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Abstract
Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to
modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from
person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64–68 years, we
probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability
(probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic
memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better
cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in
striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this
subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus
and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear
association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss
potential reasons for these differences that await further empirical scrutiny.
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Introduction
The neurotransmitter dopamine plays an important but com-
plex role in several cognitive processes (Liggins 2009; Shohamy
and Adcock 2010; Cools and D’Esposito 2011; Lisman et al. 2011,
for reviews). In line with this evidence, we recently reported that
between-person differences in striatal and hippocampal dopa-
mine D2 and D3 receptor (D2/3R) availability were linearly and
positively associated with episodic memory performance in a
large cohort of older adults (Nyberg et al. 2016). However, we
observed no such association with working memory perfor-
mance. Though D1 receptors have been more directly implicated
in working memory processes (Arnsten et al. 1994; Liggins 2009;
Rieckmann et al. 2011; Roffman et al. 2016), there are reasons for
also expecting a role of D2 receptors. For example, D2 receptor
agonists and antagonists affect aspects of human working mem-
ory performance (e.g., Luciana et al. 1992; Mehta et al. 2004; van
Holstein et al. 2011), perhaps partly through the involvement of
the hippocampus (Takahashi et al. 2008; Liggins 2009; Takahashi
2013). Animal work implicates frontal D2 receptors in attentional
and flexibility-based aspects of working memory (Floresco et al.
2006; Puig and Miller 2015; Ott and Nieder 2017). In addition, bio-
physically grounded computational models suggest a role of
cortical D2 receptors in the flexible switching between represen-
tational states in working memory (Durstewitz and Seamans
2008; Rolls et al. 2008). D2 receptors may also be involved in
striatal-based selective updating of working memory (Frank
et al. 2001; Mehta et al. 2004; Bäckman et al. 2011). Thus, it
remains plausible that between-person differences in dopamine
D2/3R availability relate to working memory performance under
specific constraints that may not have been captured in our pre-
vious work (Nyberg et al. 2016).

One possibility is that associations between inter-individual
differences in dopamine D2/3R availability and working memory
emerge in both non-linear and multivariate ways, such that cer-
tain levels of regional dopamine D2/3R availability result in dif-
ferent behavioral outcomes for different individuals depending
on the state of the rest of their neural system. Similar to dopa-
mine D1 receptor activation (Arnsten 1997; Zahrt et al. 1997;
Cools and D’Esposito 2011), D2 receptor activation may nonmo-
notonically relate to working-memory processes (Floresco 2013).
In addition, examples such as the upregulation of prefrontal
dopamine in early Parkinson’s disease (Rakshi et al. 1999) point
to the importance of multivariate individual patterns. For exam-
ple, in the presence of low striatal dopamine availability, high
cortical availability may have different functional consequences
than it has in the presence of high striatal availability. In line
with this view, some trains of thought suggest that low striatal
dopamine levels may result in lower probability of gating infor-
mation into working memory, and that having a robust signal in
prefrontal cortex in this situation may cause difficulties in
updating working memory representations (Frank et al. 2001;
Cools and D’Esposito 2011; D’Ardenne et al. 2012).

Adding to this complexity, expectations based on experimen-
tal and theoretical work on within-person differences may, due
to sample heterogeneity, not play out in between-person differ-
ences (Kievit et al. 2013; Schmiedek et al. 2016). Sample hetero-
geneity may result in associations among variables in the
overall sample that may differ markedly from the associations
observed within some or all of the subgroups. The literature sug-
gests a presence of such heterogeneity that may distort bivariate
dopamine-cognition associations. Whereas striatal dopamine
D2/3R availability is substantially decreased in older adults
(Bäckman et al. 2010), other groups of individuals that also on

average show reduced cognitive performance, in particular
reduced working memory and executive control, may display
high striatal dopamine D2/3R availability (e.g., schizophrenia: Rolls
et al. 2008; Howes and Kapur 2009; ADHD: Badgaiyan et al. 2015;
overweight: Cosgrove et al. 2015; Horstmann et al. 2015; Dang
et al. 2016). High striatal D2/3R availability may thus signal low or
high functioning in different subgroups of individuals—a pattern
of heterogeneity that is difficult to detect with either normal lin-
ear or classic nonlinear bivariate statistics across the entire group.

Here, we apply latent-profile analysis to represent the pres-
ence of subgroups that may account for the multivariate asso-
ciations between dopamine D2/3R availability (assayed with
11C-raclopride-PET at rest) and cognitive performance in a large
(n = 181) sample of older adults (age = 64–68 years). Grounded
in the multivariate perspective, we included cortical, striatal,
and hippocampal dopamine D2/3R availability and several key
aspects of cognitive performance (episodic memory, working
memory, and psychomotor speed) that have been linked to
dopamine (e.g., Backman et al. 2006; Cools and D’Esposito 2011;
Lisman et al. 2011).

Latent-profile analysis is a type of Gaussian mixture model-
ing that probabilistically represents the presence of subgroups
(i.e., multiple multivariate Gaussians) in multivariate data with
a latent (i.e., unobserved) variable. Similar to other unsuper-
vised statistical-learning techniques such as cluster analysis, it
is typically set up so that multivariate associations in the data
are accounted for by forming subgroups of subjects that are
described by their mean profiles in the variables analyzed. That
is, the typical model assumes that the existence of the classes
is the reason why the variables are correlated. With the appro-
priate number of classes, correlations among variables within
classes are thus not present. Thus, latent-profile analysis is
well suited for describing, in a data-driven manner, non-linear
multivariate patterns of individual differences in cognitive per-
formance and dopamine D2/3R availability. Its probabilistic fea-
ture, with each individual having a probability of belonging to
each of the classes, allows for characterizing the discovered
groups on other variables without assuming absolute group
membership (and thus high classification accuracy) for the
individuals. This aspect is important, because differences
among classes may critically inform interpretation. Based on
the results of the latent-profile analysis, we probed differences
among the classes on select aspects of the rich set of demo-
graphic, health, genetic, and structural and functional magnetic
resonance imaging (MRI) measures that are available for this
sample. Although advantageous in many ways, this statistical
approach, including both the profile analysis and the investiga-
tion of differences between classes, is exploratory in nature.
The need for future confirmatory studies should therefore be
kept in mind when interpreting results.

Materials and Methods
This study uses data from the Cognition, Brain, and Aging
(COBRA) project. A detailed description of the recruitment pro-
cedure, imaging protocols, and cognitive and life-style assess-
ments in the COBRA study has been previously published
(Nevalainen et al. 2015). Here, we describe the methods directly
relevant to the present results.

Participants

The sample consisted of 181 older individuals (64–68 years;
mean = 66.2, SD = 1.2; 81 women) randomly selected from the
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population register of Umeå, in northern Sweden. Exclusion cri-
teria included suspected brain pathology, impaired cognitive
functioning (Mini Mental State Examination <27), and condi-
tions that could bias the measurements of cognitive perfor-
mance (e.g., severely reduced vision) or hinder imaging (e.g.,
metal implants). About 22% of the sample was working, 18%
used nicotine, and 33% took blood pressure medications. Mean
education was 13.3 years (SD = 3.5), Body-Mass Index (BMI) was
26.1 (SD = 3.5), systolic blood pressure was 142 (SD = 17), and
diastolic blood pressure was 85 (SD = 10). The sample is fairly
representative of the healthy target population in Umeå
(Nevalainen et al. 2015).

