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A B S T R A C T

In recent years, the application of computational modeling in studies on age-related changes in decision making
and learning has gained in popularity. One advantage of computational models is that they provide access to
latent variables that cannot be directly observed from behavior. In combination with experimental manipula-
tions, these latent variables can help to test hypotheses about age-related changes in behavioral and neuro-
biological measures at a level of specificity that is not achievable with descriptive analysis approaches alone.
This level of specificity can in turn be beneficial to establish the identity of the corresponding behavioral and
neurobiological mechanisms. In this paper, we will illustrate applications of computational methods using ex-
amples of lifespan research on risk taking, strategy selection and reinforcement learning. We will elaborate on
problems that can occur when computational neuroscience methods are applied to data of different age groups.
Finally, we will discuss potential targets for future applications and outline general shortcomings of computa-
tional neuroscience methods for research on human lifespan development.

1. Introduction

Over the past two decades there has been a significant increase in
the number of cognitive neuroscience studies of lifespan development
(Amso and Scerif, 2015; Li and Rieckmann, 2014; Samanez-Larkin and
Knutson, 2015). However, despite this inflation in empirical studies,
there has been a serious lag in the development of comprehensive
theories linking brain development and behavior (Pfeifer and Allen,
2012, 2016; van den Bos and Eppinger, 2016). The current conundrum
of developmental neuroscience consists of two major explanatory pro-
blems. First, there is a specificity problem: The current verbal theories
of neurocognitive development are not specific enough to be translated
into precise behavioral and neuroscience predictions. As a result, it is
often impossible to tell whether new neuroscientific data confirm or
falsify existing theories (van den Bos and Eppinger, 2016). Related to
this issue is the identity problem: We are often unable to precisely
identify the processes that underlie developmental differences in be-
havior.
David Marr’s levels of analysis approach (Fig. 1A) is probably the best-

known framework devised to formalize our understanding of brain-beha-
vior relationships (Marr and Poggio, 1976). In this approach, the first level
is more abstract and is concerned with the “Why” question of behavior
(e.g., why would it be beneficial for adolescents take more risks?). The
“Why” question may inspire experimental design that can help understand
when a particular behavior occurs. For instance, if risk taking is a form of
costly signaling, showing off your strength to gain social status in the
group, it should occur specifically in presence of relevant peers. Compu-
tational analyses of behavior would target Marr’s algorithmic level (the
“What” question). The algorithmic level focuses on the rules that underlie
behavior (e.g., risk preference can be formalized as calculating expected
utility (EU) or minimax choice rules, see below for more detail). Finally,
the third level (“How” question) refers to the implementation of the al-
gorithm. What is the neurobiological substrate that supports this behavior?
Marr famously argued that it is impossible to bridge the gap from the
implementational level (neural processes) to behavior (risk seeking)
without referring to the algorithmic level, because neural processes per se
do not tell us anything about the algorithm they implement (see also
(Krakauer et al., 2017)).
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Following this line of argument, we argue that computational
modeling can foster the understanding of lifespan development by
providing testable theories that provide a bridge between Marr’s levels
of analyses. One key advantage of computational models is that they
allow us to capture latent variables that cannot be directly observed
from behavior. As a result, by using computational models, we are
better able to build specific theories about lifespan development and to
identify processes that underlie developmental changes in behavior. In
comparison to purely descriptive theories, the use of computational
models can lead to substantially different predictions about behavior
and explanations about the underlying processes. We will illustrate our
arguments with specific examples in the context of decisions from de-
scriptions (risk-taking and strategy selection) and reinforcement
learning. We will also discuss several problems and potential solutions
that arise when applying computational modeling to data of different
age groups. Finally, we conclude with a discussion of the prospects of
neuro-computational approaches in terms of our understanding of de-
velopmental changes across the human lifespan.

2. Models of judgment and decision-making

There has been a considerable increase in the use of paradigms from
behavioral economics to study developmental changes underlying
judgment and decision making. For instance, several developmental
fMRI studies used risky decision making paradigms in which partici-
pants have to make repeated choices between safe and risky monetary
gambles (for review see Crone et al., 2016). In most cases the aim of
these studies was to investigate the developmental trajectories of risky
decision making with the prediction that increased risk taking in
teenagers results from an imbalance in the neural systems of motivation
and cognitive control. In almost all of these studies, the analytic ap-
proach relied on objective measures of risk, e.g. comparing high versus
low probability gambles or options of different expected value (EV:
probability (p) multiplied by outcome (x)). However, since the devel-
opment of prospect theory (Kahneman and Tversky, 1979) we know
that the subjective evaluation of outcomes in most cases does not match
the (objective) expected value of choice options. Furthermore, it is very
likely that the subjective judgment of outcomes and probabilities differ
between age groups (Eppinger et al., 2009; Harbaugh et al., 2002;
Paulsen et al., 2011; van den Bos et al., 2012).
One way of addressing these issues is to refer to expected utility

(EU) models, such as cumulative prospect theory (CPT; (Tversky and
Kahneman, 1992)), that explicitly account for the fact that people do
not behave as EV models would predict. One key notion of EU models is
that of decreasing marginal sensitivity. That is, outcomes have de-
creasing marginal effects as more is gained or lost (see Box 1). For in-
stance, this implies that receiving 10 Euro when you have nothing is
subjectively experienced as a bigger gain than receiving 10 Euro when
you already have 10.000 Euro on your bank account. This principle is
very similar to the notion in psychophysics that the objective intensity

of a stimulus is distinct from the subjective intensity that guides be-
havior (Fechner, 1966). According to most EU models the transforma-
tion of an outcome into its utility (U) is described by a power function

=U x x( ) (1)

where in a monetary gamble x denotes the objective amount of money,
and where 0≪ α ≪ 1 denotes the degree that utility is diminished when
the amounts of money increase. Thus, U(x) is a concave value function
that describes the degree of risk-averse behavior. Note that because the
function is concave, the subjective utility of gaining 20 Euro is only
around 10 on the subjective utility scale. As a result, a risky prospect of
gaining 20 Euro (at 10% chance) is not so attractive compared to a sure
2 Euro, even if objective EV is equal. CPT extends the more primitive
EU value functions by adding three additional assumptions; (1) that
there is a distinction between sensitivity for gains and losses, (2) that
gains and losses are defined relative to a reference point, and (3) that
there is asymmetry in the steepness of the value functions for losses and
gains (losses loom larger than gains, see Box 1).
In heuristic models of adolescent risk taking it is often assumed that

an increased proportion of risky choices is the result of increased re-
ward sensitivity. However, in many cases this relationship is only
loosely defined and therefore it is difficult to make specific predictions
about choice behavior or neural measures (van den Bos and Eppinger,
2016). In contrast, CPT suggests that differences in risk preferences
between age groups can be attributed to different mechanisms. Let us
consider a possible gamble such as the one displayed in Fig. 1B: Option
A is associated with a 75% chance of winning 20 Euro and a 25%
chance of losing 4 Euro. In contrast, option B represents a guaranteed
win of 14 Euro.
The risky option may be more attractive to an adolescent (AD)

compared to a young adult (YA) because of:

1) adolescents show higher gain sensitivity (αAD≫> αYA). That is, 20
Euro are subjectively more valuable to the adolescent; one possible
interpretation of “reward sensitivity”,

2) adolescents show decreased loss sensitivity (βAD≪ βYA). Thus,
losing 4 Euro is subjectively less aversive to the adolescent,

3) reduced loss aversion (λAD≫> λYA). That is, the psychological
difference between gains and losses in adolescents is smaller com-
pared to adults,

4) a combination of the above.

What this illustrates is that using EU models can help identifying the
specific psychological mechanisms underlying developmental differ-
ences in risky choice (see also (van Duijvenvoorde et al., 2015) for a
similar approach). As a result, they can also help to better understand
how contextual modulations, such as peer presence (Albert et al.,
2013), impacts risky choice behavior (e.g., peer presence may specifi-
cally alter loss aversion). Indeed, several behavioral studies have al-
ready identified that there are significant age differences in both

Fig. 1. A) Marr’s levels of analysis. B) Cartoon of a
child choosing between two wheels of fortune. A
risky option with a 75% chance of winning 20 Euro
and 25% chance of losing 4 Euro versus a safe option
with 100% chance of winning 14 Euro. Choosing the
option with the highest outcome variance (the risky
option) is often considered risk seeking behavior in
the context of these tasks (even when total expected
value is the same).
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probability weighting (Harbaugh et al., 2002) and value functions
(Blankenstein et al., 2016; Tymula et al., 2012; van den Bos and
Hertwig, 2017) between adults and adolescents.
In most cases utility models are combined with the so-called

softmax choice rule that assumes that expected utilities of the options
under consideration are probabilistically translated into choices. For
instance, the probability of choosing a risky option, when confronted
with a safe and risky alternative, would be formalized as follows:

=
+

P
e

1
1risky EU EU( )risky safe (2)

where the single free parameter θ in this function governs the sensi-
tivity to differences in EU. When participants are less sensitive to EU
differences, their preferences become less consistent. For instance, let
us compare the hypothetical choice functions in Box 1. The blue curve
for adolescents is clearly “flatter” compared to the red curve describing
the adults. This flatness indicates a decreased sensitivity to differences
in EU. Both groups will prefer the option with the highest EU but
adolescent will be less consistent in their choice behavior.
As a result, even when two groups may have the same ‘risk aversion’

parameter (α) but different noise parameters (θ, like the hypothetical
adolescents) it is possible that one group will show a higher proportion
of risky choices. This is strongly dependent on the choice set given to
the participants. In Box 1, we have indicated a hypothetical choice set

of gambles for which EUsafe− EUrisk= [−20, 10]. The shaded areas
indicate the proportion of risky choices for each group, given that
choice set, the dotted lines indicate mean levels of risk taking. If we
would just compare mean levels of risk taking in this hypothetical ex-
periment, we would conclude that adolescents are more risk-seeking
than young adults. Yet, in fact, their behavioral differences are due a
diminished sensitivity to outcome differences. Importantly, note that
with a different choice set, where EUsafe− EUrisk= [−10, 20], the
adolescents will still be closer to 50% risky choices but then will appear
as more risk averse. Thus, this suggests that relying solely on choice
proportions, or even just on EV models of risky choice can lead to
substantial misinterpretations of age differences in risky decision
making. Computational approaches using EU models can help to avoid
these misconceptions, and can be used to identify the specific me-
chanism that contributed to changes in risk behavior.

