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A B S T R A C T

The predictive power of cumulative prospect theory and expected utility theory is typically compared using
decisions from description, where lotteries’ outcome values and probabilities are explicitly stated. In decisions
from experience, individuals sample (in the sampling paradigm without cost) from the return distributions to
learn outcome values and their relative frequencies; here cumulative prospect theory and expected utility theory
require the calculation of probabilities from experience. Individuals, however, may be more attuned to the
experienced moments of outcome distributions, rather than the probabilities. We therefore test the mean–-
variance–skewness model, and retrieve the proportion of expected utility theory (over income), cumulative
prospect theory, and mean–variance–skewness populations using a latent-class hierarchical Bayesian model
across six large datasets. For simple lotteries (with 1–2 outcomes), we find a mixture of cumulative prospect
theory and mean–variance–skewness populations in decisions from both description and experience. For more
complex lotteries (with 2–3 outcomes), all participants are classified as cumulative prospect theory types in
decisions from description, but as mean–variance–skewness types in decisions from experience. This suggests
that in decisions from experience with more complex return distributions, preferences for skewness are more
predictive than nonlinear probability weighting.

1. Introduction

Many return distributions in the wild are heavily skewed (or
asymmetric) due to an ecological negative correlation between prob-
abilities and the magnitude of payoffs (see Pleskac & Hertwig, 2014).
This negative relationship is often found in both market and nonmarket
environments. Examples include lottery returns and gambling, health
outcomes and disease, and asset returns. For this reason, decision ma-
kers are well advised to not only attend to the expected value of an
option, but also to the skewness in its returns. Skewness is a measure of
the asymmetry of a distribution with respect to its mean. A negatively
skewed distribution will typically exhibit an extended or longer tail on
the left side of the distribution than on the right side, and vice versa for
a positively skewed distribution (see Fig. 1). Skewed distributions
therefore exhibit different probabilities and magnitudes of extreme
events on either side of the distribution (low vs. high outcomes) due to
asymmetry, whereas the normal distribution is perfectly symmetric and
therefore has zero skew.

Currently, two quite different theoretical frameworks describe how
the effects of distribution skewness shape choices. The first framework
is that of moment-based preference models, specifically the

mean–variance model (Markowitz, 1952; Tobin, 1958), which can be
extended to explicitly model skewness preferences. The second frame-
work is cumulative prospect theory (CPT, Tversky & Kahneman, 1992).
Although it was not originally devised with skewness specifically in
mind, it captures its effects indirectly, primarily through nonlinear
decision weights. Cumulative prospect theory’s original application was
to decision making under risk (e.g., choice between monetary gambles
with known and stated probabilities) but it has recently also been ap-
plied to asset pricing. In contrast, moment-based preferences have
mostly been applied to asset pricing in financial markets, with very
little application in individual decision making under risk and un-
certainty. These distinct home turfs may explain why these two fra-
meworks have coexisted without having been rigorously pitted against
each other.

Our first major goal is to address this state of affairs by running a
competitive model comparison. While there are a multitude of models
of decision making under risk and uncertainty, our primary goal is to
compare how well individuals’ responses to skewness are captured by
moment-based preferences and the nonlinear decision weights in cu-
mulative prospect theory. Furthermore, we are interested in how the
parameterizations of these models may depend on the decision-making
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context—specifically, whether the options’ outcomes and their prob-
abilities (relative frequencies) are described or experienced. For this
reason, we will restrict our focus to models that can be applied to de-
cisions from description as well as decisions from experience. This
means that we will not include accounts that have proven successful in
modeling decisions from experience such as associative learning models
(Weber, Shafir, & Blais, 2004), similarity-based contingent averaging
rules (Plonsky, Teodorescu, & Erev, 2015), and the instance-based
learning model (Gonzalez & Dutt, 2011; Gonzalez, Lerch, & Lebiere,
2003). However, note that while the latter was successful in the
Technion Prediction Tournament (Erev et al., 2010), Glöckner, Hilbig,
Henninger, and Fiedler (2016) find that the instance-based learning
model performs significantly worse than cumulative prospect theory in
four other datasets. Also, in Appendix E we show that our models’
predictions are on par with those of the top performing model in the
experience–sampling paradigm of the Erev et al. (2010) tournament. As
a benchmark we will also include expected utility theory over income
(EUT) in the model competition. We employ data from six different
existing (and with one exception, published) experimental studies and
take advantage of a Bayesian hierarchical latent-class model that in-
cludes cumulative prospect theory, a mean–variance–skewness model
(MVS), and expected utility theory over income. These studies examine
decisions from both description and experience, a distinction to which
we return shortly. By bringing together six datasets from different
studies rather than running a new study we benefit from a large number
of datapoints that would be nearly impossible to collect in a single new
choice experiment in the laboratory. Based on this rich dataset, we can
infer participant heterogeneity, use cross-validation techniques to ad-
dress overfitting and examine the out-of-sample predictive ability of the
models. Furthermore, the data cover a large range of the potential
properties of risky options, that is, combinations of outcomes and
probabilities, which improves model generalizability and the robust-
ness of our conclusions. However, because each individual study ex-
amined different decision models and used different statistical inference
techniques, it is nearly impossible to compare their results and draw
meaningful conclusions. Our analysis, a meta-analysis of sorts, unifies
the statistical inference technique and the decision models, thereby
rendering comparisons feasible and meaningful. Such an approach does
not eliminate the methodological differences across studies. Where re-
levant, we will highlight them and discuss whether they may impact the
findings.

Our second major goal is to capture the extent of heterogeneity in
individuals’ behavior using a latent-class hierarchical Bayesian model.

Participant heterogeneity is found in a diverse range of tasks studied in
psychology and economics—for example, in static individual decision
models (e.g., Abdellaoui, 2000), models of different levels of sophisti-
cation in strategic behavior (e.g., Costa-Gomes, Crawford, & Broseta,
2001), and learning models (e.g., Spiliopoulos, 2012). Estimating
models on the basis of pooled data when individuals prove hetero-
genous is highly problematic in terms of parameter recovery and model
selection (Cohen, Sanborn, & Shiffrin, 2008; Estes & Maddox, 2005).

1.1. The description–experience gap in risky choice

For many decades, the standard tool of economists and psycholo-
gists for studying individual decision making under risk has been choice
between lotteries. These lotteries are event-contingent outcomes (e.g.,
win $100 million with certainty; win $500 million with 10%, $100
million with 89%, and nothing otherwise; Allais, 1953). In these lot-
teries, the individual is either provided with the outcomes’ objective
probabilities from the outset (a condition referred to as risk), or has to
assign subjective likelihoods to events (a condition referred to as am-
biguity in the economic literature; e.g., win $100 if home team wins,
otherwise nothing).

Numerous empirical findings suggest a tendency for people to
overweight small probabilities and underweight moderate to high
probabilities under risk in response to described probabilities and
outcomes (e.g., Tversky & Kahneman, 1992); these are called decisions
from description. In the last decade, however, researchers have begun
to extensively and systematically compare decisions from description
with choices in which properties of the payoff distributions are ex-
perienced rather than described. In decisions from experience, possible
outcomes and their relative frequencies must be learned through sam-
pling—that is, through repeated draws with replacement from payoff
distributions unknown to the decision maker (Barron & Erev, 2003;
Erev & Roth, 2014; Hertwig, Barron, Weber, & Erev, 2004; Hertwig &
Erev, 2009). The decision maker thus makes choices on the basis of
statistical rather than a priori probabilities (in the terminology of
Knight, 1921). Statistical probabilities cannot be deduced or de-
termined exactly, but must be assessed in an empirical manner. Re-
search on decisions from experience has employed a simple experi-
mental tool, a “computerized money machine.” Respondents see two
urns or buttons on a computer screen, each representing a payoff dis-
tribution that is initially completely unknown. Three variations of this
tool have commonly been employed (see Hertwig & Erev, 2009). In the
sampling paradigm, people first sample as many outcomes as they wish

Fig. 1. Examples of positively and negatively skewed distributions.
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before deciding on a distribution from which to make a single draw. In
the full-feedback paradigm, each draw contributes to people’s earnings
and they receive draw-by-draw feedback on the obtained and the for-
gone payoffs (i.e., payoff they would have received had they selected
the other option). Finally, the partial-feedback paradigm differs from the
full-feedback paradigm only in that people merely learn about the ob-
tained payoffs. In the partial-feedback paradigm, unlike the other two
paradigms, respondents face an exploitation–exploration trade-off.
They must strike a balance between two goals associated with every
choice: to obtain a desired outcome (exploitation) or to gather new
information about other, perhaps better, actions (exploration). In our
analyses, we are concerned with datasets that were collected using the
sampling paradigm.

The starting point of the decisions from experience research was the
question of the extent to which choices and value maximization sys-
tematically change when people rely on direct experience of the
structure of the probabilistic world rather than simply being told about
it. In the latter case, people receive symbolic or graphic descriptions of
the options’ possible outcomes and probabilities, and no learning is
required. Numerous studies have systematically pitted decisions based
on experience against decisions based on descriptions, mostly using
monetary lotteries. Taken together, these investigations have revealed a
systematic and robust difference between the two kinds of decisions,
namely a description–experience gap in the choice proportions. The
overall pattern obtained across the three experimental paradigms can
be summarized as follows. In decisions from experience, people behave
as if rare events have less impact than they deserve according to their
objective probabilities, whereas in decisions from description, people
behave as if rare events have more impact than they deserve (Hertwig &
Erev, 2009). To what extent this portrayal of the shape of the prob-
ability weighting function and its reversal (inferred from the choices
observed in decisions from description and experience) is appropriate
will be discussed later.

What causes this description–experience gap in choices? Several
contributing factors have been proposed (see Hertwig & Erev, 2009, for
a review). Based on people’s limited search in the sampling paradigm,
reliance on small samples has been proposed as a key factor in at-
tenuating the impact of rare events. In fact, in a meta-analysis of 55
data sets of the sampling paradigm (Wulff, Mergenthaler-Canseco, &
Hertwig, 2018) and involving 40,246 trials (tasks × participants), the
median sample size was 14 for all choices involving a risky and a safe
option (15,054 trials) and 22 for all choices involving two risky options
(30,185 trials). In about one third of the trials (36%), at least one of the
outcomes was not experienced. The small samples that people, on
average, rely on exact a sampling error and this sampling error sys-
tematically changes the experienced options (relative to the objective
payoff distributions).

Several approaches have been taken to examine whether the gap
observed in the sampling paradigm can indeed be reduced to in-
dividuals’ reliance on small samples and, by extension, sampling error.
If sampling error were the sole culprit, then reducing the error by ex-
tending individuals’ search effort should attenuate and eventually
eliminate the gap. Numerous methods have been employed to achieve
this goal, including higher monetary incentives (Hau, Pleskac, Kiefer, &
Hertwig, 2008), fixed large samples (e.g., Camilleri & Newell, 2011;
Hau et al., 2008), and sampling without replacement (e.g., Ungemach,
Chater, & Stewart, 2009) to yoking of description to experience (e.g.,
Hau, Pleskac, & Hertwig, 2010; Rakow & Demes, 2008). Taken to-
gether, these methods, on average, reduced the magnitude of the gap
but did not eliminate it (see Hertwig & Erev, 2009; Wulff et al., 2018).
This suggests that sampling error (as a result of small samples) is a key,
but not the sole, contributor to the description–experience gap. In fact,
in their meta-analysis, Wulff et al. (2018) found that across trials in
which individuals happen to experience outcomes as frequently as the
objective (described) probabilities would suggest, a systematic de-
scription–experience gap persisted. Its magnitude was comparable in

size to the gap when including all trials (even those in which the ex-
perienced relative frequencies diverged from the described prob-
abilities). However, the size of the gap is mediated by characteristics of
the lotteries, such as whether two risky lotteries are compared to each
other or one risky lottery is compared to a certain outcome (e.g.,
Glöckner et al., 2016; Wulff et al., 2018). The gap is typically sub-
stantially larger in the latter compared to the former. Measured in terms
of proportion of risky choices, the gap is robust across a wide range of
situations, although other specifications of the gap based on the shape
of the probability weighting function are less so (see Regenwetter &
Robinson, 2017; Wulff et al., 2018).

