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Accumulating evidence suggests that non-invasive and invasive brain stimulation may
reduce food craving and calorie consumption rendering these techniques potential
treatment options for obesity. Non-invasive transcranial direct current stimulation (tDCS)
or repetitive transcranial magnet stimulation (rTMS) are used to modulate activity in
superficially located executive control regions, such as the dorsolateral prefrontal cortex
(DLPFC). Modulation of the DLPFC’s activity may alter executive functioning and food
reward processing in interconnected dopamine-rich regions such as the striatum or
orbitofrontal cortex. Modulation of reward processing can also be achieved by invasive
deep brain stimulation (DBS) targeting the nucleus accumbens. Another target for DBS
is the lateral hypothalamic area potentially leading to improved energy expenditure. To
date, available evidence is, however, restricted to few exceptional cases of morbid
obesity. The vagal nerve plays a crucial role in signaling the homeostatic demand to
the brain. Invasive or non-invasive vagal nerve stimulation (VNS) is thus assumed to
reduce appetite, rendering VNS another possible treatment option for obesity. Based on
currently available evidence, the U.S. Food and Drug Administration recently approved
VNS for the treatment of obesity. This review summarizes scientific evidence regarding
these techniques’ efficacy in modulating food craving and calorie intake. It is time for
large controlled clinical trials that are necessary to translate currently available research
discoveries into patient care.

Keywords: obesity, brain stimulation, transcranial direct current stimulation, repetitive transcranial stimulation,
deep brain stimulation, vagal nerve stimulation

INTRODUCTION

Background and Motivation of This Review
Obesity and associated comorbidities such as cardiovascular and endocrinological diseases as
well as cancer and dementia are spreading worldwide reaching a pandemic level (Dixon, 2010;
Ebbert et al., 2014). Obesity’s complex etiology, it’s inter-individual variability in response to
intervention as well as the rising incidence require novel therapeutic strategies (Roman et al., 2015).

Frontiers in Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 884

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00884
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.00884
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00884&domain=pdf&date_stamp=2018-11-29
https://www.frontiersin.org/articles/10.3389/fnins.2018.00884/full
http://loop.frontiersin.org/people/6679/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00884 November 28, 2018 Time: 9:20 # 2

Pleger Brain Stimulation in Obesity

Intervening central nervous control systems of food choices,
food reward processing, and homeostatic control through non-
invasive and invasive brain stimulation may represent innovative
ways in treating obesity.

In the following, I first introduce brain sites representing
potential target regions for non-invasive and invasive brain
stimulation. I highlight their functional role in energy
homeostasis, food hedonism, food choices and obesity. Next, I
introduce different non-invasive and invasive brain stimulation
techniques before I summarize and discuss available evidence
on their effectiveness in modulating food craving and calorie
consumption in obesity.

Bran Sites of Homeostasis and
Hedonism
Homeostasis describes the evolutionary founded energy balance
between ingestion and consumption. During fasting, hunger-
signaling pathways trigger augmented attention to food cues
and sensitivity to food-related rewarding stimuli. During
consumption, the food’s taste and texture enter our awareness via
the tractus solitarius in the brainstem, from which projections
through the thalamus reach taste-associated neurons in the
insular cortex and its frontal operculum (Rolls et al., 1988; Yaxley
et al., 1988; Zatorre et al., 1992; Small et al., 1999). The increasing
distension of the stomach wall releases neuropeptides (Schlogl
et al., 2016), that initiate homeostatic feedback to the brain,
mainly targeting homeostatic control sites such as the lateral
hypothalamic area (Gibbs et al., 1973; Baskin et al., 1999; Grill
and Kaplan, 2002; Minokoshi et al., 2004; Morton et al., 2006).

Eating for pleasure can elicit food consumption without
hunger and beyond satiety. Hedonic brain systems, including the
nucleus accumbens, the dorsal striatum, the ventral tegmental
area and orbitofrontal cortex (OFC), assess the food’s rewarding
properties (Wang et al., 2001; Saper et al., 2002; Stoeckel et al.,
2008).

The nucleus accumbens, as part of the ventral striatum, is
a dopamine rich area that subserves motivation, reward and
reinforcement learning (Corbit and Balleine, 2016; Salamone
et al., 2016). Hence, it has a significant role in (food) addiction
(Volkow et al., 2013). It responds to food receipt if it is
unexpected (Pagnoni et al., 2002), its responses to food cues
predict subsequent food consumption (Lawrence et al., 2012),
and it seems to encode the food’s value (Small et al., 2001, 2008).

The dorsal striatum is active during the consumption of food
and its devaluation when eating beyond satiety (Small et al.,
2001). Its consumption-related activity also seems to correspond
to future gain in body weight (Stice et al., 2008).

The OFC merges gustatory input from the insula with
cognitive information as well as incentive value from the limbic
system, enabling a subjective rating of food (Berridge and
Robinson, 2003; Rolls, 2005; Small et al., 2007). Studies in the late
nineties, indicate that not only the posterior-medial OFC but also
its caudolateral parts respond to different tastes and smells (Small
et al., 1997; Zald et al., 1998). Based on these findings, both OFC
regions were assigned a role in gustatory processing (Small et al.,
1999). This corticolimbic process seems to be satiety-related,

since neural responses to food in both OFC regions decrease with
progressing consumption (Kringelbach et al., 2003; Thomas et al.,
2015), resulting in diminished reward value and hence lowered
motivation to eat.

