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Figure 1. (a) FingerInput enables detection of versatile thumb-to-finger interactions using a body-worn depth camera. (b) By detecting finger flexion
as well as touch locations, it supports a broad set of microgestures. (c) This is achieved thanks to a hybrid method that combines Convolutional Neural
Networks, a fully articulated hand model, and sphere-based continuous collision detection.

ABSTRACT
Single-hand thumb-to-finger microgestures have shown great
promise for expressive, fast and direct interactions. How-
ever, pioneering gesture recognition systems each focused on
a particular subset of gestures. We are still in lack of sys-
tems that can detect the set of possible gestures to a fuller
extent. In this paper, we present a consolidated design space
for thumb-to-finger microgestures. Based on this design space,
we present a thumb-to-finger gesture recognition system using
depth sensing and convolutional neural networks. It is the
first system that accurately detects the touch points between
fingers as well as the finger flexion. As a result, it can detect
a broader set of gestures than the existing alternatives, while
also providing high-resolution information about the contact
points. The system shows an average accuracy of 91% for the
real-time detection of 8 demanding thumb-to-finger gesture
classes. We demonstrate the potential of this technology via a
set of example applications.
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INTRODUCTION
There has been a growing interest in thumb-to-finger gestures,
which take advantage of the inherent fine motor skills of fin-
gers to allow users to expressively control digital systems [13,
1, 4, 19]. By touching one or multiple fingers with the thumb,
the user can perform touch input directly on the skin. This
promises to be a very direct, fast, and discreet type of input,
even more as it supports one-handed and eyes-free interac-
tions. However, sensing such thumb-to-finger gestures is hard
because these gestures involve small movements and are per-
formed at a body location that is difficult to instrument.

Pioneering research has demonstrated a variety of gestures and
presented various approaches to sensing [13, 50]. Considering
the recency of the field, it is not surprising that it is character-
ized by point explorations, focusing on a specific and rather
small subset of thumb-to-finger gestures. As a result, these
recognition systems are typically developed to demonstrate
novel interactions and therefore limited to specific instances,
such as tapping on a finger segment or sliding along a finger.
While viable for the purpose, such restricted gesture sets limit
the scope of possible mappings in real-world applications.
So far, it remained unclear whether the conceptual space of
possible gestures has been fully covered, what are common
design dimensions, and—most important from a technical
perspective—how the various gestures can be integrated in
one system. We contribute to this emerging line of research by
exploring how to support the set of thumb-to-finger gestures
to a fuller extent.

In this work, we focus on supporting expressive, multidimen-
sional thumb-to-finger interaction. To inform the design of
gesture recognition systems for thumb-to-finger interactions,
we first classify prior work and derive a consolidated design
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space using an open-coding approach, in which we identify
gestural primitives of thumb-to-finger microgestures. The re-
sulting design space provides a broader list of microgestures
than previous work: the primitives cover existing gestures
from the literature on hand-free microgrestures [13, 12, 44,
53] while also demonstrate opportunities for novel gestures.
We use the design space to derive technical requirements for
recognition systems that support a broader set of gestures.

We address these requirements by contributing a novel ges-
ture recognition system for thumb-to-finger input. It is the
first system that can capture all primitives of the design space
and hence significantly extends the set of gestures that can
be detected in an interactive system, adding to the expressive-
ness of input. The system is capable of identifying fingers
and finger segments, tracking their 3D pose, and detecting
linear and rotary touch contact between fingers, all with a high
accuracy and in real time. Our system is vision-based and
uses a body-worn depth sensor mounted on the user’s head
or shoulder. As such, it does not require any instrumentation
of the hand, while not being affected by bad lighting as only
depth information is used. We present three pilot studies to
validate the functionality of the algorithm. Results from a
fourth technical evaluation with users show a high accuracy of
91% on thumb-to-finger gesture recognition, for a rich variety
of 8 gesture classes. Additionally, we demonstrate the prac-
tical feasibility with 2 example applications. They show the
potential for expressive interactions that are enabled by our
approach.