The description–experience gap in choice behavior has been ob-
served both for experimental designs in which search was cost-free (the
sampling paradigm) and costly (the partial-feedback paradigm; see,
e.g., Hertwig & Erev, 2009). Here we focus on the sampling paradigm
but want to emphasize that the term “decisions from experience” gen-
erally refers to both cost-free and costly accumulation of experience of
outcome and probability information. Our key concern is to investigate
the extent to which people respond differently to variance and skewness
when they are described versus when they need to be experienced
through sampling. Our examination is related to the work by Weber
et al. (2004), who observed that people respond differently to risk
(outcome variance) depending on whether they encounter it through
description or experience. Specifically, they found that the risk pre-
ferences of both animals (i.e., foraging birds and insects) and humans
are better predicted by the coefficient of variation (CoV)1 than by the
variability of an option’s possible outcomes. Furthermore, they found
that humans’ risk preferences become strongly proportional to the CoV
when they learn about choice options like other animals, namely by
experiential sampling over time rather than description. While these
results are intriguing, we do not examine CoV as it suffers from an
important restriction: It can only be generally applied to positive out-
comes (gains) and not to mixed lotteries.2

1.2. The mean–variance framework and skewness

The mean–variance framework originally proposed by Markowitz
(1952) and Tobin (1958) is the cornerstone not only of the capital asset
pricing model (Sharpe, 1964), but also of the finance literature. This
framework is compatible with a risk-averse expected utility maximizer
as long as one of two conditions hold: returns are normally distributed
(and thus are completely specified by their first and second moments)
or utility is a quadratic function of wealth. However, asset returns are
significantly non-normal, exhibiting both nonzero skewness and excess
kurtosis (e.g., Albuquerque, 2012). In response, arguments in favor of
mean–variance–skewness (MVS) models for asset pricing have been put
forth (e.g., Kraus & Litzenberger, 1976).3 Owing to the rise in popu-
larity of cumulative prospect theory in economics, other studies in fi-
nance have broken ranks with the historical prevalence of moment-
based preference modeling and have turned to cumulative prospect

1 CoV is a measure of the relative variability of risky choice options that is
calculated by dividing the standard deviation of outcomes by their expected
value; it is often multiplied by 100 to express it as a percentage. It is a measure
of relative risk—risk per unit of expected return—rather than a measure of
absolute risk such as the unstandardized variance of the outcomes.

2 The problem arises with the denominator of CoV, which is the expected
value. Allowing lotteries with negative outcomes will in some cases lead to
expected values close to zero—as the expected value approaches zero, the CoV
approaches infinity regardless of the standard deviation.

3 See also Arditti (1967), Harvey and Siddique (2000), Harvey, Liechty,
Liechty, and Müller (2010), and Rubinstein (1973) for further arguments. Note
that despite earlier claims based on the derivation of moment preferences from
a Taylor expansion of a utility function (e.g., Arditti, 1967), Brockett and
Kahane (1992) prove that expected utility and moment-based preferences are
generally incompatible for arbitrary utility functions.
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theory instead, (e.g., Barberis & Huang, 2008).

1.3. Cumulative prospect theory, expected utility theory, and skewness

In contrast to asset pricing in markets, another strand of research
has examined the effects of skewed distributions in individual decision
making (that is, with exogenously provided probabilities and out-
comes). Expected utility theory struggles to explain two concurrent
behaviors that are often observed in the context of real-world choices
between skewed options. The canonical examples are gambling (pur-
chasing lottery tickets) and purchasing insurance—the former is an
example of positive skewness-seeking, the latter of negative skewness-
aversion. Expected utility theory can only capture both of these beha-
viors by assuming that the utility function is concave below the current
wealth point but convex above the current wealth.

Although not explicitly investigating skewness, empirical studies
fitting cumulative prospect theory to choices between simple lotter-
ies—often lotteries with a maximum of two outcomes per optio-
n—indirectly capture the effects of skewed distributions as the majority
of lotteries by design exhibit nonzero skewness. Cumulative prospect
theory can indirectly capture skewness seeking/aversion through the
interaction of the curvature of the probability weighting and value
functions. Indeed, this is one of its primary advantages over expected
utility theory in terms of descriptive power. Although cumulative pro-
spect theory is compatible with both negative and positive skewness-
seeking, in practice the range of empirically derived parameter esti-
mates for decisions from description are compatible with positive
skewness-seeking; we return to this in more detail in the General
Discussion.

Positive skewness-seeking has been found to be the modal behavior,
although to varying degrees in decision from description experiments
and gambling in the field (see Appendix C for an in-depth discussion
and references). Furthermore, Nursimulu and Bossaerts (2014),
Symmonds, Bossaerts, and Dolan (2010), Symmonds, Wright, Bach, and
Dolan (2011), and Wu, Bossaerts, and Knutson (2011) are the only
studies that estimated moment-based preference models including
skewness from empirical data; they also searched for neural correlates
of such preferences. These studies find support for moment-based pre-
ferences both in term of observed choices and neural data. However,
due to the constraints imposed by the fMRI scanning methodology they
had a small number of participants and/or tasks.

To summarize, there is abundant evidence both from the field and
from experiments that the skewness of return distributions matters to
choice. However, relatively little attention has been paid to explicitly
modeling choice in response to skewness and, in particular, to the direct
comparison of nonlinear decision weights and explicit skewness pre-
ferences as competing explanations. Furthermore, existing studies have
not rigorously compared competing models using large datasets. This is
our objective. We next describe the experiments and the data we use for
our model competition. We then present the three decision models that

we competitively test: cumulative prospect theory, mean–-
variance–skewness, and expected utility theory, followed by the spe-
cification of the Bayesian hierarchical latent-class model. After turning
to the results we conclude with a discussion of the implications of our
findings.

2. The experimental datasets

We use a diverse set of five datasets from published studies and one
unpublished set of experimental data. The latter dataset was collected
by Hau and Hertwig and has been made available as supplemental
material; methods and instructions are provided in Appendix F. Of these
six datasets, three are decisions from description and the other three are
decisions from experience using the sampling paradigm. Datasets were
chosen primarily using the criterion that they have a large number of
observations relative to other published studies, both in terms of par-
ticipants and decisions per individual (see Table A1 in Wulff et al.,
2018), and ideally included risky options with two or even three out-
comes. The six datasets have a total of 37,720 observations. Table 1
presents the sources of the datasets (the published studies and the ab-
breviations we have assigned to each dataset for ease of reference) and
summarizes important characteristics of the six datasets, including the
number of participants and properties of the lotteries (see Appendix A
for more details).

All datasets presented participants with two options; however, for
DEER and EEER one of the options was a sure outcome, and the other
option had two possible outcomes. By contrast, EHH and EFMH had two
options with three outcomes each, while DHO and DHR included options
with up to three outcomes each.4 Differences between decision from
description experiments also exist in terms of how information is pre-
sented—DEER presented probabilities numerically, whereas DHO and
DHR used a pie-chart presentation. Also, a random lottery incentive
mechanism was used for four of the six experiments, but for the re-
maining two experiments all choices were incentivized.5

Table 1
Experimental datasets and their characteristics.

Dataset source [Abbrev.] Participants× Tasks Outcomes per
option

Domain (gain,loss,mixed) Payment (#) Details

Erev et al. (2010) D[ ]EER 40 60× (1, 2) ( ), ,1
3

1
3

1
3

1 One option was a sure outcome

Hey and Orme (1994) D[ ]HO 80 200× ( 3, 3) (1, 0, 0) 2 Pie-chart presentation
Harrison and Rutström (2009) D[ ]HR 158 60× ( 3, 3) (0.4, 0.23, 0.37) 3 Pie-chart presentation, participants assigned only to

one domain

Erev et al. (2010) E[ ]EER 80 30× (1, 2) ( ), ,1
3

1
3

1
3

1 One option was a sure outcome

Frey et al. (2015, Exp. 2) E[ ]HH 80 30× (3, 3) ( ), , 02
3

1
3

All Significant variation in lotteries' expected values

Hau and Hertwig E[ ]FMH 70 72× (3, 3) ( ), , 01
2

1
2

All Significant variation in lotteries' expected values and
variance

4 Lopes and Oden (1999) collected data on decisions from description using
lotteries with five outcomes. While we argue that such multiple-outcome lot-
teries are important and understudied, we could not find another study using
four–five outcomes in decisions from experience, which would render a com-
parison of the two feasible. Since three outcomes per lottery was the highest
number found in both the decision from description and decision from ex-
perience literature, we set this as our limit. However, we will be addressing this
in future research with experiments using more than three outcomes in both
decision from description and decision from experience environments.

5 In the decision from experience literature, it is common to pay out all of a
participant’s choices rather than a single choice or subset of choices. This is to
provide incentives throughout for participants to continue sampling sufficiently
from the distributions, even though the act of sampling does not directly con-
tribute to earnings. This raises the possibility of wealth effects (see Appendix
F.2 for a further discussion and an analysis concluding that wealth effects did
not play a role in the EHH dataset).
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2.1. Preliminary analysis

To ascertain whether the skewness of lotteries (and their mean and
variance) impact choices, we employ a Bayesian logistic regression. The
dependent variable is a binary indicator of lottery choice and the in-
dependent variables are the difference in the expected value of the two
lotteries EV , the difference in the variance Var , and the difference in
the skew Skew. Positive coefficients for these three variables imply a
preference for higher expected values, higher variance and more posi-
tive (or less negative) skewness. The results are summarized in Table 2
and reported in full in Appendix B (Table B.7). The 95% highest pos-
terior density interval6 (HPDI) of the parameters excluded zero in all
cases except for Var in EHH ; therefore we can speak of significant ef-
fects. As expected, participants exhibited a preference for higher ex-
pected values and an aversion to variance in all datasets. Importantly,
participants exhibited a preference for positive-skewness in all studies
except EFMH . Overall these findings are in accord with existing research,
and highlight the importance of lottery skewness on choices. Conse-
quently, we argue that this justifies further investigation regarding the
mechanisms through which skewness may operate: either directly
through preferences for statistical moments or indirectly through non-
linear decision weights.

3. The decision models

We refer to the models used by participants as “decision models”
and reserve the term “model” for the statistical model (which will in-
clude multiple decision models). All decision models employ the same
stochastic choice rule (logit, or softmax) with a best-response parameter
. The higher is, the more likely a person is to best respond, that is,

choose the option with the highest value; at the other extreme, if 0=
then choice is random. The probability of choosing an arbitrary lottery
L1 from a set of K lotteries for a decision rule that values lottery k as
V L( )k is given in Eq. (1). We consider other stochastic parameteriza-
tions to be promising (e.g., Blavatskyy, 2014c; Wilcox & Wilcox, 2011),
but it is impractical for us to simultaneously competitively test these.
Consequently, we chose the logit stochastic choice rule as it is still
widely used. Throughout the rest of the article, the reader should bear
in mind that for datasets of decision from description, all models use the
described probabilities, but for datasets of decision from experience the
experienced relative frequencies are used instead. For example, suppose
the participant observed an outcome of 100 ten times while sampling,
an outcome of 50 five times, and an outcome of 10 another five times.
The experienced probabilities for the outcomes 100, 50, and 10 would
be 0.5, 0.25, and 0.25 respectively.

p L e
e

( )
V L

k
V L1
( )

( )k

1
=

(1)

3.1. Cumulative Prospect Theory (CPT)

We parameterized the probability-weighting function—denoted by
w p( )—using the linear in log-odds functional form, first used by
Goldstein and Einhorn (1987). The parameter influences the curva-
ture of the probability-weighting function: 1< implies an inverse S-
shaped curvature, whereas 1> implies an S-shaped curvature. If

1 then the probability-weighting function concurrently exhibits
overweighting and underweighting of probabilities for different ranges
of p. The parameter affects the elevation of the probability-weighting
function. If 1= then 1> implies overweighting of all probabilities
(often attributed to optimism) and 1< implies underweighting (pes-
simism). If 1= = then the probability-weighting function is a linear
function identical to the described or experienced probabilities. Recall
that in decisions from experience, the experienced relative frequencies
are used in the probability-weighting function. Note that since DHO
involves lotteries with gains only, cumulative prospect theory is
equivalent to rank-dependent expected utility for this dataset.

The value function is the standard power utility function (CRRA)
with risk parameter except for the addition of loss aversion captured
by . The latter is not included in datasets without mixed-outcome
lotteries D E E( , , )HO HH FMH . Assuming that the outcomes xi with prob-
abilities pi of an option are ordered by value such that
x x x x0k k n1 1+ , then cumulative prospect theory is de-
fined as follows in Eq. (2). We have refrained from using different
parameters in the gain and loss domains due to the problems with
parameter interaction and recoverability in cumulative prospect theory
models (Broomell & Bhatia, 2014); see Appendix D.3 for our reasoning
and supporting empirical evidence.