The Obese Brain
Obese individuals share certain behavioral pattern with drug
addicts, such as craving, probably related to cue-associated
enhanced activity in reward-associated brain regions (Tang et al.,
2012; Volkow et al., 2013; Boswell and Kober, 2016). During
eating, however, obese individuals, like drug addicts, present
attenuated reward responses, probably promoting compensatory
overconsumption (Wang et al., 2001; Stice et al., 2008; Johnson
and Kenny, 2010). Dysfunctional dopamine release in the nucleus
accumbens, the dorsal striatum and the medial prefrontal cortex
may mediate these obesogenic reward effects (Geiger et al., 2008,
2009; Zhang et al., 2015).

Also, the OFC seems to play a role in the development of
obesity. Its medio-caudal part was found to be structurally altered
in relation to an increased body weight (Horstmann et al., 2011)
and its right lateral part seems to represent certain aspects of food
craving, such as intentions and plans to consume food, lack of
control over eating, thoughts or preoccupation with food as well
as guilt from cravings (Ulrich et al., 2016).

Reward-related brain systems are permanently interacting
with the hypothalamus to guarantee energy homeostasis. Living
in an environment of constant availability of high-caloric food,
these closely linked systems can become independent and
hedonism overpowers homeostasis. Individuals may consume
food beyond satiety based on the interplay of food cues emerging
of an obesogenic environment and personal traits, such as
‘neuroticism,’ ‘impulsivity’ and ‘sensitivity to reward’ (Gerlach
et al., 2015), that induce an increased vulnerability to food-related
rewarding stimuli (Davis et al., 2007; Bryant et al., 2008).

The Neurobiology of Food Choices
The dorsolateral prefrontal cortex (DLPFC) was shown to
be involved in self-control (Hare et al., 2009) and cognitive
reappraisal (Kober et al., 2010). The reappraisal of food reduces
the food’s desirability, and the degree to which individuals
can decrease food desire seems to relate to self-control of
eating in everyday life (Giuliani et al., 2013). During food
reappraisal some studies showed an effect of body weight on the
DLPFC’s activation strength (Hollmann et al., 2012; Kumar et al.,
2016), whereas other studies did not find such a relationship
(Yokum and Stice, 2013). Obesity-related alterations of the
DLPFC’s functional and structural architecture suggest altered
executive control processes during food choices. Alternatively,
or additionally, those alteration may reflect adaptive executive
control mechanisms attempting to compensate for dysfunctional
reward or valuation processes (Horstmann et al., 2011; Hollmann
et al., 2012).

The involvement of the DLPFC in food choices is supported
by body weight related structural (Horstmann et al., 2011) and
functional alterations (Hollmann et al., 2012), not only affecting
the DLPFC, but also interconnected brain regions involved in
reward (Yokum and Stice, 2017), valuation (Hollmann et al.,
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2012) and homeostatic processes (Horstmann et al., 2011), such
as the insula, the medial OFC, the ventral/dorsal striatum (Avery
et al., 2017), the hypothalamus, the medial prefrontal cortex, and
the posterior cingulate (Harding et al., 2018). In lean individuals,
changes in the homeostatic status are related to changes in neural
activation strength and functional connectivity of gustatory and
homeostatic brain regions, whereas in obese individuals such
homeostatic changes are related to changes in activity and
connectivity of gustatory and hedonic brain regions (Avery et al.,
2017; Harding et al., 2018). In the fasting state, obesity, moreover,
appears to be associated with stronger functional connectivity
between brain areas involved in cognitive control, motivation,
and reward, whereas these connections are largely unaffected by
food intake in obese compared with lean individuals (Lips et al.,
2014). These body weight-related alterations in neural activation
strength and functional connectivity suggest that food choices
in obese individuals are guided more by reward-seeking than
by homeostatically relevant interoceptive information from the
body (Lips et al., 2014; Avery et al., 2017; Harding et al., 2018).

MATERIALS AND METHODS

Introducing Non-invasive and Invasive
Brain Stimulation Techniques
The two most popular non-invasive brain stimulation techniques
are repetitive transcranial magnetic stimulation (rTMS) and
transcranial direct current stimulation (tDCS). Due to their
restricted penetration depth, both techniques can be used to
target superficially localized brain areas, such as the DLPFC or
the frontal operculum/insular cortex. RTMS or tDCS applied
to those regions may modulate activity also at interconnected
distant brain sites, but these effects are not well investigated.

The stimulation of homeostatic (i.e., hypothalamus) or
hedonic brain areas (i.e., ventral/dorsal striatum) requires non-
invasive/invasive vagal nerve stimulation (VNS) or invasive deep
brain stimulation (DBS). These techniques will be introduced
after tDCS and rTMS.

Non-invasive Transcranial Direct Current
Stimulation
tDCS is a safe method to deliver subliminal tonic currents
through two surface electrodes (anode and cathode) fixed to
the head (Nitsche and Paulus, 2000; Brunoni et al., 2011). The
current is weak (i.e., 1–2 mA), but can alter cortical excitability
for minutes to hours depending on the duration and polarity of
tDCS (Nitsche and Paulus, 2001; Hummel et al., 2005). During
its application, tDCS seems to provoke a shift in membrane
potentials of stimulated cortical assemblies. This is followed by
modifications in the efficiency of synaptic transmission during
the first 20 min after application (Clark et al., 2011; Rahman et al.,
2013).

Delivered to the primary motor cortex, TDCS modifies
cortical excitability in a polarity-specific manner (Stagg and
Nitsche, 2011). Anodal tDCS attenuates intracortical inhibition
and increases facilitation after the stimulation session, not during
it. Cathodal tDCS, in turn, attenuates facilitation during the

stimulation session and increases inhibition after it. On the
synaptic level, tDCS is thought to modulate the excitability
of cortical neurons in the cerebral motor cortex through the
modulation of glutamatergic action (Stagg and Nitsche, 2011).

