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2Max Planck Institute für Gravitationalphysik (Albert Einstein Institute), D-14476

Potsdam-Golm, Germany
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Abstract. We present a new method for the classification of transient noise signals

(or glitches) in advanced gravitational-wave interferometers. The method uses learned

dictionaries (a supervised machine learning algorithm) for signal denoising, and

untrained dictionaries for the final sparse reconstruction and classification. We use a

data set of 3000 simulated glitches of three different waveform morphologies, comprising

1000 glitches per morphology. These data are embedded in non-white Gaussian noise

to simulate the background noise of advanced LIGO in its broadband configuration.

Our classification method yields a 96% accuracy for a large range of initial parameters,

showing that learned dictionaries are an interesting approach for glitch classification.

This work constitutes a preliminary step before assessing the performance of dictionary-

learning methods with actual detector glitches.

Keywords: gravitational waves, detector characterization, machine learning

1. Introduction

After the landmark observations of gravitational waves (GWs) from mergers of compact

binaries [1, 2, 3, 4, 5, 6], GW astronomy has been established as a brand new way to study

the cosmos. The first two observational campaings of Advanced LIGO and Advanced

Virgo have provided the first few detections. The current upgrade and commissioning

of these detectors will lead to an increase in their sensitivity, in the scale of the cosmic

horizon to search for sources, and in the event rates. The upcoming observing run

of Advanced LIGO and Advanced Virgo, O3, due to start in early 2019, promises a

plethora of new GW data and discoveries [7].

Despite the recent detections, noise removal remains one of the most challenging

problems in GW data analysis. The sensitivity of current ground-based detectors sharply

degrades at frequencies below a few tens of Hz due to gravity-gradient (seismic) noise
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and above ∼ 2 kHz, due to quantum fluctuations of the laser [8]. At intermediate

frequencies is where intereferometers become the most sensitive, being mainly limited

by thermal noise due to Brownian motion of the suspensions and mirrors. Many noise

sources affecting detectors are non-Gaussian and non-stationary, altering the sensitivity

of the detectors in real time. In addition, transient noise signals of both instrumental and

environmental origin, commonly known as ‘glitches’, may not only disturb astrophysical

GW signals (as dramatically manifested in the infamous glitch affecting the merger

signal of GW170817 [6]) but also mimic true signals, increasing the false-alarm rate and

producing a decrease in the detectors’ duty cycle. Uninterrupted efforts in detector

commissioning and characterization are made to reduce the effects of glitches. In

particular, improving the identification and classification of glitches is fundamental to

increase the efficiency of the detection. Current efforts employ approaches as diverse as

Bayesian inference, Principal Component Analysis, machine learning, deep learning, and

even combinations of machine-learning and citizen science (see e.g. [9, 10, 11, 12, 13, 14]).

In this paper we study the suitability of dictionary-learning algorithms for glitch

denoising and classification, taking as starting point the method introduced in our work

for GW denoising using dictionaries [15]. Mathematically speaking, a dictionary is

a matrix of m atoms (signals in our case) of length n organized as columns. The

dictionary-learning approach is based on the so-called sparse representation, which states

that a given signal can be reconstructed as a linear combination of only a few atoms,

u = Dα, where u is the reconstructed signal, D = [d1, . . . ,dm] is the (overcomplete)

dictionary composed of a atoms of length n such that m > n, and α ∈ Rp is a

sparse vector containing the coefficients of the representation. Since the dictionary

is overcomplete, the solution vector α is not unique, hence we use the basis pursuit

decomposition proposed in [16]. The goal of this paper is to test the suitability of

dictionary-learning techniques to denoise glitches and classify them by their morphology.

One should note that by “denoising glitches” we do not mean to remove glitches from

the background but to obtain a clear shape from the glitch morphology. In this sense,

we treat glitches as signals like we did in our first paper [15]. To test our approach

we follow the analysis carried out by [9] where the authors compared three different

pipelines to classify simulated glitches embedded in Gaussian noise.

For training the dictionaries and validate our method in a controlled environment,

we follow [9] and generate several sets of synthetic glitches which can be classified into

three different waveform morphologies: sine Gaussian (SG), Gaussian (G) and Ring-

Down (RD). All glitches to be denoised and classified are injected into simulated non-

white Gaussian noise similar to that of advanced LIGO in the proposed broadband

configuration with different values of the signal-to-noise ratio (SNR).