Image Acquisition

MR imaging was performed with a 3 tesla Discovery MR 750
scanner (General Electric), equipped with a 32-channel phased-
array head coil. Positron Emission Tomography (PET) was done
with a Discovery PET/CT 690 scanner (General Electric).

PET Image Acquisition
PET was performed during resting-state conditions following an
intravenous bolus injection of 250MBq 11C-raclopride. Preceding
the injection, a low-dose helical CT scan (20mA, 120 kV, 0.8 s/
revolution) was obtained to be used for attenuation correction.
Starting at tracer injection, a 55-min 18-frame dynamic scan
was acquired (9 × 120 s + 3 × 180 s + 3 × 260 s + 3 × 300 s).
Attenuation, scatter and decay- corrected images (47 slices, axial
field of view = 25 cm, 256 × 256-pixel transaxial images, voxel
size = 0.977 × 0.977 × 3.27mm) were reconstructed with the
resolution-recover Ordered Subset Expectation Maximum
(OSEM) iterative algorithm VUE Point HD-SharpIR (Bettinardi
et al. 2011). The reconstruction was performed using 6 iterations,
24 subsets, and 3.0mm post filter, yielding a full width at half
maximum (FWHM) resolution of approximately 3.2mm
(Wallsten et al. 2013). A second image set was reconstructed
using Filtered Back Projection (FBP) with a 6.4mm post-filter, to
the same matrix size. Head movements during the imaging ses-
sion were minimized with an individually fitted thermoplastic
mask that was attached to the bed surface.

Structural MRI
A 3D fast spoiled-echo sequence was used for acquiring ana-
tomical T1-weighted images, collected as 176 slices with a
thickness of 1mm., TR = 8.2ms., TE = 3.2ms., flip angle = 12
degrees, and field of view = 25 × 25 cm. White-matter micro-
structure was examined using diffusion tensor imaging (DTI).
These images were acquired by a spin-echo-planar T2-
weighted sequence, using 3 repetitions and 32 independent
directions. The total slice number was 64, with a TR of 8000ms,
a TE of 84.4ms, a flip angle of 90 degrees, a field of view of 25 ×
25 cm, and with b = 1000 s/mm2. Perfusion measurements were
made with a whole-brain 3D pseudo-continuous arterial-spin
labeling (ASL), with background suppression and a spiral acqui-
sition scheme. Additional parameters were: Labeling time =
1.5 s, post labeling delay = 1.5 s, field of view = 24 cm, slice
thickness = 4mm, and resolution = 8 arms by 512 data points,
30 control/label pairs, 3 signal averages, TR = 4674ms, TE =
10ms, field of view = 240 × 240mm A FLAIR sequence was
acquired to assess white-matter hyperintensities. The total
number of slices were 48, with a slice thickness of 3mm. TE
was 120ms, TR was 8000ms, and field of view was 24 × 24 cm.

Functional MRI
BOLD-contrast sensitive scans where acquired using a T2*-
weighted single-shot gradient echoplanar imaging sequence.
Parameters were 37 transaxial slices, 3.4mm thickness, 0.5mm
spacing, TE/TR = 30/2000ms, 80 degrees flip angle, 25 × 25 cm
field of view, and a 96 × 96 acquisition matrix. At the start of
the scan, 10 dummy scans were collected. The functional data
were acquired during resting-state conditions (6min) and dur-
ing a working memory task (numerical n-back). In this task, a
sequence of single numbers appeared on the screen. Each num-
ber was shown for 1.5 s, with an ISI of 0.5 s. During each item
presentation, participants reported if the number currently
seen on the screen was the same as 1, 2, or 3 digits back. A
heading that preceded each subtest indicated the actual condi-
tion. Participants responded by pressing 1 of 2 adjacent buttons
with the index or middle finger to reply “yes, it is the same
number” or “no, it is not the same number”, respectively. A
total of 9 blocks for each condition (1-, 2-, and 3-back) was per-
formed in random order, each block consisting of 10 trials. The
trial sequence was the same for all participants.

Image Processing

PET Images
To generate regions of interests (ROIs) for the PET images, we par-
cellated cortical and subcortical brain regions on the T1-weighted
images, using FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/).
This process relies on atlas-based probabilistic models of charac-
teristic magnetic-resonance appearances and spatial relation-
ships (Fischl et al. 2002; Desikan et al. 2006). A supercomputer
cluster, Abisko, located at Umeå University, was used for data
processing. The following command line statement was used
“recon-all -s $AnatomicalFile -sd $SubjectDirectory -all -qcache
-hippo-subfields -nuintensitycor-3 t -schwartzya3t-atlas”.

The PET emission scan format was converted from DICOM
to NIfTI, corrected for head movements, and then co-registered
to the corresponding T1-weighted images using Statistical
Parametric Mapping software (SPM8). Binding potential, defined
as the ratio of specifically bound radioligand to non-displacable
radioligand in tissue (BPND; (Innis et al. 2007), was calculated from
the time-activity curves for each ROI emanating from the cortical
and subcortical parcellation described above using Reference
Logan analysis (Logan et al. 1996). The regression for determining
the slope from the Logan analysis started from 18minutes post
injection, after which the Logan plot followed a straight line.
Cerebellum was used as reference region, because of its negligible
D2/3R expression (Farde et al. 1986; Levey et al. 1993).

BPND was calculated using the above-mentioned procedure
on both Sharp-IR and FBP-reconstructed images. Sharp-IR
reconstruction has ~3mm FWHM resolution, and is therefore
superior when examining small or narrow features, but is
known to exhibit bias for low-intensity regions (Walker et al.
2011; Jian et al. 2015). Therefore, FBP reconstruction was used
to independently quantify BPND-values in extrastriatal regions
where D2/3R availability is low. The BPND values did however
correlate to a high degree for the two reconstruction methods
for all ROIs included in the analyses of this paper (r-values:
mean = 0.90, median = 0.91, min. = 0.70, max. = 0.97; P < 0.001
for all), and we chose therefore to perform all analyses on
Sharp-IR reconstructed data.

Although it is uncommon to measure extrastriatal dopamine
D2/3R availability with 11C-raclopride-PET, recent evidence indi-
cates good reliability of such measures (Alakurtti et al. 2015). In
line with this evidence, analyses of the present data showed
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that median BPND was significantly higher in all ROIs than in the
cerebellar reference region, with the left frontal pole showing
the smallest difference from the cerebellar reference area (mean
BPND = 0.1; t = 15, p < .001). Moreover, confirmatory factor model-
ing on the present dataset has shown strong positive links
between BPND in the ROIs across the hemispheres and among
different brain regions that tap known anatomical dopamine
subsystems, and less strong associations between regions of dif-
ferent subsystems (Papenberg et al. 2017), supporting a division
into cortical, striatal, and limbic factors for the purpose of the
current study. Thus, we deem the extrastriatal estimates as reli-
able and reflective of target binding.