2.1. Implications for imaging

The notion of EU has far reaching implications for neuroimaging
studies. There is ample evidence that there are brain regions, like the
ventral striatum and ventromedial prefrontal cortex, that track EU in
choice experiments (Kable and Glimcher, 2007; Peters and Büchel,
2010). As we have pointed out above, EU may differ significantly from
EV. Thus, if researchers use EV instead of EU as a parametric regressor

Box 1
Cumulative Prospect Theory

Cumulative Prospect Theory (CPT) suggest the following value function:

=U x
x x

x x
( )

, 0
( ) , 0

where in a monetary gamble x denotes the objective amount of money, and where 0≪ α ≪ 1 denotes the degree that utility is di-
minished when positive amounts of money increase, and where 0≪ β ≪ 1 denotes the degree that utility is diminished when the amounts of
monetary losses increase. In addition, the λ parameter captures the psychological difference between losses and gains (losses tend to loom
larger than gains).
Besides a subjective value function, CPT also assumes a psychological transformation of objective probabilities, p, into subjective

probabilities, π (p). For simple gambles with just two possible outcomes subjective probabilities are expressed as:

=p p
p p

( )
(1 )1/

where the parameter γ indicates the strength of the transformation of probabilities. The typical shape of the weighting function suggests
that people overestimate small probabilities and underestimate high probabilities. Finally, like most other utility models the expected
utility EU of a gamble is the product of U(x) and π(p).

A) Fit of CPT for a set of choices by hypothetical adolescents and adults. B) Two response probability curves for two fictitious groups of
adolescents and adults that only differ in their level of choice sensitivity (see Eq. (2) in text), but have the exact same EU estimations. Note
that in this example the mean level of risky choices (as indicated with the dashed lines) will be higher for the adolescents than the adults.
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in their imaging analyses of risky gambles, this will result in a better fit
for those subjects for which EV and EU are most closely related (e.g., an
α close to 1). Using EV will therefore be potentially misleading if age
groups differ in how close their EV function is to the EU function.
For example, let’s assume that the utility curve in adolescents more

closely resembles the EV of the presented decision options and, let’s
assume that activity in the ventral striatum tracks the EU (rather than
the EV) of options. In an analysis that only considers the EV of options
the result might be greater EV-related activity in the ventral striatum in
teenagers compared to adults and the conclusion would that adoles-
cents show greater reward-sensitivity during risky decision-making.
However, if we would run the same analysis with EU instead of EV we
might find a very different result. Namely that there are no age dif-
ferences in EU-related activity in the ventral striatum (for another ex-
ample see Box 2).
Of course, there are more complex risk tasks in which the prob-

abilities and outcomes have to be learned by experience, such as the
Balloon Analog Risk Task (BART) or the Iowa gambling task (IGT). It is
possible that these paradigms have more predictive validity in terms of
real world risk taking (Schonberg et al., 2012; van den Bos and Hertwig,
2017). However, these tasks partly depend on learning from experience
and come with additional challenges in terms of computational mod-
eling, which will be discussed below. Before turning to those issues, we
will consider an alternative approach to decisions from description that
focuses on the different strategies that individuals of different age might
engage in when making choices

3. The strategy view

The expected utility models discussed above represent an in-
tegrative approach that captures individual and developmental differ-
ences using specific parameterizations within a single model. The

strategy view provides an alternative framework in that differences
between individuals or across development are conceptualized as the
use of fundamentally different strategies. Strategies can be thought of as
sequences of operations or building blocks that can be combined to
solve a particular task (Mata et al., 2015). The strategy view has been
used widely and successfully to understand the lifespan development of
memory, arithmetic, as well as judgment and decision making (Mata
et al., 2012a; Siegler, 1999).
There is a long-standing tradition in decision making research to

distinguish between different strategies or heuristics (Shah and
Oppenheimer, 2008). Two broad classes of strategies include compen-
satory strategies, that process all relevant information and consider
possible trade-offs between attributes of decision options, and non-
compensatory strategies, that avoid such trade-offs and typically reduce
information processing demands by ignoring potentially relevant in-
formation (Gigerenzer and Gaissmaier, 2011; Payne et al., 1988). One
example of a non-compensatory strategy is a lexicographic strategy that
simply selects the alternative that is best on the most important attri-
bute (e.g. the best possible outcome regardless probability, see Fig. 2).
On the other hand, the previously described CPT is an example of a
compensatory strategy that uses all possible information to come to a
decision.
Formally, non-compensatory and compensatory strategies can be

distinguished by how they assign weights to different cues in a decision
problem, say deciding between two alternatives characterized by two or
more cues (e.g., probability and outcome magnitude). Consider an or-
dered set of cues, C1 to CM. A non-compensatory strategy is defined by
assigned weights to each cue, W={w1, w2, w3, …, wM}, in a manner
that each weight is larger than the sum of the subsequent weights. For
example, in a five cue example, the set {1, 1/2, 1/4, 1/8, 1/16}, fulfills
the requirement that for every cue weight 1≤ j≤M we have

>
>

W Wj k j k. These weights amount to making a decision

Box 2
Expected Utility and Risk Taking

A) & B) Based on subjective utility differences the same choice set may result in mostly risky choices for adolescents and mostly safe
choices for adults. Studies have shown that choices that are close to the indifference point (the point at which each option is equally
preferred) are associated with increased reaction times (Krajbich et al., 2015), which is thought to reflect increased choice conflict
(Botvinick, 2007). As a result, the most infrequent choices for each age group are associated with increased levels of choice conflict. C) In
this example one may predict that adolescents show more BOLD activation in conflict monitoring regions (e.g., dorsal anterior cingulate
cortex) when choosing the safe option compared to adults. This can falsely be interpreted that in general adolescents need more “control” to
avoid risk, although it is a specific effect due to the choice set that is used. This illustrates the usefulness of thinking about our choice
experiments in terms of EU. A second implication is that what on an objective level seems like the same set of questions may be very
different on the subjective level. This could result in rather imbalanced choice patterns introduce various unexpected and undesirable
confounds in the experimental design and the post-hoc exclusion of subjects (e.g., those who chose the safe option over 90% of the time). A
simple solution is to let participants perform a pre-test to estimate parameters of the utility model, and subsequently generate unique choice
sets for each individual that are equally distributed around the EU indifference point (e.g., van den Bos et al., 2015).

W. van den Bos et al. Developmental Cognitive Neuroscience 33 (2018) 42–53

45



whenever the first cue distinguishes between the two alternatives and
ignoring all other remaining cues, because the subsequent weights
cannot “overrule” the first.
Importantly, the strategy view typically emphasizes not only the

specific cue weighting but also the importance of the sequences of
processes. Therefore it will typically make predictions about other
outcomes beyond choice, including search (Scholz et al., 2015),

reaction times (Bröder and Gaissmaier, 2007) or neural processes (von
Helversen et al., 2014), that can further constrain developmental the-
ories. These additional predictions can help to identify the underlying
choice strategy that cannot be distinguished based on choice propor-
tions or patterns alone (see also Table 1).
The empirical work that has adopted the strategy approach suggests

that compensatory and non-compensatory strategies may tap into dif-
ferent abilities, including the ability to inhibit irrelevant information or
integrate many pieces of information that show important individual
differences and developmental trends across the lifespan (Betsch et al.,
2016; Huizenga et al., 2007; Mata et al., 2011; Mata et al., 2010; Mata
et al., 2007; Pachur et al., 2009). For example, young children seem to
have difficulties using “simple” non-compensatory decision strategies
due to deficits in cognitive control abilities that develop relatively late
during childhood and that are necessary to inhibit accessible but irre-
levant information (Mata et al., 2011). All in all, such results emphasize
the importance of understanding the various strategies available to
decision makers as well as the abilities that such strategies exploit
which undergo substantial change during childhood and aging.

3.1. Implications for imaging

These age differences in learning and decision-strategies are im-
portant to take into account when analyzing neuroscience data.
Knowing that different age groups may apply different strategies, and
thus rely on different cognitive processes, will be extremely insightful in
understanding different patterns of neural activity. This point is nicely
illustrated by a recent fMRI study by van Duijvenvoorde and colleagues
(van Duijvenvoorde et al., 2016). In this study participants were pre-
sented with a set of gambles designed to identify compensatory and
non-compensatory strategies in risky choice. The results revealed that
participants who applied a compensatory strategy showed a pattern of

Table 1
Overview of typical problems and solutions when applying the strategy view.

Problem Possible Solution(s)

Strategy sprawl: There is a potentially large number of combination of core processes or
building blocks that can be combined which may lead to hypothesizing an intractably
large number of strategies

Use a pre-defined and constrained set of strategies that have been validated in past
research (Mata et al., 2007)

Validate the use of several strategies using additional process data, such as search
(Scholz et al., 2015), reaction time (Bröder and Gaissmaier, 2007), or neural data
(Fechner et al., 2016; Khader et al., 2011; von Helversen et al., 2014)
Adopt Bayesian modeling to help quantify the trade-off between flexibility in the
number of hypothesized strategies and descriptive adequacy (Scheibehenne et al.,
2013)
Explicitly model the mixture of strategies, and use parameter estimation to establish
the contributions of individual strategies (Bays et al., 2009; Collins and Frank, 2012;
van den Berg et al., 2014).

Identification problem: Different strategies may often provide the same judgment or
choice

Design experimental paradigms so as to include critical tests that allow maximizing
differences between hypothesized strategies (Mata et al., 2007; Mata et al., 2012b;
von Helversen et al., 2010)

Individual heterogeneity: Heterogeneity in strategy selection across individuals may
lead to few individuals using the same strategy in a given situation

Calculate power a priori based on hypothesized strategies and collect appropriately
large samples
Collapse across individuals in a meaningful way, for example, across similar strategy
types, such as compensatory and non-compensatory strategies (Mata et al., 2010) or
rule-based and similarity-based processes
Design the task to elicit specific strategies (Juslin et al., 2003)
Instruct or train individuals to execute specific strategies (Mata et al., 2009; Siegler
and Lemaire, 1997)

Ecological rationality: Different statistical environments (e.g., cue-criterion
correlations) favor different strategies and individuals adapt their strategy use
accordingly, potentially masking developmental effects

Design the statistical structure of the task to elicit specific strategies (Mata et al.,
2007)

Compare different statistical structures and assess individual or developmental
differences in adaptivity (Horn et al., 2016)

Strategy execution: Differences in judgment or choice outcomes may be due to
differences in both strategy selection and strategy execution

Adopt computational models that estimate strategy execution errors (Mata et al.,
2010; Mata et al., 2011)
Estimate developmental effects on strategy selection and execution directly using
choice vs. no-choice method, that is, comparing experimental conditions in which
individuals can select (choice) or simply execute (no-choice) particular strategies
(Siegler and Lemaire, 1997)

Fig. 2. When presented with a simple binary choice gamble there are different strategies.
The hardmax choice rule deterministically chooses the option with the higher expected
value. Other strategies, such as minimax and maximax, only use part of the information
that is presented. Maximax tries to maximize to maximum possible gain and minimax
tries to minimize the maximum possible loss. Although they may yield seemingly similar
behavior, they rely on different mental processes. Furthermore, even though these stra-
tegies may sometimes be captured by a parametric model such as cumulative prospect
theory parameterizations (Pachur et al., 2017), they make different predictions about
what happens on algorithmic and neural level (e.g., no representation of expected utility,
no integration of possible outcomes).
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activity in the parietal cortex that reflected differences in EV between
choice options. In contrast, for those who seemed to apply the non-
compensatory strategy, their activation in the dorsomedial prefrontal
cortex associated with greater conflict on the attribute level. If the
authors would have used a single model to interpret the patterns of
activity, it would have most likely led to a misguided interpretation.
The examples discussed above suggest that it may be helpful to

distinguish different types of strategies when understanding the life-
span development of judgment and decision processes. The strategy
approach, however, is not without empirical and conceptual challenges.
For example, empirically, acknowledging heterogeneity in strategy use
forces researchers to collect appropriately large samples to capture the
cognitive and neural processes of each of the hypothesized strategy
types. Conceptually, researchers face the problem of determining the
space of hypothesized strategies a priori so as to avoid the problem of
dealing with an intractable large number of strategies – the strategy
sprawl problem (Scheibehenne et al., 2013). Fortunately, there are
several possible approaches to deal with these challenges. We present
an overview of the main problems, possible solutions, and some refer-
ences to past exemplary work in Table 1.