TECHNICAL RELATED WORK
The technical work presented in this paper builds on recent
advances in body-based sensing and vision-based detection of
body gestures:

Sensing On-Body Touch Input
Detecting touch input on the body has been approached using
different sensing techniques, including acoustic sensing [11],
inertial and magnetic sensing [4, 13, 5, 12], photo-reflective
sensing [23], radar [48] or capacitive sensing [49, 50]. How-
ever, these approaches have some limitations: capacitive ap-
proaches have relatively low resolution, and the hand needs to
be instrumented. Magnetic approaches have high resolution,
but they do not provide accurate temporal touch detection. All
the approaches are able to detect touch, but do not measure
finger flexion for other fingers than the ones involved in the
touch action [55, 54].

Another widely used approach consists of using a body-
mounted camera. Possible camera locations include the
head [6, 36, 8], shoulder [10, 52], chest [20, 3, 21], and
wrist [33, 17, 26, 7]. OmniTouch [10] uses a depth camera
and a projector mounted on the shoulder to turn the inside of
the palm into a touch surface. Sridhar et al. [33] use a depth
camera mounted on the wrist to enable 3D input on the back
of the hand. PinchWatch [20] allows microinteractions by
mounting a depth camera on the chest, which tracks the hand
wearing a display. These approaches do not require instru-
mentation of the hand and generally tend to work robustly for
larger touch or free-hand gestures that are based on the hand

shape. However, it is a hard problem to accurately detect touch
contact between fingers from a distant camera.

Finer finger gestures are addressed by Cyclopsring [2] by
mounting a fish-eye camera on a ring, which is used to detect
different touch gestures based on the hand shape. For detecting
touch, some approaches use image based techniques, such as
flood filling [10, 33]. While flood filling is suitable for detect-
ing touch on a constrained touch area like a flat surface [10],
or the back of the hand [33], it is not suitable for a wider class
of touch interactions on more general and complex surfaces,
like different finger segments. Even when geometric shapes
have been used for hand tracking [27], we are not aware of
prior work that used this approach for detecting touch points.

Recognizing Hand Pose
Another stream of research investigates capturing the detailed
hand posture. To provide a flexible and lightweight setup,
recent hand tracking algorithms tend to use a single consumer
depth sensor. They can be divided into three classes: discrimi-
native, generative and hybrid. Discriminative approaches are
based on data-driven machine learning techniques. Recently,
convolutional neural networks (CNNs) have been success-
fully used for hand pose estimation [40, 47, 32]. Generative
approaches use a generative hand model for comparing the cur-
rent pose estimate and the observation [39]. Hybrid methods
combine discriminative and generative approaches to achieve
both robust and accurate hand pose estimation and hand track-
ing [34, 31, 37, 45]. While most of the previous work focused
on a fixed exocentric depth camera —which is impractical
for mobile scenarios— only few explored egocentric settings
with body-mounted cameras [28, 22, 38]. Although all hand
tracking approaches estimate flexion angles for all fingers and
some run in real-time, no method for precise continuous touch
point estimation has been proposed.

Extending beyond prior work, our system is able to detect
fine finger-to-finger interaction, involving the continuous ro-
tational angle and relative position along the touched finger
segment and an accurate detection of touch contact. Moreover,
it provides continuous estimation of the flexion angles of all
fingers and exact relative finger positions in 3D. As explained
in the next section, this is sufficient for accurate detection of
thumb-to-finger microgestures.

DESIGN SPACE OF THUMB-TO-FINGER GESTURES
In order to inform the design of recognition systems for thumb-
to-finger microgestures, we extracted common features of fin-
ger articulation from the different gestures proposed in prior
work. Using an open-coding approach, we identified gestu-
ral primitives and consolidated them into a four-dimensional
design space. Together, these four dimensions define a thumb-
to-finger gesture by: a) which finger is touching, b) what
location on another finger is touched, c) what touch action is
performed, and d) how fingers are flexed. The dimensions and
their possible values are illustrated in Figure 2.

a. Touch Initiator
The first defining factor for microgestures is the finger that
triggers the touch action, that is, either the thumb or one of the
remaining fingers.
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Figure 2. Thumb-to-finger gestures are defined by four dimensions: (a)
The finger initiating the touch, (b) the touch location, (c) the gesture
action, and (d) finger flexion.

Thumb-to-finger: The vast majority of prior work focused
on gestures that are initiated by the thumb, which is touching
another finger. Work investigating such thumb-to-finger input
includes [4, 43, 42, 57, 50, 1, 13, 51]. This space is com-
parably well-covered, including systematic empirical studies
that investigated the comfort regions for touch interactions
initiated by the thumb [13].