Dopamine D2/3R BPND was missing for 4 participants due to
imperfect segmentation of MR images or PET/MR co-
registration. Three statistical outliers in striatal D2/3R BPND (out-
lier labeling rule with 2.2 interquartile ranges; Hoaglin and
Iglewicz 1987) were deleted. Five statistical outliers were
detected in the cortical BPND data and these scores were
deleted. BPND were then averaged across left and right striatum
and left and right hippocampus. These variables were then
standardized (mean = 0; SD = 1) to form the measures of stria-
tal and hippocampal dopamine D2/3R availability. Cortical dopa-
mine D2/3R availability was represented in analyses with the
standardized first principal component from a factor analysis
of BPND in all cortical ROIs. This first principal component
accounted for 40.5% of the variance in cortical availability.

Volumetric MRI Processing
To quantify gray-matter volumes, T1-weighted images were first
segmented into gray matter, white matter, and cerebrospinal fluid
using the unified segmentation approach (Ashburner and Friston
2005) in SPM12b (Statistical Parametric Mapping, Wellcome Trust
Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/)
implemented in Matlab 10 (The Mathworks, Inc). Moreover, the
“light clean up” option was used to remove odd voxels from the
segments. The gray-matter images were further analyzed using
DARTEL (Ashburner 2007) in SPM12b (Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra). The gray-
matter segments were imported into DARTEL space, and a final
customized template was created as well as subject-specific flow
fields containing the individual spatial-normalization parameters
(diffeomorphic nonlinear image registration). Gray-matter seg-
ments were further warped into standard MNI space, by incorpo-
rating an affine transformation mapped from the DARTEL
template to MNI space. In addition, the normalized gray-matter
volumes were modulated by scaling them with Jacobian determi-
nants from the registration step to preserve local-tissue volumes.
Volumes were smoothed with a FWHM Gaussian kernel of 8mm
in the 3 directions. Here, we focused on the measure of total gray-
matter volume, corrected for intracranial volume (gray matter +
white matter + cerebrospinal volume; ICV) using the analysis of
covariance approach: adjusted volume = raw volume - b(ICV –

mean ICV), where b is the slope of regression of volume on ICV
(Raz et al. 2005). To complement this measure, we also extracted
mean-modulated striatum volumes from each individual’s
smoothed images based on the masks of the striatum (caudate
and putamen) from the WFU Pickatlas. These measures were also
corrected for ICV and averaged across hemispheres to form one
measure of striatal volume.

Perfusion Analyses
Quantitative perfusion maps (in ml/100 g/min) were calculated
using a post-processing tool installed on the scanner by the

manufacturer. The perfusion maps where normalized to MNI
space using the DARTEL-derived transformation fields and
affine registration. Gray matter perfusion was calculated by
averaging perfusion over voxels with a gray-matter probability
higher than 25% in the group template.

Diffusion-Weighted Image Processing
Diffusion-weighted data analysis was performed using the
University of Oxford’s Center for Functional Magnetic Resonance
Imaging of the Brain (FMRIB) Software Library (FSL) package
(http://www.fmrib.ox.ac.uk/fsl) and Tract-Based Spatial Statistics
(TBSS) as part of the FMRIB software package. The full details of
DTI data analyses (using identical imaging parameters, but in a
different sample) are given elsewhere (Salami et al. 2012).
In short, the 3 subject-specific diffusion acquisitions were
concatenated in time followed by eddy-current correction to
adjust for head motion and eddy-current distortions. Accordingly,
the b-matrix was reoriented based on the transformation matrix
(Leemans and Jones 2009). Next, the first volume within the aver-
aged volume that did not have a gradient applied (i.e., the first
b = 0) was used to generate a binary brain mask with the Brain
Extraction Tool (Smith 2002). Finally, DTIfit was used to fit a diffu-
sion tensor to each voxel included in the brain mask/space. As
such, voxel-wise maps of fractional anisotropy (FA) were gener-
ated. Using the TBSS processing stream, all subject-specific
FA maps were nonlinearly normalized to standard space
(FMRIB58_FA) and then fed into a skeletonize program to make a
skeleton of common white-matter tracts across all subjects.
Mean diffusivity (MD) images were processed based on the results
of the processing of the FA images, yielding individual MD skele-
tons. Averaged FA and MD along the spatial course of the entire
skeleton and of seven major WM tracts (genu, body, splenium,
fornix, superior longitudinal fasciculus, superior fronto-occipital
fasciculus, and cingulum) were computed with reference to JHU
ICBM-DTI-81 white matter labels (Wakana et al. 2004).

Segmentation of White-Matter Hyperintensities
Lesions were segmented by the lesion growth algorithm
(Schmidt et al. 2012) as implemented in the LST toolbox version
2.0.14 (www.statisticalmodelling.de/lst.html) for SPM12. The
algorithm first segmented the T1 images into the 3 main tissue
classes (cerebrospinal fluid, gray matter, and white matter).
Following, this information was combined with the coregis-
tered FLAIR intensities to calculate lesion belief maps. By
thresholding these maps with a pre-chosen initial threshold
(κ = 0.3, defined by visual inspection), an initial binary lesion
map was obtained. This initial map was then grown along
neighboring voxels that appeared hyperintense in the FLAIR
image, resulting in a lesion probability map. Finally, the lesion
probability map was thresholded (threshold: 50%) to obtain the
binary map of lesions. From these, the total volume (cm3) of
white-matter lesions per individual were attained.

Functional MRI Analyses
SPM8 (Wellcome Department of Cognitive Neurology, London,
UK) was used for preprocessing and data analysis of the fMRI
task and resting state data. Preprocessing of the task fMRI data
included slice-timing correction, unwarping and realignment of
the time-series to the first image of each volume, and normali-
zation to a sample-specific template (using DARTEL), followed
by affine alignment to MNI standard space. Data were
resampled to 2-mm isotropic voxels and spatially smoothed
using an 6-mm FWHM Gaussian kernel. First-order task
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analyses included the experimental conditions (1-back, 2-back,
3-back) as regressors of interest in a general linear model, con-
volved with a hemodynamic response function. The six realign-
ment parameters were included as covariates of no interest to
account for residual movement artifacts.

In order to obtain measures of fronto-parietal upregulation
of brain activity across load in the 1-back to the 2-back and
3-back working memory tasks, fMRI contrast estimates (betas)
were extracted from the relevant contrast images (1-back
<2-back, 1-back <3-back), averaged across 9 regions of the core
frontoparietal WM network (Fig. 3; anterior cingulate, bilateral
anterior prefrontal cortex, bilateral dorsolateral prefrontal cor-
tex (DLPFC), bilateral anterior insula, and bilateral anterior infe-
rior parietal cortex). Because fMRI estimates were extracted
both from task and resting state, ROIs were selected a priori as
5mm spheres around the fronto-parietal control network seeds
as described by Vincent et al. (2008).