V L v x v x( ) ( ) ( )cpt
i

k

i i
j k

n

i j
1 1

= +
= = +

+

(2)

v x x x
x x

w p

w p
w p
w p p w p p i k
w p p w p p k j n

( ) 0
( ) 0

( ) , 0

( )
( )
( ) ( ) 1
( ) ( )

i i

i i
p

p p

n n

i i i

j j n j n

(1 )

1 1

1 1 1

1

=
<

= >

=
=
= + + + + <
= + + + + < <

+

+

+
+

3.2. Expected Utility Theory (EUT)

The utility of an outcome xi is parameterized using the CRRA utility
function. This is the most commonly used value function for cumulative
prospect theory, and therefore we chose the same function for expected
utility theory for the sake of comparability and to put both models on a
similar footing. A value of 1= implies risk neutrality, 1> implies
risk seeking, and 0 1< < implies risk aversion. As is common in the
literature, our specification is one of expected utility over income rather
than wealth: There is no asset integration and behavior is reference-
point dependent. Cox and Sadiraj (2006) have argued in favor of this
specification on the grounds that it is immune to the Rabin (2000)

Table 2
The relationship between choices and lotteries’ mean, variance and skew.

DEER DHO DHR EEER EHH EFMH

EV 1.0539 0.5075 0.8776 1.2031 0.5227 0.3617
Var −0.0224 −0.0207 −0.0192 −0.0254 −0.0020 −0.0016
Skew 0.0060 0.0002 0.0009 0.0016 0.0013 −0.0006

DIC 2852.126 18997.43 12196.79 2453.596 2307.134 5493.562
MLlog( ) −1459.934 −9539.872 −6134.682 −1260.226 −1189.823 −2786.153

6 The 95% HPDI is the smallest possible interval that contains 95% of a dis-
tribution’s density—this can be literally interpreted as the probability that the
parameter lies within this interval.
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calibration critique. Furthermore, empirical evidence finds that parti-
cipants are better explained by choice models over lottery outcomes
rather than final outcomes over wealth (e.g., Harrison, List, & Towe,
2007; Heinemann, 2008). We note that expected utility theory over
income is a special case of cumulative prospect theory with the fol-
lowing parameter restrictions: 1= = = .

EU L p u x( ) ( )
i

i i=
(3)

u x x x
x x

( ) 0
( ) 0

i i

i i
=

<

3.3. The Mean–Variance–Skewness Model (MVS)

The mean–variance–skewness model shown in Eq. (4) directly
models preferences for the first three central (unstandardized) moments
of the distribution of lottery outcomes L; the parameters m m m, ,1 2 3
correspond to the mean, variance, and skewness respectively.7 The in-
clusion of all three moments does not preclude the inference of simpler
decision models. For example, if s is close to zero, then this implies
that participants are using a mean–variance model. Similarly, if both s

and v are close to zero, then this implies an expected value calculation
only, ignoring both the variance and skewness of lotteries.

V L m m m L Var L Skew L( ) ( ) ( )mvs
v s v s
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4. The statistical model

We employ a latent-class hierarchical Bayesian approach for sta-
tistical inference related to the decision models (see Appendix D.1 for a
discussion of the advantages of this approach). This allows for two
kinds of heterogeneity, both of which have been found to be important
in behavioral decision research. The first is parameter heterogeneity,
which allows individuals to have different parameter values for the
same decision model. For example, two people who both can be cap-
tured by cumulative prospect theory may have a different loss-aversion
parameter . The second is model heterogeneity, which allows in-
dividuals to use different decision models. For example, one person may
best be captured by a cumulative prospect theory decision model
whereas another by the mean–variance–skewness model. Model het-
erogeneity is captured by using a latent-class or mixture model ap-
proach, that is, by inferring the proportion of individuals belonging to
each latent-class or decision model. Ours is the first paper to use both
parameter and model heterogeneity simultaneously for decisions from
description and decisions from experience in a Bayesian frame-
work—see Appendix D.2 for a comparison to other published models
incorporating some form of heterogeneity. Our hierarchical model
permits for a maximum of three latent classes from the set of decision
models EUT, CPT, and MVS, including all possible subsets,
{CPT,MVS,EUT}, {CPT,MVS}, {CPT,EUT}, {MVS,EUT}, {CPT}, {MVS},
{EUT}. This allows us to determine both the number of latent-classes in

the participant pool and the identity of the decision models in the
classes.

4.1. Method

We employ the following hierarchical model. The prior distribution
for the probability of using one of C decision models ( , , )C1= … is
distributed as a uniform, symmetric Dirichlet function (Eq. (5)): Each
combination of probabilities in the C( 1)-simplex is equally likely.8 A
categorical distribution is then used to assign an individual to one of C
classes or decision models indexed by the variable ci (Eq. (6)). The
probability of choosing lottery L1 by individual i in task j depends on
the value of the specific decision model Vci used by an individual and is
denoted by pi j, (Eq. (7)). The binary variable ai j, denotes which of the
two lotteries was actually chosen and follows a Bernoulli distribution
with probability pi j, (Eq. (8)).

Dirichlet 1( )C (5)

c Categorical ( )i (6)

p e
ei j

V L

k
V L,

· ( )

· ( )

i ci

i ci k

1
=

(7)

a Bernoulli p( )i j i j, , (8)

We specified weakly informative prior distributions for the para-
meters of each decision model—that is, we did not incorporate the prior
information about the most likely parameter values available from
previous studies, but we did inform our priors about the expected range
of parameter values and scaled these appropriately. The prior dis-
tributions are presented in detail in Appendix D.4.

Each model—one for each possible combination of the three latent
classes—was computed using the MCMC algorithm implemented in
JAGS for five different chains. After discarding a burn-in of 50,000
samples per chain, we collected 10,000 samples per chain to approx-
imate the posterior distributions of the parameters of interest. We chose
not to thin the samples based on new evidence (Link & Eaton, 2012),
contrary to existing beliefs about the value of thinning. Convergence of
the chains was checked visually and using the R -statistic (Gelman &
Rubin, 1992).

A k-fold k( 3)= cross-validation criterion (based on the out-of-
sample average likelihood, lcv) was employed for model selection due
to issues with other common techniques such as the deviance in-
formation criterion, which is problematic for selection between mixture
models (Celeux, Forbes, Robert, & Titterington, 2003). Cross-validation
automatically accounts for the possibility of overfitting the models to
the training data by directly examining the predictive performance of
the model on unseen data. Typically, models are ranked according to lcv
and the best performer is declared a winner; however, this neglects two
important issues. The first is that lcv is a random variable, dependent on
the partitioning of the dataset; models with close performance may
therefore not be statistically significantly different. The second is that
even if two models are statistically significantly different, this does not
mean that they are economically significantly different—that is, that we
gain a significant increase (in terms of magnitude) in predictive power.
We define two models as economically significantly different if the
difference in their lcv is at least 0.01: For 100 choices one of the models
should on average predict at least one additional choice correctly. We
considered both types of significance and ultimately chose the most
parsimonious model from the set of models not economically sig-
nificantly different from the top-performing model. Further details on

7 We selected this specification from a range of alternatives based on its
parsimony and prior evidence. For example, the third-order moment could be
further broken down into its upper and lower moments—that is, one could
estimate a different parameter for positive skewness and negative skewness.
However, Ebert (2015) and Symmonds et al. (2011) did not find evidence for
differences in the strength of preference for negative and positive skewness.

8 Our choice of the Dirichlet distribution with parameters 1( )C assigns a
greater prior likelihood to the existence of heterogeneity. This is consistent with
prior evidence from studies estimating the proportion of decision model use
(see Appendix D.2).
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the model selection procedure can be found in Appendix D.5.

5. Results

5.1. Model heterogeneity

Table 3 presents the best model according to our selection criteria
for each dataset, including the proportion of participants belonging to
each latent class ( ) and the average cross-validation likelihood lcv( ).
The complete set of results for every possible combination of decision
models can be found in Appendix D.6. We found the following major
results.

Result 1. Expected utility theory performs poorly and is never included in
the best model for any of the datasets; there is no population of EUT
individuals independent of the CPT and MVS populations. Neither the
statistical nor economic significance criterion ever chose a model
including an expected utility theory population—see Table D.8 in
Appendix D.6. Furthermore, the difference between the lcv of the
best-performing econometric model and a single-class EUT model is
substantially different for all six datasets: 0.114, 0.018, 0.025, 0.046,
0.032 and 0.021 for D D D E, , ,EER HO HR EER, EHH , and EFMH respectively.

Strictly speaking, our result regarding expected utility theory con-
cerns the existence of an EUT population that is independent of a CPT
population. Cumulative prospect theory nests expected utility theory as
a special case if 1= = = , therefore a CPT population with sig-
nificant density around these parameter values will include individuals
whose behavior would approximate expected utility theory. Similarly,
if 0v s= = then mean–variance–skewness nests expected utility
theory under the assumption of risk neutrality. The existing decision
from description literature that permits for model heterogeneity only
(and not parameter heterogeneity) typically finds roughly 20% of in-
dividuals as belonging to expected utility theory (Bruhin, Fehr-Duda, &
Epper, 2010; Conte, Hey, & Moffatt, 2011). Our results are generally in
accord with this, depending on how strictly one defines approximate
EUT behavior within a CPT or MVS population. We will return to this in
more detail when examining parameter heterogeneity. However, we
can already conclude that expected utility theory is too rigid to ac-
commodate the parameter heterogeneity exhibited across participants.
Consequently, any EUT types may be subsumed under the CPT or MVS
populations.

Result 2. There is significant model heterogeneity for two datasets, DEER
and EEER. The 2-class CPT–MVS model is the best performer for both of these
datasets. Participants in DEER and EEER are classified as using one of two
decision models, cumulative prospect theory or
mean–variance–skewness. In the DEER dataset, the probability of
participants belonging to these classes are 0.55 and 0.45 respectively.
In the EEER dataset, the probabilities of participants belonging to
cumulative prospect theory and mean–variance–skewness are 0.76
and 0.24 respectively. The necessity of allowing for both classes is
evident not only from a comparison of lcv (Table D.8) but also from the
fact that the 95% HPDIs of the class probabilities do not include (and

are very far from) a value of zero. Participants were classified with high
posterior probabilities to each class, indicating that the two latent
classes are necessary and that the statistical technique efficiently
recovered these classes (see Appendix D.7 for details).

Result 3. No significant model heterogeneity was found in DHO,D E,HR HH ,
or EFMH . The single-class CPT model is the best model in the two description
datasets, whereas the single-class MVS model is the best model in the two
experience datasets. In contrast to Result 2, we do not find significant
model heterogeneity in the D D E, ,HO HR HH , and EFMH datasets (where
the two lotteries have 2–3 outcomes each; see Tables 1 and 3).
Consequently, parameter heterogeneity—discussed in Section
5.2—was adequate in capturing participants’ diverse behavior
without the need for model heterogeneity. We are unaware of any
other study that permitted for model heterogeneity in decisions from
experience to which we could compare this result.

5.1.1. Summary and discussion
A significant proportion of participants were classified as using the

MVS model in four out of six datasets—one decision from description
dataset and all three decision from experience datasets. Furthermore, in
the two decision from experience datasets with options comprised of
two or three outcomes each (without a lottery consisting of a sure
outcome), every single participant was classified as MVS. We consider
this to be evidence of the existence of MVS types of participants, par-
ticularly in decisions from experience. By extension, we conclude that
nonlinear probability weighting is inadequate for capturing the beha-
vior of participants in decisions from experience, at least in multi-out-
come lotteries (in the interior of the Marschak-Machina triangle), and
that explicit preferences for skewness play an important role here. On
the other hand, in four out of six datasets, a significant proportion of
participants were classified as CPT—one decision from experience da-
taset and all three decision from description datasets. Our analysis
suggests that, particularly for multi-outcome lotteries, the scope of the
cumulative prospect theory model may be limited primarily to deci-
sions from description, whereas the scope of the mean–-
variance–skewness model is limited to decisions from experience. Note
that if we had not included the MVS decision model in the analysis, we
would have concluded that the single-class CPT model outperformed
EUT (and the 2-class CPT and EUT models) in predicting behavior in all
four of these datasets. Consequently, our hypothesis, and the con-
firmation thereof, that MVS types exist is an important contribution to
the existing literature. The following section will highlight another
important result regarding cumulative prospect theory—in three out of
the four datasets where a CPT population was found, in only one case
did participants consistently exhibit the oft-advocated inverse S-shaped
probability-weighting function.

As we have noted, the studies did not all implement their experi-
ments identically. It is therefore possible that the above conclusions are
confounded with some of the differences across studies. The first main
difference concerns the properties of the lotteries in the various data-
sets. In the EHH and EFMH datasets, where we found a single MVS po-
pulation, the first and third moments of the lotteries (calculated from
the experienced relative frequencies and outcomes) are positively re-
lated, whereas in the other four datasets they are negatively related (see
Table A.6). This difference in the lotteries’ properties, however, cannot
fully explain the differences in the statistical models because we still
find a significant MVS population in the DEER and EEER datasets, whose
lotteries exhibit a negative mean correlation between the first and third
moments. The second main difference concerns the incentive scheme.
Again, although the decision from experience experiments in EHH and
EFMH paid out all the decisions, we still found significant MVS popu-
lations in the DEER and EEER datasets, which only paid out a single de-
cision. Also, recall that no wealth effects were found in the EHH data-
set—that is, participants treated each outcome separately.
Consequently, these two variables cannot fully explain the differences

Table 3
Prevalence of CPT, MVS, and EUT latent classes in six data sets (D =
Description, E = Experience).