The classification method we introduce in this paper uses dictionaries in two steps.

First, we perform the denoising step aiming for the most faithful reconstructions using

three trained dictionaries, one dictionary per waveform morphology. Due to our signal

configurations (which will be justified later on) all three dictionaries are likely to yield

reconstructions from all glitches, regardless of their morphology. For example, a SG
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glitch (injected in noise) may be reconstructed by all three dictionaries with relative

fidelity. However, the reconstruction from a SG dictionary should be closer to a clean

model of a SG glitch than those produced by both the G and RD dictionaries, whose

atoms contain glitches of other waveform morphologies. Motivated by this hypothesis, in

the second step of our procedure we look for the dictionary whose reconstruction is closer

to a perfect waveform morphology, for each unknown glitch to be classified (i.e. closer to

an ideal SG, G, or RD glitch). In order to achieve this we use three untrained dictionaries

whose atoms are whole centered glitches, each one serving as examples of ideal glitches of

a single waveform morphology. Every denoised glitch from the first step is reconstructed

by all three untrained dictionaries using as few atoms as possible, so that instead of

generating a faithful reconstruction each dictionary will yield a “reconstruction” close

to an ideal glitch of its own morphology while trying to get as close to the denoised

glitch as possible. Finally, the predicted waveform morphology of an unknown glitch

will be that of the untrained dictionary that produced the reconstructions closest to

the three respective reconstructions of the denoising dictionaries. Our study shows

that learned dictionaries are an interesting new approach for glitch classification as we

manage to successfully classify about 96% of simulated glitches for a large range of

initial parameters.

This paper is organized as follows. In section 2 we summarize the mathematical

background of the sparse representation and dictionary learning techniques. In section 3

we describe the morphology of the three classes of simulated glitches and the parameters

that define them. The classification algorithm we have developed using the dictionaries

is presented in section 4. In section 5 we describe the tests we have performed in order

to determine the best set of parameters of the method that produces optimal results

and we discuss the application of these techniques (denoising + classification) to a long

run of 3000 glitches. Finally, in section 6 we present the main conclusions of our work

and outline possible future directions of research.

2. Mathematical framework

2.1. Sparse reconstruction

In [15] we considered sparse reconstructions of GW signals over trained dictionaries,

employing numerical relativity catalogs of core-collapse supernova signals and binary

black hole waveforms. In this paper, we apply the same approach to classify and

reconstruct simulated GW glitches embedded in Gaussian noise. Similar to our work

on GW denoising using dictionaries [15] we assume that the way in which glitches are

embedded into noise can be described by the linear degradation model

f = u+ n , (1)

where f ∈ Rn is the data from the detector, u ∈ Rn is the glitch to be recovered for later

classification, and n ∈ Rn is random Gaussian noise. Given an overcomplete dictionary
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D ∈ Rn×m, where the number of atoms m is greater than their length n, there is a

sparse vector α ∈ Rm for which Dα ∼ u, where

α = arg min
α

{
‖f −Dα‖22 + λ‖α‖0

}
. (2)

In this equation ‖ · ‖0 and ‖ · ‖2 stand for the L0-norm and the L2-norm, respectively.

The former is just the number of nonzero components of its argument. This problem can

be written as a convex and unconstrained variational problem by substituting the L0-

norm of α by the L1-norm as a penalty term of the problem weighted by a Lagrangian

multiplier λ,

α = arg min
α

{
‖f −Dα‖22 + λ‖α‖1

}
, (3)

an approach which is known as basis pursuit [16] or LASSO [17]. The regularization

in the L1-norm promotes zeros in the components of the vector coefficient α and, thus,

the solution of this variational problem is typically the sparsest one.

The Lagrangian multiplier λ is also called the regularization parameter, as it

regulates the level of detail to be recovered in the sparse representation α of the input

signal f . The higher the value of λ the more the L1-norm term weights, making the

coefficients of α tend to zero when solving problem (3), which results in less atoms

being used for the sparse representation (i.e. for the reconstruction of f). On the other

hand, using low values of λ favours the fidelity term (the L2-norm term in Eq. (3)),

which results in more (or even all) atoms being used. This transforms the problem into

a simple least-squares problem and yields a reconstruction as similar as possible to the

input data. The optimal value for a given signal, λopt, is defined to be the one which

gives the bests results according to a suitable metric function applied to the denoised