Preprocessing of the resting state data was carried out using
the Data Processing Assistant for Resting-State fMRI (Chao-Gan
and Yu-Feng 2010). Data were corrected for acquisition time
differences between slices within each volume and then
motion corrected. A within-subject rigid registration was car-
ried out to align functional and structural T1-weighted images.
Next, the effect of physiological noise was removed by regres-
sing out Friston’s 24 parameters from a motion model (Yan
et al. 2013), as well as nuisance variables, such as global signal,
white matter, and cerebrospinal fluid signal, along with both
linear and quadratic trends. In addition, nuisance-corrected
data were bandpass filtered (passband 0.01–0.1 HZ). Finally,
using DARTEL, the noise-corrected realigned fMRI images were
nonlinearly normalized to the sample-specific group template,
affine aligned into stereotactic MNI space, and smoothed using
a 6.0-mm FWHM Gaussian filter.

Previous findings have demonstrated functional relation-
ships between dorsal caudate and several parts of the fronto-
parietal circuitry (Postuma and Dagher 2006; Di Martino et al.
2008). To obtain a finer parcellation of the caudate, Martino
et al. distinguished ventral caudate (VC) from dorsal caudate
(DC) based on the Z coordinate following Postuma and Dagher
(2006). We followed closely the approach taken by Martino et al.
and placed seeds in each hemisphere (DC: ±13 15 9). Then, a
4mm diameter sphere centered on the aforementioned coordi-
nates was generated and the mean time series was computed
by averaging across voxels for each seed. For both hemispheres,
multiple regression analyses were carried out for each subject
including the time series of a seed, yielding subject-specific
functional connectivity maps of each seed. Functional connec-
tivity maps for each subject were taken into a second-level
multiple-regression analysis to delineate regions that are func-
tionally connected to each seed at the group level. Local max-
ima with P < 0.05 (FWE-corrected), with an extent threshold of
10 continuous voxels (k > 10) were considered to be statistically
significant. Then, we overlapped the seed regions from Vincent
et al. (2008) with the functional connectivity map of the left and
right DCs and computed the average correlation between left
and right DC and each fronto-parietal seed.

Cognitive Measures

Episodic memory, working memory, and psychomotor speed
were assessed with 3 tasks each (1 verbal, 1 numerical, and 1 fig-
ural task per ability). Episodic memory was measured with word
recall, number-word recall, and object-position recall. Working
memory was assessed with letter updating, columnized

numerical 3-back, and spatial updating. Speed was tested with
letter comparison, number comparison, and figure comparison
(see Nevalainen et al. 2015, for details). Task scores were com-
puted by summing performance across blocks or trials of each
task. Confirmatory factor modeling has shown that these task
scores can be used to form a model of working memory, episodic
memory, and psychomotor speed that fits the data well
(Nevalainen et al. 2015). We therefore standardized and averaged
the 3 task-scores of each ability to create 1 unit-weighted mea-
sure for each of the 3 cognitive abilities. In case of missing data
(<1.2% for all variables, with technical errors or misunderstand-
ings of the task accounting for almost all of these missing data
points), an average of the available observed scores for a cogni-
tive ability was imputed into these ability measures, so that
these variables do not have missing values. This approach corre-
sponds to a regression imputation assuming equal loadings of
the tasks on the latent ability they are assumed to measure.
Standardized (z-scores; mean = 0; SD = 1) versions of these unit-
weighted averages were used in the analyses.

Health Variables

Objective health measures included BMI and blood pressure
measurements. Subjective reports of medication use formed
the basis for dichotomous variables representing use of medi-
cation for indications of hyperlipidemia, atherosclerosis, car-
diovascular disease, hypertension, and depression/anxiety. A
dichotomous measure of high blood pressure was formed by a
combination of either the blood pressure measurements (sys-
tolic > 140; diastolic > 90) or self-reported use of blood pressure
medication.

Leisure Activities and Personality

Self-reported leisure activities were assessed using a question-
naire that included 43 activities, 18 intellectual, 15 physical,
and 10 social. Participants were asked to indicate for how many
hours (1, 2, 3, etc., 15+h) they engage in each of the activities
during a typical summer week. A sum score (hours/week) was
computed across all intellectual, physical, and social activities,
respectively. Outliers (>3.29 SD) were excluded variable-wise
(n = 2 from intellectual activities, n = 1 from physical activities,
n = 2 from social activities). In addition to frequency of each
activity, the questionnaire asked for intensity ratings for each
of the intellectual and physical activities. For each intellectual
activity, participants were asked to rate how mentally demand-
ing it would normally be to perform the activity (on a scale
from 1 = “not at all” to 5 = “extremely”). For each physical activ-
ity, they were asked how physically demanding the activity
would be (1–5). A mean across intensity ratings was computed
for intellectual and physical activities, respectively. A rating
was included in the mean score only if the rater had also
reported at least 1 hour/week of engagement in a given activity.

Genetics

Blood samples were analyzed for presence of single-nucleotide
polymorphisms (SNPs) in genes for the D2 receptor (C957T;
rs6277), Catechol-O-Methyltransferase (COMT; rs4680), dopa-
mine- and cAMP-regulated neuronal phosphoprotein (DARPP-32,
PPP1R1B; rs879606), and the vesicular monoamine transporter 2
(VMAT2, SLC18A2; rs363387). These SNPs were chosen as they
likely entail differences in dopamine transmission, via proteins
that regulate striatal and frontal dopamine levels, dopamine
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signaling, and vesicular dopamine storage (Lachman et al. 1996;
Hirvonen et al. 2004; Schwab et al. 2005; Kunii et al. 2014). They
have furthermore been associated with behavioral differences,
including working memory performance (Meyer-Lindenberg
et al. 2007; Diaz-Asper et al. 2008; Lindenberger et al. 2008;
Colzato et al. 2016).

Based on previous literature, allelic variants were catego-
rized as markers of a beneficial (C-allele of C957T, A-allele car-
riers of COMT, G homozygotes for DARPP-32, and G-allele
carriers of VMAT2) or less beneficial (T homozygotes of C957T,
G homozygotes of COMT, A-allele carriers of DARPP-32, and T
homozygotes of VMAT2) dopamine signaling profile, and scored
1 or 0 accordingly. Thus, the summarized gene score ranged
between 0 and 4. Furthermore, Apolipoprotein E gene poly-
morphisms (ApoE, rs7412, and rs429358) were also analyzed,
and the distribution of carriers versus non-carriers of the ε4
allele was compared between classes. This is motivated by the
ApoE ε4 allele being a strong predictor of cognitive decline in
aging (Christensen et al. 2008; Schiepers et al. 2012).