DEER DHO DHR EEER EHH EFMH

CPT 0.55 1 1 0.76 0 0
[95% HPDI] [0.50,0.60] [0.70,0.82]

MVS 0.45 0 0 0.24 1 1
[0.40,0.50] [0.19,0.31]

EUT 0 0 0 0 0 0

lcv 0.675 0.712 0.641 0.759 0.728 0.682
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in the scope of the CPT and MVS models. We attribute the differences
primarily to the complexity of the lotteries and the nature of learning,
whether through description or experience.

5.2. Parameter heterogeneity (within-decision model)

In this section, we examine whether significant heterogeneity exists
in individuals’ parameters within a decision model. We restrict our
analysis to the decision models that are present in the best model for
each dataset. Hence, we present the posterior distributions of the
parameters of cumulative prospect theory in datasets DEER, D D,HO HR,
and EEER and the parameters of mean–variance–skewness in the
D E E, ,EER EER HH , and EFMH datasets. Parameters were found to be well
identified in the models (see Appendix D.8 for the evidence).

5.2.1. Cumulative prospect theory
We present the posterior distributions for the CPT model in the four

datasets where a nonzero proportion of participants were classified as
CPT. The results are contrasted to those of existing decision from de-
scription studies9 that estimated the same probability-weighting func-
tion empirically using the mean or median values from non-
pooled—that is, individual or hierarchical—estimation. Table 4
contains the descriptive statistics of the posterior parameter distribu-
tions, including the HPDI and the probability that the posterior dis-
tribution function of any parameter (conditional on the data D) is
greater than 1, p f D( )d1 1=> . Recall, that these are the group-
level distributions of each parameter and therefore p 1> is equal to the
proportion of participants whose individual parameter values are
greater than 1. Fig. 2 is a contour plot of the joint distribution of the
cumulative prospect theory parameters and . This figure will be
useful in our discussion of whether the CPT population includes a sig-
nificant proportion of EUT types. The latter implies that the joint dis-
tributions in the first column of Fig. 2 should exhibit significant density
at—and be centered on—the point where the two lines intersect
( 1)= = . Alternatively, this implies that the inferred probability-
weighting functions in the second column of Fig. 2 should not sys-
tematically deviate from the 45° line that represents the linear
weighting inherent in expected utility theory. Posterior marginal dis-
tributions of all cumulative prospect theory parameters are available in
Fig. D.5 in Appendix D.9.

Result 4. Cumulative prospect theory parameters are not stable across
datasets. The standard inverse-S shaped probability-weighting function is
observed only in one decision from description dataset D( )EER . In another
decision from description dataset D( )HO the function is symmetrically
distributed around the linear probability-weighting function and in two
other datasets D E( , )HR EER the observed probability-weighting function is
clearly inconsistent with an inverse-S shaped probability-weighting function.
There are two hallmark characteristics of the standard probability-
weighting function in the existing literature: the inverse-S shape ( 1)<
and a crossover point (where the probability-weighting function crosses
the 45° line) significantly below 0.5 ( 1)< . These two properties are
consistent with the lower-left quadrants in Fig. 2. The inverse-S shape
has been consistently defended using both parametric estimates
(Camerer & Ho, 1994; Tversky & Kahneman, 1992) and
nonparametric characterizations (Gonzalez & Wu, 1999; Wu &
Gonzalez, 1996). The median estimate of in prior studies using the
same function ranged from 0.38 to 0.96. However, our results raise
doubts about the stability of this posited function in all but one of our
datasets. The probability of participants exhibiting both these
characteristics ( , 1)< in the three decision from description

datasets D D,EER HO, and DHR is 0.79, 0.34, and 0.25, respectively.
Note that in the sole decision from experience dataset where a CPT
population was found, the relevant probability is also extremely low,
0.05. Consequently, only the DEER dataset supports the prior findings of
an inverse S-shaped function and a crossover point below 0.5. Since this
is the only dataset that involved choices between one risky (two-
outcome) lottery and a sure outcome, our finding suggests that the
inverse-S shape is primarily driven by the certainty effect (see Glöckner
et al., 2016, for a discussion of the role that the kind of choice plays in
decisions from experience). Further work should be directed towards
determining whether the scope of cumulative prospect theory, and
specifically an inverse-S shaped function, is limited to choice between
simple lotteries with only one or two outcomes (i.e., on the boundary of
the Marschak-Machina triangle; see also Wulff et al., 2018). Wilcox
(2015) similarly found nonstandard (optimistic) probability-weighting
functions in decision from description tasks and attributes this to
context-dependent weighting based on the salience of events.

Examining the curvature of the probability-weighting function se-
parately from the elevation, the mean/median values of for DEER
participants are 0.35/0.25 and p 0.961 =< , indicating that almost all
participants had an inverse S-shaped function in this dataset. However,
the evidence from the other two decision from description studies
(D D,HO HR) stands in stark contrast. The mean/median values of for
D D,HO HR are 0.94/0.94 and 1.1/1.03, respectively—these values are
effectively identical to a linear function. The probability of participants
exhibiting an inverse-S shaped probability-weighting function are 0.31
and 0.54 for DHO and DHR, respectively. Similarly, the mean/median
values of for EEER participants are 1.19/1.10 and p 0.601 => , in-
dicating that the majority of participants had a weakly S-shaped
probability-weighting function in the sole decision from experience
dataset where a CPT population was found (see Camilleri & Newell
(2011) for a similar finding). Note, that since experienced relative
frequencies were used for the decision from experience experiments,
this finding cannot be explained by sampling error.

The elevation of the probability-weighting function captured by
exhibited a similar pattern. Let the superscripts + and refer to separate
parameter estimates for the gain and loss domains, respectively. Median
estimates of + in nine out of 10 decision from description studies were
all lower than 1, ranging from 0.63 to 0.98, with one exception (1.40)

Table 4
Posterior statistics for cumulative prospect theory parameters.

Mean SD Median 95% HPDI p 1>

DEER 0.35 0.43 0.25 0.01 0.91 0.04
0.80 0.32 0.76 0.25 1.40 0.18
0.87 0.14 0.86 0.60 1.15 0.13
1.13 0.59 1.03 0.29 2.12 0.53
1.11 0.58 1.01 0.26 2.12

DHO 0.94 0.16 0.94 0.63 1.27 0.31
1.06 0.44 1.00 0.27 1.89 0.50
0.42 0.19 0.37 0.14 0.82 0.02
– – – – – –

13.54 10.95 10.70 0.60 34.72

DHR 1.10 0.39 1.03 0.46 1.87 0.54
1.15 0.93 0.90 0.10 2.85 0.44
0.68 0.35 0.61 0.14 1.37 0.17
1.02 0.99 0.74 0.04 2.75 0.35
5.17 5.83 3.34 0.10 15.56

EEER 1.19 0.49 1.10 0.40 2.14 0.60
1.57 0.83 1.43 0.52 2.88 0.84
1.26 0.63 1.13 0.31 2.50 0.60
1.89 2.53 1.11 0.02 6.07 0.54
3.76 4.07 2.62 0.10 10.60

Note. The loss aversion parameter cannot be identified in DHO.

9 See Abdellaoui (2000), Abdellaoui, L’Haridon, and Paraschiv (2011),
Abdellaoui, Vossmann, and Weber (2005), Bruhin et al. (2010), Erner, Klos, and
Langer (2013), Glöckner and Pachur (2012), Gonzalez and Wu (1999),
Scheibehenne and Pachur (2014), Stott (2006), and Tversky and Fox (1995).
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found in Stott (2006). For values range from 0.78 to 1.87 with four
out of seven studies finding 1> . The mean value in DEER is 0.8,
largely consistent with prior findings such as Nilsson, Rieskamp, and
Wagenmakers (2011), which found a median value of 0.89 in decision

from description tasks using a one-parameter probability-weighting
function. However, in DHO and DHR the posterior means/medians of
are 1.06/1.0 and 1.15/0.9, respectively—these values are significantly
closer to those implied by a linear function. Finally, the mean/median

Fig. 2. Joint posterior distributions for cumulative prospect theory parameters. Note. The curvature and elevation parameters of the probability-weighting function
are denoted as and , respectively. Experienced probabilities are the experienced sample-based relative frequencies. Numbers in the graphs represent the proportion
of the population in each quadrant.
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values in EEER are 1.57/1.43, pointing to an important, qualitatively
different result.

The mean parameter value 0.87= indicated mild value-function
concavity in DEER and 87% of participants exhibited concave value
functions ( 1)< . Median estimates from eight out of nine studies using
the same probability-weighting function found ranging from 0.19 to
0.94, with the exception of Erner et al. (2013), where was 1.15. In
EEER, the value function was predominantly mildly convex for 60% of
the population, with a mean value of 1.26= . According to the find-
ings from the description–experience gap, participants are more likely
to chose the risky prospect in decisions from experience than in deci-
sions from description. Our finding that the value function is, on
average, convex in EEER suggests that one mechanism for the increase in
risk-averse behavior in decisions from experience can be attributed to
the differential curvature of the value function, beyond any other im-
plications for risk behavior arising from probability weighting and loss
aversion. In conjunction with the (on average) S-shaped probability-
weighting function that we identified above for this dataset, this leads
to the reverse reflection effect, which is consistent with findings for
decisions from experience.

Loss aversion ( 1)> was found for 53% of participants in DEER,
while the mean/median values of were 1.13/1.03 indicating loss
neutrality on average in the population. Similarly, the mean/median
values were 1.02/0.74 in DHR—only 35% of the population exhibited
loss aversion. In EEER, the posterior mean of 1.89= but the median
value was close to loss-neutrality, 1.11. Existing studies with the same
probability-weighting function found values ranging from 1.05 to 2.51.
Using a one-parameter probability-weighting function, Nilsson et al.
(2011) recovered a median loss-aversion value of 1.02 in a hierarchical
Bayesian model. Also, similarly to the DEER results, only 54% of the
population were loss-averse ( 1)> . Yechiam and Hochman (2013)
reviewed the evidence regarding the existence of loss aversion and
concluded that it is mixed (and task-dependent), and suggested that
losses have other attentional, rather than weighting, effects on behavior
(see also Lejarraga, Schulte-Mecklenbeck, Pachur, & Hertwig, sub-
mitted for publication).

Finally, we examine whether the CPT populations might include
approximate expected utility theory types. The location and density of
the joint distributions of and in Fig. 2 imply that EUT types were
virtually nonexistent in DEER. In the remaining datasets, the proportion
of approximate EUT types would be nonzero (the highest in DHO) but
small as the density in the vicinity of the origin is very low. Our analysis
here is an upper bound on the prevalence of EUT types as we have not
simultaneously accounted for loss aversion. The exact proportion of
approximate EUT types is relatively subjective, depending on how
strictly one defines the boundaries of the approximation (in terms of
intervals on , , and ). However, the evidence suggests that this
would be relatively low. Furthermore, as noted earlier, despite the ex-
istence of a small proportion of approximate EUT types, the EUT de-
cision model was not able to adequately capture parameter hetero-
geneity across participants.

5.2.2. Mean–Variance–Skewness
The posterior statistics of the mean–variance–skewness parameters

are presented in Table 5, along with the 95% HPDI and the probability
that any parameter is greater than zero, p 0> . The posterior joint dis-
tributions of the v and s parameters are presented as contour plots in
Fig. 3; also displayed is the proportion of participants belonging to each
quadrant. The posterior marginal distributions of the MVS parameters
can be found in Fig. D.6 in Appendix D.9.

Existing empirical evidence points towards variance-aversion and
positive skewness-seeking as the modal preferences (see Appendix C),
but considerable heterogeneity is evident. Our results are consistent
with these findings. In D E,EER EER, and EHH , the highest proportion of
participants belonged to the variance-aversion/positive skewness-
seeking quadrant. An exception occurs for FMHe, where participants

were most likely to belong to the variance-aversion/negative skewness-
seeking quadrant. We find that across all datasets the majority of par-
ticipants are variance averse (see Table 5). However, for EFMH and EHH
the proportion of variance-averse participants was higher and close to
equiprobable: 0.43 and 0.45 respectively. Furthermore, the vast ma-
jority of participants had a preference for positive skewness in the EEER
(0.88), DEER (0.90), and EHH (0.73) datasets, but not in EFMH (0.31).