For sham tDCS, the current is temporarily ramped up
and then ramped down again, avoiding longer active brain
stimulation. With this procedure, participants experience the
same tingling sensations that occur during the first few minutes
of real tDCS (Gandiga et al., 2006).

Non-invasive Repetitive Transcranial
Magnetic Stimulation
The TMS coil that contains a magnetic field generator is fixed
to the head over the brain site of interest. The magnetic field
elicits a small electric current in the targeted cortical assemblies
via electromagnetic induction. Low frequency rTMS (e.g., 1 Hz)
delivered to the primary motor cortex attenuates cortical
excitability without affecting cortical inhibition. High frequency
rTMS (≤5 Hz), in turn, leads to an attenuation of cortical
inhibition (Fitzgerald et al., 2006). Theta-burst TMS (50 Hz, TBS)
can be delivered continuously (cTBS) or intermittedly (iTBS) to
either inhibit or facilitate cortical excitability, respectively (Di
Lazzaro et al., 2005).

During motor cortex stimulation, the TMS effect can be easily
captured via simultaneously recorded motor evoked potentials of
the muscle whose representation falls into the stimulated cortical
motor representation. The navigation of the TMS coil over brain
regions without such a direct output, e.g., the DLPFC, is more
challenging and may be guided by neuro-navigation based on
structural and/or functional CT/MRI of the participant’s brain.

Non-invasive and Invasive Vagal Nerve
Stimulation
The vagal nerve is a peripheral nerve that belongs to the
autonomic nervous system. It is linked to parasympathetic
control of the heart, lungs, and digestive tract. It also has
a sympathetic function via peripheral chemoreceptors. For
clinical purposes, stimulation of the vagal nerve is used to treat
drug-refractory epilepsy and treatment-refractory depression
(Panebianco et al., 2015; Carreno and Frazer, 2017; Edwards et al.,
2017).

The vagal nerve receives afferent inputs from the stomach
and is involved in signaling the homeostatic feedback to the
brain. Its invasive or non-invasive stimulation is thought to
reduce appetite. Non-invasive VNS for such purposes involves
transcutaneous stimulation of the T6 dermatome, and hence of
afferent projections to the vagal nerve.

For invasive treatment of obesity, the surgeon implants
a helical coil at the abdominal trunk of the nerve proximal
to the stomach. The small electric generator is implanted
subcutaneously below the clavicle (Edwards et al., 2017). The
stimulation is generally directed to the left vagal nerve since
stimulation of the right vagal nerve could cause serious
cardiologic side effects, due to the right vagal nerve’s
implementation in various cardiac functions (Carreno and
Frazer, 2017).
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Invasive Deep Brain Stimulation
Deep brain stimulation demands the stereotactic implantation of
electrodes in deep brain structures, whereas the pulse generator
is implanted subcutaneously (Khan and Henderson, 2013).
Delivery of a direct electrical current by DBS can modulate the
activity of dysfunctional brain circuits (Karas et al., 2013). DBS
was first used as a treatment option in drug-refractory Parkinson
patients. Recently, it was successfully tested as a treatment option
for therapy-resistant depression, obsessive compulsive disorder
and substance abuse (Karas et al., 2013; Coenen et al., 2015).

Electrode implantation is done under local or generalized
anesthesia, with or without electrophysiological recordings, and
with or without perioperative psychological and neurological
tests (Lefaucheur et al., 2008; Xie et al., 2010; Chen et al., 2011;
Foltynie et al., 2011). DBS is a relatively safe method with a
mortality rate below 0.3% (Voges et al., 2006; McGovern et al.,
2013). Individuals with obesity, however, had slightly higher risk
of postoperative complications (Hu et al., 2017).

For the treatment of obesity, DBS electrodes are implanted
to the lateral hypothalamus area or the nucleus accumbens to
modify homeostatic or hedonic food responses, respectively. So
far, available data suggest that the stimulation of the lateral
hypothalamic area could increase resting energy expenditure,
while stimulation of the nucleus accumbens may reduce food
intake (Ho et al., 2015b). The mechanism of action, however,
remain to be elucidated.

RESULTS

Effects of Non-invasive tDCS
tDCS can be used to target superficially located brain regions,
such as the DLPFC – the preferred target for non-invasive brain
stimulation in obesity research. In most studies, one stimulation
electrode is fixed to the right forehead (e.g., anode), while the
other electrode to the left forehead (e.g., cathode). For the inverse
polarity anode and cathode are simply reversed.

Previous studies accumulated evidence of an obesity-
associated prefrontal imbalance (Carnell et al., 2012; Brooks et al.,
2013; Vainik et al., 2013) with dysregulated DLPFC activity either
in the right (Alonso-Alonso and Pascual-Leone, 2007) or the left
hemisphere (Gluck et al., 2015). These alterations may point to
general deficits in decision-making also supporting reduced self-
reflection on food choices. The idea behind tDCS is to modulate
DLPFC activity and hence executive control over everyday food
choices (see Supplementary Table S1 for an overview on tDCS
studies).

Based on these assumptions, a number of studies investigating
the effect of a single session of bilateral tDCS to the DLPFC.
Accumulating evidence suggest that a single session of tDCS
delivered to the DLPFC in lean individuals reduces food craving
immediate to tDCS (Fregni et al., 2008; Goldman et al., 2011;
Montenegro et al., 2012; Kekic et al., 2014).

Fregni et al. (2008) showed, in a young human female sample,
that food, or food-related movies, after sham tDCS increased
food craving as expected. After anodal tDCS was delivered to
the left DLPFC (i.e., cathodal tDCS applied to the right DLPFC),

food stimuli no longer increased food craving. Moreover,
for the inverse polarity (anodal tDCS applied to the right
DLPFC/cathodal tDCS delivered to the left DLPFC) individuals
fixated food-related pictures less frequently. Interestingly, a single
tDCS session was also enough to reduce the amount of consumed
food (Fregni et al., 2008).