4. Reinforcement learning models

In the previous two paragraphs, we primarily focused on decisions
from description, that is, tasks in which all the information that is ne-
cessary for making the decision is available (e.g., information about the
value and the probability of an outcome, see Figs. 1 B and 2). In the
world outside the laboratory such scenarios exist, for example, when
making decisions between two different medical treatments with
known risks and benefits. However, they are relatively rare; in most
cases, we have to learn the expected value (EV) of choice options from
experience (Hertwig and Erev, 2009). Moreover, we live in dynamically
changing environments, which means that we have to constantly adjust
our expectations. To do so, we often rely on trial and error learning
processes, which undergo substantial developmental changes over the
life course. In recent years, several research groups became interested
in these processes and applied a range of experimental tasks (e.g., IGT,
multi-armed bandit or reversal-learning tasks) to study different aspects
of experiential learning. In most of these studies, researchers relied on
descriptive summary statistics in their analyses (e.g., percentage of
correct choices; (Cauffman et al., 2010; Denburg et al., 2005; Eppinger
et al., 2008; Eppinger et al., 2009; Hämmerer et al., 2011; Hooper et al.,
2004)). However, the use of these performance measures may result in
imprecise or even misleading interpretations of the underlying com-
putational and neural mechanisms. For example, children and older
adults often show similar limitations in learning under uncertainty.
However, the computational mechanisms that lead to these learning
impairments may differ substantially between groups (Hämmerer and
Eppinger, 2012), which may not be evident from descriptive analyses
alone. To study learning under uncertainty researchers often use
probabilistic choice tasks in which participants have to learn the EV of
different options based on probabilistic reward (e.g., reward in 80%
versus 60% of the cases). In such tasks, similar performance levels in
children and older adults may either emerge from estimating the EV of
the choice option too rapidly, that is, by ignoring the recent outcome
history or by learning too slowly, i.e., by considering too much of the
outcome history (Nassar et al., 2010). From a psychological point of
view, learning too rapidly can be described as a tendency to change
expectations about choice options too quickly. In the above described
choice task example, this means that a participant is heavily influenced
by each outcome and too eager to shift to a different choice option
when the outcome does not match the expectation. In contrast, learning
too slowly means that outcomes of decisions are not sufficiently con-
sidered. Thus, the learner tends to ignore the feedback. Alternatively,
similar performance levels in children and older adults could be due to
opposing exploration strategies. For example, consider yourself grocery

shopping in a super market in a new (unknown) country. You will have
to decide between various different types of e.g. cereals. Without any
prior knowledge, the best thing that you can do is to sample (explore)
the different options that you have. However, exploring too much re-
sults in choosing too many low-reward options, whereas exploring too
little can lead to missing out on preferable options (Wilson et al., 2014).
What these examples mean to illustrate is that being able to assess these
different updating and exploration strategies may allow us to better
understand and disambiguate lifespan age differences in learning and
decision-making.
As outlined in (Hämmerer and Eppinger, 2012) it may also be that

different underlying neurobiological mechanisms contribute to the
seemingly similar performance profiles in children and older adults. As
such, the observation that different age groups show the same perfor-
mance impairments may not be sufficient to conclude that these are due
to changes in similar neurobiological processes. As we argued above,
computational models may help researchers to develop and test more
specific theories about the mechanisms underlying developmental dif-
ferences in learning and decision making and to identify the cognitive
and neurobiological processes from which these differences emerge. In
the following, we describe a basic computational implementation of
reinforcement learning (RL), the so-called Rescorla-Wagner model and
how it can be applied to study learning processes across development
and aging (Daw, 2011, 2014; Niv and Schoenbaum, 2008; Sutton and
Barto, 1998). RL theory offers formal models for learning from inter-
action with the environment when an individual has no direct in-
structions as to what actions to take. Accordingly, previous experiences
of reward are used to form expectations about outcomes of future
choices.
The Rescorla-Wagner model (and its many derivatives) relies on a

simple principle of updating expectations based on prediction errors
(Daw, 2011; Sutton and Barto, 1998). This model is often applied in
simple tasks as in the example above (Fig. 3A), where participants are
required to repeatedly choose one of two options (e.g., blue (B) versus
red (R)) that provide probabilistic feedback, with the goal of max-
imizing rewards.
We assume that participants start the with a certain expectation

about the two options (e.g., the EV is 0 for both B and R (Fig. 3B)) and
subsequently use trial and error information to approximate the EV of
each option. The basic idea of the Rescorla-Wagner model is that value
expectations are sequentially updated based on the difference between
the EV and the received reward: the prediction error δ

= r Q c( )t t t t (3)

where rt is the received reward at time t andQ c( )t t is the EV of choice ct
(B or R) at time t (see Fig. 3B). This prediction error will subsequently
be used to update the EV associated with choosing option B or R

= ++Q c Q c( ) ( ) · .t t t t t1 (4)

Thus, in this algorithm, the EV is updated in the direction of the
prediction error to improve the accuracy of expectations. The predic-
tion error is multiplied by a learning rate α to scale the influence of the
prediction error on the updated stimulus value. A high learning rate
(∼1) will lead to an update in favor of the most recent outcomes
whereas with a low learning rate (∼0) the stimulus value is less af-
fected by the outcome. Thus, the learning rate parameter specifies to
what extent new outcomes affect reward expectations and can dis-
sociate participants who learn rapidly from participants who learn
slowly (see example above). In addition, in most of the learning sce-
narios you have two or more options that you can choose between (as in
the example above). Thus, in order to make a decision you have to
compare the value of the options and translate these values into choice
probabilities. In many RL applications, this is achieved with the softmax
function as described above (eq. 2). This parameter is often called ex-
ploration term and thus determines the degree to which the choice
options are explored (see grocery shopping example above).
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To illustrate how RL models can be used to dissociate behavioral
performance profiles in different groups we can simulate behavior of a
fast and a slow learner (a learner with a high or low learning rate):
Fig. 4 shows behavior of the two RL models (Fig. 4A,B) and the average
performance (Fig. 4C) across simulations in the above descried two-
armed bandits task. The comparison is based on 500 simulations each
consisting of 30 trials. Both models haven an exploration parameter
θ=5. However, behavior of model 1 (Fig. 4A) was generated using a
high learning rate (α=0.6) with the effect that the EV of model 1
fluctuates wildly. Model 2 (Fig. 4B), in contrast, uses a low learning rate
(α=0.05), which consequently leads to a slow change in the EV. As can
be nicely seen, although the underlying parameters are clearly

different, the average performance of both models is similar.
This simple example demonstrates both promises and pitfalls of

computational modeling. It suggests that observed behavioral effects
can potentially be generated by different combinations of parameters
that may be captured using computational models. However, it also
demonstrates the need for careful experimental design: To reliably
identify parameter differences between groups or individuals, one
needs to carefully think about experimental task conditions that allow
to dissociate these parameters (see also Box 3).
Taken together, one of the advantages of computational RL ap-

proaches for developmental science is that they allow us to get access to
latent variables (such as learning rates or exploration parameters) that
cannot be accessed with descriptive approaches alone. These variables
may help us to disambiguate behavioral profiles of different age groups
and may provide us with a better mechanistic understanding of de-
velopmental differences.

4.1. Implications for imaging

Beyond global parameters such as learning rate or exploration
parameter, which are estimated on the individual subject level, RL
models can also be used to derive trial-by-trial estimates of two other
latent variables: the reward prediction error δt and the EV Qt+1 of the
choice options (actions). When performance differences in learning
occur between two different age groups, an obvious question of com-
putational interest is whether these differences are associated with
changes in reward prediction error signaling or the representation of EV
in different cortical or subcortical areas. In order to answer this ques-
tion, it is necessary to construct an fMRI design matrix that models the
task events (e.g., decision, outcome) and includes a term that reflects
the extent to which an event response is modulated by the parametric
variable (the prediction error or EV, see Fig. 3B). Such a design matrix
can be fit to the fMRI data using standard analysis software and the
resulting coefficients for these modulator terms provide a quantitative
measure of the relationship between the BOLD signal and the latent
variable of interest (e.g., reward prediction error). Thus, in principle
this measure can be used to test for differences in neural computations
underlying learning (Fig. 3B).
Several recent studies have taken advantage of these approaches

and show evidence for differences in the correlation between model-
derived prediction errors and BOLD activity in the ventral striatum in
children and adolescents (Christakou et al., 2013; Hauser et al., 2015;
Javadi et al., 2014; van den Bos et al., 2012) as well as older adults
(Chowdhury et al., 2013; Eppinger et al., 2013a; Samanez-Larkin et al.,
2014). Most of this work has focused on model-free RL, using for ex-
ample the Rescorla-Wagner model described above. Recently, however,
there is an increasing interest in more complex types of RL (“model-
based” learning), which involve learning of a forward model of the
environment that can be used for planning (Daw et al., 2005; Dolan and
Dayan, 2013). Model-based learning may be advantageous, especially
in complex environments, because it allows more sophisticated beha-
vioral strategies than model-free learning. However, this advantage
comes at the cost of higher demands on, for example, working memory
and attention, which makes it an interesting target for research in
lifespan cognitive neuroscience (Decker et al., 2016; Eppinger et al.,
2013b).
In a recent age-comparative study, Nassar et al. (2016) used RL

principles in combination with Bayesian methods to model learning
dynamics in uncertain and changing environments. Using a predictive
inference task, the authors examined age-related changes in the factors
that affect trial-to-trial adjustments of learning rates. The results sug-
gested that age-related learning deficits in older adults are due to a
specific deficit in representing uncertainty. This deficit may not directly
affect prediction error signaling but rather the computation of the
learning rate, which, as described above, determines the degree to
which prediction errors are considered during learning.