With respect to the possibility that the MVS population includes
some approximately risk-neutral EUT types we note the following. In
DEER and EEER, the joint posterior distribution of v and s is positioned
very far from the origin ( 0)v s= = and with very low density around
this point. In EFMH , the joint distribution is located closer to the origin
than in the previous datasets, but the distribution is quite highly
peaked. Therefore, the density drops off quite quickly to an inter-
mediate value in the vicinity of the origin—we conclude that a small
proportion of the population would be approximated reasonably well
by risk-neutral expected utility theory. In EHH , the distribution is lo-
cated quite close to the origin, but the distribution is quite flat and
spread out. Consequently, the density around the origin is not parti-
cularly high, despite it being close to the peak of the distribution. We
conclude again that a small proportion of the population in EHH can be
interpreted as approximating a risk-neutral EUT type. We highlight that
despite these results the expected utility theory decision model cannot
accommodate the heterogeneity found in participants’ preferences for
moments—this is why we do not find a distinct EUT population in these
datasets. Finally, we note in both EFMH and EHH , all the lotteries were
paid out to participants. This may explain why the MVS joint posterior
distributions are positioned relatively closer to the origin than in EEER
and DEER—that is, average behavior (ignoring the significant hetero-
geneity we found) is closer to a risk-neutral EUT type, or equivalently
an expected value maximizer. This warrants further investigation in
future work.

6. General discussion

Our model comparison produced the following results based on tests
of out-of-sample predictive power. First, regardless of the data set and
type of decisions (from description or from experience), we did not find
a population of individuals behaving according to expected utility
theory over income. Second, we found a mixture of CPT and MVS
participants in two out of six datasets (one dataset with decisions from
description and one with decisions from experience, each featuring a
sure outcome and a lottery with two outcomes). Third, in the two re-
maining decisions from experience datasets, every single participant
was classified as MVS. Fourth, in the two remaining datasets of deci-
sions from description every single participant was classified as CPT.

Table 5
Posterior statistics for mean–variance–skewness parameters. ( 10 )2×

Mean SD Median 95% HPDI p 0>

DEER v −2.99 4.46 −3.01 −11.98 5.50 0.24
s 0.37 0.36 0.39 −0.44 1.10 0.88

196.64 89.51 182.54 57.77 360.86

EEER v −8.84 9.95 −10.10 −26.83 13.60 0.17
s 0.88 0.79 0.91 −0.73 2.44 0.90

480.18 2513.44 223.31 0.03 1396.11

EFMH v −0.31 2.23 −0.38 −4.86 4.03 0.43
s −0.10 0.26 −0.13 −0.61 0.44 0.31

53.39 33.01 46.82 6.14 114.73

EHH v −0.11 5.75 −0.60 −10.79 12.59 0.45
s 0.30 0.46 0.28 −0.56 1.20 0.73

89.17 58.64 75.47 14.90 197.22
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Importantly, these last two results involved datasets with complex
lotteries of two or three outcomes per option and no sure outcome. For
such complex lotteries our findings suggest that cumulative prospect
theory is better than mean–variance–skewness at predicting behavior in
decisions from description, but that mean–variance–skewness is better
at decisions from experience. We now discuss conceptual differences
between cumulative prospect theory and mean–variance–skewness and
identifiable deviations in their predictions.

6.1. Nonlinear decision weights and moment-based preferences

The intuition behind why cumulative prospect theory is more suc-
cessful than expected utility theory in modeling the purchasing of in-
surance and gambling is the following: Relative to a linear probability-
weighting function, the typical (for decisions from description) inverse-
S shaped probability-weighting function overweights extreme outcomes
with low probabilities and underweights extreme outcomes with high
probabilities. This is consistent with positive skewness seeking, such as
gambling, and negative skewness aversion, such as insurance. At the
same time, the standard cumulative prospect theory value function
exhibits concavity over gains and convexity over losses, thereby im-
plicitly reducing the importance of extreme outcomes. Cumulative
prospect theory’s ability to model gambling and insurance behavior
therefore hinges on the relative magnitudes of the curvature of the

weighting and value functions; also, when dealing with mixed lotteries
the asymmetric effect of loss aversion must be taken into account. This
implies that whether cumulative prospect theory predicts positive or
negative skewness seeking is conditional on the specific functional
forms and parameter values used and the characteristics of the decision
tasks—that is, probabilities and values of outcomes. Consequently, a
single individual may exhibit both positive and negative skewness-
seeking behavior. This stands in stark contrast to the stable preferences
in the mean–variance–skewness model, where given parameter values

v and s, a participant is always consistent in their preferences for a
distribution’s moments regardless of the underlying lottery prob-
abilities and outcome values.

The possible interactions between all the cumulative prospect
theory parameters makes estimating their combined influence on
skewness seeking/aversion complicated. However, Neilson and Stowe
(2002) concluded that if the probability of an extreme outcome is less
than 0.24, then Tversky and Kahneman (1992)’s parameter estimates
can accommodate both gambling and insurance—this is the task char-
acteristic dependence to which we alluded earlier. Therefore, decision
makers facing skewed distributions with probabilities of extreme out-
comes greater than 0.24 may exhibit the opposite skewness preferences
than for qualitatively similarly skewed distributions that include less
likely outcomes. Furthermore, they conclude that the standard func-
tional forms for the probability-weighting and value functions are

Fig. 3. Joint posterior distributions for mean–variance–skewness parameters. Note. Numbers in the graphs represent the proportion of the population in each
quadrant.
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unable to simultaneously predict both gambling (on low probability
high outcomes) and Allais paradox behavior, and can lead to large risk
premiums. Law and Peel (2009) also contended that cumulative pro-
spect theory is compatible both with positive skewness-seeking and
aversion conditional on the probabilities of a fixed stake lottery. Deck
and Schlesinger (2010) found that using Tversky and Kahneman
(1992)'s estimates in their tasks led to a preference for positive skew-
ness. Similarly, Ågren (2006) found that for a normal inverse Gaussian
distribution of returns, a CPT investor calibrated at Tversky and
Kahneman (1992)'s estimates exhibits a preference for positive skew-
ness; however, imposing a linear probability weighting leads to a pre-
ference for negative skewness. It is the documented ability of cumula-
tive prospect theory to mimic skewness preference that leads us to
argue that cumulative prospect theory should be further competitively
tested against moment-based preference models.

The standard cumulative prospect theory and mean–-
variance–skewness models also differ in terms of their reference
points—these are explicit in the former but implicit in the latter. In
most empirical studies, the reference point in cumulative prospect
theory—defining what constitutes a gain or a loss—is set at zero;
however, endogenous reference points are an important extension (e.g.,
Koszegi & Rabin, 2006). Mean–variance–skewness models have an
implicit reference point that determines the value around which
second- and higher-order moments are calculated. This is typically set
at the mean value of a distribution, hence the use of central moments of
the distribution—we have also followed this convention. Consequently,
in mean–variance–skewness models skewness preferences are defined
relative to the mean of the distribution. However, the influence of the
loss aversion parameter in cumulative prospect theory on skewness
seeking/aversion is relative to an outcome of zero. Therefore, predic-
tions of the two models can diverge conditionally on whether lotteries
include mixed outcomes, or are in the domain of losses or gains only.

6.2. Conceptual issues: model parsimony, interpretability, and
computational requirements

Beyond these empirical results, let us also highlight some con-
ceptual arguments supporting the mean–variance–skewness model over
cumulative prospect theory and expected utility theory. Due to the lack
of an EUT population, we take cumulative prospect theory to be the
main competitor to mean–variance–skewness and focus on differences
between the latter two, turning to three conceptual arguments: model
parsimony, interpretability, and computational requirements.

The various implementations of the cumulative prospect theory
model, dependent on the parameterizations of the probability-
weighting and value functions, require more free parameters than the
mean–variance–skewness model. The latter has two parameters cap-
turing the preferences for variance and skewness, compared to four
parameters for a standard implementation of cumulative prospect
theory. The minimum number of parameters for cumulative prospect
theory would be three, if a one-parameter probability-weighting func-
tion were used. However, most modelers advise against this because
such a function cannot separately capture elevation and curvature, and
thus runs the risk of serious misspecification (see Chapter 7.2 in
(Wakker, 2010) for a critical discussion of probability-weighting func-
tion specifications). More often than not even more parameters are
estimated as modelers include separate parameters for negative and
positive values (e.g., separate utility and probability-weighting function
parameters for losses and gains), increasing the total number of para-
meters to seven.

The parameters of the mean–variance–skewness model are also
more easily interpretable and do not interact to the degree that cu-
mulative prospect theory parameters do. For example, the degree of risk
aversion in cumulative prospect theory arises from the interaction of
three effects: concavity/convexity of the value function, the shape of
the probability weighting function, and the degree of loss aversion.

Assuming distinct parameters for gains and losses further increases the
complexity. The multitude of ways of capturing various behavioral
regularities also leads to difficulty in recovering parameter values as the
model may not be well-identified (i.e., a flat minimum may exist where
a large range of parameter values fit equally well).

It is important to emphasize that we are not arguing that cumulative
prospect theory and mean–variance–skewness are models that literally
capture the underlying decision processes. However, the relatively good
performance of mean–variance–skewness suggests that people are
sensitive to properties of the payoff distribution such as variance and
skewness, which are not explicitly represented within cumulative pro-
spect theory. Our viewpoint is more in line with the notion of decision
makers as “intuitive statisticians” (Peterson & Beach, 1967), who have
been reported to be surprisingly accurate when estimating statistical
quantities such as proportions, means, variances, and correla-
tions—both of samples and of populations. Moreover, preliminary
neuroeconomic evidence of the independent neural encoding of both
variance and skewness supports this view (Symmonds et al., 2011,
2013). Although the exact computations required to calculate higher
order statistical moments can be demanding, approximate estimates of
these moments (perhaps based on heuristic measures of the volatility
and asymmetry of a distribution) would considerably reduce the com-
putational burden, particularly for multi-outcome or continuous-out-
come lotteries. The mean–variance–skewness model has an advantage
over cumulative prospect theory if one considers the information
compression achieved for multi-outcome distributions by approxi-
mately characterizing them using only their first three moments, in-
stead of encoding all outcomes and associated probabilities, and then
integrating them. Similar arguments have been put forth by d’Acremont
and Bossaerts (2008) in a comparison of expected utility theory and the
mean–variance preference model. Further work should be directed at
empirically deriving the precise prescriptive measures of a distribu-
tion’s moments that decision makers use, and the processes required to
compute them. Candidates for such simpler measures of skewness in-
clude Pearson’s mode skewness, defined as mean mode SD( )/ , median
skewness defined as mean median SD3( )/ , or other measures based on
the asymmetry of lower and upper quantiles with respect to the median.

6.3. Future directions

The mean–variance–skewness model we used—and especially the
way it was updated—in decisions from experience was highly parsi-
monious. There are reasonable extensions or modifications to this basic
model that may further boost its predictive power and should be in-
vestigated in future work. For example, in calculating the moments of
the payoff distributions in decisions from experience, we assumed that
all samples carry the same weight in forming the ‘experienced prob-
abilities’. Alternatively, one can also assume that more recent ob-
servations are more heavily weighted, for both the mean–-
variance–skewness and cumulative prospect theory models in decisions
from experience. In general, refining the model of how experienced
relative frequencies are related to sampling may be warranted, as
Barron and Yechiam (2009) found that participants’ reported prob-
ability assessments of a rare event’s p( 0.15)= likelihood from experi-
ence were on average higher than the experienced frequencies. Fur-
thermore, the assumption that central moments—calculated relative to
the mean—are the relevant measure can be relaxed. In fact, the point
around which moments are calculated can be derived directly from the
data. Another modification could involve standardized moments in
place of the raw moments that we (and the existing literature) pre-
dominantly use. This would serve to align the mean–variance–skewness
model with evidence of neuronal adaptation to the range of inputs
(Wark, Lundstrom, & Fairhall, 2007). Raw statistical moments, espe-
cially of higher-order, are sensitive to outliers and estimates of these
moments may deviate significantly from the population for small
samples in decisions from experience. While this may be undesirable
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from a normative perspective, the empirical question of whether deci-
sion makers exhibit sensitivity to outliers and small samples deserves
further attention. If they do not, other measures of variability and
skewness may be more appropriate. For example, Weber et al. (2004)
found that comparing two measures of risk, coefficient of variation and
variance, the former—which is normalized by the magnitude of the
mean return—is more predictive for decisions from experience. Fur-
thermore, as a first investigation we have modeled choices in decisions
from experience based on the experienced relative frequencies, but
have not modeled the sampling process itself. Reformulating mean–-
variance–skewness preferences as a process model including the sam-
pling decisions would permit predictions using the objective prob-
abilities only. Finally, it would be worthwhile to explore specifications
that do not violate first-order stochastic dominance, such as the theo-
retical model in Blavatskyy (2014b). It should be noted, however, that
from a normative perspective the principle of stochastic dominance is
less important in decisions from experience. This is because experi-
enced relative frequencies will generally not be equivalent to the ob-
jective probabilities of outcomes, and therefore stochastic dominance in
terms of the latter will often be violated even if individuals obey
dominance for experienced relative frequencies.