signal and to the original one, measuring the quality of the recovered signal. In this

work we use two estimators, namely the Mean Squared Error,

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 , (4)

where Ŷ and Y are the reconstructed and original signals respectively, and n is the

number of samples, and the structural similarity (SSIM) index [18] which takes into

account the structural information. The SSIM index varies between -1 (minimum

similarity) and 1 (maximum similarity) and is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (5)

where c1 and c2 are constants, µx (µy) is the average of x (y), σ2
x (σ2

y) the variance of µx
(µy) and σxy the covariance of x and y. In order to facilitate the comparison between

the two estimators we rewrite the SSIM index so that its value ranges from 0 (maximum

similarity) to 1 (minimum similarity), like the MSE,

DSSIM(x, y) =
1− SSIM(x, y)

2
. (6)

This metric function is called the structural dissimilarity index.
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To solve the LASSO problem we use the modified least-angle regression (LARS)

algorithm [19]. This algorithm is similar to a forward stepwise regression: it starts with

the regression coefficients equal to zero, and for each iteration it finds the predictor

ui most correlated with the response f and takes a large step in the same direction

until other predictor achieves a similar correlation. However, instead of continuing

along the first predictor, LARS proceeds following recursively the equiangular direction

between the predictors of equal correlation. The main advantage of this method is the

efficiency when dealing with more dimensions than points (p > n), which is the case of

overcomplete dictionaries (see [19] for further details).

2.2. Dictionary learning problem

Before the denoising, the dictionaries are trained with a set of signals splitted in p

patches of length n, U = [u1, . . . , up] ∈ Rn×p. The number of training patches is large

compared with the number of atoms and their length, p� m,n, because of the sparsity

condition and the overcompleteness of the dictionary.

The trained dictionary is obtained by adding the dictionary matrix D as a variable

in the minimization problem,

α = arg min
α,D

1

n

p∑
i=1

{
‖ui −Dαi‖22 + λ‖αi‖1

}
, (7)

where the summation index i indicates the i -th row of matrix α ∈ Rp×n, which contains

the coefficients of the sparse representation of each atom. The columns (di)
p
i=1 of the

dictionary are constrained to have an L2-norm less or equal to one, dTi di ≤ 1, to prevent

D from being arbitrarly large.

The problem is solved by the algorithm proposed by Mairal et al in [20] with the

mini-batch optimization. This is a block-coordinate descend method which minimizes

D and αi separately for each iteration t,

αt = arg min
α

{
1

2
‖ut −Dt−1α‖22 + λ‖α‖1

}
, (8)

Dt = arg min
D

1

t

t∑
i=1

{
1

2
‖Dαti − ui‖22 + λ‖αi‖1

}
, (9)

with the advantage of being parameter-free and not requiring any learning rate.

3. Signal set

In this work we do not use actual detector glitches. Instead, following [9], we simulate

three simple kinds of glitch morphologies, namely sine Gaussian (SG), Gaussian (G)
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Sine Gaussian (SG)

Gaussian (G)

Ring-Down (RD)

Figure 1. Examples of the three different glitch morphologies used in our data sets.

Table 1. Minimum and maximum parameters of the simulated glitches, from [9].

Waveform Minimum Maximum

f0 (Hz) All 40 1500

hrss (Hz−1/2) All 5× 10−22 4× 10−21

Q SG, RD 2 20

Duration (s) G 0.001 0.01

and ring-down (RD). They are defined by the following functions

hSG(t) = h0 sin {2πf0(t− t0)}e−(t−t0)2/2τ2 , (10)

hG(t) = h0e
−(t−t0)2/2τ2 , (11)

hRD(t) = h0 sin{2πf0(t− t0)}e−(t−t0)/2τ , (12)

where f0 is the central frequency, t0 is a characteristic time for each of the waveforms,

namely the time at the centre of the SG and G waveforms and at the beginning of

the RD waveform, τ = Q/
√

2πf0, with Q being the quality factor, and h0 = hrss/
√
τ ,

with hrss being the root sum squared amplitude of the glitch. These parameters are

randomly chosen within the ranges shown in Table 1, with a linear distribution on their

logarithms to get enough samples of all orders of magnitude. Examples of the waveform

morphology for all three glitches are shown in Figure 1. The SG and RD waveforms

are relatively similar between them, both displaying a distinctive oscillatory pattern,

and more complex than the G waveform. This variety of signals serves the purpose

of testing the capability of the classification algorithm in a realistic scenario involving

different types of glitches.