Finger-to-thumb: The reverse interaction of a finger initiat-
ing a touch on the thumb has rarely been investigated. We call
this finger-to-thumb input. This form of input has been implic-
itly used to extend the input area of finger sliding gestures [20]
or to enable sliding gestures while holding an object [53]. So
far, this form of input has been limited to linear sliding with the
index finger on the thumb. There is the opportunity to extend
to a wider variety of gestures that include tapping, rotational
sliding, and use of other fingers.

We explicitly exclude a third class, which would include touch
contact between any two fingers other than the thumb, as it
lays out of the scope of thumb-and-finger interaction. Such
touch contact is particularly challenging to detect correctly,
as the contact is frequent and the involved areas are not only
points but whole surfaces at the time.

b. Touch Location
The touched location is defined by the touched finger segment
(proximal, middle or distal) and the rotary side of the finger
(radial, ulnar, dorsal or volar). A tapping gesture contains
only one touch location, while a continuous gesture contains
multiple sequential locations.

Finger segment: Each finger can be divided into two seg-
ments (thumb) or three segments (other fingers). Because of
the tactile and visual cues generated by knuckles and wrinkles,
each segment is clearly delimited. This makes them a natural
choice as touch targets, as seen in prior studies [42, 26, 51].
Some work has subdivided the segments even further [13, 43].

Finger side: The location of touch input on a finger is also de-
fined by the rotary angle around the finger’s longitudinal axis.
The vast majority of work has focused on input performed on
only one side of the finger: either the radial side [54, 43, 48]
(i.e., the side closer to the thumb) or the volar (i.e., palmar)
side [13, 30, 46]. Only very few studies have investigated
input on other sides. Notable exceptions include work that
investigates the likability of touch input on two sides of the
fingers (radial, palmar) [42]. Other work applied tap on two
sides of one segment [14] and pioneered sliding input around
the finger segment [41, 24], finger nail [16], or finger wrin-
kles [50]. Overall, gestures that involve the different rotary
sides of the fingers are still underexplored and present new
opportunities for interaction.

c. Gesture Action
The gesture action defines what form of touch input the user
is performing: either a tap, a continuous longitudinal or rotary
sliding movement, or a specific shape that is drawn with the
touch initiator.

Tapping: The touch initiator is touching a finger at a discrete
location. The touch locations explored include the different
segments and sides of the fingers [13, 54, 42, 4, 41, 48, 14, 9],
as well as the fingernails [16].

Sliding along the finger: The touch initiator slides along the
touched finger’s longitudinal axis. The slide can be performed
along the entire finger [57, 2, 51, 55, 53, 20, 9], or on a
segment of the finger [50, 4, 41, 16, 30]. This set of actions is
typically used to manipulate continuous values [51, 20, 2], but
it has also been used for discrete gestures [50, 41, 30].

Sliding around the finger: The touch initiator slides perpen-
dicular to the lateral axis of the touched finger [4, 16, 24,
41, 50]. The action can be also be performed on multiple
fingers [53, 1, 57, 9].

Drawing shapes on the fingers: The initiator is used to draw
a shape on one or more fingers. The action is completed
once the shape is fully drawn and the touch contact released.
Different shapes have been investigated, including circles [20],
characters [13], and digits [57]. The drawing action can be
performed on a single segment of one finger [30, 13], or on
multiple fingers [1].

d. Finger Flexion
The flexion of the different fingers of the hand can be consid-
ered as a part of the performed gesture. This property adds an
additional dimension to the touch gesture performed on the
fingers. Each finger can be open, folded or moving. We use
the terms open and folded similar to Krupka et al. [18] who
defined a finger or the thumb as folded when its tip resides in
a certain area in front of the palm. Finger flexion can be a dis-
crete property. It can also be a continuous feature when one or



more fingers are moving from open to folded or folded to open
state during a gesture. We are aware of only one prior study
that included finger flexion of the touched finger to execute
different actions [54]. Combining thumb-to-finger touch with
the expressive capabilities of free-hand gestures [48] opens up
a promising direction for novel gestures.