Upon analysis, deoxyribonucleic acid (DNA) was extracted
from the buffy-coat fraction of blood samples using the
Kleargene™ XL nucleic acid extraction kits and genotyping of
SNPs was carried out with KASP™ genotyping assays (at LGC
genomics). In brief, DNA template was mixed with a KASP mas-
ter mix (containing KASP Taq polymerase, deoxynucleoside tri-
phosphates, buffers, salts, 2 fluorescently-labeled (FAM and
HEX) reporter cassettes), and a SNP-specific KASP Assay mix
(containing 2 allele-specific forward primers and one common
reverse primer). Then, polymerase chain-reaction sessions
were performed, during which primers bound to their target
sequences, fluorophores were incorporated into the DNA prod-
uct, and the DNA product was amplified. SNP allelic variants
were determined via detection of FAM or HEX fluorescence for
homozygous alleles, or both for heterozygous alleles.

For each analysis, 2 forward and 1 reverse primers were con-
structed. The forward primers differed at one base in the 3′-end
and included 5′-CA TGG TCT CCA CAG CAC TCC C/T-3′ for
rs6277, 5′-GCA TGC ACA CCT TGT CCT TCA C/T-3′ for rs460,
5′-G GGA AAG GGT GGC AGG AGG T/C-3′ for rs879606, and
5′-GC CAG GCC AGT GCA CAC G/T-3′ for rs363387. Reverse pri-
mers used were 5′-TCT CRG GTT TGG CGG GGC TGT-3′ for
rs6277, 5′-CAT CAC CCA GCG GAT GGT GGA T-3′ for rs460,
5′-AGG ACA TCC CAC TCC TAT GAG CAA-3′ for rs879606, and
5′-AGA TGC TCT GGA AGC TGT CTG AGA T-3′ for rs363387.

Statistical Procedures

A series of latent-profile (mixture) models from 1 to 4 classes
were conducted for representing the presence of latent sub-
groups (multiple multivariate Gaussians) of cognitive (episodic
memory, working memory, and psychomotor speed) perfor-
mance and dopamine D2/3R availability in the striatum, hippo-
campus, and neocortex that account for the multivariate
associations among the variables. All analyses were performed
with Mplus 7.4 (Muthén and Muthén 2015). In these analyses,
scattered missing values (on the measures of dopamine D2/3R
availability) are accommodated in the Mplus estimation under
the missing-at-random assumption. Classes (i.e., subgroups)
were assumed to have equal variances. As is typical for these
analyses, we did not allow for residual covariances between
observed variables within classes (i.e., we assumed local inde-
pendence), because we aimed at explaining the multivariate
associations based on the formation of classes. That is, our
model assumes that the presence of latent classes is the reason

that the variables are correlated. With the appropriate number
of classes, correlations among variables within classes are not
present and all information about the associations among vari-
ables can be found by inspecting the differences among classes
in their mean profile on the variables of interest.

The Bayesian Information Criterion (BIC) was used as the
primary method to select the best-fitting model (i.e., the num-
ber of classes). A lower BIC indicates a model with better fit and
parsimony. A bootstrapped Lo-Mendell Rubin Test (BLRT) of the
difference in fit between a model with k classes and one with
k-1 classes (2*ΔLL, ΔDF) was used to further inform model
selection in case the BIC comparison was ambiguous.
Standardized entropy (ranging from 0 to 1) was used to mea-
sure classification accuracy.

After determining the number of classes, interpretation of the
results was based on profiling the means of the latent classes.
Based on these results, we then examined differences among the
classes on select aspects of the available demographic, lifestyle,
health, genetic, and functional and structural brain variables. We
selected those aspects that we considered as potentially informa-
tive correlates of the association between dopamine D2/3R avail-
ability and cognitive performance revealed by the latent-profile
results. These differences were estimated and statistically tested
with the BCH (for continuous variables) and the DCAT (for cate-
gorical variables) methods implemented in Mplus 7.4. The BCH
method is a 3-step method that first builds the latent class
model, then determines class membership, and then tests for
equality of means across classes on distal variables not included
in the first step. It assumes normality and involves performing
weighted statistical tests of mean differences, with weights that
are inversely related to classification error probabilities. The
method has been shown to perform well (Bakk and Vermunt
2015). In the DCAT method (Lanza et al. 2013), which is suitable
for categorical data, Bayes theorem is used to represent joint dis-
tribution of the latent class variable and the distal variable as
regression of the latent class variable conditional on the distal
variable. These methods do not affect the original latent-class
solution. Both take into account the probabilistic class member-
ship of each individual. In this way, the interpretability of these
results does not depend on high classification accuracy.

We aimed for a comprehensive and global description of the
classes, without making strong claims regarding the nature of
the classes based on single findings of statistically significant
differences, and therefore set a rather lenient threshold for sta-
tistical significance at P < .05. In the results, we also note which
findings that survive more conservative thresholds based on
correction for multiple testing.

Results
Latent-Profile Analyses

Latent-profile models specifying 1, 2, 3, or 4 classes for cognitive
(episodic memory, working memory, and psychomotor speed)
performance and BPND in striatum, hippocampus, and cortex
were estimated. The model fit indices are reported in Table 1.
Our primary measure for selecting the number of classes (the
BIC) had a clear minimum at 3 classes and we therefore con-
sidered this solution as the best fit to the data. Figure 1 depicts
the profiles of mean cognitive performance and BPND for the 3
subgroups that this model represents. Profiles for the 2 and 4
class solutions are reported in Supplementary Materials 1.

Class 1 (n = 99; 55% of the sample) is a large group of indivi-
duals that generally performs above the mean of the sample
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and has slightly above-average dopamine D2/3R availability.
Class 2 (n = 42; 23%) is a group that clearly performs lower than
the class 1 and has low BPND in all regions. In contrast to this
class of individuals with low dopamine D2/3R availability and

performance, class 3 (n = 40; 22%) displays high dopamine D2/3R
availability (especially in striatum, where it is even higher than
for class 1) despite low cognitive performance, especially for
working memory where they perform lower than class 2. In
other words, the multivariate associations in the data are
accounted for by forming classes of subjects indicating that rel-
atively high D2/3R availability is associated with high cognitive
performance for most individuals, but that there is a smaller
group of individuals where high availability, particularly in stri-
atum, instead is associated with poor performance, especially
for working memory.

Demographic and Health Differences Across Classes

To aid interpretation of the multivariate associations between
dopamine D2/3R availability and cognitive performance that the
observed classes represent, it is reasonable to first examine
whether they relate to differences in more general demo-
graphic and health variables. Of the examined variables (see
Table 2), 2 tended to distinguish class 3 from the other 2 clas-
ses: Individuals in class 3 had on average fewer years of educa-
tion (class 3 vs. 1: χ2(1) = 18.7, P < .001. Class 3 vs. 2: χ2(1) = 4.0,
P = .045) and higher BMI (class 3 vs. 1: χ2(1) = 4.3, P = .038. Class
3 vs. 2: χ2(1) = 6.1, P = .013). Individuals in class 3 in addition
tended to report performing physical activities with lower
intensity (class 3 vs. 1: χ2(1) = 7.5, P = .006; Class 3 vs. 2: χ2(1) =
2.4, P = .119) than the other classes. There were no statistically
significant differences in sex distribution, but class 1 was youn-
ger than class 2, although this difference was very small
(6 months). There were no statistically significant differences in
other physical health measures, including blood pressure, med-
ication use (including depression and anxiety medication,
which was low), and nicotine consumption. In summary, class
3, with low cognitive performance despite high dopamine D2/3R
availability, differentiates itself from the other classes mainly
by consisting of individuals with higher BMI and lower educa-
tion. Note however that with strict Bonferroni correction for
multiple testing (0.05/57 test ≈ 0.001) only the difference

Table 1 Model fit indices

One
Class

Two
Classes

Three
Classes

Four
Classes

Log-Likelihood −1518 −1484 −1460 −1448
BIC 3099 3066 3055 3068
Entropy 0.64 0.70 0.73
2*ΔLL (ΔDF) 69(7) 47(7) 24(7)
BLRT approx. p-value <0.0001 <0.0001 0.0400

Note. BIC, Bayesian Information Criterion; ΔLL = Difference in log-likelihood

between a model with k classes and one with k-1 classes; BLRT = Bootstrapped

Lo-Mendell Rubin Test.