We generate three separate sets of glitches with the sampling rate of the Advanced

LIGO/Virgo detectors, 16384 Hz. Since for training each dictionary we want to use

the same amount of training patches (namely 20000), and each morphology has its own

range of durations (which translates to different range of samples), we generate different
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amounts of glitches. Moreover, we will test dictionaries with different atoms’ lengths.

Therefore, we also need to be sure we will be able to generate enough patches with the

largest atoms. Taking both conditions into account, we generate a training set of 915 SG

glitches, 62440 G glitches, and 603 RD glitches. These signals are normalized to their

L2−norm to ensure the best convergence conditions for the learning algorithm. Then

we use a set of 300 glitches (100 per waveform morphology) for parameter optimization,

and a bigger set of 3000 glitches (1000 glitches per waveform morphology) to test the

final classification algorithm. All signals from these two sets are scaled so that their

maximum value is equal to one.

The glitches used for training and testing are injected into white Gaussian noise

weighted by the power spectral density (PSD) of Advanced LIGO in the proposed

broadband configuration, as explained in [21]. We rescale the signals to a SNR value of

20. The SNR is defined as

SNR =

√√√√4∆t2∆f

Nf∑
k=1

|ũ(fk)|2
S(fk)

, (13)

where ũ indicates the Fourier transform of signal u, S is the PSD of the noise

corresponding to the sensitivity curve of the detector, fk is each of the components

of the frequency vector, Nf is the number of positive frequencies, and ∆t and ∆f are

the time step and frequency step, respectively.

4. Classification method

The classification method we propose in this work makes use exclusively of dictionaries

for sparse coding, and can be divided in two phases: the denoising phase and the

discrimination phase. For convenience, a block diagram outlining the classification

method that we discuss next is displayed in Figure 3.

In the first phase the goal is to recover as much oscillations as possible from all

glitches while keeping the spurious oscillations to a reasonable low level (let us call

them ‘parent’ reconstructions). To this end we use three trained dictionaries, one per

waveform morphology, with a constant value for the regularization parameter λtr (the

subindex ‘tr’ stands for ‘transformation’ as it refers to the sparse encoding of the signals).

Each denoising dictionary is composed of atoms of the same length, which are shorter

than the length of the input signals. Because of this, part of the atoms are fragments

of glitches, and none of them are aligned in any way. Therefore, each dictionary is

initialized and trained with a large number of patches randomly extracted from the

corresponding training set, with the only condition that the patches include a minimum

number of nonzero bins, which we choose to be around 1⁄4 of the atom’s length. Since

we do not know the glitch morphology yet, each glitch needs to be reconstructed by all

denoising dictionaries.

After this phase we end up with three denoising reconstructions per unknown glitch.

Ideally, each dictionary should be used with an optimal regularization parameter λopt so
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that the dictionary would yield a relatively clean reconstruction only if the input signal

contained a glitch of the same morphology. However, in practice some factors like a high

resemblance between some morphologies or waveforms with extremely low SNR make

impossible for our dictionaries to achieve an acceptable level of glitch discrimination.

To overcome this issue we take a different approach with respect to our previous work

[15]; we redefine the value of λopt to be that which gives us the best classification results

with our set of testing glitches. As shown in section 5.1, this new value happens to

be quite lower than the original λopt, making all dictionaries to yield relatively faithful

reconstructions regardless of the morphology of the glitch. However, given a noisy

signal containing (for example) a SG glitch, we expect the reconstruction from the

SG dictionary to be closer to a perfect SG waveform than those from the G and RD

dictionaries, since the first one is made up of patches of perfect glitches of the same

morphology. In other words, for each glitch we need to determine which denoising

dictionary produces the reconstruction closest to an ideal glitch of any of the three

morphologies.

The goal of the second phase is to perform the aforementioned discrimination

using untrained dictionaries, which we call classification dictionaries, composed of atoms

containing whole centered glitches. Each of these dictionaries is nothing more than a

collection of random examples of “perfect” glitches belonging to the same waveform

morphology. With them, every parent will be “reconstructed” using as few atoms as

possible, so that instead of generating a faithful reconstruction, each dictionary will

choose the few atoms that most “resemble” to the parent glitch but maintaining the

morphology of the dictionary. The number of atoms used, which will be referred to as

‘nonzeros’ from now on, is a hyperparameter which will be fixed instead of λopt, and

whose optimum value needs to be determined. After this procedure, we are left with

three new reconstructions (let us call this new reconstructions “children”) per parent

glitch, with a total of 12 reconstructions for each unknown glitch, forming a ternary tree

structure as shown in figure 2.