Resulting Technical Requirements
Accurate detection of these gestural primitives of all four
dimensions poses a set of demanding technical requirements
for gesture recognition systems. We identify the following five
main requirements:

1. Hand and finger segmentation
2. Identification of the touch initiator and of the touched finger
3. Estimation of the touch location, including linear (segment)

and rotational (finger side) position
4. Temporal detection of touch contact (touch down vs. touch

up), to identify the onset and offset of a gesture
5. Estimation of the flexion angles of all fingers
6. Real-time performance.

GESTURE RECOGNITION SYSTEM
We now describe our depth camera-based gesture recognition
system for supporting versatile and expressive thumb-to-finger
interactions. Our approach works in real time, with a single
body-mounted depth sensor, and is able to reconstruct fine-
grained thumb-to-finger interactions with high accuracy with-
out requiring any instrumentation of the hand. Our approach
combines the real-time reconstruction of a fully-articulated
hand pose (based on a fully convolutional neural network, a
kinematic skeleton and a Gaussian mixture model) with real-
time detection of thumb-to-finger touch contact to accurately
classify input gestures.

To capture input gestures, the user mounts a depth camera
on the head or either shoulder, as shown in Figure 3. This
placement follows strategies from prior work and ensures
compatibility with AR/VR devices. For instance, future head-
mounted displays will likely include a forward-facing depth
camera. We use an Intel RealSense SR300 camera 1 with a
sensing range of 20 cm to 120 cm to capture the depth images.

Algorithm Description
Figure 4 depicts an overview of our algorithm. Figure 5 shows
examples of different touch poses processed by the algorithm
pipeline. The algorithm consists of four main steps:
1https://software.intel.com/en-us/realsense/sr300camera

a b
Figure 3. Thumb-to-finger touch gestures are captured using a depth
camera that can be mounted on (a) the head or (b) the shoulder.

Hand part classification
We use a per-pixel classifier to segment the hand from the back-
ground and the arm, and to identify different fingers (Figure 4
(b)). Our classifier is a fully convolutional neural network
inspired by the U-Net architecture [29]. The encoder part
transforms the input depth image at resolution 240×320 to
256 feature maps of size 15×20 using 5 convolution layers
and 1 max-pooling layer. Afterwards, the decoder generates
a class label image at the original image resolution using 4
deconvolution layers. During training, the CNN tries to min-
imize the infogain loss where we set the weights according
to the class frequencies to handle class imbalance. For train-
ing the CNN, we use the Caffe framework [15]. We train for
175,000 iterations with an input batch size of 16 using the
AdaDelta [56] solver with momentum 0.95 and 0.0005. The
base learning rate is lowered from 1.0 to 0.1 after 110,000
iterations.

To train our classifier, we collected real training data with
automatic color-based labeling from a body-mounted RGBD
camera at resolution 480× 640. We collected data from 5
participants (3 males, 2 females; 22–27 years old) with the
camera mounted at two different locations (head and shoul-
der), to provide an egocentric view of the hand for eyes-free
input (Figure 3). To collect ground-truth information, we
color-coded fingers, palm, back-of-the-hand, and arm, using
finger paint, which is not visible in the IR image. This is the
only step that required the color channels (RGB). We obtain
per-pixel hand part labels for the depth image by HSV color
segmentation. In total, 66,662 images were collected and auto-
matically annotated. Of this set, 60,000 images were used for
training the classifier. The remaining images were held out as
a test set for classifier evaluation.

Hand pose and fingertip estimation
Recognizing finger-to-finger touch is a harder problem than
identifying touch between a finger and a constrained, planar
surface [10, 33]. It requires not only knowledge of fingertip po-
sitions but of the location of all bones in every finger. This full
articulation of the hand is commonly described by 26 degrees
of freedom (DOFs) [22]. For estimating all these DOFs, we
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Figure 4. Algorithm processing steps: (a) Input depth image. (b) Using
a CNN classifier, we obtain per-pixel hand part labels. (c) We estimate
the full pose of the hand using a coarse generative model. (d) We attach
touch proxies –which approximate the surface more accurately– to the
kinematic skeleton and use them for continuous 3D touch recognition.
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Figure 5. Different touch poses through the system pipeline. Touch posi-
tion is indicated by a black circle.

use a generative model consisting of a kinematic skeleton and
a 3D Gaussian mixture model (GMM). The GMM coarsely
models the volumetric extent of the hand (see Figure 4 (c))
and has been successfully employed for full body as well as
hand motion tracking [35, 34].

