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Randomization and serial dependence in professional tennis matches:

Do strategic considerations, player rankings and match characteristics

matter?

Leonidas Spiliopoulos∗

Abstract

In many sports contests, the equilibrium requires players to randomize across repeated rounds, i.e., exhibit no temporal

predictability. Such sports data present a window into the (in)efficiency of random sequence generation in a natural competitive

environment, where the decision makers (tennis players) are both highly experienced and incentivized compared to laboratory

studies. I resolve a long-standing debate about whether professional players’ tennis serve directions are serially independent

(Hsu, Huang & Tang, 2007) or not (Walker & Wooders, 2001) using a new dataset that is two orders of magnitude larger than

those studies. I examine both between- and within-player determinants of the degree of serial (in)dependence. Evidence of

the existence of significant serial dependence across serves is presented, even among players ranked Number 1 in the world.

Furthermore, significant heterogeneity was found with respect to the strength of serial dependence and also its sign. A novel

finding is that Number 1 and Number 2 ranked players tend to under-alternate on average, whereas in line with previous findings,

the lower-ranked the players, the greater their tendency to over-alternate. Within-player analyses show that high-ranked players

do not condition their randomization behavior on their opponent’s ranking. However, the under-alternation of top players would

be consistent with a best-response to beliefs that the population of opponents over-alternates on average. Finally, the degree

of observed serial dependence is not systematically related to other match variables proxying for match difficulty, fatigue, and

psychological pressure.
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1 Introduction

The production and perception of randomness has a long re-

search history in cognitive psychology (see Nickerson, 2002,

for an overview) and rightly so. The perception or judgment

of randomness is a core human competency (see Oskarsson

et al., 2009, for a review). There is ample evidence that hu-

mans are capable of learning patterns (both implicitly and ex-

plicitly) in sequences of events (Clegg et al., 1998; Remillard

& Clark, 2001). Our ability to discover the correlations (e.g.,

Kareev, 1995; Kareev et al., 1997; Kareev, 2000) arising from

the causal relationships in our environment allow us to adapt

to and exploit the environmental structure. With respect to

the production or generation of random behavior, subjects

in laboratory tasks (without strategic interactions) are typi-

cally inefficient at creating serially uncorrelated sequences.

Subjects tend to produce over-alternating sequences (with
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too many runs) and regress towards the representative fre-

quencies of the distribution they are emulating (Kahneman

& Tversky, 1972; Bar-Hillel & Wagenaar, 1991; Rapoport &

Budescu, 1997). Explanations of these deviations in random

generation range from cognitive bounds such as short-term

memory (Kareev, 1992, 1995, 2000) and the complexity (or

difficulty of encoding) of sequences (Falk & Konold, 1997)

to the statistical properties of small samples of random be-

havior (Kareev et al., 1997; Sun & Wang, 2010, 2011), or

the interaction of both (Hahn & Warren, 2009; Farmer et al.,

2017; Warren et al., 2018).

Although the judgment of randomness is typically applica-

ble to interactions with nature or individual decision making,

the production or generation of random behavior is naturally

most relevant to strategic interactions with other decision

makers in our environment, i.e., in strategic games. In con-

trast to the above studies that investigate random sequence

generation in individual decision-making tasks, Rapoport &

Budescu (1992) and Budescu & Rapoport (1994) used labo-

ratory games where it is optimal to be unpredictable. While

they found similar qualitative deviations in randomization

behavior for both individual and strategic decision-making,

Budescu & Rapoport (1994) show that people are more ef-

ficient randomizers in the latter. Random behavior is called

for in strategic interactions of conflict or competition, where

one player’s gain is another’s loss and being unpredictable
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is beneficial. Such games have an equilibrium in mixed-

strategies, where a player chooses to randomize over the

actions at his/her disposal, rather than play one of them with

certainty. Situations where mixed strategies are relevant

include bluffing in poker, penalty shootouts in soccer, and

serve directions in tennis, which is the environment that I

will study here. In repeated games, the normative prediction

is that the action chosen in a round should be independent of

chosen actions in the previous round, i.e., players should be

randomizing perfectly. Otherwise, a player could learn the

dependencies or patterns in the opponent’s behavior and ex-

ploit them appropriately (Spiliopoulos, 2012, 2013a,b, 2018;

Ioannou & Romero, 2014).