Glitch

p0 p1 p2

c00 c01 c02 c10 c11 c12 c20 c21 c22

Figure 2. Tree diagram of the reconstructions obtained for each original glitch,

where pj stands for parent glitches, and cji for children glitches. The numbering

corresponds to the three morphologies ordered as follows: sine Gaussian (i, j = 0),

Gaussian (i, j = 1), Ring-Down (i, j = 2).

Finally, we use the SSIM estimator to calculate the value of the DSSIM index

between each child and its parent. In this part of the algorithm we do not make use
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Preprocessing

Denoising

Classification

Output

Read in Data

Denoising Trained
dictionaries

Reconstruction Full dictionaries

DSSIM
computation

Minimum
determination

DSSIM for all
reconstructions

Classified glitch

Figure 3. Block diagram outlining the classification method.

of the MSE estimator because it does not take into account the structural information.

The predicted morphology will be that of the dictionary which produced the least total

DSSIM value,

idict = arg min
i

∏
j

DSSIM(pj, cji) , (14)

where idict is the index of the dictionary. If a child cji is not reconstructed (i.e. it is

not recognized) the DSSIM will take the worst value, and if none of the children or

parents are reconstructed, then we will consider the glitch lost (which means it will not

be classified whatsoever).

5. Tests and results

5.1. Parameter optimization

We first optimize the parameters of the denoising dictionaries, namely the regularization

parameter of the learning step λlearn, the number of atoms m and their lengths n, and

the regularization parameter of the reconstruction step λtr. We then next optimize

the parameters of the classification dictionaries, namely the number of atoms and the

number of nonzero coefficients to use for the reconstructions of the second phase. For

each parameter we test several different values, reconstructing all 100 glitches from the
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validation set and computing the average MSE (similar results are obtained when using

the DSSIM index, since now we are not comparing between different morphologies). We

consider the optimum value of a parameter to be the one that yields the lowest average

MSE.

0.004 0.005 0.006 0.007 0.008 0.01 0.02 0.03 0.04
λlearn

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
SE

×10−4

SG
G
RD

Figure 4. Histogram of the average MSE for all validation signals reconstructed by

the denoising dictionaries trained with different values of λlearn. Each colour represents

a different dictionary (i.e. a different glitch morphology). The standard deviation of

each average is represented by a black line, and downscaled by a factor 10 for SG and

RD.

We start by studying how the regularization parameter of the dictionary learning

step, λlearn, affects the reconstructed signals. As a starting point we choose 1024

atoms for the SG and RD dictionaries with a length of 512 samples, and 256 atoms

for the G dictionary with a length of 128 samples. Those lengths are close to the

validation set’s average. An initial test shows that we obtain trained atoms without

noise only when λlearn is between a certain range, which is different for each morphology

as shown in figure 4. The absence of a histogram for certain values of λlearn indicates

that the dictionary does not yield a reconstruction for that value. However, there is

no significant variation in the quality of the reconstruction for different values of λlearn
(once a reconstruction has been obtained). This can be seen by comparing the histogram

values with their standard deviation. Therefore, we choose to use a mean value for each

dictionary: 0.02 for SG, 0.006 for G, and 0.01 for RD.

Next, we test the effect of using different atom lengths, n = 64, 128, 256 and 512

for SG and RD dictionaries, and n = 16, 32, 54 and 128 for G dictionary (Gaussian

glitches are shorter than the other two). The results displayed in figure 5 show that

shorter atoms produce worse reconstructions (i.e. larger values of the MSE index). This

is due to the fact that if atoms are too short they are more sensible to noise oscillations,

becoming hard to recognize low frequency glitches. The best results are achieved with

the two greatest lengths of each dictionary. Therefore, we choose to use a length of 256

for SG and RD dictionaries, and 128 for the G dictionary, which gives a good trade-off

between quality and performance.
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16 32 64 128 256 512
n (length)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
SE

SG
G
RD

Figure 5. Histogram of the average MSE for all validation signals reconstructed

by the denoising dictionaries with different atoms’ lengths. Each colour represents

a different dictionary (i.e. a different morphology). The standard deviation of each

average is represented by a black line, and downscaled by a factor 10 for SG and RD.