Figure 1. Mean (SE) profiles of cognitive performance and 11C-raclopride BPND

for the 3-class solution. EM, episodic memory; WM, working memory; HC,

hippocampus.

Table 2 Differences among classes on demographic, health, lifestyle, genetic, and personality variables

Class 1 Class 2 Class 3 P-value for equivalence of means

1 vs. 2 1 vs. 3 2 vs. 3

Age (years) 66.0 66.5 66.3 0.046* 0.230 0.534
Women 46% 32% 58% 0.258 0.491 0.180
Education (years) 14.3 13.0 11.2 0.114 <0.001* 0.045*
Working 28% 12% 20% 0.087 0.519 0.616
Body-Mass Index 25.8 25.3 27.7 0.464 0.038* 0.013*
Nicotine use 15% 32% 9% 0.096 0.614 0.107
Systolic blood pressure 141 141 144 0.984 0.469 0.545
Diastolic blood pressure 86 83 85 0.305 0.753 0.509
Blood pressure med. 32% 37% 32% 0.712 0.966 0.722
High blood pressure 59% 46% 44% 0.302 0.279 0.911
Hyperlipidemia med. 15% 14% 21% 0.884 0.518 0.489
Atherosclerosis med. 2% 14% 11% 0.088 0.115 0.724
Cardiovascular med. 38% 43% 44% 0.644 0.579 0.964
Depression/anxiety med. 6% 5% 5% 0.878 0.776 0.945
Hours intellectual activity 34 33 35 0.809 0.783 0.683
Hours physical activity 21 21 25 0.853 0.252 0.375
Hours social network 27 23 29 0.211 0.421 0.100
Intensity physical act. 1.76 1.64 1.40 0.398 0.006* 0.119
Intensity intellectual act. 1.41 1.50 1.42 0.382 0.877 0.543

Note. n is 99 for class 1, 42 for class 2, and 40 for class 3. Med. = medication, act. = activity; *P <0.05.
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between classes 3 and 1 on education remains statistically
significant.

Genetic Differences

We next examined differences among the 3 classes on the gene
score for dopamine transmission. Here, both the class with
high receptor availability and low cognition (class 3; mean =
1.93; SE = 0.16) and the class with low receptor availability and
low cognition (class 2; mean = 1.99; SE = 0.13) tended to score
lower than class 1 (mean = 2.32; SE = 0.09; class 3 vs. 1: χ2(1) =
3.92, P = 0.048; class 2 vs. 1: χ2(1) = 3.62, P = 0.057), with no sta-
tistically significant differences between classes 2 and 3 (χ2(1) =
0.8, P = 0.783). Thus, genetics related to lower dopamine trans-
mission were related to lower cognitive performance, but did
not map directly onto the differences in D2/3R availability.
There were no statistically significant differences between the
classes on ApoE ε4 status. Note also that with strict Bonferroni
correction for multiple testing (0.05/6 tests ≈ 0.008) none of the
differences remain statistically significant.

Structural Brain Differences

Given that lower dopamine D2/3R availability cannot account
for the low cognitive performance of individuals in class 3, we
investigated differences among the classes on structural brain
variables that may be indicative of general brain integrity in
this cohort. Similar to the gene score, both class 2 and 3
showed smaller total gray-matter volume (adjusted for ICV)
than class 1 (class 3 vs. 1: χ2(1) = 5.7, P = 0.017, class 2 vs. 1: χ2(1) =
11.6, P < 0.001). There were no statistically significant differences
between classes 2 and 3, but, if anything, class 3 tended to have
slightly more gray matter than class 2 (see Fig. 2A). Estimates of
striatal volume followed a similar pattern, with class 1 tending to
have higher striatal volume than class 2 (χ2(1) = 2.5, P = 0.11) and
3 (χ2(1) = 3.7, P = 0.055), but with no difference (P = 0.97) between
classes 2 and 3. Cerebral blood flow in total gray matter also
showed a similar pattern (Fig. 2B), with class 2 showing signifi-
cantly lower flow than class 1 (χ2(1) = 11.4, P < 0.001), but with
class 3 taking a clearer intermediate position, tending to show
lower blood flow than class 1 (χ2(1) = 2.7, P = 0.098). The differ-
ence between classes 2 and 3 was not statistically significant
(χ2(1) = 2.3, P = 0.131). Total burden of white-matter hyperintensi-
ties (Fig. 2C) was significantly higher in class 2 than in the other
2 classes (class 2 vs. 1: χ2(1) = 9.1, P = 0.003. Class 2 vs. 3: χ2(1) =
5.7, P = 0.017), with no statistically significant differences between
classes 1 and 3 (χ2(1) = 0.1, P = 0.722). There were no statisti-
cally significant differences among the classes on any of the
DTI variables. Thus, worse global brain integrity does not sin-
gle out the class with low cognition and high receptor avail-
ability (class 3) from individuals with low performance and
low receptor availability (class 2). Note also that with a stricter
threshold for significance (P < 0.001), only the difference
between classes 1 and 2 in total gray-matter volume remains
significant.

Differences in Functional Brain Activity Among Classes

For striatal BPND, we noted that differences among classes por-
tray an inverted u-shaped relation to cognitive performance,
with the group having intermediate striatal BPND performing
best. This conclusion is tempting to draw but perhaps overly
simplistic, especially in light of earlier analyses of this data set,
which did not reveal any indications of such nonlinearity

(Nyberg et al. 2016). We further note that the latent-profile
model is set up to explain also the multivariate associations
within the BPND and cognition domains with the formation of
these classes. That is, a key addition to the solution is probably
that class 3 has particularly high dopamine D2/3R availability in
striatum relative to other regions and that this is related to
especially low working memory performance relative to other
cognitive functions. With this in mind, we reasoned that class
3 may have impaired working memory performance due to
dysfunctional signaling between the striatum and cortex and
therefore probed differences among the classes in connectivity
between the caudate and the ROIs in the fronto-parietal net-
work during rest (Fig. 3).