Goldman et al. (2011) applied anodal tDCS to the right DLPFC
in a young mixed-gender, overweight to obese sample while
cathodal tDCS was delivered to the left DLPFC. Effects due to
the inverse polarity were not tested. The ability to resist sweet
foods and carbohydrates was better for real tDCS than for sham
(Goldman et al., 2011).

Kekic et al. (2014) used the same electrode arrangement as
Goldman et al. (2011) in a young, lean to overweight human
female sample and, in line with their findings, craving for
sweet, but not savory food, was less pronounced after real
tDCS. Interestingly, women showing reflective choice behavior
presented larger tDCS-induced anti-craving effects than those
showing impulsive choice behavior (Kekic et al., 2014).

Montenegro et al. (2012) investigated the effect of a single
tDCS session in addition to physical exercise in a small, mixed-
gender and overweight sample. The comparison of their findings
to other studies mentioned above is difficult (Goldman et al.,
2011; Kekic et al., 2014), since Montenegro et al. used a slightly
different arrangement of tDCS electrodes. For anodal tDCS to the
left DLPFC, they attached the anode to the frontal F3 location,
in correspondence with the international 10–20 EEG system.
The cathode was attached to Fp2, the contralateral supraorbital
area. TDCS with this electrode arrangement and in combination
with physical exercise had a stronger suppressive influence on
the desire to eat as compared to either tDCS or exercise alone
(Montenegro et al., 2012).

Most pilot studies to date investigated the effect of a single
tDCS session in small populations limiting their suitability to
derive hypotheses for larger clinical trials with repetitive tDCS.
To this end, tDCS’s influences on the DLPFC, associated cognitive
effects as well as biochemical action mechanism must be further
deciphered.

Regarding tDCS’s biochemical action mechanisms in the rat
brain, Surowka et al. (2018) recently investigated molecular and
elemental tDCS effects in brain regions involved in appetite
control. Rats fed high-caloric nutrients while receiving prefrontal
stimulation showed significantly inhibited appetite. Both, anodal
and cathodal tDCS elicited qualitative and structural properties of
lipids. Anodal tDCS, however, produced a larger effect on protein
secondary structure. Both polarities also reduced surface masses
of several electrolytes, but again anodal tDCS had a stronger effect
than cathodal tDCS (Surowka et al., 2018).

tDCS studies using either single session or repetitive sessions,
support the assumption of a prefrontal imbalance, however not
only in obesity (Carnell et al., 2012; Brooks et al., 2013; Vainik
et al., 2013), but also in lean individuals (Fregni et al., 2008;
Goldman et al., 2011; Montenegro et al., 2012; Kekic et al.,
2014). A recent EEG study in obese individuals revealed another
imbalance, not between both DLPFCs, but between the left
DLPFC and the right frontal operculum (Kumar et al., 2016).
Allowing the desire for visually presented food increased activity
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in the left DLPFC. During regulating the desire for the same food,
activity in the right frontal operculum increased (Kumar et al.,
2016).

Based on this evidence, Grundeis et al. (2017) applied cathodal
tDCS to downregulate activity in the left DLPFC in a young
female obese sample, while simultaneously applying anodal tDCS
to upregulate activity in the right frontal operculum. They
assumed a tDCS-induced strengthening of the ability to regulate
food desire and hence reduced calorie consumption. TDCS,
however, did not modify food desire and had no influence on
calorie consumption, suggesting that tDCS also had no effect on
both target regions (Grundeis et al., 2017).

Contrarily to these findings, tDCS applied to both DLPFCs
showed an effect on food craving and calorie consumption
(Fregni et al., 2008; Goldman et al., 2011; Kekic et al., 2014;
Lapenta et al., 2014). This effect might be based on feasible
alterations of activity within both DLPFCs together, or of reward
responses from connected dopaminergic regions such as the
striatum or the OFC (Geiger et al., 2008, 2009). A direct
modification of dopaminergic responses from reward regions
is, however, unlikely, since tDCS lacks in necessary penetration
depth.

Only few studies to date probed repetitive application of tDCS
sessions on food craving and/or food consumption. Gluck et al.
showed in a small, solely obese, mixed-gender human cohort
that repetitive applications of anodal as compared to cathodal
tDCS delivered to the right DLPFC resulted in reduced calorie
consumption and greater weight loss (Gluck et al., 2015).

More recently, Ljubisavljevic et al. (2016) showed in a young,
mixed-gender, lean to overweight human cohort that 5 days
of anodal tDCS to the right DLPFC reduced food craving of
high-caloric food, but not for carbohydrates. Interestingly, this
immediate effect was followed by an after effect since both current
and habitual craving were still reduced 30 days after active tDCS –
an effect that was not found following a single tDCS session
(Ljubisavljevic et al., 2016).

Also, Jauch-Chara et al. (2014) applied anodal tDCS to the
right DLPFC in a young, solely male, lean to overweight human
sample over 1 week and found a reduction of appetite resulting
in reduced calorie intake by 14%. These effects on consumption
of high-caloric food were recently corroborated in rats receiving
tDCS over 8 days (Macedo et al., 2016).

More pilot studies with repetitive tDCS sessions, like the one
by Jauch-Chara et al. (2014), Gluck et al. (2015), or Ljubisavljevic
et al. (2016), are required to assess the effect and safety of
repetitive tDCS sessions on eating behavior.