Fig. 3. Reinforcement learning (RL) and model-based fMRI analyses. A) Example of a
two-armed bandit task. Participants are required to choose between the blue and red
option, which is followed by a reward or a punishment. B) Reward distribution of the blue
and the red option and application of an RL model. On average, the blue option is as-
sociated with reward, the red option is associated with punishment. Choices indicate that
the model is able to learn that the blue option is associated with higher reward. As a
consequence of a preference for the blue option, the model receives rewards on most
trials. Across trials, the model approximately learns the expected value (EV) of both
options. The prediction error (PE) indicates the difference between received rewards and
EVs and can be utilized to adjust EVs. Finally, model-parameters can be used as para-
metric regressors in neuroimaging analyses. Note that the predicted BOLD signal of re-
wards and PEs can go in opposite directions.
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To conclude, RL offers a theoretical framework to study learning
and decision making across the lifespan. The key advantage of these
computational models is that they allow us to estimate latent variables
such as prediction errors or the learning rate that cannot be assessed
using descriptive models. Another important advantage is that RL
models can be used to simulate the impact of developmental differences
on behavior (see Nassar et al., 2016; Palminteri et al., 2016). This leads
to a considerable increase in the specificity of predictions regarding
developmental differences in learning and decision processes. Finally,
model parameters can be used to inform fMRI or EEG analyses which
may allow to identify the neurobiological mechanisms underlying de-
velopmental changes in learning. However, despite all these potential
advantages, in practice, there are also many technical hurdles that have
to be tackled. In Box 3 we focus on a few of the issues that are parti-
cularly relevant for developmental comparisons.

5. General discussion

In this paper, we have provided an overview about how computa-
tional models of cognition can be used to study age-related changes in
psychological processes and the underlying neurobiological mechan-
isms across the human lifespan. The core idea of this neuro-computa-
tional approach is that formalized models can provide us with me-
chanistic links between verbal descriptions of behavior and its cognitive
and neurobiological implementations.
Specifically, we propose that computational models allow us to

address two current problems in developmental cognitive neuroscience:
1) The problem of making predictions about behavior and the under-
lying neurobiology that are specific enough to falsify verbal theories
(specificity problem) and 2) The problem of capturing the identity of
developmental processes (identity problem). We have shown applica-
tions of computational neuroscience approaches in two major domains
of decision making: decisions from description and decisions from ex-
perience. Here we have focused on the use of models to describe that
behavior, note that there is already a wealth of developmental neu-
roscience studies on these topics (Hartley and Somerville, 2015).
In both of these domains computational approaches in combination

with neuroimaging can significantly advance our mechanistic under-
standing of the underlying processes. This has led to the development of
new fields such as computational psychiatry which aims to provide a
mechanistic understanding of psychiatric disorders that can guide
theory-based clinical interventions (Ahn and Busemeyer, 2016; Huys
et al., 2016). Many of the disorders under study (such as schizophrenia,
anxiety, addiction or ADHD) develop during late childhood and ado-
lescence. Therefore, any type of complete theory utilized to explain
these disorders has to incorporate a normative perspective of human
development. The same is true for aging-related diseases such as

Parkinson’s disease or dementia. Yet, we are far away from such neuro-
computational theories of development and aging. The aim of this work
is to provide a starting point for the development of such theories and
to encourage researchers to adopt neuro-computational approaches.
It is obvious that there are important questions and research stra-

tegies that we have not covered. For example, there is an emerging
literature on developmental differences in perceptual decision making
and the use of drift diffusion models to discern different perceptual
decision making processes (Ratcliff et al., 2006; Schuch and Konrad,
2017; Spaniol et al., 2006; Thompson et al., 2016). Furthermore, there
is an increasing interest in studying how the effort that is involved in
making a decision affects choice behavior. So far there are only a few
studies on age differences in effortful decision making (Benozio and
Diesendruck, 2015; Westbrook et al., 2013) and the existing computa-
tional approaches (Kool et al., 2016; Shenhav et al., 2013) have not
(yet) been implemented. We have not addressed a core dilemma in
decision making, the question how we solve the trade-off between ex-
ploration and exploitation and how this changes across development
(Somerville et al., 2017; Wilson et al., 2014). Finally, we also ignored
the extensive literature on neural network modeling of development
(Mareschal and Shultz, 1996; Plunkett et al., 1997). These models
provide (even) more complex perspectives on cognitive development
and aging and may be well suited to address the identity problem.
With respect to the neuroscience approaches we focused on fMRI,

but there are new ways of analyzing EEG data using single trial ap-
proaches which are promising (Fischer and Ullsperger, 2013) and there
are several other recent examples of extremely fruitful combinations of
computational modeling and psychophysiological measures (Cavanagh
et al., 2014; Nassar et al., 2012).
As outlined there are several potential pitfalls when applying

computational models to behavioral data and in using the outcomes of
modeling to inform neuroscience data. Some of these pitfalls are spe-
cific to developmental research questions, others are more general and
our review of these issues is certainly not exhaustive (for more detailed
descriptions please refer to (Daw, 2011; Nassar and Frank, 2016;
Palminteri et al., 2016) and to (Redish and Gordon, 2016) for an
overview of uses in psychiatry). Given the increasing interest in com-
putational neuroscience methods it is important to note that there are
several non-trivial inferential problems regarding 1) whether and to
which degree a model actually fits the data and 2) what correlations
between computational parameters and neurobiological signals actually
reflect. The latter point refers to the fact that with the current neuroi-
maging approaches we cannot make causal inferences about model
parameters and neurobiological signals. That is, even though it may be
tempting to assume that, for example, learning deficits in older adults
are due to diminished striatal prediction error signals, the relationship
still remains a correlative one and typically activity in several other

Fig. 4. Simulations using a reinforcement learning (RL)
model with different learning rate but equal exploration
parameters. A) Rapidly learning RL model with a learning
rate α=0.6 and exploration term θ=5. B) Slowly learning
model with a learning rate α=0.05. C) Although models
have different learning rate parameters, mean performance
across 500 simulations with 30 trials each is similar. Error
bars represent the standard deviation of the mean between
the simulations.
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Box 3
Computational Modeling of Lifespan Differences

As outlined above there are several advantages of the application of computational models in developmental cognitive neuroscience
studies. However, in practice, there are also many technical hurdles that can impede these lofty research goals. In the following section, we
will focus on a few of these issues that are particularly relevant for developmental comparisons.
Model comparison
Identifying a suitable model of behavior generally requires comparing the fit of several candidate models. For example, several re-

searchers compared RL models with a single learning rate and models with a separate learning rate for positive and negative outcomes (van
den Bos et al., 2012). Intuitively, model comparison generally involves some assessment of how likely candidate models would be to
generate the observed behavior; however, another important consideration is model complexity. Models that have more freedom to explain
nuances in behavior (and nuances in measurement noise) should be penalized for any performance gains achieved through overfitting
(capturing variability in the noise). This is often done using penalized likelihood-based metrics such as the Akaike information criterion
(AIC) and Bayesian information criterion (BIC), which penalize complexity based on parameter number and can be appropriate under a
circumscribed set of assumptions. A more robust approach is to compute out-of-sample likelihoods through k-fold cross-validation or leave-
one-out procedures (Friedman et al., 2001). Out-of-sample techniques are robust to non-independence of data across trials and subjects,
making them ideally suited for model comparison in hierarchical models where dependencies between subjects are modeled directly
(Vehtari et al., 2016). In general, out-of-sample methods are justified under a wider range of conditions and can capture more nuanced
forms of complexity. In either case, best practice is to always validate the model using posterior-predictive checking to verify that the “best
fitting” model is likely to generate behavioral data that look like those produced by human subjects (see below).
Note also that model comparison is another way of explicitly testing different theories against each other given the data, which is, as we

argued before (van den Bos and Eppinger, 2016) very hard to do with descriptive models. As pointed out in Table 1 (identification)
simulations can also be used a priori to check in advance whether an experimental setting is even capable of distinguishing between
selected models (Mata et al., 2007; Mata et al., 2012b; von Helversen et al., 2010).
Posterior-predictive checking
One of the first steps in computational analyses is to find out whether the model that we have used fits the patterns of behavior shown

by the participants. Just looking at the parameter values or goodness of fit will not reveal this; an insufficient model can provide highly
misleading parameterizations of behavior (Nassar and Gold, 2013; Palminteri et al., 2016). During posterior-predictive checking (Box,
1980; Gelmanet al., 1996), we use the best fitting computational models to simulate data. These simulated data are then submitted to the
same descriptive analyses that have been used to analyze the acquired (participant) data (Nassar and Frank, 2016). In some cases, this
procedure might reveal that the effects observed in the simulated data closely resemble those observed in subject’s data. In other cases, the
comparison may reveal a shortcoming of the model that suggests that the model architecture needs to be changed in order capture the data.
Group differences in model fit
A relevant concern for lifespan research is the possibility that two groups of subjects (e.g., younger and older adults) might be best

described by different computational models. First, this may reflect true group differences in strategy use (which may be the result you were
expecting). In this case, it will not be very meaningful to select a single model, for instance the one that fits the combined data of the groups
the best, and pretend that it is the generative model for all participants. However, in some cases it could be that there exists a meaningful
hybrid model that includes the features necessary to describe each group, mixed with a single parameter that governs the relative con-
tributions of each model (Daw et al., 2011; Nassar et al., 2010). For example, recent age-comparative studies using such hybrid models
showed evidence for qualitative changes in model-free and model-based learning mechanisms across the human lifespan (Decker et al.,
2016; Eppinger et al., 2013b).
Individual versus group based parameter estimation
After model selection, the free parameters of the model of interest (such as the learning rate and exploration term) are generally