Class 3 had on average lower connectivity between left cau-
date and left DLPFC (class 3 vs. 1: χ2(1) = 10.2, P < 0.001; Class 3
vs. 2: χ2(1) = 6.7, P = .010) and between left caudate and right
DLPFC (class 3 vs. 1: χ2(1) = 11.4, P < .001; Class 3 vs. 2: χ2(1) =
9.0, P = 0.003) than the other 2 classes. The results were similar
for the right caudate (left DLPFC: class 3 vs. 1: χ2(1) = 7.6,

Figure 2. Mean (SE) total gray matter volume (A), mean (SE) cerebral blood flow

in total gray matter (B), and mean (SE) total burden of white matter hyperinten-

sities (C) as a function of class.
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P = 0.006; Class 3 vs. 2: χ2(1) = 5.3, P = 0.022; right DLPFC: class
3 vs. 1: χ2(1) = 11.3, P <0.001; Class 3 vs. 2: χ2(1) = 3.8, P = .050).
There were no statistically significant differences between clas-
ses 1 and 2 in this regard (all Ps > 0.171). Several of the differ-
ences in connectivity remain statistically significant after strict
Bonferroni correction for multiple testing (0.05/42 tests ≈ 0.001).
The general pattern was similar for connectivity between the
left caudate and the left anterior parietal cortex (class 3 vs.
1: χ2(1) = 8.1, P = 0.004; class 3 vs. 2: χ2(1) = 7.3, P = 0.007; class
1 vs. 2: χ2(1) = 0.1, P = 0.726). With the exception of a small dif-
ference between classes 3 and 1 for connectivity between left
caudate and left anterior prefrontal cortex (χ2(1) = 4.34, P =
0.037) and a difference between classes 2 and 3 for connectivity
between the right caudate and ACC (χ2(1) = 5.14, P =0.023), no

other difference between the groups reached statistical signifi-
cance at the P = 0.05 level (all Ps > .079). In summary, class 3
that displayed relatively high dopamine D2/3R availability, but
low cognitive performance, shows lower connectivity of the
caudate with the DLPFC bilaterally.

This pattern contrasts with the differences among classes in
frontoparietal up-regulation of activity from the 1-back to the
2-back and 3-back working memory conditions. Here, both clas-
ses 2 and 3 failed to upregulate their activity (Fig. 4).
Specifically, for both contrasts, class 1 showed greater upregu-
lation than both class 2 (χ2(1) = 12.6, P < 0.001 and χ2(1) = 16.7,
P < 0.001) and class 3 (χ2(1) = 27.6, P < 0.001 and χ2(1) = 10.9, P <
0.001). These differences also survive a more stringent thresh-
old for statistical significance at P = 0.008 (0.05/6 tests). At the
P < 0.05 level, there was also statistically significant difference
between classes 2 and 3 for the 2-back > 1-back contrast (χ2(1) =
4.5, P = 0.033), but no difference between these 2 classes for the
3-back > 1-back contrast (P = 0.94). There were no statistically
significant differences among the classes for 1-back (vs. base-
line) activity (all Ps > 0.55).

Discussion
We report a representation of the multivariate associations
between dopamine D2/3R availability and cognitive perfor-
mance in a large sample of older adults with 3 classes of indivi-
duals. One of these classes is a large group of individuals with
relatively high cognitive performance and D2/3R availability. A
second class of individuals performs on average lower and has
relatively low D2/3R availability. Notably, a third class displayed
high D2/3R availability, especially in the striatum, along with
low cognitive performance, particularly for working memory.
Put differently, relatively high D2/3R availability was associated
with high cognitive performance for most individuals, but there
was a smaller group of individuals where high availability, par-
ticularly in striatum, instead came with poor performance,
especially for working memory. The presence of this third class
affects D2/3R availability-cognition correlations at whole-
sample level. If we were to remove this group of individuals,
the mean differences between the other 2 groups would result
in a positive association between dopamine D2/3R availability
and cognitive performance in general, not only for episodic
memory (cf. Nyberg et al. 2016).

High dopamine D2/3R availability in the striatum has been
linked to functional impairments, particularly in working mem-
ory and related executive functions, in some groups of

Figure 3. Mean (SE) connectivity at rest between activity in left (A) and right (B)

dorsal caudate nucleus and regions-of-interest in the fronto-parietal network

as a function of class. L = Left; R = Right; DLPFC = DorsoLateral Prefrontal

Cortex; aPAR = anterior Parietal lobe; aPFC = anterior Prefrontal Cortex; ACC =

Anterior Cingulate Cortex.

Figure 4. Mean (SE) activity (2-back vs. 1-back and 3-back vs. 1-back) averaged across the regions of the frontoparietal network as a function of class.
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individuals. For example, individuals with ADHD display higher
striatal D2/3R availability than controls, which may be related to
behavioral symptoms (Lou et al. 2004; Badgaiyan et al. 2015).
The evidence is similar for schizophrenia, in particular with
respect to increased striatal D2/3R availability (Howes and
Kapur 2009). Although the present sample consists of healthy
normal (older) adults, we note that class 3, with the profile of
cognitive performance and dopamine D2/3R availability that
resembles these psychiatric conditions, also tended to have
lower education and higher BMI than the other 2 classes—vari-
ables that often relate to psychiatric disease (Barnett et al. 2006;
Gurpegui et al. 2012; Cerimele and Katon 2013; Esch et al. 2014).
In particular low education, which generally is a powerful cor-
relate of cognitive performance in both younger and older age,
may play an important role in our findings: One way to sum-
marize the findings is that performance on cognitive tests may
be relatively poor, despite relatively high receptor availability, if
education is low (i.e., for higher and comparable levels of edu-
cation, the availability-performance association in more mono-
tonic). The association with BMI converge well with evidence of
higher dopamine D2/3R availability in overweight adults (but
perhaps not obesity; Wang et al. 2001; Cosgrove et al. 2015;
Horstmann et al. 2015; Dang et al. 2016). Given that consump-
tion of psychotropic drugs was low in our sample and did not
differ among classes, these characteristics may together be
indicative of a phenotype that is associated with reduced work-
ing memory performance, regardless of psychiatric status.

It may be that individuals with such characteristics (i.e.,
class 3) have high receptor amount relative to their endogenous
dopamine levels. This could reflect receptor upregulation that
can take place upon dopamine degeneration (Brooks et al. 1992;
Scherfler et al. 2006; Lin et al. 2008), but also increased ligand
binding due to reduced competition with endogenous dopa-
mine (Laruelle et al. 1997). If so, such persons may exhibit a
system that is as functionally inefficient as one with few avail-
able receptors (i.e., class 2). In line with this reasoning, striatal
D2/3R availability is normalized in ADHD following medication
that increases striatal dopamine levels (Ilgin et al. 2001; Volkow
et al. 2002). Furthermore, lower dopamine release relates to
poorer working memory performance in schizophrenia (Rolls
et al. 2008; Cassidy et al. 2016), whereas dopamine D2/3R avail-
ability has been found to be higher in this condition than in
controls (Howes and Kapur 2009).