For every input depth image, we find the hand pose as the
minimizer of an energy that describes the discrepancy of the
generative model and the input observation. This energy func-
tion takes into account the per-pixel hand part labels obtained
in the previous step and compares it to the pre-defined labels
of the GMM. Furthermore, limits of joint angles and temporal
smoothness are incorporated into the energy to ensure physical
plausibility. This objective function is fast to optimize and has
shown accurate and temporally stable results [34]. The finger-
tip positions and 3D location of every bone in the hand can be
read from the posed kinematic skeleton after optimization.

Touch detection
To reliably recognize finger-to-finger touch contact based on
the hand pose, we attach touch proxies to the hand model
(see Figure 4 (d)). These approximate the surface more ac-
curately than the isospheres of the Gaussians. The three seg-
ments of each finger are modeled as elliptical cylinders, the
fingertips are modeled as spheres. These proxies are attached
to the bones of the kinematic model so that they can easily
be moved according to the tracked hand pose. Calculating a
3D touch point p can hence be formulated as sphere/cylinder
and sphere/sphere intersection tests. The touch point p is
then transformed to the local coordinate system (LCS) of the
touched segment: ploc = T · p, where T is the transformation
matrix from the global to the local coordinate system. Note
that the LCS of a segment is setup s.t. the y-axis aligns with
the bone and the x-z-plane is perpendicular to the bone. Thus,
the exact relative geometric location of the touch point within
the segment can be recovered: (1) the rotational angle around
the bone is determined by the position of the touch point in the
x-z-plane of the LCS, i.e. the x- and z-coordinate of ploc, and
(2) the position along the bone is derived from the y-coordinate
of ploc. The use of geometric primitives for touch recognition
is computationally more efficient than other surface represen-
tations (e.g. meshes) while still allowing to model surfaces
that are more complex than a single planar object.

Gesture classification
The touch information and the estimated hand pose are fed into
a continuous gesture classifier to enable rich user interactions.
The ability of FingerInput to detect exact touch instances pro-
vides a straightforward approach to recognizing gestures using
voting-based discriminative classification in a continuous man-
ner. Since all gestures involve touch contact, the classifier is
activated when a touch instance starts and runs as long as it
is present. The definition of gestures through the dimensions
of the design space presented above allows for representing
and defining gestures as a combination of values of these di-
mensions. A dictionary of gestures, defined by the values of
the given dimensions, is stored in the system. For recognition,
and on each frame, the values of each of the four dimensions
are observed: touch initiator, touch location, gesture action,
and finger flexion. A vote is then added to the corresponding
combination of the dimensions, which maps to one of the
defined gestures in the dictionary. We then use a time slid-
ing window across frames to determine the performed gesture
through majority voting, where the gesture with the most votes
in the current window is selected. Empirical results, presented
in the system evaluation section below, demonstrate that the
system is able to detect a versatile set of gestures with a high
accuracy.

Example Gesture Set
We selected a representative set of demanding microgestures
(Figure 6). This selection includes discrete tapping as well as
continuous movement along and around fingers, and also circle
shapes. It further includes gesturing at many different finger
locations, using the thumb or the index finger as initiator, and
includes finger flexion. We decided to exclude interactions on
and with the pinkie finger, since the largest part of the pinkie
finger lays outside the comfort region of interaction [13].

To our knowledge, this set of gestures is considerably more
versatile than the thumb-to-finger microgestures presented in
any single prior system. Note that our system is not restricted
to those gestures, but can be easily trained to detect other
gestures that are based on the dimensions of the design space.

The gesture set is comprised of the following:

Finger tap: For this set of gestures, we evaluate taps on 9
segments on index, middle and ring finger. These gestures,
known from prior work, are quick and easy to perform.

Figure 6. The 8 different classes of the evaluation gesture set: (a) fin-
ger taps, (b) fist tap, (c) tap-and-flap, (d) linear thumb-to-finger slides,
(e) linear finger-to-thumb slides, (f) rotational thumb-to-finger slides, (g)
fingertip slides, and (h) drawing a circle.



Fist tap: The hand forms a fist, all fingers being folded, while
the thumb taps on a segment on the outer side of the index
finger.

Tap-and-flap: Tapping based input can also be combined with
dynamic finger poses. The thumb is tapping on the outer side
of one of the index finger segments, while the other fingers
move either from open to folded or vice versa.