estimated in order obtain trial-wise latent variables (e.g., prediction error) and to identify parameter differences between groups. On one
extreme, models could be fit individually to each subject, and trial-wise latent variables could be extracted according to the model that best
fits that particular subject. On the other extreme, the model could be run across data for all subjects using a set of “average” parameters,
such that trial-wise latent variables are computed in the same way for each subject. Each of these approaches has its shortcomings; fitting to
individual subjects leads to imprecision from limited trial data, whereas group average parameters may not provide a particularly good
characterization of any particular subject and thus result in the selection of the wrong generative model (Wulff and van den Bos, 2017). A
compromise between these methods is to use a hierarchical approach, such that estimates for individual subjects are constrained by their
own data, as well as a group level prior that incorporates data from other subjects. In this way, parameter estimates for all subjects, but
particularly those for subjects with limited or highly variable behavioral measurements, will be pulled toward the mean parameter estimate
across the entire group “shrinking” the range of parameter estimates. In principle, this can be repeated at multiple levels of analysis, for
example, in a nested model that includes a global prior distribution from which parameters for individual age groups are sampled. In-
dividual parameters are then sampled from the lowest level such that they are pulled toward the mean of their own parameter distribution
as well as the global mean. Note that the hierarchical approach does require making explicit modeling decisions about the prior distribution
and form of hierarchy, and thus care should be taken to ensure that results are not overly conditioned on these choices (Gelman et al.,
2014). That said, non-hierarchical models also make implicit assumptions about prior distributions (improper uniform) and relationships
between subjects (either zero or full pooling) that could affect results.
Linking latent computational variables to indirect neural measurements
Once parameters are estimated, trial-wise parameters can be extracted from the properly parameterized model and linked to indirect

measures of neural function such as fMRI or EEG data. This can be done by including trial-wise latent variables from the computational
model as an explanatory variable in a GLM to explain trial-wise physiological measurements. One important consideration in this process is
how to normalize trial-wise variables; if using either individual subject or hierarchical fitting approaches, it is important to normalize the
variance (z-score) of the trial-wise latent variables for each individual subject, to ensure that detected differences in regression coefficients
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areas also correlates with prediction errors (Hayden et al., 2011;
Schultz and Dickinson, 2000). To tackle the question of causality, we
will have to rely on non-invasive brain stimulation methods (e.g.,
rTMS) or pharmacological manipulations (Chowdhury et al., 2013), and
engage in cross-species comparisons (e.g., involving optogenetic ma-
nipulations in rodents). In addition, the correlation (or lack thereof)
between computational parameters and neuroscience data can also be
used in model selection itself. Often the computational model is fit on
the behavioral data alone, but to the extent that the model makes
predictions about neural processes, model selection can also be (si-
multaneously) constrained by neural data. This is an exciting future
direction in computational neuroscience that can further our con-
fidence in the identification of cognitive processes underlying life span
changes in behavior (Turner et al., 2013).
We are aware of the valid concern that computational neuroscience

approaches may lead to a segmentation of behavior into “molecular”
psychological and neurobiological processes that are, at some point, far
removed from the behavior that was originally set out to be explained.
That is, the jargon associated with increasingly complex computational
models may become meaningless if the models cannot speak to existing
psychological theories of behavior. It is therefore crucial to use our
increasing understanding of the neuro-computational mechanisms to
answer the question of why humans of different ages behave in a cer-
tain way, by finding ways of linking the algorithmic level to back the
level of verbal theories.
Finally, it is important to point out that computational modeling

cannot replace good experimental design, but rather can inform it. That
is, the value of a computational model is constrained by the value of the
experimental design that it is associated with. Even if the model could
perfectly explain the behavior on a specific task, and the accompanying
neural processes, it will be of limited value if this task has no external
validity. For instance, adolescents probably only rarely encounter
“risky” choices where they are presented with full information about
probabilities and outcomes such as is often done in monetary gambles
(see Fig. 1B). Thus, one may wonder how informative age differences in
parameters of pure risky choice models will be (cf. (van den Bos and
Hertwig, 2017)). In addition, experimental tasks are often simplified in
order to capture one specific feature of the real-world environment or
one isolated psychological process. This strategy may limit external
validity because it may miss out on crucial complexities that explain
real world behavior. Having a good computational model will provide a
framework for understanding how multiple variables interact (and
change over time) and therefore may allow for the design of more

complex, externally valid experiments.
To conclude, we think that neuro-computational approaches have a

tremendous potential for studying human development across the
lifespan. Computational methods can provide access to latent processes
that are not accessible with descriptive methods and may thus foster the
development of mechanistic theories of normative development. This
allows specific predictions about brain behavior relationships in dif-
ferent developmental groups (specificity problem) and may enable us to
identify the nature of developmental processes (identity problem).

Acknowledgments

We would like to thank Joni Shuchat and Robert Lorenz for com-
ments on previous versions of this manuscript. This research was in part
funded by grants of the German Research Foundation (Deutsche
Forschungsgesellschaft), SFB 940, subproject B7 (B.E.), and the Open
Research Area (ORA), ASTA 176 grant (W.B.).

References

Ahn, W.Y., Busemeyer, J.R., 2016. Challenges and promises for translating computational
tools into clinical practice. Curr. Opin. Behav. Sci. 11, 1–7. http://dx.doi.org/10.
1016/j.cobeha.2016.02.001.

Albert, D., Chein, J., Steinberg, L., 2013. The teenage brain: peer influences on adolescent
decision making. Curr. Direct. Psychol. Sci. 22 (2), 114–120. http://dx.doi.org/10.
1177/0963721412471347.

Amso, D., Scerif, G., 2015. The attentive brain: insights from developmental cognitive
neuroscience. Nat. Rev. Neurosci. 16 (10), 606–619. http://dx.doi.org/10.1038/
nrn4025.

Betsch, T., Lehmann, A., Lindow, S., Lang, A., Schoemann, M., 2016. Lost in search: (Mal-)
adaptation to probabilistic decision environments in children and adults. Dev.
Psychol. http://dx.doi.org/10.1037/dev0000077.

Bays, P.M., Catalao, R.F.G., Husain, M., 2009. The precision of visual working memory is
set by allocation of a shared resource. J. Vis. 9 (10), 7.1–7.11. http://dx.doi.org/10.
1167/9.10.7.

Benozio, A., Diesendruck, G., 2015. From effort to value: preschool children’s alternative
to effort justification. Psychol. Sci. 26 (9), 1423–1429. http://dx.doi.org/10.1177/
0956797615589585.

Blankenstein, N.E., Crone, E.A., van den Bos, W., van Duijvenvoorde, A.C.K., 2016.
Dealing with uncertainty: testing risk- and ambiguity-attitude across adolescence.
Dev. Neuropsychol. 41 (1–2), 77–92. http://dx.doi.org/10.1080/87565641.2016.
1158265.

Botvinick, M.M., 2007. Conflict monitoring and decision making: reconciling two per-
spectives on anterior cingulate function. Cognit. Affect. Behav. Neurosci. 7 (4),
356–366. http://dx.doi.org/10.3758/CABN.7.4.356.

Box, G.E.P., 1980. Sampling and Bayes’ inference in scientific modelling and robustness.
J. R. Stat. Soc. Ser. A (Gen.) 143 (4), 383–430. http://dx.doi.org/10.2307/2982063.

Bröder, A., Gaissmaier, W., 2007. Sequential processing of cues in memory-based mul-
tiattribute decisions. Psycho. Bull. Rev. 14 (5), 895–900. http://dx.doi.org/10.1093/

are not simply picking up on differences in scale emerging from the fitting process.
Parameter recovery
In order to interpret in differences in the best fitting parameters across groups, it is important to show that the model fitting procedures

employed are capable of identifying meaningful and stable differences in any of the parameters. For instance, when there are interactions
between parameters, it is possible that there are many different parameter settings that generate the same pattern of behavior. Simulating
data from models that take a range of different combinations of parameter values and attempting to recover those “true” parameters by
fitting the model directly to the data it generated will be informative. Only if these analyses reveal that the simulated and recovered
parameter values are related in a systematic and continuous fashion they can be used for meaningful age comparisons.
Linking computational changes to differences in behavior across developmental groups
Once a computational model has been identified, a key question is whether the constructs captured by its free parameters (e.g. learning

rate) differ systematically across groups. When data of individual subjects are fit separately (e.g., by choosing the model parameters that
maximize the likelihood of the individual data), this can simply be done by comparing the group median parameter fits (e.g., using a
Wilcoxon signed rank test). When interpreting a parameter difference, it is often useful to know whether behavioral differences are
selective to a single computational factor (e.g., learning rate for gains but not for losses). To do so, it is important to remember that the
existence of a statistical difference in one parameter and the lack of a difference in another parameter does not necessarily imply selectivity;
claims of specificity should rely on explicit comparisons of age differences across the different parameters (Nieuwenhuiset al., 2011). In a
hierarchical model, parameter differences between groups can be estimated by examining the posterior distribution over group differences
directly, or by computing credible intervals over likely parameter differences.

W. van den Bos et al. Developmental Cognitive Neuroscience 33 (2018) 42–53

51

http://dx.doi.org/10.1016/j.cobeha.2016.02.001
http://dx.doi.org/10.1016/j.cobeha.2016.02.001
http://dx.doi.org/10.1177/0963721412471347
http://dx.doi.org/10.1177/0963721412471347
http://dx.doi.org/10.1038/nrn4025
http://dx.doi.org/10.1038/nrn4025
http://dx.doi.org/10.1037/dev0000077
http://dx.doi.org/10.1167/9.10.7
http://dx.doi.org/10.1167/9.10.7
http://dx.doi.org/10.1177/0956797615589585
http://dx.doi.org/10.1177/0956797615589585
http://dx.doi.org/10.1080/87565641.2016.1158265
http://dx.doi.org/10.1080/87565641.2016.1158265
http://dx.doi.org/10.3758/CABN.7.4.356
http://dx.doi.org/10.2307/2982063
http://dx.doi.org/10.1093/acprof:oso/9780199744282.003.0020


acprof:oso/9780199744282.003.0020.
Cauffman, E., Shulman, E.P., Steinberg, L., Claus, E., Banich, M.T., Graham, S., Woolard,

J., 2010. Age differences in affective decision making as indexed by performance on
the Iowa Gambling Task. Dev. Psychol. 46 (1), 193–207. http://dx.doi.org/10.1037/
a0016128.

Cavanagh, J.F., Wiecki, T.V., Kochar, A., Frank, M.J., 2014. Eye tracking and pupillo-
metry are indicators of dissociable latent decision processes. J. Exp. Psychol.: Gen.
143 (4), 1476–1488. http://dx.doi.org/10.1037/a0035813.

Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q.J.M., Düzel, E., Dolan,
R.J., 2013. Dopamine restores reward prediction errors in old age. Nat. Neurosci. 16
(5), 648–653. http://dx.doi.org/10.1038/nn.3364.