Effects of Non-invasive rTMS
Like tDCS, rTMS is limited by its penetration depth, allowing
the stimulation only of superficially located brain areas, such
as the DLPFC. Stimulating the DLPFC with rTMS, however,
elicits changes not only of the DLPFC’s activity but also of the
muscles directly underneath the TMS coil. These contractions
can be awkward, and they are difficult to mimic during sham
stimulation.

The advantage of rTMS is that it requires only a single
stimulation coil and not two electrodes like tDCS. This allows to

target brain regions with higher spatial accuracy. RTMS at high
frequencies has the potential to facilitate activity in the targeted
DLPFC, while simultaneously inhibiting activity in connected
regions such as the OFC and the anterior cingulate cortex
(Nahas et al., 2001).

Previous studies suggest that rTMS may have a treatment
effect in addiction and possibly also in obesity, if obesity is
associated with symptoms of food addiction (Mishra et al.,
2011). Addiction and food addiction share several symptoms
(Gearhardt et al., 2011a, 2014), such as reward dysfunction,
craving, emotion dysregulation, and impulsivity (Schulte et al.,
2016). Food addicts show compulsive consumption of palatable
food as well as psychological dependence expressed as craving
together with heightened pleasure and excitement (Gold
et al., 2004). Food addiction has a significantly greater co-
morbidity with Binge Eating Disorder, depression, and attention-
deficit/hyperactivity disorder compared to age- and weight-
equivalent controls (Davis et al., 2011; Gearhardt et al., 2012).
Food addicts present higher levels of negative affect, eating
disorder psychopathology, and lower self-esteem (Gearhardt
et al., 2013). They display enhanced attentional aspects of
impulsivity (Meule et al., 2012; Murphy et al., 2014), and greater
emotional reactivity than their obese counterparts (Davis et al.,
2011; Pivarunas and Conner, 2015). In the context of food,
they present greater cravings and the tendency to ‘self-soothe’
with food. Together, these observations suggest clinically relevant
subtypes of obesity that may possess different vulnerabilities to
environmental risk factors (Davis et al., 2011).

Brain imaging in food addicts revealed enhanced activation
in the anterior cingulate cortex, medial OFC, and amygdala in
response to anticipated receipt of food (Gearhardt et al., 2011b).
Higher versus lower food addiction scores seems to relate to
enhanced activation in the DLPFC and the dorsal striatum in
response to anticipated receipt of food but less activation in
the lateral OFC in response to receipt of food. These findings
suggest similar patterns of neural activation in addictive-like
eating behavior and substance dependence: elevated activation
in reward circuitry in response to food cues and reduced
activation of inhibitory regions in response to food intake
(Gearhardt et al., 2011b).

Accumulating evidence suggests that rTMS influences food
craving and consumption even in obese individuals who do not
suffer from food addiction (see Supplementary Table S1). In
young, lean to obese women with food craving, 10-Hz rTMS,
a classical form of high-frequency rTMS, delivered to the left
DLPFC abolished those cravings only if real rTMS was applied.
After sham rTMS, cravings continuously increased over the time
of food picture presentation. Consumption of food, however, did
not change after real rTMS (Uher et al., 2005).

Although these findings agree with studies that investigated
the effects of a single tDCS session (see “Effects of non-invasive
tDCS”), they disagree with other rTMS findings again obtained
from a small human cohort consisting solely of lean-to-obese
women (Barth et al., 2011): In the study by Barth et al. (2011)
rTMS was also delivered to the left DLPFC, but unlike the former
study, real and sham rTMS were not compared between but
within subjects. Food cravings significantly dropped, however,
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not only for real but also for sham rTMS, suggesting that real
rTMS did not modulate food craving (Barth et al., 2011). A major
shortcoming of this study, however, was the heterogeneity of
study participants. Barth et al. (2011) mixed obese and lean
women. This mixed sample may have lowered the sensitivity
to detect effects on food craving in obesity. Another possible
explanation is that rTMS was delivered at 100% of the motor
threshold. Other studies instead have used 110%.

Reduced food craving, nevertheless, seems to represent the
best reproduced DLPFC-rTMS effect in obese individuals.
Previous studies have shown that this effect can last for up to
2 weeks (Fregni and Pascual-Leone, 2007).

Kim et al. (2018) were the first to show that 10Hz rTMS
delivered to the left DLPFC in a mixed-gender, obese sample
even reduced food consumption and hence body weight in obese
individuals. They, however, applied not just one but four rTMS
sessions also leading to higher levels of satiety than in the sham
group. CT-guided assessments of fat distribution showed the
parallel reduction of visceral adipose tissue without an excessive
reduction of skeletal muscle mass. Furthermore, fasting insulin
concentration and insulin resistance decreased only in the real
rTMS group. Contrarily, C-reactive protein and lipid profiles
remained almost unaffected probably due to the relatively short
duration of the study. Together, these findings suggest that
multiple rTMS sessions, like multiple tDCS sessions, have the
potential to reduce body weight and may even decrease the risk
for vascular events (Kim et al., 2018). Applying just a single 10Hz
rTMS session seems less effective. It seems to provoke reduced
food craving, but this effect seems not to translate into reduced
food consumption (Uher et al., 2005).

Accumulating evidence from above-mentioned studies
suggest that facilitatory high-frequency (i.e., 10 Hz) rTMS
applied to the left DLPFC reduces food cravings as well as food
consumption if individuals receive multiple rTMS sessions.
This assumption would be indirectly strengthened, if inhibitory
rTMS provokes the inverse effect. One study recently addressed
this question. Lowe et al. (2018) applied inhibitory cTBS
(i.e., continuous 50 Hz rTMS), targeting the left DLPFC, in a
female lean to obese human sample and assessed its influences
on food consumption. Only after real cTBS, women selectively
consumed more high-calorie food, but not low-calorie food. With
electroencephalography (EEG), Lowe et al. observed a parallel
attenuation of activity in the stimulated left DLPFC region (Lowe
et al., 2018). These findings support the assumption that rTMS
delivered to the DLPFC can modulate food consumption in both
directions.