Linear thumb-to-finger slide: The thumb is the touch initia-
tor and performs a linear slide along the index, middle or ring
finger. We include sliding on the inner and outer side of each
finger, as well as in both directions, sliding from the root of
the finger to the tip and vice versa, resulting in 12 gestures.

Linear finger-to-thumb slide: A similar sliding gesture can
also be performed by the index or middle finger on the thumb.

Rotational thumb-to-finger slide: The thumb is the touch
initiator and performs a rotational slide around one of the 6
inner and middle finger segments of the index, middle and
ring finger while all fingers are open. We include sliding in
both directions, resulting in overall 18 gestures.

Fingertip slide: The thumb can perform a rotational slide
around the fingertip following the curve of the fingernail. This
gesture applies to the index, middle, and ring fingers and can
be performed in both directions.

Draw circle: The thumb starts from the lower segment of the
index and draws a circle on the fingers.

Prototype System
Our prototype system runs at 40 frames per second on a desk-
top computer, using a Nvidia GTX 1080 GPU. The system rec-
ognizes gestures performed and sends events to clients through
a WebSocket connection. Clients such as smart watches, smart
phones, wall displays, or head-mounted displays can receive
this information over a wireless connection.

SYSTEM EVALUATION
The objective of our contribution is to provide a tracker that
accurately detects an expressive set of thumb-to-finger micro-
gestures. To validate this claim, we first conducted a series
of pilot studies to assess the correct and accurate functioning
of the individual processing steps of the algorithm. Our main
evaluation study then investigated the end-to-end functionality
of the approach by assessing the system’s accuracy to detect
demanding microgestures that were performed by users. The
findings confirm the functionality and accuracy of our system.

Pilot Study 1: Finger Classification
The first requirement for gesture detection is the correct seg-
mentation of regions in the camera image. As described in the
Implementation Section, we collected 66,662 depth images
and automatically annotated them per-pixel for 6 semantic
hand part classes and a non-hand class. 60,000 of these im-
ages were used for classifier training and 6,662 images were
held out as test set. Table 1 shows the classification accuracies
per class. Our CNN classifier achieves an average accuracy of
90.2%, which shows its ability to accurately classify different
fingers and to detect the exact fingers involved in a gesture.

Region Palm Thumb Index Middle Ring Pinkie Non-hand
Accuracy 96.0% 93.5% 91.6% 87.3% 79.1% 84.8% 99.0%

Table 1. Per-class accuracies achieved by our classifier for the classes.

Pilot Study 2: 3D Fingertip Localization
To characterize the system’s accuracy in detecting the positions
of the fingertips in 3D space, two participants (1 female, 1
male; 23 and 27 years old) with average hand size (hand
lengths: 201 mm, 192 mm; hand widths: 90 mm, 89 mm) [25]
interacted with the system by performing gestures from the
gesture dataset (Figure 6) as indicated by a video reference.

The collected dataset (dataset: 3,573 frames) was used to
train our proposed CNN-based tracking system, and as an
egocentric RDF-based tracker [34] as a baseline reference. For
ground truth, we annotated the fingertip positions in each of
the depth images. Then we calculated the average fingertip
localization error by computing the Euclidean error of the 5
fingertip positions averaged over all frames.

Our proposed tracking system outperforms the egocen-
tric RDF-based tracker by a large margin (13.92 mm and
16.37 mm vs. 22.5 mm and 38.0 mm). The results show that
the system has the capability to localize fingertips of differ-
ent fingers with an error less than the average finger segment
size. Note that the average error of the egocentric RDF-based
tracker is higher than the error achieved by the corresponding
third person tracker proposed in [34] on common third person
datasets. This seems to indicate that our egocentric sequences
are more challenging than third person settings due to frequent
self-occlusion of the hand and additional camera motion.

Pilot Study 3: Touch Contact Between Fingers
To measure touch accuracy, we used the second dataset to
compare the tracker output with ground truth data acquired via
self-capacitive touch sensing (Figure 7). Capacitive touch is
very accurate as it does not confuse finger touch down events
with finger hover state and it is unaffected by occlusions. To
capture capacitive ground-truth data, we custom-built a very
thin and flexible sensor that participants wore on the thumb
during this pilot study (see Figure 7). Two participants (1
female, 1 male; 23 and 27 years old) performed the same
gestures as in Pilot Study 2. This dataset (5,174 frames) was
automatically annotated with ground-truth information.