Christakou, A., Gershman, S.J., Niv, Y., Simmons, A., Brammer, M., Rubia, K., 2013.
Neural and psychological maturation of decision-making in adolescence and young
adulthood. J. Cognit. Neurosci. 25 (11), 1807–1823. http://dx.doi.org/10.1162/jocn.

Collins, A.G.E., Frank, M.J., 2012. How much of reinforcement learning is working
memory, not reinforcement learning? A behavioral, computational, and neurogenetic
analysis. Eur. J. Neurosci. 35 (7), 1024–1035. http://dx.doi.org/10.1111/j.1460-
9568.2011.07980.x.

Crone, E.A., van Duijvenvoorde, A.C.K., Peper, J.S., 2016. Annual research review: neural
contributions to risk-taking in adolescence-developmental changes and individual
differences. J. Child Psychol. Psychiatry 57 (3), 353–368. http://dx.doi.org/10.1111/
jcpp.12502.

Daw, N.D., Niv, Y., Dayan, P., 2005. Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8 (12),
1704–1711. http://dx.doi.org/10.1038/nn1560.

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., Dolan, R.J., 2011. Model-based in-
fluences on humans’ choices and striatal prediction errors. Neuron 69 (6),
1204–1215. http://dx.doi.org/10.1016/j.neuron.2011.02.027.

Daw, N.D., 2011. Trial-by-trial data analysis using computational models. In: Delgado,
M.R., Phelps, E.A., Robbins, T.W. (Eds.), Decision Making, Affect, and Learning:
Attention and Performance XXIII. Oxford University Press, Oxford, pp. 3–38. http://
dx.doi.org/10.1093/acprof:oso/9780199600434.003.0001.

Daw, N.D., 2014. 16 advanced reinforcement learning. Neuroeconomics 299–320. http://
dx.doi.org/10.1016/B978-0-12-416008-8.00016-4.

Decker, J.H., Otto, A.R., Daw, N.D., Hartley, C.A., 2016. From creatures of habit to goal-
directed learners: tracking the developmental emergence of model-dased reinforce-
ment learning. Psychol. Sci. 27 (6), 848–858. http://dx.doi.org/10.1177/
0956797616639301.

Denburg, N.L., Tranel, D., Bechara, A., 2005. The ability to decide advantageously de-
clines prematurely in some normal older persons. Neuropsychologia 43 (7),
1099–1106. http://dx.doi.org/10.1016/j.neuropsychologia.2004.09.012.

Dolan, R.J., Dayan, P., 2013. Goals and habits in the brain. Neuron 80 (2), 312–325.
http://dx.doi.org/10.1016/j.neuron.2013.09.007.

Eppinger, B., Kray, J., Mock, B., Mecklinger, A., 2008. Better or worse than expected?
Aging, learning, and the ERN. Neuropsychologia 46 (2), 521–539. http://dx.doi.org/
10.1016/j.neuropsychologia.2007.09.001.

Eppinger, B., Mock, B., Kray, J., 2009. Developmental differences in learning and error
processing: evidence from ERPs. Psychophysiology 46 (5), 1043–1053. http://dx.doi.
org/10.1111/j.1469-8986.2009.00838.x.

Eppinger, B., Schuck, N.W., Nystrom, L.E., Cohen, J.D., 2013a. Reduced striatal responses
to reward prediction errors in older compared with younger adults. J. Neurosci. 33
(24), 9905–9912. http://dx.doi.org/10.1523/JNEUROSCI.2942-12.2013.

Eppinger, B., Walter, M., Heekeren, H.R., Li, S.-C., 2013b. Of goals and habits: age-related
and individual differences in goal-directed decision-making. Front. Neurosci. 7
(December), 253. http://dx.doi.org/10.3389/fnins.2013.00253.

Fechner, H.B., Pachur, T., Schooler, L.J., Mehlhorn, K., Battal, C., Volz, K.G., Borst, J.P.,
2016. Strategies for memory-based decision making: modeling behavioral and neural
signatures within a cognitive architecture. Cognition 157, 77–99. http://dx.doi.org/
10.1016/j.cognition.2016.08.011.

Fechner, G. (1966). Elements of Psychophysics, vol. 1 (1860). Translated by Adler HE.
Fischer, A.G., Ullsperger, M., 2013. Real and fictive outcomes are processed differently

but converge on a common adaptive mechanism. Neuron 79 (6), 1243–1255. http://
dx.doi.org/10.1016/j.neuron.2013.07.006.

Friedman, J., Hastie, T., Tibshirani, R., 2001. The Elements of Statistical Learning.
Gelman, A., Meng, X.-L., Stern, H., 1996. Posterior predictive assessment of model fitness

via realized discrepancies. Stat. Sin. 6 (4), 733–807 10.1.1.142.9951.
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2014.

Bayesian Data Analysis, vol. 2 CRC Press, Boca Raton, FL.
Gigerenzer, G., Gaissmaier, W., 2011. Heuristic decision making. Ann. Rev. Psychol. 62,

451–482. http://dx.doi.org/10.1146/annurev-psych-120709-145346.
Hämmerer, D., Eppinger, B., 2012. Dopaminergic and prefrontal contributions to reward-

based learning and outcome monitoring during child development and aging. Dev.
Psychol. 48 (3), 862–874. http://dx.doi.org/10.1037/a0027342.

Hämmerer, D., Li, S.-C., Müller, V., Lindenberger, U., 2011. Life span differences in
electrophysiological correlates of monitoring gains and losses during probabilistic
reinforcement learning. J. Cognit. Neurosci. 23, 579–592. http://dx.doi.org/10.
1162/jocn.2010.21475.

Harbaugh, W.T., Krause, K., Vesterlund, L., 2002. Risk attitudes of children and adults:
choices over small and large probability gains and losses. Exp. Econ. 5 (1), 53–84.
http://dx.doi.org/10.1023/A:1016316725855.

Hartley, C.A., Somerville, L.H., 2015. The neuroscience of adolescent decision-making.
Curr. Opin. Behav. Sci. 5, 108–115. http://dx.doi.org/10.1016/j.cobeha.2015.09.
004.

Hauser, T.U., Iannaccone, R., Walitza, S., Brandeis, D., Brem, S., 2015. Cognitive flex-
ibility in adolescence: neural and behavioral mechanisms of reward prediction error
processing in adaptive decision making during development. NeuroImage 104,

347–354. http://dx.doi.org/10.1016/j.neuroimage.2014.09.018.
Hayden, B.Y., Heilbronner, S.R., Pearson, J.M., Platt, M.L., 2011. Surprise signals in

anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors
driving adjustment in behavior. J. Neurosci. 31 (11), 4178–4187. http://dx.doi.org/
10.1523/JNEUROSCI.4652-10.2011.

Hertwig, R., Erev, I., 2009. The description-experience gap in risky choice. Trends Cognit.
Sci. 13 (12), 517–523. http://dx.doi.org/10.1016/j.tics.2009.09.004.

Hooper, C.J., Luciana, M., Conklin, H.M., Yarger, R.S., 2004. Adolescents’ performance on
the Iowa Gambling Task: implications for the development of decision making and
ventromedial prefrontal cortex. Dev. Psychol. 40 (6), 1148–1158. http://dx.doi.org/
10.1037/0012-1649.40.6.1148.

Horn, S.S., Ruggeri, A., Pachur, T., 2016. The development of adaptive decision making:
recognition-based inference in children and adolescents. Dev. Psychol. 52 (9),
1470–1485. http://dx.doi.org/10.1037/dev0000181.

Huizenga, H.M., Crone, E.A., Jansen, B.J., 2007. Decision-making in healthy children,
adolescents and adults explained by the use of increasingly complex proportional
reasoning rules. Developmental Science 6, 814–825 10.1111/j.1467-
7687.2007.00621.x.

Huys, Q.J.M., Maia, T., Frank, M.J., 2016. Computational psychiatry as a bridge from
neuroscience to clinical applications. Nat. Neurosci. 19, 404–413.

Javadi, A.H., Schmidt, D.H., Michael, N.S., 2014. Adolescents adapt more slowly than
adults to varying reward contingencies. J. Cognit. Neurosci. 26 (12), 2670–2681.

Juslin, P., Jones, S., Olsson, H., Winman, A., 2003. Cue abstraction and exemplar memory
in categorization. J. Exp. Psychol.: Learn. Mem. Cognit. 29 (5), 924–941. http://dx.
doi.org/10.1037/0278-7393.29.5.924.

Kable, J.W., Glimcher, P.W., 2007. The neural correlates of subjective value during in-
tertemporal choice. Nat. Neurosci. 10 (12), 1625–1633. http://dx.doi.org/10.1038/
nn2007.

Kahneman, D., Tversky, A., 1979. Prospect theory: an analysis of decision under risk.
Econometrica 47, 263–292.

Khader, P.H., Pachur, T., Meier, S., Bien, S., Jost, K., Rösler, F., 2011. Memory-based
decision-making with heuristics: evidence for a controlled activation of memory re-
presentations. J. Cognit. Neurosci. 23 (11), 3540–3554. http://dx.doi.org/10.1162/
jocn_a_00059.

Kool, W., Cushman, F.A., Gershman, S.J., 2016. When does model-based control pay off?
PLoS Comput. Biol. 1–34.

Krajbich, I., Bartling, B., Hare, T., Fehr, E., 2015. Rethinking fast and slow based on a
critique of reaction-time reverse inference. Nat. Commun. 6, 1–9. http://dx.doi.org/
10.1038/ncomms8455.

Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., Maciver, M.A., Poeppel, D., 2017.
Neuroscience needs behavior: correcting a reductionist bias. Neuron 93 (3), 480–490.
http://dx.doi.org/10.1016/j.neuron.2016.12.041.

Li, S.-C., Rieckmann, A., 2014. Neuromodulation and aging: implications of aging neu-
ronal gain control on cognition. Curr. Opin. Neurobiol. http://dx.doi.org/10.1016/j.
conb.2014.07.009.

Mareschal, D., Shultz, T.R., 1996. Generative connectionist architectures and con-
structivist cognitive development. Cognit. Dev. 11, 59–88.

Mata, R., Schooler, L.J., Rieskamp, J., 2007. The aging decision maker: cognitive aging
and the adaptive selection of decision strategies. Psychol. Aging 22 (4), 796–810.
http://dx.doi.org/10.1037/0882-7974.22.4.796.

Mata, R., Wilke, A., Czienskowski, U., 2009. Cognitive aging and adaptive foraging
Behavior. J. Gerontol. Ser. B: Psychol. Sci. Soc. Sci. 64 (4), 474–481. http://dx.doi.
org/10.1093/geronb/gbp035.

Mata, R., von Helversen, B., Rieskamp, J., 2010. Learning to choose: cognitive aging and
strategy selection learning in decision making. Psychol. Aging 25 (2), 299–309.
http://dx.doi.org/10.1037/a0018923.

