigid and the receptor consisted of the desolvated high-resolution
crystal structure. The search space was defined by a 40� 40� 40 Å box with a
0.375-Å grid spacing, centred between the nicotinamide ring and the side chain of
Tyr56, and encompassed the entire active site cavity. Searches were performed
using the Lamarckian Genetic Algorithm, consisting of 100 runs with a population
size of 150 and 2,500,000 energy evaluations. A total of 27,000 generations were
analysed and clustered with an RMS tolerance of 2 Å per cluster. This resulted in
just two distinct clusters, which constituted 98% and 2% of the resultant poses,
respectively. The latter cluster placed the indole moiety such that the nitrogen
atom was closest to the cofactor. Thus, this cluster was eliminated since it was
inconsistent with the results of the deuterium labelling experiments (Fig. 6). The
poses contained within the major cluster were all deemed to be ‘productive’ since
they placed the indole moiety of cathenamine towards the entrance of the active
site and the C20 and C21 3.3 Å above the nicotinamide C4 atom. The top ranked
pose (with an estimated free energy of binding¼ � 8.76 kcal mol� 1), as selected by
the software, is used in the structures illustrated here (Fig. 4b).

Data availability. The atomic coordinates and structure factors of the five X-ray
structures described in this manuscript have been deposited in the Protein Data
Bank (http://www.pdb.org/), with accession codes 5FI3, 5FI5, 5H81, 5H82 and
5H83. Accession numbers: THAS1 (AKF02528.1); THAS2 (KU865323); THAS3
(KU865322); THAS4 (KU865324); HYS (KU865325); Cro_017994 (KU865326);
Cro_011702 (KU865327); Cro_030442 (KU865328); Cro_006840 (KU865329);
Cro_022770 (KU865330); Cro_033537 (KU865331); Cro_027234 (AHK60846);
Cro_033062 (KU865332); Tabersonine-3-reductase (AKM12281). Data supporting
the findings of this study are available within the article and its Supplementary
Information files and from the corresponding author upon reasonable request.
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