256 512 1024 2048
m (atoms)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

M
SE

SG
G
RD

Figure 6. Histogram of the average MSE for all validation signals reconstructed

by the denoising dictionaries with different number of atoms. Each colour represents

a different dictionary (i.e. a different morphology). The standard deviation of each

average is represented by a black line, all downscaled by a factor 10.

In general, the larger the number of atoms the better the results should be. To

check this, we carry out a test with m = 256, 512, 1024 and 2048 atoms. We set all

their lengths to n = 128 (only for this test) so that dictionaries remain over-completed.

As can be seen in figure 6 there is no clear improvement; even 256 atoms are more

than enough for the dictionaries to recognize their own waveforms, which explains why

increasing their number does not provide better results anymore. Therefore, we use the

smallest number of atoms needed for the dictionaries to remain overcomplete: m = 512

for SG and RD, and 256 for Gaussian.

Every glitch signal to be denoised has a specific optimum value of the regularization

parameter, λopt, used in its sparse reconstruction (see [15] for details on the computation

of λopt). However, our initial tests showed that although using a mean value of λopt



Classification of gravitational-wave glitches via dictionary learning 12

0.0 0.01 0.02 0.03
Duration (s)

(a)

−1

0

1
Original
λtr =0.09
λtr =0.3

0.0 0.1 0.2 0.3 0.4
Duration (s)

(b)

−1

0

1
Original
λtr=0.09
λtr=0.3

Figure 7. Example of two denoised RD glitches which were injected into Gaussian

noise at 20 SNR. Both plots show the original glitch (before being injected into noise),

and two reconstructions using different values for λtr, namely 0.3, which is close to the

average optimal value and yields almost noise-free reconstructions, and 0.09, which

improves the classification properties of the dictionaries but introduces more spurious

oscillations.

(estimated from the validation set) yielded the most accurate reconstructions, it did not

offer the best classification results. This is because the distinctive oscillatory features

of a large number of glitches of our sample cannot be fully recovered with the optimum

values of the regularization parameter, as e.g. happens with the RD glitch shown in

figure 7(b). Instead, more oscillations can be recovered by using a smaller value, λtr,

making the glitch morphology more easy to differentiate (and, hence, improving glitch

classification) but at the expense of a poorer denoising. Nevertheless, those glitches that

could be completely reconstructed with the optimum value (like the example shown

in figure 7(a)) can still be partly reconstructed using λtr. Therefore, we carry out a

test to find a new (average) optimum value for the regularization parameter of the

transformation. We use the same value for all three dictionaries in order to spend a

reasonable amount of computational time. More precise classifications may be achieved

by looking for individual values, although judging by our tests we would not expect a

big improvement.

From all tested values, only two extremes and the optimum result are shown

in the confusion matrices of figure 8. All Gaussian glitches are always correctly

classified due to their simplicity compared to SG and RD glitches. The latter two are

sometimes mismatched because of their similarity. When the value of λtr of the denoising

dictionaries is too low (figure 8a) more RD glitches are predicted as SG glitches, which

means that the SG dictionary is more capable of reproducing the RD morphology than

otherwise. On the other hand, when λtr is too high (figure 8c) some glitches are lost

(because the reconstruction capability of the dictionaries is reduced), and more SG

glitches are mistaken as RD glitches because the number of irregular reconstruction

increases (improving the chances of the RD dictionary to provide better reconstructions
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SG G RD Lost
Predicted

(a)

SG

G

RD

A
ct
ua
l

92 7 1 0

0 100 0 0

12 1 87 0

SG G RD Lost
Predicted

(b)

SG

G

RD

A
ct
ua
l

92 7 1 0

0 100 0 0

2 0 98 0

SG G RD Lost
Predicted

(c)

SG

G

RD

A
ct
ua
l

69 9 15 7

0 100 0 0

1 0 90 9

Figure 8. Confusion matrices of the classification results for three different values of

the regularization parameter of the transformation of the denoising dictionaries: λtr
= 0.05 (a), 0.09 (b), 0.5 (c). Rows correspond to the actual morphology of validation

glitches, and columns to the morphology predicted by our classification dictionaries.