Mata, R., von Helversen, B., Rieskamp, J., 2011. When easy comes hard: the development
of adaptive strategy selection. Child Dev. 82 (2), 687–700. http://dx.doi.org/10.
1111/j.1467-8624.2010.01535.x.

Mata, R., Pachur, T., von Helversen, B., Hertwig, R., Rieskamp, J., Schooler, L., 2012a.
Ecological rationality: a framework for understanding and aiding the aging decision
maker. Front. Neurosci. 6http://dx.doi.org/10.3389/fnins.2012.00019. FEB.

Mata, R., von Helversen, B., Karlsson, L., Cüpper, L., 2012b. Adult age differences in
categorization and multiple-cue judgment. Dev. Psychol. 48 (4), 1188–1201. http://
dx.doi.org/10.1037/a0026084.

Mata, R., Josef, A.K., Lemaire, P., 2015. Adaptive decision making and aging. Aging
Decis. Making. http://dx.doi.org/10.1016/B978-0-12-417148-0.00006-6.

Nassar, M.R., Frank, M.J., 2016. Taming the beast: extracting generalizable knowledge
from computational models of cognition. Curr. Opin. Behav. Sci. 11, 49–54.

Nassar, M.R., Gold, J.I., 2013. A healthy fear of the unknown: perspectives on the in-
terpretation of parameter fits from computational models in neuroscience. PLoS
Comput. Biol. 9 (4), 1–6. http://dx.doi.org/10.1371/journal.pcbi.1003015.

Nassar, M.R., Wilson, R.C., Heasly, B., Gold, J.I., 2010. An approximately Bayesian delta-
rule model explains the dynamics of belief updating in a changing environment. J.
Neurosci. 30 (37), 12366–12378. http://dx.doi.org/10.1523/JNEUROSCI.0822-10.
2010.

Nassar, M.R., Rumsey, K.M., Wilson, R.C., Parikh, K., Heasly, B., Gold, J.I., 2012. Rational
regulation of learning dynamics by pupil-linked arousal systems. Nat. Neurosci. 15
(7), 1040–1046. http://dx.doi.org/10.1038/nn.3130.

Nassar, M.R., Bruckner, R., Gold, J.I., Li, S.-C., Heekeren, H.R., Eppinger, B., 2016. Age
differences in learning emerge from an insufficient representation of uncertainty in
older adults. Nat. Commun. 7, 11609. http://dx.doi.org/10.1038/ncomms11609.

Nieuwenhuis, S., Forstmann, B.U., Wagenmakers, E.-J., 2011. Erroneous analyses of in-
teractions in neuroscience: a problem of significance. Nat. Neurosci. 14 (9),
1105–1107. http://dx.doi.org/10.1038/nn.2886.

Niv, Y., Schoenbaum, G., 2008. Dialogues on prediction errors. Trends Cognit. Sci. 12 (7),

W. van den Bos et al. Developmental Cognitive Neuroscience 33 (2018) 42–53

52

http://dx.doi.org/10.1093/acprof:oso/9780199744282.003.0020
http://dx.doi.org/10.1037/a0016128
http://dx.doi.org/10.1037/a0016128
http://dx.doi.org/10.1037/a0035813
http://dx.doi.org/10.1038/nn.3364
http://dx.doi.org/10.1162/jocn
http://dx.doi.org/10.1111/j.1460-9568.2011.07980.x
http://dx.doi.org/10.1111/j.1460-9568.2011.07980.x
http://dx.doi.org/10.1111/jcpp.12502
http://dx.doi.org/10.1111/jcpp.12502
http://dx.doi.org/10.1038/nn1560
http://dx.doi.org/10.1016/j.neuron.2011.02.027
http://dx.doi.org/10.1093/acprof:oso/9780199600434.003.0001
http://dx.doi.org/10.1093/acprof:oso/9780199600434.003.0001
http://dx.doi.org/10.1016/B978-0-12-416008-8.00016-4
http://dx.doi.org/10.1016/B978-0-12-416008-8.00016-4
http://dx.doi.org/10.1177/0956797616639301
http://dx.doi.org/10.1177/0956797616639301
http://dx.doi.org/10.1016/j.neuropsychologia.2004.09.012
http://dx.doi.org/10.1016/j.neuron.2013.09.007
http://dx.doi.org/10.1016/j.neuropsychologia.2007.09.001
http://dx.doi.org/10.1016/j.neuropsychologia.2007.09.001
http://dx.doi.org/10.1111/j.1469-8986.2009.00838.x
http://dx.doi.org/10.1111/j.1469-8986.2009.00838.x
http://dx.doi.org/10.1523/JNEUROSCI.2942-12.2013
http://dx.doi.org/10.3389/fnins.2013.00253
http://dx.doi.org/10.1016/j.cognition.2016.08.011
http://dx.doi.org/10.1016/j.cognition.2016.08.011
http://dx.doi.org/10.1016/j.neuron.2013.07.006
http://dx.doi.org/10.1016/j.neuron.2013.07.006
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0155
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0160
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0160
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0165
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0165
http://dx.doi.org/10.1146/annurev-psych-120709-145346
http://dx.doi.org/10.1037/a0027342
http://dx.doi.org/10.1162/jocn.2010.21475
http://dx.doi.org/10.1162/jocn.2010.21475
http://dx.doi.org/10.1023/A:1016316725855
http://dx.doi.org/10.1016/j.cobeha.2015.09.004
http://dx.doi.org/10.1016/j.cobeha.2015.09.004
http://dx.doi.org/10.1016/j.neuroimage.2014.09.018
http://dx.doi.org/10.1523/JNEUROSCI.4652-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.4652-10.2011
http://dx.doi.org/10.1016/j.tics.2009.09.004
http://dx.doi.org/10.1037/0012-1649.40.6.1148
http://dx.doi.org/10.1037/0012-1649.40.6.1148
http://dx.doi.org/10.1037/dev0000181
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0220
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0220
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0220
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0220
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0225
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0225
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0230
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0230
http://dx.doi.org/10.1037/0278-7393.29.5.924
http://dx.doi.org/10.1037/0278-7393.29.5.924
http://dx.doi.org/10.1038/nn2007
http://dx.doi.org/10.1038/nn2007
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0245
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0245
http://dx.doi.org/10.1162/jocn_a_00059
http://dx.doi.org/10.1162/jocn_a_00059
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0255
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0255
http://dx.doi.org/10.1038/ncomms8455
http://dx.doi.org/10.1038/ncomms8455
http://dx.doi.org/10.1016/j.neuron.2016.12.041
http://dx.doi.org/10.1016/j.conb.2014.07.009
http://dx.doi.org/10.1016/j.conb.2014.07.009
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0275
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0275
http://dx.doi.org/10.1037/0882-7974.22.4.796
http://dx.doi.org/10.1093/geronb/gbp035
http://dx.doi.org/10.1093/geronb/gbp035
http://dx.doi.org/10.1037/a0018923
http://dx.doi.org/10.1111/j.1467-8624.2010.01535.x
http://dx.doi.org/10.1111/j.1467-8624.2010.01535.x
http://dx.doi.org/10.3389/fnins.2012.00019
http://dx.doi.org/10.1037/a0026084
http://dx.doi.org/10.1037/a0026084
http://dx.doi.org/10.1016/B978-0-12-417148-0.00006-6
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0315
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0315
http://dx.doi.org/10.1371/journal.pcbi.1003015
http://dx.doi.org/10.1523/JNEUROSCI.0822-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.0822-10.2010
http://dx.doi.org/10.1038/nn.3130
http://dx.doi.org/10.1038/ncomms11609
http://dx.doi.org/10.1038/nn.2886


265–272. http://dx.doi.org/10.1016/j.tics.2008.03.006.
Pachur, T., Mata, R., Schooler, L.J., 2009. Cognitive aging and the adaptive use of re-

cognition in decision making. Psychol. Aging. http://dx.doi.org/10.1037/a0017211.
Pachur, T., Suter, R.S., Hertwig, R., 2017. How the twain can meet: Prospect theory and

models of heuristics in risky choice. Cognit. Psychol. 93, 44–73. http://dx.doi.org/10.
1016/j.cogpsych.2017.01.001.

Palminteri, S., Kilford, E.J., Coricelli, G., Blakemore, S.J., 2016. The Computational
Development of Reinforcement Learning during Adolescence. PLoS Computational
Biology 6, e1004953. http://dx.doi.org/10.1371/journal.pcbi.1004953.

Paulsen, D.J., Platt, M.L., Huettel, S.A., Brannon, E.M., 2011. Decision-making under risk
in children, adolescents, and young adults. Front. Psychol. 2, 72. http://dx.doi.org/
10.3389/fpsyg.2011.00072. APR.

Payne, J.W., Bettman, J.R., Johnson, E.J., 1988. Adaptive strategy selection in decision
making. J. Exp. Psychol.: Learn. Mem. Cognit. 14 (3), 534–552. http://dx.doi.org/10.
1037/0278-7393.14.3.534.

Peters, J., Büchel, C., 2010. Neural representations of subjective reward value. Behav.
Brain Res. http://dx.doi.org/10.1016/j.bbr.2010.04.031.

Pfeifer, J.H., Allen, N.B., 2012. Arrested development? Reconsidering dual-systems
models of brain function in adolescence and disorders. Trends Cognit. Sci. 16 (6),
322–329. http://dx.doi.org/10.1016/j.tics.2012.04.011.

Pfeifer, J.H., Allen, N.B., 2016. The audacity of specificity: Moving adolescent develop-
mental neuroscience towards more powerful scientific paradigms and translatable
models. Dev.l Cognit. Neurosci. 17, 131–137. http://dx.doi.org/10.1016/j.dcn.2015.
12.012.

Plunkett, K., Karmiloff-Smith, A., Bates, E., Johnson, M.H., 1997. Connectionism and
developmental psychology. J. Child Psychol. Psychiatry 38, 53–80.

Ratcliff, R., Thapar, A., McKoon, G., 2006. Aging and individual differences in rapid two-
choice decisions. Psychon. Bull. Rev. 13, 626–635.

Redish, A.D., Gordon, J.A. (Eds.), 2016. Computational Psychiatry: New Perspectives on
Mental Illness. MIT Press.

Samanez-Larkin, G.R., Knutson, B., 2015. Decision making in the ageing brain: changes in
affective and motivational circuits. Nat. Rev. Neurosci. 16 (5), 278–289. http://dx.
doi.org/10.1038/nrn3917.