In our view, the results of our model competition and the conceptual
arguments constitute a serious case for the further examination of
moment-based preferences in decisions under risk and uncertainty,
particularly when decision makers learn probabilities and outcomes
from experience rather than description. Due to our focus on compar-
isons between decisions from description and decisions from experience
our analysis was restricted to models that can be applied to both de-
cision contexts—further work should be directed toward more intensive
model comparisons between moment-based preferences and other
proposed models of decisions from experience. Furthermore, we ad-
vocate the use of a broader range of decision tasks extending beyond
the typical decisions from description with lotteries of one or two
possible outcomes. We found the typical inverse-S shaped probability
weighting function only for such simple lotteries in decisions from
description. The varying degrees of complexity of the lotteries may also
explain why there are conflicting results of probability weighting even
in decisions from description. van de Kuilen and Wakker (2011) sum-
marized the state of affairs thusly: “Although we believe that inverse-S
is the prevailing phenomenon [in studies with stated probabilities], it is
certainly not universal” (p. 594).

We have already moved toward examining decisions with more
complex lotteries of up to three outcomes each. The inclusion of tasks of

greater diversity should be further extended, particularly in the direc-
tion of continuous payoff distributions (or discrete distributions with
many possible outcomes). In this case, learning the probabilities of
occurrence of a multitude of outcomes will be cognitively taxing. It may
turn out that summarizing such distributions by their statistical mo-
ments can be an effective cognitive representation and choice solution.
Such extensions are relevant to most real-world decision making, such
as asset allocation decisions, where decision makers typically learn
online from experience and face a particularly complex, noisy en-
vironment with a large outcome space.

Finally, further work should be directed toward the more accurate
specification of the scope of different decision models. For instance, for
what types of decision problems does cumulative prospect theory cap-
ture behavior better than mean–variance–skewness (or other models)
and vice versa—and why? Our findings suggest that moment-based
preferences are particularly relevant for decision from experiences. By
contrast, in decisions from description we classified participants pri-
marily as CPT, indicating that this model plays an important role under
this representation format. While we have unified the statistical mod-
eling across six experimental datasets to make the results comparable,
experimental implementation details still differ across these datasets.
Ultimately, a more systematic exploration is required to clearly de-
lineate the explanatory scope of cumulative prospect theory and
mean–variance–skewness, and further determine the stability of model
parameters for choices between lotteries with different characteristics.
The practical difficulties associated with collecting new experimental
data of the order of magnitude that we have used in this large-scale
analysis greatly impedes such an effort. Collective effort may be ne-
cessary to overcome this problem.
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Appendix A. Characteristics of the datasets

Fig. A.4 displays the distribution of the first three central moments (m1=mean, m2=variance, m3=skew) arising from all the lotteries (for each
option) in every experimental dataset. For DEER and EEER only the distribution for the risky option is shown, as the safe option occurs with p 1= ,
therefore the second- and third-order moments are zero. Note, the moments for DfD datasets are calculated using the described probabilities, whereas
for DfE datasets the experienced probabilities are used. From Fig. A.4, it is clear that the central moments are all of the same order of magnitude across
the different experiments, rendering comparisons meaningful. The only exception is EEER where the variance and skewness of the experienced
outcomes are concentrated more closely near or around zero. This occurred because participants did not sample much, leading to the under-
representation of low probability events. Since the low probability events are associated with extreme outcomes by construct, low sampling leads to
an underestimation of the variance and skewness of the underlying lottery. The datasets with three outcomes for each of the two options were better
at producing more variability in the experienced volatility and skewness. Ultimately, we consider datasets with two-three outcomes for each option
(without a sure outcome) as significantly more informative; however, we have included the DEER and EEER datasets as many CPT studies have used
options and outcomes similar to these. Furthermore, identifiability of the MVS model requires that the first three central moments are not strongly
correlated—Table A.6 presents the correlation between moments for each option and experimental dataset. The first two moments are either
uncorrelated or weakly correlated in the lotteries.10 The correlation of the second and third moments are, at worst, moderately correlated, and
include both positive and negative correlations ranging from −0.56 in DEER to 0.54 for the first option in EFMH . Covering a wide range of possible
task parameterizations/characteristics was the main driver behind our decision to use many datasets, as it imparts robustness to our results and
greater generalizability.

10 The reader is also reminded that Bayesian inference can handle correlated regressors elegantly, as this will be incorporated into the joint posterior distribution of
the parameters, that is, parameters will show a strong negative correlation.
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Fig. A.4. The mean, variance and skewness of lotteries in each dataset. The statistical moments are calculating using experienced probabilities in DfE datasets.
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Appendix B. A Bayesian logistic regression of choices on lotteries’ statistical moments

Table B.7 presents the posterior parameter statistics of a Bayesian logistic regression of choice on the difference in the statistical moments of the
lotteries. All prior distributions were set to be uninformative, N (0, 1 10 )6× .

Appendix C. Skewness preferences: empirical evidence and theoretical models

We summarize below the empirical findings from the literature on preferences skewness. Symmonds et al. (2010) estimate the MVS model for
sixteen participants and found that all were variance-averse and positive skewness-seeking. Similarly, Symmonds et al. (2011) estimated the model
for 23 participants concluding that 70% of participants were variance-averse whereas 35% were positive skewness-seeking. Burke and Tobler (2011)
and Wu et al. (2011) connect skewness with neural activity and affective responses. Burke and Tobler (2011) find based on choice data (without
model fitting) that participants on average exhibited variance-aversion and positive skewness-seeking behavior. Nursimulu and Bossaerts (2014)
presented participants with the opportunity to pay a price to participate in various gambles under time pressure (1s, 3s and 5s to decide whether to
participate or not). They find that under time pressure, participants were variance-averse in the 1s treatment but variance-neutral in 3s and 5s
treatments. Participants were positive skewness-averse in the 1s treatment and their aversion was greater in the 3s and 5s treatments. Also, Strait and
Hayden (2013) find a preference for positive skewness in rhesus monkeys.

Other articles have examined skewness preferences without explicitly estimating an MVS model. Deck and Schlesinger (2010) found weak
evidence of positive skewness seeking. Ebert (2015) concluded that 64% of participants’ choices were positive skewness seeking compared to 77% in

Table A.6
Correlation between the moments of each dataset’s options

DEER DHO DHR

m1 m2 m3 m1 m2 m3 m1 m2 m3
m1 1.00 −0.02 −0.40 m1 1.00 0.03 −0.55 m1 1.00 0.02 −0.22
m2 −0.02 1.00 0.21 m2 0.03 1.00 0.11 m2 0.02 1.00 0.18
m3 −0.40 0.21 1.00 m3 −0.55 0.11 1.00 m3 −0.22 0.18 1.00

EEER EHH EFMH

m1 m2 m3 m1 m2 m3 m1 m2 m3
m1 1.00 −0.01 −0.22 m1 1.00 −0.04 0.32 m1 1.00 −0.04 0.52
m2 −0.01 1.00 0.22 m2 −0.04 1.00 0.25 m2 −0.04 1.00 −0.03
m3 −0.22 0.22 1.00 m3 0.32 0.25 1.00 m3 0.52 −0.03 1.00

Table B.7
The relationship between choices and differences in lotteries’ first three statistical moments

Dataset Variables Mean Std. Dev. MCSE Median 95% HPDI

DEER
EV 1.0539 0.0793 0.0033 1.0522 0.9073 1.2060
Var −0.0224 0.0036 0.0001 −0.0223 −0.0296 −0.0158
Skew 0.0060 0.0004 0.0000 0.0060 0.0052 0.0068

DHO
EV 0.5075 0.0181 0.0007 0.5080 0.4696 0.5403
Var −0.0207 0.0005 0.0000 −0.0206 −0.0216 −0.0196
Skew 0.0002 0.0000 0.0000 0.0002 0.0001 0.0002

DHR
EV 0.8776 0.0447 0.0014 0.8777 0.7901 0.9640
Var −0.0192 0.0024 0.0001 −0.0192 −0.0240 −0.0149
Skew 0.0009 0.0002 0.0000 0.0008 0.0005 0.0012

EEER
EV 1.2031 0.0622 0.0017 1.2027 1.0837 1.3237
Var −0.0254 0.0047 0.0002 −0.0254 −0.0342 −0.0164
Skew 0.0016 0.0006 0.0000 0.0016 0.0005 0.0029

EHH
EV 0.5227 0.0234 0.0007 0.5212 0.4766 0.5673
Var −0.0020 0.0021 0.0001 −0.0020 −0.0059 0.0023
Skew 0.0013 0.0002 0.0000 0.0013 0.0008 0.0018

EFMH
EV 0.3617 0.0127 0.0006 0.3623 0.3343 0.3841
Var −0.0016 0.0006 0.0000 −0.0016 −0.0028 −0.0005
Skew −0.0006 0.0000 0.0000 −0.0006 −0.0007 −0.0005

MCSE = Monte Carlo standard errors.
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Ebert and Wiesen (2011). Åstebro, Mata, and Santos-Pinto (2015) also found significant evidence of positive skewness-seeking in the laboratory, and
explored whether this arises from the curvature of the utility function or of the probability weighting function. They concluded that optimism and
likelihood insensitivity are the main drivers of positive skewness preference. Unlike our analysis they did not explore the possibility of moment-based
preferences. In a meta-analysis of studies, Weber et al. (2004) found that positive skewness was a significant predictor of human (and animal) risk-
taking behavior, and in Shafir, Bechar, and Weber (2003) map out implications for plant pollination. Grossman and Eckel (2015) devised an
innovative elicitation mechanism for skewness preferences in the laboratory and found that participants were predominantly positive-skewness
seeking. Furthermore, participants willingly chose to take on more risk as the outcome distribution became more positively skewed ceteris paribus.
Coricelli (2016) related preferences for positive-skewness with aspiration levels, and disentangled the two experimentally. They concluded that
aspiration levels are often used as a simple non-compensatory heuristic for choice, and that in the cases where they cannot be used, a preference for
positive-skewness has strong predictive power.

The existence of positive skewness-seeking preferences is also supported in studies that remain model-agnostic regarding the specific decision
model but classify behavior via revealed preferences over lottery pairs. The concept of prudence, although model independent, is related to skewness
preferences in the context of our MVS model (Eeckhoudt & Schlesinger, 2006). In a utility framework, prudence is characterized by a positive third
derivative of the utility function, that is, with a preference for positive skewness. Deck and Schlesinger (2010) found that 61% of participants’
responses were consistent with prudence overall; however, this increased to 70% for higher stakes. Ebert and Wiesen (2011) reported that 65% of
participants’ choices were prudent, whereas for Ebert and Wiesen (2014) prudent choices were even more prevalent (88%). Maier and Rüger (2011)
found that in the domain of gains (losses) that 60% (55%) of choices were prudent. Tarazona-Gomez (2005) found that 63% of choices were prudent.
Åstebro et al. (2015) also found a preference for positive skew on average as participants were willing to expose themselves to more risk in return for
greater positive skewness.

On the theoretical front, Blavatskyy (2014b) provided an axiomatization of an extension to EUT that relates disappointment and elation–arising
from the difference between ex post realizations and ex ante expectations of the lottery–to measures of deviation and skewness of lottery outcomes.
Interestingly, this model does not violate first-order stochastic dominance for a wide range of parameterizations, unlike mean-variance pre-
ferences—see Borch (1969) for an early discussion and also Cox (2008) and Johnstone and Lindley (2013). Blavatskyy (2014a) proposed a new 2-
parameter probability weighting function for CPT, relating its curvature and elevation to preferences for the second- and third-order L-moments of
lotteries.

Appendix D. A detailed presentation of the Bayesian hierarchical model

D.1. Advantages of hierarchical models

There are numerous advantages to using a hierarchical model compared to a set of individual models. Hierarchical models can efficiently capture
the effects of groups or clusters that exhibit correlation within them, thereby violating an assumption of independence. For example, multiple
observations of a single participant may be correlated if the same decision model (and parameterization) is used across observations, that is, there
exists within-participant correlation. At a higher level, participants that belong to a specific group (in this case decision model or latent class) may
also exhibit between-participant (but within-group) correlation in their parameterizations of the decision model. Consequently, parameter values for
one individual may be informative for other individuals in the same group. A hierarchical approach involves specifying a distribution for each
parameters from which individuals’ parameters are drawn from, that is, it specifies the group/population level of the distribution. Therefore, the
introduction of an appropriate hierarchical structure constrains individual parameters in a beneficial manner, leading to a simpler model. This occurs
because individuals’ parameters are constrained by the group distribution of said parameter; extreme individual values are pulled in closer to areas of
higher density. This stands in contrast to individual modeling where extreme individual parameter values may occur even for large datasets (Wilcox,
2007). Ultimately, hierarchical modeling can be viewed as a compromise between pooled and individual modeling, with the trade off between the
two being mediated by the data and the relevance of the hierarchical structure assumed by the modeler.