We chose as a starting values 256 atoms for the classification dictionaries, and 4 nonzero

coefficients for their reconstructions.
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Figure 9. Confusion matrices of the classification results using different numbers

of nonzero coefficients: 1 (a), 2 (b), 4 (c), and 8 (d). Rows correspond to the

actual morphology of validation glitches, and columns to the morphology predicted

by classification dictionaries. We keep using 256 atoms as a starting value for the

classification dictionaries.

of the denoised glitches). The best configuration found is λopt = 0.09 (figure 8b) for

all denoising dictionaries, with no glitches lost and only a few and fairly well balanced

mismatches.

For the classification dictionaries we need to choose the number of nonzero

components we will be using for the second reconstruction step. The goal of these
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dictionaries is to discriminate between the different morphologies by reconstructing

again the denoised glitches and finding the best fit. Hence we are not interested in

using too many atoms in each reconstruction (which eventually would lead to too similar

reconstructions from different dictionaries). In fact, the results plotted in figure 9 show

that the best discrimination level is achieved with only 1 nonzero coefficient (figure 9a),

while the worst results are obtained with 8 nonzero coefficients (figure 9d) as expected.
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Figure 10. Confusion matrices of the classification results using different numbers of

atoms: 64 (a), 128 (b), 256 (c), and 512 (d). Rows correspond to the actual morphology

of validation glitches, and columns to the morphology predicted by classification

dictionaries.

Finally, since for each reconstruction we are using only 1 atom (which in this case

corresponds to a whole glitch), the classification dictionaries’ effectiveness will increase

with their number of atoms, as can be seen in results of figure 10. From these, we

consider 256 atoms to be a good trade-off between accuracy and performance, although

sensibly better results could be achieved by using even more.

5.2. Final test

So far we have evaluated every configuration using a few testing signals, which was

enough to make comparisons. However, for the final configuration almost all glitches

were classified correctly, not leaving enough data to evaluate whether the dictionaries

are well balanced between them. Therefore we repeat the case study using the testing

set of 3000 glitches, with the same parameters as before (summarized in Table 2). In

addition, following [9], for each glitch we now choose a random SNR linearly distributed

between 1 and 400.
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Table 2. Parameter values of the final configuration for the denoising (den) and

classification (clas) dictionaries.

Dictionary λlearn aden nden λtr nonzero aclas

sine Gaussian 0.02 512 256 0.09 1 256

Gaussian 0.006 256 128 0.09 1 256

Ring-Down 0.01 512 256 0.09 1 256

The results of this test are shown in figure 11. In total, 3000 glitches have been

processed, with 2879 (96%) correctly classified. The Gaussian dictionary recognized all

but 1 of its glitches, the one with the lowest SNR, while 92 SG and 28 RD glitches

were not correctly classified. The great accuracy of the G dictionary is due to the

difference between the Gaussian morphology and the other two. SG and RD glitches

can be relatively easy to reproduce using a few Gaussian atoms but not the other way

around, because most of their atoms contain more than one oscillation. Hence, SG and

RD glitches are more likely to be misclassified.

SG G RD Lost
Predicted

SG

G

RD

Ac
tu
al

908 26 66 0

0 999 1 0

21 7 972 0

Figure 11. Confusion matrix of the classification results of the final configuration.

Rows correspond to the actual morphology of validation glitches, and columns to the

morphology predicted by classification dictionaries.

This, however, does not explain the differences found in the number of misclassified

glitches (also called false positives) between SG and RD dictionaries. For the sake

of understanding the results we analyze how the classification method behaves for

misclassified glitches depending on their SNR and frequency. The results of this analysis

are shown in figure 12. The left panel corresponds to SG glitches misclassified as G or

RD and the right panel to RD glitches misclassified as G or SG. In figure 12 we can

see roughly the same ratio of false positives within all the range of SNR values, except

for the lowest SNR (below 10) where most mismatches occur (as expected). These false

positives come mostly from the Gaussian dictionary; at such low SNR both SG and

RD dictionaries yield more irregular reconstructions because of noise fluctuations, while

Gaussian reconstructions are cleaner, making them more likely to be identified as such.

Therefore, the SNR may unbalance the number of false positives only in favor of the

Gaussian morphology.
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Figure 12. Distribution of misclassified SG glitches (left) and RD glitches (right) as

a function of their SNR. Each line represents a (wrongly) predicted morphology.