Effects of Non-invasive and Invasive VNS
The vagal nerve sends afferent signals from the stomach to
homeostatic brain sites. Its non-invasive and invasive stimulation
is therefore assumed to reduce appetite and body weight.
Based on these assumptions, non-invasive VNS was supposed
as a treatment option for obesity (Page et al., 2012). First
findings indeed suggest a reduction in appetite and body weight
(Ruiz-Tovar et al., 2014; Ruiz-Tovar and Llavero, 2016) (see
Supplementary Table S1).

In a well-controlled proof-of-concept study, Ruiz-Tovar et al.
(2014) found in 45 mainly female, obese individuals that diet
in combination with non-invasive VNS delivered to the T6
dermatome led to reductions of body weight and appetite. In a
follow-up study they also evaluated the long-term effect of non-
invasive VNS. Nine months of treatment in 150 obese individuals
led to a reduction in appetite associated with a mean weight loss
of 14.5 (±2.8) kg (Ruiz-Tovar and Llavero, 2016).

In agreement with these positive effects of non-invasive VNS,
also invasive VNS has shown promising results in human studies.
Findings of the so-called ReCharge trial suggest positive effects
on appetite and body weight control (Ikramuddin et al., 2014;
Shikora et al., 2015). The ReCharge trial is a randomized, double-
blind, sham-controlled clinical study involving 239 obese to
morbidly obese, mainly female individuals (Ikramuddin et al.,
2014; Shikora et al., 2015). After 12 months of non-invasive VNS,
52% of participants in the real VNS group lost 20% or more
of their body weight. Thirty-eight percent at least lost 25% or
more of their body weight. In the sham group, only 32% of
participants lost 20% or more and 23% lost 25% or more of
their body weight. Serious adverse event occurred only in 3.7% of
participants (Ikramuddin et al., 2014). At 18 months, 88% of VNS
individuals and 83% sham individuals remained in the study. In
those participants, the weight loss was 23% in the VNS group
vs. 10% in the sham group. VNS individuals largely maintained
12-month weight loss of 26%. Individuals in the sham group
contrarily regained over 40% of their initial 17% weight loss
(Shikora et al., 2015).

These findings were corroborated by the VBLOC DM2 study.
Intermittent invasive VNS among 28 obese individuals with type
2 diabetes mellitus over 2 years proved to be a safe procedure
leading not only to weight loss but also to reductions of metabolic
and vascular risk factors (Shikora et al., 2016).

Effects of Invasive DBS
There are two potential targets for DBS. One target is the
lateral hypothalamus as the brain’s main homeostatic control
site. The other one is the nucleus accumbens as a region of the
hedonic brain circuitry underpinning motivation, reward and
reinforcement learning. Converging evidence in rodents suggest
that the shell and core of the nucleus accumbens are mediating
reward-driven behaviors (Avena and Bocarsly, 2012; Richard
et al., 2013; Burton et al., 2015). DBS of both subregions proved
effective to modify such behaviors (Hamani and Temel, 2012;
Luigjes et al., 2012; Muller et al., 2013; Pierce and Vassoler, 2013).

Only few studies have investigated DBS effects in the obese
human brain (see Supplementary Table S1). Harat et al. (2016)
reported about a 19 years old woman who developed morbid
obesity after surgical extraction of a brain tumor with an
intervention-induced damage to the hypothalamic area. DBS
was implanted bilaterally over the nucleus accumbens. After
14 months, the women reported less appetite and food craving.
This was associated with reduced body weight (Harat et al., 2016).

Deep brain stimulation has also been applied to the lateral
hypothalamic area to modulate homeostatic processing (Ho
et al., 2015a,b). After 35 months, bilateral DBS over the lateral
hypothalamic area in three treatment-refractory patients, two
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females and one male, with morbid obesity led to weight loss in
two patients, whereas the remaining patient at least maintained
body weight (Whiting et al., 2013).

DISCUSSION

Non-invasive Transcranial Direct Current
Stimulation (tDCS) and Repetitive
Transcranial Magnet Stimulation (rTMS)
Accumulating evidence suggests that non-invasive brain
stimulation delivered to the DLPFC, a brain region assumed to
underpin executive functions, may improve inhibitory control
capacities (Lapenta et al., 2014; Lowe et al., 2014) over automatic
processes involved in food craving (Val-Laillet et al., 2015),
reward valuation processes (Camus et al., 2009) and attentional
biases toward high-caloric food (Fregni et al., 2008).

RTMS (Uher et al., 2005; Barth et al., 2011) or tDCS
(Goldman et al., 2011; Montenegro et al., 2012; Kekic et al.,
2014; Lapenta et al., 2014) delivered in a single session to the
DLPFC, appear effective to reduce food craving rather than
calorie consumption (see Supplementary Table S1). Reduced
food consumption (Kim et al., 2018), mainly of high-caloric
food (Jauch-Chara et al., 2014), as well as sustained reductions
in food craving (Ljubisavljevic et al., 2016) were achieved with
multiple DLPFC stimulation sessions. TDCS was also tested
in combination with standard weight-loss approaches such as
aerobic exercise. As compared to tDCS alone. This combination
had a stronger influence on the desire to eat (Montenegro et al.,
2012). Contrarily, Grundeis et al. found no effect of tDCS on the
desire for food or food consumption (Grundeis et al., 2017). They,
however, attached tDCS electrodes not to the DLPFC, like in the
studies mentioned above, but to the left DLPFC and the right
frontal operculum (Kumar et al., 2016).