Figure 7. Automatic ground-truth annotation of thumb-to-finger touch
using a capacitive finger glove, built out of nitrile rubber with conductive
fabric affixed around the tip of the finger.



We calculated the accuracy using a frame-by-frame compari-
son as well as a time window comparison. For the frame-by-
frame comparison, we calculate the number of frames where a
touch is detected both by the system and in the ground truth
data, with an average accuracy of 87.5%. Most of the mis-
classified frames lie either directly before or after a performed
touch gesture. These one-frame errors can be addressed with
a time window: at a window length of 500 ms, the system had
an average accuracy of 95.8%. Lengths of 600 and 700 ms
resulted in 96.2% and 97.1%, respectively.

Main Evaluation Study: Gesture Detection Accuracy
Methodology
To formally evaluate the accuracy of end-to-end gesture recog-
nition, we performed a study with users. We recruited 10
volunteers (6 males, 4 females, 19–29 years old). Their hand
lengths varied from 155–212 mm, and the hand widths from
74–92 mm (mean dimensions were 180 mm by 86 mm), pro-
viding a representative sample of hand size distribution [25].
The task consisted of performing all gestures in the 8 gesture
classes presented in Fig. 6, with 4 trials each. Per gesture,
two trials were performed while sitting, and the two others in
a standing position. For each trial, participants started with
an open-hand pose with no touching fingers, and then per-
formed the touch gesture shown on a screen. Participants
were instructed on how to perform the gestures, and were
given several minutes to practice the gestures until they were
comfortable with them. Gestures were recorded with an Intel
RealSense SR300 depth camera, mounted on the participant’s
shoulder using a shoulder mount. Each recording session
lasted 1 hour, with a break after performing 25 gestures. Our
classifier evaluated the performed gestures for each frame.

Results
The overall accuracy of the system for gesture classification
was 91.06%. The confusion matrix is shown in Figure 8. As
the results reveal, the fist tap and the circle drawing has the
highest accuracy of 91.8%. This validates the ability of our
system to avoid false activations of primary actions. Linear
thumb-to-finger slides have the lowest accuracy of 89.9%.
Rotational slides are at times confused with finger taps, as they
both occur inside one segment.

EXAMPLE APPLICATIONS
In order to explore the potential of expressive microgestures,
we implemented two example applications. As showcase sce-
nario, we selected the interaction with audio data, as it is
well-compatible with eyes-free interaction and requires differ-
ent degrees of expressivity: from rapid and simple controls
to expressive authoring and parametrization. Each of these
examples integrates a wider variety of thumb-to-finger mi-
crogestures than in prior work. All gestures are captured in
real-time using our tracker.

Direct and Rapid Control of a Music Player
Controlling a music player application benefits from easy, di-
rect and rapid commands that are performed as one-handed
and eyes-free input (Figure 9 (a)). While the few most impor-
tant commands (play, pause, previous/next song) should be
most rapidly available, music playback requires a larger set

Figure 8. Confusion matrix for the 8 different classes of our gesture set.
The 8 classes are (1) finger taps, (2) fist tap, (3) tap-and-flap, (4) linear
thumb-to-finger slides, (5) linear finger-to-thumb slides, (6) rotational
thumb-to-finger slides, (7) fingertip slides, and (8) drawing a circle. Our
system has an accuracy of 91.06% in classifying the gestures.

of secondary commands (e.g., control volume, control sound
properties). At the same time, gestures should be chosen to
minimize the likelihood of false activation, given the audio
player is likely to be controlled during another primary activ-
ity. We address those conflicting goals by combining diverse
thumb-to-finger microgestures with specific hand poses.

The application is invoked by performing a fist gesture for half
a second, grabbing control of the application while avoiding
false positives. In this hand pose, the radial side of the index
finger forms a round surface that affords ergonomic and rapid
tapping and sliding. In order to play/pause the current song,
the user taps with the thumb on the middle segment of the
index finger. The previous and next song can be selected by
swiping left or right towards the distal or proximal segments
respectively.