Samanez-Larkin, G.R., Worthy, D.A., Mata, R., McClure, S.M., Knutson, B., 2014. Adult
age differences in frontostriatal representation of prediction error but not reward
outcome. Cognit. Affect. Behav. Neurosci. 14 (2), 672–682. http://dx.doi.org/10.
3758/s13415-014-0297-4.

Scheibehenne, B., Rieskamp, J., Wagenmakers, E.-J., 2013. Testing adaptive toolbox
models: a Bayesian hierarchical approach. Psychol. Rev. 120 (1), 39–64. http://dx.
doi.org/10.1037/a0030777.

Scholz, A., von Helversen, B., Rieskamp, J., 2015. Eye movements reveal memory pro-
cesses during similarity- and rule-based decision making. Cognition 136, 228–246.
http://dx.doi.org/10.1016/j.cognition.2014.11.019.

Schonberg, T., Fox, C.R., Mumford, J.A., Congdon, E., Trepel, C., Poldrack, R.A., 2012.
Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: an
FMRI investigation of the balloon analog risk task. Front. Neurosci. 6 (June), 80.
http://dx.doi.org/10.3389/fnins.2012.00080.

Schuch, S., Konrad, K., 2017. Investigating task inhibition in children versus adults: a
diffusion model analysis. J. Exp.Child Psychol. 156, 143–167.

Schultz, W., Dickinson, A., 2000. Neuronal coding of prediction errors. Annu. Rev.
Neurosci. 23, 473–500. http://dx.doi.org/10.1146/annurev.neuro.23.1.473.

Shah, A.K., Oppenheimer, D.M., 2008. Heuristics made easy: an effort-reduction frame-
work. Psychol. Bull. 134 (2), 207–222. http://dx.doi.org/10.1037/0033-2909.134.2.
207.

Shenhav, A., Botvinick, M.M., Cohen, J.D., 2013. The expected value of control: an in-
tegrative theory of anterior cingulate cortex function. Neuron 79, 217–240.

Siegler, R., Lemaire, P., 1997. Older and younger adults’ strategy choices in multi-
plication: testing predictions of ASCM using the choice/no-choice method. J. Exp.
Psychol.: Gen. 126 (1), 71–92.

Siegler, R., 1999. Strategic development. Trends Cognit. Sci. 3 (11), 430–435. http://dx.

doi.org/10.1016/S1364-6613(99)01372-8.
Somerville, L.H., Sasse, S.F., Garrad, M.C., Drysdale, A.T., Abi Akar, N., Insel, C., Wilson,

R.C., 2017. Charting the expansion of strategic exploratory behavior during adoles-
cence. J. Exp. Psychol. Gen. 146, 155–164.

Spaniol, J., Madden, D.J., Voss, A., 2006. A diffusion model analysis of adult age dif-
ferences in episodic and semantic long-term memory retrieval. J. Exp. Psychol. Learn.
Mem. Cognit. 32, 101–117.

Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An Introduction. MIT Press.
Thompson, C.A., Ratcliff, R., McKoon, G., 2016. Individual differences in the components

of children’s and adults’ information processing for simple symbolic and non-sym-
bolic numeric decisions. J. Exp. Child Psychol. 150, 48–71.

Turner, B.M., Forstmann, B.U., Wagenmakers, E.-J., Brown, S.D., Sederberg, P.B.,
Steyvers, M., 2013. A Bayesian framework for simultaneously modeling neural and
behavioral data. NeuroImage 72, 193–206 10.1016/j.neuroimage.2013.01.048.

Tversky, A., Kahneman, D., 1992. Advances in prospect theory: cumulative representation
of uncertainty. J. Risk Uncertain. 5 (4), 297–323. http://dx.doi.org/10.1007/
BF00122574.

Tymula, A., Rosenberg Belmaker, L.A., Roy, A.K., Ruderman, L., Manson, K., Glimcher,
P.W., Levy, I., 2012. Adolescents’ risk-taking behavior is driven by tolerance to
ambiguity. Proc. Natl. Acad. Sci. U. S. A. 109 (42), 17135–17140. http://dx.doi.org/
10.1073/pnas.1207144109.

Vehtari, A., Gelman, A., Gabry, J., 2016. Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. arXiv 1–20. http://dx.doi.org/10.1007/s11222-
016-9696-4.

van Duijvenvoorde, A.C.K., Huizenga, H.M., Somerville, L.H., Delgado, M.R., Powers, A.,
Weeda, W.D., Figner, B., 2015. Neural correlates of expected risks and returns in risky
choice across development. J. Neurosci. 35 (4), 1549–1560. http://dx.doi.org/10.
1523/JNEUROSCI.1924-14.2015.

van Duijvenvoorde, A.C.K., Figner, B., Weeda, W.D., van der Molen, M.W., Jansen, B.R.J.,
Huizenga, H.M., 2016. Neural mechanisms underlying compensatory and non-
compensatory strategies in risky choice. J. Cognit. Neurosci. 28 (9), 1358–1373.
http://dx.doi.org/10.1162/jocn_a_00975.

van den Berg, R., Awh, E., Ma, W.J., 2014. Factorial comparison of working memory
models. Psychol. Rev. 121 (1), 124–149. http://dx.doi.org/10.1037/a0035234.

van den Bos, W., Eppinger, B., 2016. Developing developmental cognitive neuroscience:
from agenda setting to hypothesis testing. Dev. Cognit. Neurosci. 17, 138–144.
http://dx.doi.org/10.1016/j.dcn.2015.12.011.

van den Bos, W., Hertwig, R., 2017. Adolescents display distinctive tolerance to ambi-
guity and to uncertainty during risky decision making. Nat. Sci. Rep. 7, 40962.
http://dx.doi.org/10.1038/srep40962.

van den Bos, W., Cohen, M.X., Kahnt, T., Crone, E.A., 2012. Striatum-medial prefrontal
cortex connectivity predicts developmental changes in reinforcement learning. Cereb.
Cortex 22 (6), 1247–1255. http://dx.doi.org/10.1093/cercor/bhr198.

van den Bos, W., Rodriguez, C.A., Schweitzer, J.B., McClure, S.M., 2015. Adolescent
impatience decreases with increased frontostriatal connectivity. Proc. Natl. Acad. Sci.
29, E3765–E3774. http://dx.doi.org/10.1073/pnas.1423095112.

von Helversen, B., Mata, R., Olsson, H., 2010. Do children profit from looking beyond
looks? From similarity-based to cue abstraction processes in multiple-cue judgment.
Dev. Psychol. 46 (1), 220–229. http://dx.doi.org/10.1037/a0016690.

von Helversen, B., Karlsson, L., Rasch, B., Rieskamp, J., 2014. Neural substrates of si-
milarity and rule-based strategies in judgment. Front. Hum. Neurosci. 8, 809. http://
dx.doi.org/10.3389/fnhum.2014.00809.

Westbrook, A., Kester, D., Braver, T.S., 2013. What Is the subjective cost of cognitive
effort? Load, trait, and aging effects revealed by economic preference. PLoS 1 (8),
e68210.

Wilson, R.C., Geana, A., White, J.M., Ludvig, E.A., Cohen, J.D., 2014. Humans use di-
rected and random exploration to solve the explore-exploit dilemma. J. Exp. Psychol.:
Gen. 143 (6), 2074–2081. http://dx.doi.org/10.1037/a0038199.

Wulff, D.U., van den Bos, W., 2017. Modeling choices in delay discounting. Psychol. Sci.
1–5. http://dx.doi.org/10.1177/0956797616664342.

W. van den Bos et al. Developmental Cognitive Neuroscience 33 (2018) 42–53

53

http://dx.doi.org/10.1016/j.tics.2008.03.006
http://dx.doi.org/10.1037/a0017211
http://dx.doi.org/10.1016/j.cogpsych.2017.01.001
http://dx.doi.org/10.1016/j.cogpsych.2017.01.001
http://dx.doi.org/10.1371/journal.pcbi.1004953
http://dx.doi.org/10.3389/fpsyg.2011.00072
http://dx.doi.org/10.3389/fpsyg.2011.00072
http://dx.doi.org/10.1037/0278-7393.14.3.534
http://dx.doi.org/10.1037/0278-7393.14.3.534
http://dx.doi.org/10.1016/j.bbr.2010.04.031
http://dx.doi.org/10.1016/j.tics.2012.04.011
http://dx.doi.org/10.1016/j.dcn.2015.12.012
http://dx.doi.org/10.1016/j.dcn.2015.12.012
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0390
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0390
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0395
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0395
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0400
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0400
http://dx.doi.org/10.1038/nrn3917
http://dx.doi.org/10.1038/nrn3917
http://dx.doi.org/10.3758/s13415-014-0297-4
http://dx.doi.org/10.3758/s13415-014-0297-4
http://dx.doi.org/10.1037/a0030777
http://dx.doi.org/10.1037/a0030777
http://dx.doi.org/10.1016/j.cognition.2014.11.019
http://dx.doi.org/10.3389/fnins.2012.00080
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0430
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0430
http://dx.doi.org/10.1146/annurev.neuro.23.1.473
http://dx.doi.org/10.1037/0033-2909.134.2.207
http://dx.doi.org/10.1037/0033-2909.134.2.207
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0445
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0445
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0450
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0450
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0450
http://dx.doi.org/10.1016/S1364-6613(99)01372-8
http://dx.doi.org/10.1016/S1364-6613(99)01372-8
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0460
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0460
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0460
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0465
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0465
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0465
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0470
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0475
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0475
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0475
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0480
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0480
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0480
http://dx.doi.org/10.1007/BF00122574
http://dx.doi.org/10.1007/BF00122574
http://dx.doi.org/10.1073/pnas.1207144109
http://dx.doi.org/10.1073/pnas.1207144109
http://dx.doi.org/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1523/JNEUROSCI.1924-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.1924-14.2015
http://dx.doi.org/10.1162/jocn_a_00975
http://dx.doi.org/10.1037/a0035234
http://dx.doi.org/10.1016/j.dcn.2015.12.011
http://dx.doi.org/10.1038/srep40962
http://dx.doi.org/10.1093/cercor/bhr198
http://dx.doi.org/10.1073/pnas.1423095112
http://dx.doi.org/10.1037/a0016690
http://dx.doi.org/10.3389/fnhum.2014.00809
http://dx.doi.org/10.3389/fnhum.2014.00809
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0545
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0545
http://refhub.elsevier.com/S1878-9293(17)30106-8/sbref0545
http://dx.doi.org/10.1037/a0038199
http://dx.doi.org/10.1177/0956797616664342

	Computational neuroscience across the lifespan: Promises and pitfalls
	Introduction
	Models of judgment and decision-making
	Implications for imaging

	The strategy view
	Implications for imaging

	Reinforcement learning models
	Implications for imaging

	General discussion
	Acknowledgments
	References