Several recent meta-analyses support evidence arising
from single studies. Enhancing excitability in the DLPFC,
independently of the stimulation technique, attenuates food
craving and consumption of high calorie food (Jansen et al.,
2013; Hall et al., 2017; Lowe et al., 2017). Based on 17 studies,
Jansen et al. revealed a medium effect size for the influence of
real non-invasive stimulation as compared to sham stimulation
on food craving. There was no difference between rTMS and
tDCS, or between left and right DLPFC stimulation (Jansen
et al., 2013). Also, Lowe et al. revealed a moderate-sized effect
on food cravings across 16 studies. This effect was statistically
significant only for rTMS and not for tDCS. Contrarily to
Jansen et al. (2013) there was not enough evidence to support
a causal effect of non-invasive brain stimulation on food
consumption (Lowe et al., 2017). Due to criticism regarding

TABLE 1 | Limitations of currently available tDCS and rTMS studies.

Few randomized studies

More single session than multiple-session studies

Gender and age bias toward young females

Lack of replication across stimulation techniques

their initial statistical model, they revised respective analyses
and in fact found a significant effect also on food consumption
that was larger for left as compared to right DLPFC stimulation
(Hall et al., 2017).

As for tDCS, also the influence of rTMS on the DLPFC is
not fully understood. Besides a direct influence on executive
functions embedded in the DLPFC, evidence for the indirect
modulation of reward regions is stronger for rTMS than for
tDCS. Dopamine release from the ventral tegmental area seems
to be modulated by glutamatergic projections from the prefrontal
cortex and glutamate receptors in the ventral tegmental area seem
to trigger dopamine release in the nucleus accumbens (Taber
et al., 1995). In line with these findings, rTMS targeting the
DLPFC can trigger the release of dopamine not only in cortical
structures, such as the anterior cingulate cortex and OFC (Cho
and Strafella, 2009), but also in interconnected subcortical reward
regions, such as the striatum (Strafella et al., 2001; Keck et al.,
2002; Pogarell et al., 2006; Ko et al., 2008; Ahn et al., 2013),
substantia nigra, and ventral tegmental area (Keck et al., 2002).
This effect seems to be stronger after stimulating the left DLPFC
(Ko et al., 2008). The potential remote influence of rTMS and
tDCS on dopamine release in the reward circuitry as well as a
direct modulatory influence on executive control via the DLPFC
may account for their efficiency in reducing food craving and,
if applied with multiple sessions, food consumption. Another
possible mechanism of rTMS is the reduction of the brain-derived
neurotrophic factor (BDNF). Since low BDNF is related to obesity
(Araki et al., 2014), rTMS may reduce food consumption through
increasing BDNF. Muller et al. (2000) for instance, showed
that rTMS can increase BDNF mRNA expression as well as
cholecystokinin in the rat brain.

The degree to which rTMS/tDCS effects on food craving and
consumption are moderated by stimulation frequency (rTMS)
or electric field strength (tDCS) remains unclear since most
studies applied rTMS with potentially faciliatory protocols, such
as 10 Hz, and tDCS with standard electric field strength,
such as 2 mA over 20 min (see Supplementary Table S1).
Comparing single rTMS/tDCS session studies with multi-session
studies, however, suggests that multi-session protocols are more
effective (Jansen et al., 2013; Hall et al., 2017; Lowe et al.,
2017). Most single session studies show an effect of rTMS/tDCS
only on food craving. This effect seems to translate into
reduced food consumption if multiple rTMS/tDCS sessions are
applied, suggesting possible associations between effect size and
stimulation load (pulse number and density) (see Supplementary
Table S1).

The early and long-term changes taking place after a rTMS
or tDCS session seem to depend on a complex scenario
of different mechanisms, including gene activation/regulation,
de novo protein expression, morphological changes, changes
in intrinsic firing properties, modified network properties,
homeostatic processes, glial function, as well as long-term
potentiation (LTP) and long-term depression (LTD) (Cirillo et al.,
2017). LTP is thought to result from faciliatory stimulation
protocols, such as 10 Hz rTMS, whereas LTD seems to result
from inhibitory protocols, such as cTBS. A recently published
study (Wiegert et al., 2018) showed that optogenetically induced
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LTP in rat hippocampus enhances synaptic stability over days,
whereas long-term depression (LTD) destabilizes synapses. Most
potentiated synapses are resistant to depression suggesting that
synaptic transmission strength depends on the sequence of
plasticity-inducing stimulations (Wiegert et al., 2018). High
stimulation load induced by multiple rTMS/tDCS sessions
may enhance the stabilizing effect on synaptic transmission in
stimulated cortical areas, such as the DLPFC, with potentially
larger effects on corresponding behavior. Although both,
rTMS and tDCS, seem effective to reduce food craving and
consumption, their methodological comparison is hampered
by each technique’s distinct advantages and disadvantages. The
advantage of one technique is, in most cases, the disadvantage
of the other one. The advantage of rTMS is its higher spatial
accuracy (Di Lazzaro et al., 2005; Fitzgerald et al., 2006). TMS
coils are available in different shapes and sizes. Most studies use
either round coils or figure-of-eight shaped coils. Figure-of-eight
coils are spatially more specific. They produce a focal magnet
field that allows to target single brain sites (Di Lazzaro et al.,
2005; Fitzgerald et al., 2006). Modern rTMS systems can also be
equipped with neuro-navigation. Such systems allow to integrate
individual CT or MRI scans to navigate the TMS coil over the
brain site of interest. TDCS instead requires anode and cathode
that are both attached to the skull to initiate a current (Nitsche
and Paulus, 2000; Brunoni et al., 2011). This means that tDCS
does not allow to target single brain areas like rTMS. In most
studies, at least two brain sites are simultaneously stimulated, one
anodally and the other cathodally.