D.2. Existing models of heterogeneous decision makers

In recent work, Bruhin et al. (2010) and Harrison and Rutström (2009) allowed only for model heterogeneity using mixtures of Prospect Theory
and EUT, and CPT and EUT classes respectively, with point estimates of parameters within each decision model. Nilsson et al. (2011) allowed only
for parameter heterogeneity within CPT. Stahl (2014) re-examined the DHO and DHR datasets but permitted only for parameter heterogeneity in the
Anticipated Utility Model of Quiggin (1982). He concluded that once heterogeneity is accounted for, EUT did a good job at predicting behavior.
Parameter heterogeneity was modeled in von Gaudecker, van Soest, and Wengström (2011) using a random coefficients specification, however they
estimated only a single Kreps-Porteus model, that is, they did not include model heterogeneity. Scheibehenne and Pachur (2014) allowed for
parameter heterogeneity using a Bayesian hierarchical approach but they implemented CPT and the transfer-of-attention-exchange models sepa-
rately, that is, they did not allow for a mixture of these two models. The closest paper to ours is Conte et al. (2011), who allowed for two classes of
decision models EUT and RDEU, whilst also allowing for parameter heterogeneity for some, but not all parameters. However, there are still many
points of departure. Our analysis followed a Bayesian inference approach (with parameter heterogeneity for all parameters) instead of a frequentist
(maximum likelihood estimation) approach, included the MVS model, and analyzed both DfD and DfE in six datasets compared to one DfD dataset.

D.3. Choice of CPT model parameters

We present the empirical findings regarding the use of different parameters for gains and losses. Nilsson et al. (2011) conducted a parameter-
recovery study and found that the estimation of separate risk-parameters for gains and losses leads to problems in recovering the loss-aversion
estimate . Also, Booij, van Praag, and van de Kuilen (2010) could not reject the hypothesis that the curvature of the value function was the same in
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gain and loss domains. Constraining to be the same in both domains restricts the value function to be either S- or inverse S-shaped, that is, global
concavity or convexity is excluded. While some have argued that there exists significant heterogeneity in the value function parameters in both
domains, we note that existing evidence is consistent with participants not exhibiting globally concave or convex value functions. Abdellaoui (2000,
Table 3) non-parametrically categorized forty participants according to the shape of their value functions—only four participants were globally
concave and none were globally convex.

Regarding the probability-weighting function similar arguments apply. The curvature parameter of the two-parameter function is usually not
found to be significantly different in the loss and gain domains (see Table 1 in Booij et al., 2010, which collects the parameter estimates across many
studies). On the other hand, the elevation parameter is often found to be larger in the loss domain, see Abdellaoui (2000), Abdellaoui et al. (2005)
and Fehr-Duda, de Gennaro, and Schubert (2006). However, the studies that found differences in the probability-weighting function in the gain and
loss domains did so using in-sample estimation, but not cross-validation. This renders their findings open to the possibility that these results were due
to overfitting; however, settling this is ultimately an empirical question. In our minds, we are not yet convinced that such complex specifications are
necessary. Glöckner and Pachur (2012) compared various specifications of CPT with parameter restrictions in terms of cross-validation performance
(across two different points in time) and concluded that simpler CPT specifications are adequate—specifically they argue that separate estimates are
generally not required for the gain/loss domains. Finally, were we to decide to implement CPT with different parameters in the gain and loss
domains, then with the same reasoning we should also extend the MVS model in a similar direction. Instead, given the above evidence, we choose to
implement each model with the least complex parameterization possible that retains the important theoretical properties of each model.

D.4. Specification of priors

We specify weakly-informative prior distributions of the parameters of each individual decision model: CPT (Eq. (2)), EUT (Eq. (3)), and MVS
(Eq. (4)). The prior distribution of the best response parameter for an individual i classified as using decision model ci, is denoted by i. The prior
mean and standard deviation of the normally-distributed variable log( )i are drawn from identical distributions for each decision model, ci; note, the
posterior distribution of the best response parameter is free to differ across decision models.

N µ µ U Ulog( ) ( , ) ( 3, 1) (0, 1)i

The priors for CPT parameters were modeled as log-normal distributions to respect the lower support of zero for all these parameters. The bounds
on the uniform distribution of the mean of these parameters was chosen so that the maximum mean value of e 2.711 is sufficiently large to
encompass prior information from existing DfD and DfE studies. The upper bound on the prior of the standard deviation of the distributions was set
to the same value as the maximum mean value; therefore the 95% range of the distribution is at least approximately four times the mean. In datasets
without mixed lotteries D E E( , , )HO HH FMH , the loss-aversion parameter was set to 1= . Similarly, the same log-normal prior distribution was chosen
for the risk-aversion parameter in EUT.

N µ µ U Ulog( ) ( , ) ( 3, 1) (0, 1)i (9)

N µ µ U Ulog( ) ( , ) ( 3, 1) (0, 1)i (10)

N µ µ U Ulog( ) ( , ) ( 2, 1) (0, 1)i (11)

N µ µ U Ulog( ) ( , ) ( 3, 1) (0, 1)i (12)

N µ µ U Ulog( ) ( , ) ( 2, 1) (0, 1)i (13)

Weakly informative priors for the MVS model were scaled according to the magnitude of the lottery moments. Since the mean value of a lottery
has a (normalized) parameter coefficient of one in Eq. (4), and the mean and variance of the payoffs in Fig. A.4 are of approximately the same order
of magnitude throughout, we choose a maximum absolute value of 1 for µ

v. Using the same reasoning but observing that skewness values are
approximately one order of magnitude larger, we appropriately scaled the prior values for i

s. Note, that the results confirm the appropriateness of
the imposed scaling on the priors as the posterior distributions were concentrated well within the upper and lower bounds assumed in their priors.

N µ µ U U( , ) ( 1.0, 1.0) (0, 1.0)i
v v v v v (14)

N µ µ U U( , ) ( 0.1, 0.1) (0, 0.1)i
s s s s s (15)

D.5. Model selection criteria

We performed model selection using a cross-validation (CV) criterion (based on average likelihood) since other common techniques such as DIC
(Spiegelhalter, Best, & Carlin, 2002) are problematic for selection between mixture models (Celeux et al., 2003). In contrast to information criteria
that specify a penalty for the complexity of a model, CV focuses instead on the observable effect of increased complexity, that is, overfitting leading
to poor predictive ability. As a result, CV automatically accounts not only for the degrees of freedom, but also the parametric flexibility resulting
from the specific functional form and the resulting parameter interactions. We perform k-fold cross-validation k( 3)= so that all the data ob-
servations are used exactly once to determine the predictive ability of the models. The observations from each dataset were randomly assigned to one
of three subsets. Each model was computed three times using two of these folds as the estimation sample and the remaining fold as the prediction
sample. The CV criterion, lcv was then computed over the resulting three prediction samples. Ultimately, in any empirical study involving model
comparisons we are concerned with two types of significance with respect to difference between models: statistical and economic (or s-significance
and e-significance). Although model comparisons using CV most often ignore the question of whether models are s-significantly different from each
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other, we employ the following technique.
Since lcv is a random variable we account for the variance that arises from different ways of partitioning the dataset into training and cross-

validation sets. We use the one standard error rule (Hastie, Tibshirani, & Friedman, 2001) that selects the most parsimonious model within one
standard error of the model with the highest lcv. 11 The choice of e-significance is often quite subjective when an external standard does not exist. We
believe that a reasonable standard is to consider models whose lcv differs by more than 0.01 as e-significantly different. This corresponds to at least a
1% point difference in the predictive ability of a model. Therefore, e-significance selects the most parsimonious model whose lcv is within 0.01 units
of the highest lcv of all models. Note, that the standard error of lcv for all models ranged from 0.0002 to 0.006, therefore in all cases the e-significance
criterion was the stricter criterion of the two. Consequently, we focus on the latter but present both in the interest of transparency.

D.6. Model selection results

Table D.8 presents the statistical results for all six datasets and all latent-class combinations of the decision models including the Highest
Posterior Density Intervals (HPDI) of relevant parameters. Numbers in italics correspond to the model with the highest (best) cross-validation
criterion lcv( ) for each dataset. We have also included the models’ hit rates12 in Table D.8 as an alternative performance measure of the predictive
power of the models. Numbers superscripted with a * correspond to the best model as selected by the s-significance criterion, and numbers su-
perscripted with a † correspond to the best model as selected by the e-significance criterion.

Some models did not converge according to the R -statistic. We have determined that in all cases this occurred because of the existence of a subset
of individuals in CPT populations that behaved similarly to EUT, rendering the two relatively non-identifiable.13 While measures of fit or cross-
validation performance are still reliable in this case, the posterior distributions of the proportions of the different model classes are not. In all cases,
using the same model but excluding the EUT latent class solved the problem with no change in the cross-validation performance. This is exactly what
we would expect to find if the non-convergence was driven from the non-identifiability of a subset of the latent classes rather than other causes. We
clearly identify the non-convergent models in the Results section and discuss extensively the possibility of a minority of EUT types existing in a CPT
population.

Table D.8
Model performance per dataset

Models that did not converge according to the R -statistic due to partial non-identifiability of EUT and CPT classes are reported in gray
Italics indicate the best performing model for each dataset.
∗ and † Indicate the model chosen according to s-significance and e-significance respectively.

11 The standard error of lcv for k 3= is calculated as var lcv lcv lcv( 1, 2, 3)
3

.
12 The hit rate calculates the proportion of correct predictions made by assuming that the model deterministically predicts the most likely action. Consequently, the

hit rates exclude information regarding the strength of preference as captured by the exact predicted choice probability. Therefore, we use the lcv performance
criterion for model selection as it is more informative.

13 Recall that CPT nests EUT for specific parameter values. Therefore, if the posterior distribution of the CPT parameters exhibit significant non-zero density around
these parameter values, some participants will be approximately behaving as EUT types.
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D.7. Participant classification

If the postulated latent classes are well separated and the statistical technique is efficient at recovering them, then participants should be
classified to each decision model with a high probability. Table D.9 presents the statistics on the proportion of participants that were classified as
using a particular decision model for different levels of probability (i.e., the degree of certainty with which we assign participants to decision
models). Overall, participants are classified with a high probability to one of the latent-classes; 48% [58%, 93%] and 30% [50%, 80%] of parti-
cipants were classified with a probability greater than 0.99 [0.9, 0.7] in DEER and EEER respectively. We conclude that significant model heterogeneity
existed in the EER experiments both for DfD and DfE and the heterogeneity is best described by a combination of CPT and MVS decision makers.

D.8. Parameter identification

We first check the identifiability of these models by calculating the Spearman rank correlations between each decision models’ parameters from
their joint (bivariate) posterior distributions—these are presented in Tables D.10 and D.11. With the exception of two cases, the magnitude of all
Spearman rank correlation coefficients were less than 0.25 (and usually less than 0.1) indicating strong identification. We find that the parameters
and are only weakly identified in DHO and DHR as they exhibited high correlations of −0.8 and −0.46 respectively. Note, Broomell and Bhatia
(2014) find that the best response parameter is often recovered poorly in CPT models.

D.9. Posterior marginal distributions of CPT and MVS parameters

See Figs. D.5 and D.6.