If relatively lower dopamine levels underlie the high D2/3R
BPND observed in class 3, this could partly be due to genetic rea-
sons, as this class leaned towards displaying reduced dopa-
mine transmission gene scores when compared to class 1.
Class 2 also tended to display lower dopamine transmission
gene scores, but may have lower D2/3R availability because
receptor density is correspondingly adapted. The high gene
score for class 1 is in agreement with reports of higher working
memory performance for beneficial allelic variants of rs4680
and rs879606 (Meyer-Lindenberg et al. 2007; Diaz-Asper et al.
2008; Lindenberger et al. 2008). An alternative explanation is
that class 3 consists of individuals that have experienced par-
ticularly marked aging-related losses (relative to class 2) in
dopamine release (e.g., Karlsson et al. 2009). One important
aspect to consider is that affinity of 11C-raclopride to the D2/3R
varies in accordance to endogenous dopamine levels (Laruelle
2000). High BPND-values can be observed in individuals in which
ligand affinity is high, presumably as a consequence to low dopa-
mine levels (Hirvonen et al. 2009). Similarly, low BPND-values
were found upon amphetamine-induced dopamine level incre-
ments, due to reduced ligand affinity (Carson et al. 2002;

Doudet and Holden 2003). In such cases a high BPND is not rep-
resentative of high receptor count, but rather, poor dopamine
system integrity. However, with the caveat that the data are
cross-sectional, the measures of total gray-matter volume, per-
fusion, and white matter hyperintensities suggest that class 3
is at the same level or somewhat better off in terms of general
brain integrity than class 2 (although both of these classes were
worse off on gray-matter volume and perfusion than the good
performers in class 1).

The present results are in line with the often-observed non-
monotonic association between dopamine and working mem-
ory performance (Cools and D’Esposito 2011; Floresco 2013;
Garrett et al. 2015). Although the within-person, pharmacologi-
cal evidence on which this pattern is primarily based does not
necessarily translate into similar between-person differences
(Kievit et al. 2013; Schmiedek et al. 2016), the present analyses
do (in a data-driven manner) represent the multivariate asso-
ciations among the variables by forming groups consistent
with a nonmonotonic dopamine-cognition association, but
here with dopamine D2/3R availability. Notably, functional
activity during the working memory task also followed this pat-
tern, such that individuals with intermediate striatal D2/3R
availability upregulated their frontoparietal activity across
working memory load more than those with low (class 2) or
high D2/3R availability (class 3). Moreover, the profiles suggest
that such an association may be particularly pronounced for
striatal dopamine D2/3R availability and working memory
performance.

The status of striatal D2/3R availability in our results may
relate to the strong updating component of the working memory
tasks used—a cognitive process that has been linked to striatal
functioning (Frank et al. 2001; Mehta et al. 2004; Dahlin et al.
2008; Bäckman et al. 2011; Cools and D’Esposito 2011; D’Ardenne
et al. 2012). Striatal dopamine is thought to bias the probability
of gating information into cortical representations in working
memory (Frank et al. 2001; Cools and D’Esposito 2011; D’Ardenne
et al. 2012). Cortical dopamine, particularly in DLPFC, may stabi-
lize working memory representations by reducing vulnerability
to interference (Durstewitz and Seamans 2008; Cools and
D’Esposito 2011). These 2 processes may interact with each other
in determining working memory performance, such that too
much flexibility (i.e., updating) is associated with distractibility,
whereas too much stability is linked to inflexibility. The balance
between these 2 aspects of working memory has been suggested
to depend on the circuits connecting DLPFC with the striatum
(Cools and D’Esposito 2011). Our results suggest that class 3,
with high D2/3R availability, especially in the striatum, and low
performance, particularly for working memory, may have sub-
optimal balance in this system. Specifically, individuals in class
3 showed lower functional connectivity between dorsal caudate
and DLPFC bilaterally than individuals in the 2 other groups.
These results suggest that the neural circuits behind working
memory are not well synchronized in class 3. Interestingly,
reduced connectivity between the dorsal caudate and the
fronto-parietal network has also been observed among older
individuals with higher dopamine synthesis capacity (Berry
et al. 2016). The similarity of these findings to the ones reported
here raises the possibility that higher dopamine receptor avail-
ability may be linked to alterations in dopamine synthesis, with
both perhaps emerging as responses to other changes in the
dopamine system in a subset of individuals (Braskie et al. 2008;
Berry et al. 2016).

The particularly strong role of relatively high striatal dopa-
mine D2/3R availability in working memory, but perhaps less so
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in episodic memory, is in line with our previous report of linear
relationships of striatal and hippocampal dopamine D2/3R
availability to episodic memory performance (Nyberg et al.
2016). Together with theoretical and experimental work linking
hippocampal dopamine receptors to episodic memory perfor-
mance (Lisman et al. 2011), the present results suggest a disso-
ciation of links of dopamine D2/3R availability to episodic and
working memory. Working memory may relate non-
monotonically to D2/3R availability, with groups of individuals
characterized by low and by high striatal availability performing
low, whereas episodic memory may display a more homogenous
pattern of positive associations between D2/3R availability and
performance.

To substantiate our interpretations of the results, experimen-
tal work as well as longitudinal imaging work is needed. More
advanced measures of D2/3R availability than BPND measured by
a single 11C-raclopride-PET scan at rest would also be useful,
particularly measures that allow for teasing apart receptor den-
sity and endogenous dopamine levels (Seeman et al. 1989; Yoder
et al. 2008). Further, although recent evidence supports the reli-
ability and validity of extrastriatal measurements of D2/3R avail-
ability with 11C-raclopride (Alakurtti et al. 2015; Papenberg et al.
2017), it is possible that partial-volume effects may to some
degree bias the measurements. Importantly, however, we think
that these measurement imperfections are unlikely to explain
our main result as classes 2 and 3 did not differ much (and not
statistically) in gray matter volume. We also note that the pres-
ent data-analytic approach probabilistically assigns individuals
to classes, and that classification accuracy was far from perfect.
Hence, the groups identified in our analyses are unlikely to rep-
resent distinct entities. Rather, they can be thought of as guide-
posts for detecting non-linear multivariate associations that
apply to the entire population (Bauer 2007). Finally, we empha-
size again that the methodological approach of the current study
is exploratory in nature. This also holds for the investigation of
differences among the classes on other variables than those
included in the latent-profile analysis. It is our aim to provide a
comprehensive and broad description of classes of individuals,
without attaching too much meaning to the individual compari-
sons of different variables between classes. That said, it should
be noted that not all of the discussed differences survive p-
threshold correction for multiple testing. Future confirmatory
work is therefore warranted.

We have reported a data-driven representation of the asso-
ciations between D2/3R availability and cognitive performance
in a large sample of older individuals with 3 subgroups of indi-
viduals. Our results emphasize the need to take into account
the multivariate heterogeneity of individual profiles of D2/3R
availability and cognitive performance for understanding
between-person differences in brain-cognition associations.
Relatively high dopamine D2/3R availability comes with high
cognitive performance for most individuals, but there is a smal-
ler group of individuals where high availability, especially in
the striatum, instead comes with poor performance, particu-
larly for working memory.
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Supplementary data are available at Cerebral Cortex online.
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