In most prefrontal tDCS studies aiming at modulating food
craving and consumption, one electrode is attached to the left
forebrain and the other one to the right forebrain (Goldman et al.,
2011; Montenegro et al., 2012; Kekic et al., 2014; Lapenta et al.,
2014). That means that both prefrontal cortices, including the
DLPFCs, are simultaneously stimulated, with inversed polarity,
and the current which is send between electrodes may on its way
even modulate activity in the medial prefrontal valuation system.
This may additionally account for the observed effects. Mapping
tDCS effects on the underlying functional neuroanatomy is
therefore not as straight forward as for rTMS. RTMS allows a
more locally specific stimulation of the brain. Hence, observed
effects are far easier to map on the underlying brain structure (Di
Lazzaro et al., 2005; Fitzgerald et al., 2006).

tDCS, in turn, evokes far less side effects (Nitsche and Paulus,
2000; Brunoni et al., 2011). Especially contractions of facial
muscles that usually appear during rTMS of the DLPFC are
difficult to mimic during sham stimulation. Modern sham coils
do not only produce the same sounds as real coils, they are
also equipped with an electric device that only stimulates the
underlying skin area and muscle groups, but not the brain.
Stimulation induced sensations are nevertheless slightly different
as compared to real TMS and therefore in principle assessable.
TDCS induced side effects are far easier to mimic. The electric
current provokes a tingling sensation on the skull – a sensation
that in most individuals disappears shortly after the current
is switched on. Afterward, these participants do not feel any
stimulation-induced sensations. For sham tDCS, the current is
therefore switched on like for real tDCS and then, without

notice, switched off after the initial stimulation period. In some
individuals, however, tingling sensations on the skull sustain the
whole tDCS session. In a within-subject design, these individuals
are aware of when they received real or sham stimulation.

In face of possible therapeutic applications, tDCS bears a
major advantage. It consists only of a battery and two (or more)
electrodes (Nitsche and Paulus, 2000; Brunoni et al., 2011). TMS
devices instead are expensive and therefore restricted to labs or
clinics. TDCS devices are easy to construct and affordable offering
broad applicability even at home or at work. Taking together,
rTMS is spatially more precise and therefore more meaningful
from a scientific perspective. TDCS is easier to handle and far
more affordable offering its easier translation into therapeutic use
(Nitsche and Paulus, 2000; Brunoni et al., 2011).

The main limitation in the field of non-invasive DLPFC
stimulation is the low number of randomized controlled studies,
far more single session studies than multiple-session studies,
a gender and age bias toward young females, and the lack
of replication across stimulation techniques (see Table 1).
Before these techniques can be applied in clinical practice, their
therapeutic potential and biochemical action mechanisms must
be more intensively investigated.

To assess their therapeutic potential, large clinical studies
are required, like a recent study on depression that compared
the effect of prefrontal tDCS plus antidepressant drugs versus
antidepressant drugs alone (Brunoni et al., 2017). To study tDCS’s
(or rTMS’s) effects on eating behavior in obesity, corresponding
clinical trials, for instance, could compare the effect of dieting to
dieting plus repetitive prefrontal tDCS (or rTMS).

Invasive Deep Brain Stimulation
As compared to tDCS and rTMS, far less evidence is available
for the influence of DBS and VNS on food craving and calorie
consumption (see Supplementary Table S1). For DBS, few
case studies suggest that invasive stimulation of the nucleus
accumbens or the lateral hypothalamic area may represent
an alternative therapy for therapy-refractory morbid obesity
(Whiting et al., 2013; Harat et al., 2016). In this context, DBS
could in future develop as an alternative to bariatric surgery,
but studies comparing their effectiveness as well as their specific
advantages and disadvantages are required to assess which
individuals have the largest benefit from the one or the other
method. Like bariatric surgery, DBS is invasive, expensive and
hence not suitable for most morbidly or non-morbidly obese
individuals. Less invasive, and cheaper techniques, such as rTMS,
tDCS and VNS are safer and hence better alternatives.

Invasive and Non-invasive Vagal Nerve
Stimulation
For VNS, few blinded and controlled clinical trials suggest that
non-invasive (Ruiz-Tovar et al., 2014; Ruiz-Tovar and Llavero,
2016) as well as invasive VNS (Ikramuddin et al., 2014; Shikora
et al., 2015, 2016) leads to sustained weight loss and glycemic
control with a well-tolerated risk profile. Based on this evidence,
the U.S. Food and Drug Administration recently extended the
application of invasive VNS from epilepsy and depression to
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the treatment of obesity. Further research for non-invasive and
invasive VNS is nevertheless required to understand their specific
clinical benefits.

CONCLUSION

The translation of non-invasive and invasive brain stimulation
techniques from laboratory settings to patient care would profit
from large clinical trials, such as ReCharge (Ikramuddin et al.,
2014; Shikora et al., 2015) and VBLOC DM2 (Shikora et al., 2016).
Comparable age and gender matched trials should combine brain
stimulation techniques with standard treatment options, such
as dieting, exercise or behavioral therapy. This combination
may, on one hand, boost effects on appetite, eating behavior
and weight loss. On the other hand, brain stimulation may
sustain the effects of standard treatments that in most cases, are
temporally limited (known as the yo-yo effect). Large clinical
trials will also help to identify potential mediators of treatment
effectiveness in different study samples that may in future help to
develop more individualized therapy scenarios for obesity and its
comorbidities.
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