Table D.9
Proportion of participants classified at various levels of probability

Classification probability > 0.99 0.95 0.9 0.8 0.7 0.6

DEER 0.48 0.58 0.70 0.85 0.93 0.95
EEER 0.3 0.50 0.50 0.70 0.80 0.98

Table D.10
Spearman rank correlation coefficients for CPT parameters

DEER DHO

0.10 0.11 0.09 0.22 −0.05 0.04 0.03
0.00 0.00 0.05 0.09 0.00 −0.02 −0.11
0.00 0.00 −0.04 −0.15 0.00 0.00 −0.80
0.00 0.00 0.00 −0.07

DHR EEER

−0.02 0.02 −0.02 −0.02 −0.02 0.05 0.05 0.10
0.00 0.08 0.00 −0.08 0.00 0.10 0.00 −0.01
0.00 0.00 −0.08 −0.46 0.00 0.00 −0.09 −0.01
0.00 0.00 0.00 −0.09 0.00 0.00 0.00 0.03

Table D.11
Spearman rank correlation coefficients for MVS parameters

DEER EEER EHH EFMH

s s s s

v −0.04 0.05 v −0.18 0.01 v −0.05 −0.03 v 0.11 −0.08
s 0.00 0.00 s 0.00 −0.04 s 0.00 −0.09 s 0.00 −0.16
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Fig. D.5. Marginal posterior distributions for CPT. Solid bars indicate the 95% HPDI range.
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Appendix E. Comparison of model performance in EEER with the Erev et al. (2010) tournament models

We compare the best performing 2-class model in EEER with the best model from the Erev et al. (2010) tournament in the relevant E-sampling
condition. In the tournament, the models only predicted the proportion of choices (across all participants) for each lottery pair; that is, in contrast to
our models they did not predict at the individual (participant and lottery pair) level. However, we can aggregate our individual estimates to construct
the predicted choice proportions for each lottery pair. We note that there are still differences in how we estimate the proportions. For example, we
used k fold cross validation and therefore have estimates for the whole dataset, whereas Erev et al. (2010) separated the dataset into estimation and
prediction sets. However, since the assignment was done randomly, we would expect on average the same results. Our comparison is meant to show
that the models we have employed here have approximately the same predictive power as the models in the tournament, which included sampling
models.

Fig. D.6. Marginal posterior distributions for MVS. Solid bars indicate the 95% HPDI range.
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We find that our 2-class CPT and MVS model in EEER performs on par with the best model found in Erev et al. (2010) (see their Table 3b). For the
first criterion, Pagree, the best tournament model (the Ensemble model) achieved a rate of 83% compared to our model’s performance of 82%. In
terms of the second criterion, r, the Ensemble model achieved a correlation of 0.80 compared to a correlation of 0.76 for our model. Finally, in terms
of the third criterion, MSD, our model (0.007) significantly outperforms the Ensemble model (0.019) significantly.14 We conclude that our models,
whilst not explicitly process- or sampling-based, perform on par with the most competitive models in the Erev et al. (2010) tournament.

Appendix F. The EHH experiment

F.1. Tasks

A total of 30 decision problems were presented in a randomized order to each participant. Each problem consists of two lotteries with three outcomes
each, summarized in Table F.12. There are 10 prototypes of problems, half in the gain domain (#1–5), half in the loss domain (#6–10). From these
prototypes, additional problems were created by adding a constant to all outcomes. In problems 4, 5, 9 and 10, one of the gambles contains a rare event
(10% chance of occurrence). The rare event is desirable in problems 4 and 9, and undesirable in problems 5 and 10. The lotteries vary significantly in the
magnitude of the first-, second-, and third-order moments, and the sign of the odd-moments; the latter is useful for testing differences in skewness
preference. Recall that these are the objective characteristics of the lotteries. However, due to sampling from experience the experienced characteristics will
differ, inducing even greater variability in the subjective characteristics, particularly for higher-order moments.

F.2. Participants

A total of 80 respondents (67 female) from different disciplines at the University of Basel participated in the experiment. Their mean age was
24.2 years (s.d.= 6.0 years). The experiment was comprised of two distinct parts, the data we analyze here corresponds to the first part of the
experiment. The second part of the experiment involved continuous distributions in DfE; we did not include this as a similar experiment in DfD was
not available to permit comparisons. Participants received either 15 Swiss Francs as a show-up fee or—in the case of psychology students—course
credits, plus the earnings that resulted from all of their choices. Given participants’ choices, the mean of the distribution of the expected performance
payments to participants (for the first part of the experiment) was 9.56 Swiss Francs with a minimum of 6.69 Francs and a maximum of 10.8
Francs.15 No participant in the study incurred more losses than gains from the incentivized choices. Total payoffs from the experiment were

Table F.12
Characteristics of the lotteries in the EHH experiment

Nr. Lottery A Lottery B Amean Avar Askew Bmean Bvar Bskew p A( )

1a (3, .25; 8, .50; 11, .25) (0, .20; 1, .60; 15, .20) 7.50 8.25 −12.00 3.60 32.64 276.43 85.0%
1b (4, .25; 9, .50; 12, .25) (1, .20; 2, .60; 16, .20) 8.50 8.25 −12.00 4.60 32.64 276.43 77.5%
1c (5, .25; 10, .50; 13, .25) (2, .20; 3, .60; 17, .20) 9.50 8.25 −12.00 5.60 32.64 276.43 80.0%
1d (6, .25; 11, .50; 14, .25) (3, .20; 4, .60; 18, .20) 10.50 8.25 −12.00 6.60 32.64 276.43 78.8%
2a (3, .25; 4, .50; 20, .25) (0, .20; 6, .60; 8, .20) 7.75 50.19 406.41 5.20 7.36 −23.42 73.8%
2b (4, .25; 5, .50; 21, .25) (1, .20; 7, .60; 9, .20) 8.75 50.19 406.41 6.20 7.36 −23.42 66.3%
2c (5, .25; 6, .50; 22, .25) (2, .20; 8, .60; 10, .20) 9.75 50.19 406.41 7.20 7.36 −23.42 70.0%
2d (6, .25; 7, .50; 23, .25) (3, .20; 9, .60; 11, .20) 10.75 50.19 406.41 8.20 7.36 −23.42 70.0%
3a (7, .25; 8, .25; 10, .50) (0, .25; 1, .25; 12, .50) 8.75 1.69 −0.47 6.25 33.19 −2.16 77.5%
3b (8, .25; 9, .25; 11, .50) (1, .25; 2, .25; 13, .50) 9.75 1.69 −0.47 7.25 33.19 −2.16 67.5%
3c (9, .25; 10, .25; 12, .50) (2, .25; 3, .25; 14, .50) 10.75 1.69 −0.47 8.25 33.19 −2.16 72.5%
3d (10, .25; 11, .25; 13, .50) (3, .25; 4, .25; 15, .50) 11.75 1.69 −0.47 9.25 33.19 −2.16 77.5%
4a (0, .50; 5, .40; 20, .10) (0, .30; 4, .40; 8, .30) 4.00 34.00 378.00 4.00 9.60 0.00 50.0%
4b (1, .50; 6, .40; 21, .10) (1, .30; 5, .40; 9, .30) 5.00 34.00 378.00 5.00 9.60 0.00 42.5%
4c (2, .50; 7, .40; 22, .10) (2, .30; 6, .40; 10, .30) 6.00 34.00 378.00 6.00 9.60 0.00 60.0%
4d (3, .50; 8, .40; 23, .10) (3, .30; 7, .40; 11, .30) 7.00 34.00 378.00 7.00 9.60 0.00 57.5%
5a (0, .10; 3, .60; 9, .30) (2, .30; 5, .30; 6, .40) 4.50 9.45 16.20 4.50 2.85 −3.30 45.0%
5b (1, .10; 4, .60; 10, .30) (3, .30; 6, .30; 7, .40) 5.50 9.45 16.20 5.50 2.85 −3.30 60.0%
5c (2, .10; 5, .60; 11, .30) (4, .30; 7, .30; 8, .40) 6.50 9.45 16.20 6.50 2.85 −3.30 53.8%
5d (3, .10; 6, .60; 12, .30) (5, .30; 8, .30; 9, .40) 7.50 9.45 16.20 7.50 2.85 −3.30 47.5%
6a (−4, .25; −5, .50; −6, .25) (−1, .25; −7, .50; −21, .25) −5.00 0.50 0.00 −9.00 54.00 −300.00 83.8%
6b (−5, .25; −6, .50; −7, .25) (−2, .25; −8, .50; −22, .25) −6.00 0.50 0.00 −10.00 54.00 −300.00 87.5%
7a (0, .25; −7, .50; −8, .25) (−4, .25; −5, .50; −16, .25) −5.50 10.25 36.00 −7.50 24.25 −135.00 80.0%
7b (−1, .25; −8, .50; −9, .25) (−5, .25; −6, .50; −17, .25) −6.50 10.25 36.00 −8.50 24.25 −135.00 66.3%
8a (−2, .50; −6, .25; −8, .25) (0, .50; −12, .25; −16, .25) −4.50 6.75 −3.75 −7.00 51.00 −42.00 72.5%
8b (−3, .50; −7, .25; −9, .25) (−1, .50; −13, .25; −17, .25) −5.50 6.75 −3.75 −8.00 51.00 −42.00 72.5%
9a (0, .10; −3, .60; −9, .30) (−2, .30; −5, .30; −6, .40) −4.50 9.45 −16.20 −4.50 2.85 3.30 55.0%
9b (−1, .10; −4, .60; −10, .30) (−3, .30; −6, .30; −7, .40) −5.50 9.45 −16.20 −5.50 2.85 3.30 48.8%
10a (0, .50; −5, .40; −20, .10) (0, .30; −4, .40; −8, .30) −4.00 34.00 −378.00 −4.00 9.60 0.00 41.3%
10b (−1, .50; −6, .40; −21, .10) (−1, .30; −5, .40; −9, .30) −5.00 34.00 −378.00 −5.00 9.60 0.00 46.3%

14 However, the poorer performance of the Ensemble model will be in part due to the fact that it modeled proportions of choices rather than individual behavior.
Consequently, our modeling allowed for more accurate inference by accounting for participant heterogeneity, which is important for the MSD criterion, but not as
important for Pagree and r since they ignore some information. The former is a directional or qualitative measure which uses a cutoff proportion of 0.5 to determine
the agreement, and the latter uses rank order information.

15 Due to a program failure, the lottery realizations performed at the end of the experiment and the documentation of the actual payment per person were not
recorded. We therefore present the mean expectation given each participant’s observed choices as an indicator of the magnitude of the experimental incentives. Note,
the dispersion of payments presented above underestimates the true dispersion, as the latter would also include the variability induced by the lottery realizations.
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approximately equal to or greater than the minimum wage in Swiss francs. In the DfE literature, it is common to incentivize all of a participant’s
choices rather than a single choice to encourage participants to sample sufficiently from the distributions. However, this introduces the possibility of
wealth effects as–on average–participants’ expected accumulated wealth should be increasing. Note, that participants were not aware of the outcome
of the lottery after each trial and therefore could at best only estimate their expected, not their realized, change in wealth. We believe that this should
serve to mediate any wealth effects, but to confirm this we specifically test the hypothesis that the order of presentation did not affect choices. We
perform logit regressions of the binary choice variable on two independent variables, presentation order and its square, separately for each problem.
The null hypothesis of no order effects corresponds to a joint (2)2 test that the coefficients of the independent variables are both zero. Out of the
thirty regressions we rejected the null hypothesis of no order effects at the 5% significance level only once—this is within the expected number of
chance rejections (30 0.05 1.5)× = . Note, that these tests have adequate power as for each problem we have 80 (participant) observations. We
conclude that wealth effects did not significantly affect choices.

F.3. Instructions

Welcome and many thanks for participating in this experiment!
In this experiment, you will make money-related decisions. Please do your best to make the best decisions possible. To make the situation

realistic, the payment you will receive will depend on the outcomes of your decisions; you will be paid at a ratio of 10 to 1 Swiss francs.
You can considerably influence the payment you receive through the decisions you make.
The experiment consists of two parts, separated by a short break.
During the experiment, you will not receive any feedback on the outcomes of your decisions, as this might influence your further decisions. You

will get this information when you are paid at the end of the experiment. Note that you will not make a loss. If you lose more money than you win,
you will simply not receive a payment. However, the likelihood of that happening is very low.

Press ENTER to move on to the instructions for the first part of the experiment.
Part 1
In part 1 you will see two computer-generated stacks of cards. The cards show sums of money (wins or losses in Swiss Francs; losses are indicated

by a minus sign). The various cards are not necessarily equally represented in the two stacks. You have to decide from which of the two stacks to
draw a card at random. The money amount on the card will determine your payment.

Each trial begins with a learning phase, during which you can gather information about the two stacks. You can draw and look at cards one by
one, from either stack. These draws have no effect on your winnings. The stack does not change through your drawing cards. In other words, the
cards in a stack are always the same, irrespective of what and how often you have already drawn from it. Please draw as many cards as you need to
in order to be confident of making a good decision.

Press ENTER to continue.
When you have completed the learning phase, you come to the decision. Here, you decide from which stack to draw a card at random. If the card

shows a win, we credit that amount to your account. If the card shows a loss (indicated by a minus sign), we deduct that amount from your winnings.
As mentioned earlier, you will not immediately be told which card you have drawn. You will not find out about the outcomes of your decisions until
the end of the experiment.

Procedure
The experiment begins with a warm-up trial that has no effect on your winnings. You will then make 30 decisions in which you have a chance to

win money. Each trial begins with a learning phase that lasts until you are ready to make a decision. After this decision, you will move on to two new
stacks of cards.

Please ask the test administrator if you have any questions, otherwise press ENTER to continue.

Appendix G. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.cognition.2018.10.023.
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