On the other hand, the results for the distribution in terms of frequency, shown

in figure 13, are more inhomogeneous. The left panel indicates that SG glitches are

misclassified as G and RD more often at high frequencies, while RD glitches are

misclassified mainly as SG at low frequencies. High frequency SG glitches have in general

shorter durations (see Eq. (10)), which combined with noise fluctuations makes them

more similar to short Gaussian or RD glitches, explaining the high frequency peaks in

the left plot and the greater number of wrongly predicted RD glitches compared to that

of SG glitches. At the same time, glitches with lowest frequencies are generally much

larger than the atoms’ window (about an order of magnitude), so they need to be split in

multiple samples, each of them containing usually only a few oscillations. Individually,

these windows are almost indistinguishable from both SG and RD’s low frequency atoms

in terms of morphology, which explains the similar increase in misclassified glitches in

both plots at lower frequencies.
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Figure 13. Distribution of misclassified SG glitches (left) and RD glitches (right) as

a function of their frequency. Each line represents a (wrongly) predicted morphology.

In summary, our method was able to classify by morphology 96% of testing glitches

with a wide range of parameters and SNR. It succeeded in recognizing Gaussian glitches,

and achieved a good discrimination level between SG and RD glitches, being slightly
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unbalanced mainly due to their morphological dissimilarities. More precision may be

achieved by using more atoms for the untrained dictionaries, or even splitting each

denoising dictionary into several ones for different frequency intervals.

6. Conclusions

In this paper we have introduced a new method for the classification of transient noise

signals (or glitches) by their waveform morphology in advanced GW interferometers.

The method uses learned dictionaries (a supervised machine learning algorithm) for

the denoising, and untrained dictionaries for the final sparse reconstruction and

classification. To test the accuracy of our method we have used a set of simulated

glitches embedded in non-white Gaussian noise, simulating the background noise of

advanced LIGO in the proposed broadband configuration.

Using a data set consisting of 3000 glitches divided into three different waveform

morphologies with a large range of parameters, the method has shown a 96%

classification accuracy. Furthermore, its performance has been found to barely decrease

with the SNR, down to low SNR values (∼ 10). Its main limitation appears at extreme

frequencies; most of misclassified glitches have the highest or lowest frequencies. In

the case of low SNR, it is challenging to discriminate the glitches from the noise and

the algorithm tends to misclassify them. Something similar explains what happens for

low and high frequencies. As the detector sensitivity is not flat in frequency, those

frequencies are more affected by noise than the middle ones. Nevertheless, our study

with simulated glitches and Gaussian noise shows that dictionaries are successful at

discriminating even the two most similar morphologies of our sample.

There are possible extensions of this study we plan to undertake next. Certainly, the

accuracy of our method can be significantly improved by using more untrained atoms in

order to expand the model population (especially at extreme frequencies), as the results

of figure 6 indicate. It may be interesting to study by how much the accuracy could be

improved by using several learned dictionaries for each waveform morphology, in order

to split the frequency range into smaller intervals. We also plan to implement additional

methods to perform the LASSO algorithm more efficiently, since the denoising phase of

our current approach is the most computationally expensive. Reconstructing all 3000

glitches, each one inside one patch of 16384 samples, by all three learned dictionaries

takes about 36 hours with an AMD Phenom II x4 processor and 12 GB of RAM. In

addition, in this work we have assumed all signals to be glitches and their positions to

be already known. Our method does not provide a trigger for glitches, therefore a real

GW signal or even a pure noise sample could be classified as a glitch. The first case can

be avoided by removing coincident signals before the classification. For the latter, it

may be worth analyzing whether a previous denoising phase using learned dictionaries

with lower sensitivities could be used as a trigger layer before employing our current

method.

This work constitutes a preliminary step before assessing the performance of
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dictionary-learning methods with actual detector glitches. A natural next step is to

test our method employing glitches from Advanced LIGO’s first observing run (O1)

whose waveform morphologies have been already classified [11]. In a longer time frame

we plan to combine learned dictionaries for both glitches and GW signals and try to

discriminate if a detector trigger can be classified as a glitch or a signal. This would

allow to compute the probabilities of false alarm (identifying a glitch as a true signal)

and of losing a signal (either because it has been classified as a glitch or as background

noise). Such a study appears necessary to explore the usefulness of dictionary-learning

algorithms for GW data analysis.
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