Stretching out the index finger serves as a fast and easy way to
activate the mode for audio adjustments while avoiding false
positives. The straight finger affords linear sliding along all
three segments on the palmar side of the index finger. This
allows for quick and precise adjustment of the volume. In turn,
rotary slides around the distal, middle and proximal phalanx
(finger segment) allow to equalize the bass, middle, and treble
of the tone using microgestures. The use of this varied set
of microgestures alongside specific hand poses has not been
possible with prior systems.

Expressive Digital Music Composition
Historically, musical instruments have utilized the dexterity
and expressiveness of the human hand and fingers in a variety
of ways, combining discrete notes with continuous fine adjust-
ments. We used this commonly performed practice as a source
of inspiration to demonstrate the feasibility of thumb-to-finger
gestures in an application for composing digital music using a
sequencer (Figure 9 (b)).
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Figure 9. Audio control using microgestures. (a) Direct and rapid play-
back control. (b) Music composition using microgestures.

Our application is controlled solely by previously presented
microgestures. The three independent channels of the se-
quencer are mapped to the three fingers - index, middle, and
ring (pinky excluded). The 3 channels can be controlled si-
multaneously, allowing multidimensional control.

The instrument assigned to a finger can be selected via swiping
on the distal-volar segment of that finger. Tapping the fingertip
will trigger a single note from the selected instrument. Two
properties can be controlled per channel: (1) volume control
by linear sliding on the volar side of the finger, (2) pitch is
controlled by sliding on the ulnar side.

Playback is controlled similar to the previous application, by
tapping on the radial side of the index finger. While play-
ing, performing the aforementioned operations will record the
changes for the current beat. The proposed interaction com-
bines commonly used tapping technique of creating rhythmic
compositions, with expressive finger sliding to control the
sound texture; this is demonstrated by the tracker capabilities
to detect touch over different hand surfaces.

DISCUSSION AND LIMITATIONS
Selected gesture set: The presented gesture set is a selected
subset from the possibilities present in the design space. These
gestures were chosen to highlight the flexibility of the tracker
with an heterogeneous gesture set, yet there are in no way
exhaustive. Given that the tracker accurately recognizes the
hand pose and touch points, other microgestures could be
easily supported; a notable example of this would be to take
into consideration the hand position and orientation, which are
computed as part of the tracking process.

Occlusions: The results from our evaluation show that Finger-
Input achieves thumb-to-finger gesture classification with low
false positives and can detect the fingertip location and classify
fingers accurately. However, since our technique is based on
an optical approach, it is limited by line-of-sight requirements:
some occlusions resulting from crossed fingers, overly bent
fingers, or rotated hands can be problematic for gesture classi-
fication. For this reason, our current setup assumes the user is
holding the hand in a relaxed pose in front of the chest.

Hand model: The current version of the system requires
that the measurements of the hand are manually indicated

once for each user. Future implementations will include an
initialization step.

Misclassification: We noticed that tap gestures can be mis-
classified as rotational slides when the user is slightly moving
the finger while tapping. While this demonstrates the high
spatial resolution of rotational slide, which even detects min-
imal movement, it may result in an undesired command. A
straightforward solution consists of increasing the threshold
for a minimal sliding movement. The trade-off between spatial
resolution of rotational slides and robust detection of finger
taps is an important question that should be further investi-
gated in future work. An alternative design solution consists of
spatial multiplexing: Drawing from the many different finger
locations supported by our system, the designer can reserve
some segments or finger sides for tap gestures, while others
are used for sliding input.

Mobility: Our current prototype uses a desktop computer.
The mobility could be extended by connecting the depth cam-
era to a body-worn microcontroller (e.g., Raspberry Pi), and
streaming depth data to a server for gesture classification.

CONCLUSION
We have presented a consolidated interaction design space for
thumb-to-finger gestures and derived requirements for ges-
ture recognition systems. Informed by these findings, we
developed FingerInput, a system for versatile thumb-to-finger
touch gestures, using a depth sensor. Our system covers the
dimensions of the design space, and recognizes discrete and
continuous thumb-to-finger touch gestures. Our results demon-
strate that it is possible to implement a gesture recognition
system that considerably extends the types of gestures that
are supported in a single interface. On a conceptual level,
our findings did not only allow us to classify existing thumb-
to-finger gestures, but also helped us in identifying various
opportunities for novel and extended gestures. Together, they
show that thumb-to-finger gestures are rich and versatile and
offer strong support for direct and single-handed interaction.
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