Field data from competitive sports are particularly useful,

combining the benefits of a real-world domain where ran-

domization is important (guaranteeing high ecological valid-

ity) with a high-level of incentivization and the opportunity

for significant learning beyond what is feasible in the labora-

tory. The existing literature using field data has been primar-

ily conducted by game theorists and economists rather than

cognitive psychologists, despite its obvious relationship to

pioneering work by psychologists on randomization. In this

paper, I analyse a large dataset of tennis serves with the goal

of resolving an open debate on whether professional players

deviate from efficient randomization in their serve direction

(Walker & Wooders, 2001) or not (Hsu et al., 2007). Further-

more, I extend the existing literature by exploiting the large

number of within-player observations to examine whether

the degree of randomization depends on a player’s own rank

and the rank of the opponent, experience, the round of the

match (e.g., final, semi- or quarter-final), and the difficulty

and length of the match. These analyses are related to exist-

ing laboratory studies investigating the impact of learning,

feedback and other variables on the efficiency of random-

ization. Specifically, Lopes & Oden (1987) concluded that

statistically sophisticated subjects performed better than av-

erage subjects, although they exhibited the same qualitative

misperceptions of randomness. Regarding whether feedback

induces better randomization, the evidence thus far is mixed.

Feedback has been found to improve the identification of

non-random sequences (Zhao et al., 2014) and generation

of random sequences (Neuringer, 1986); however, Budescu

(1987) did not find a significant effect of feedback. Of course,

the degree of learning that can occur in the laboratory is lim-

ited by practical ceilings on the amount of exposure and the

incentives to perform well. The field data from highly-paid

and competitive tennis tournaments addresses both of these

limitations and permits the investigation of other potential

mediators.

Before proceeding, I summarise the state of the art in the

game theory literature. Recall that the normative solution

to repeated games with a stage unique mixed-strategy Nash

equilibrium is perfect randomization, i.e., actions must be

independent of the prior history of play. One strand of ex-

perimental studies tests the equilibrium predictions in the

laboratory, finding significant deviations from the equilib-

rium predictions (Bloomfield, 1994; Brown & Rosenthal,

1990; Chiappori et al., 2002; Ochs, 1995; Rapoport & Bude-

scu, 1997; O’Neill, 1987; Levitt et al., 2010; Wooders, 2010;

Palacios-Huerta & Volij, 2008; Okano, 2013; Shachat, 2002).

Experience can reduce the magnitude of these deviations,

however this is conditional on features of the game — see

Ochs (1995); Roth & Erev (1995); Erev & Roth (1998);

Binmore et al. (2001); Nyarko & Schotter (2002). Another

finding is that experience from the field does not transfer well

to the laboratory for new tasks. Despite initial claims that

professionals, to a large degree, transfer their experience to

new tasks in the laboratory (Palacios-Huerta & Volij, 2008),

later studies have not found evidence of this effect (Levitt

et al., 2010; Wooders, 2010; Van Essen & Wooders, 2015).

Finally, subjects exploit both deviations from the equilibrium

marginal distributions (Shachat & Swarthout, 2004) and de-

viations from serially independent or random play, in ways

that can be explained by learning models capable of detect-

ing temporal patterns (Spiliopoulos, 2012, 2013a,b, 2018;

Ioannou & Romero, 2014).

Another strand of research utilizes field data from com-

petitive sports. The first paper to examine the optimality

of tennis serves in the field is Walker & Wooders (2001)

— see also the comment by Hsu et al. (2007) (I refer to

these two studies as WW and HHT respectively). Both stud-

ies concluded that mixing proportions were not statistically

different from the equilibrium; however, while the former

concluded that significant deviations existed from the theo-

retical prediction of serial independence, the latter concluded

the opposite. The predictions of minimax play in the field

have also been tested in other sports, such as soccer and the

NFL.1 To summarize, the majority of studies confirm equi-

librium behavior in terms of mixing proportions, whereas

the findings regarding serial independence are mixed. Of

these different sports, tennis allows for the most powerful

tests of minimax behavior for individual players rather than

a population of players. In soccer, since players rarely make

penalty shots, the data afford low statistical power to reject

the null hypothesis of equilibrium behavior at the individ-

ual level. Also, because there exist large intervals between

1In soccer, Chiappori et al. (2002) conclude that the mixing proportions

of penalty kicks are in accordance with theoretical predictions; a re-analysis

by Coloma (2007) of their data directly testing mixing proportions and

new data by Buzzacchi & Pedrini (2014) confirm this finding. Similarly,

Palacios-Huerta (2003) found that mixing proportions are in line with the

equilibrium prediction, and that serial independence across penalties could

not be rejected. Dohmen & Sonnabend (2016) conclude the same on both

counts. Kovash & Levitt (2009) find significant deviations from the theory

in baseball pitches and NFL plays for both mixing proportions and serial

independence (on average over-alternation is more common). Similarly,

Emara et al. (2014) conclude that there exists a significant bias towards

over-alternating in NFL plays. On the other hand, McGarrity & Linnen

(2010) find that play in the NFL is not significantly different from the

equilibrium with respect to mixing proportions and serial independence.
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a player’s consecutive penalties, this could encourage equi-

librium behavior by inducing memory-less behavior, which

may be conducive to the generation of serially independence

sequences. In the NFL, different players are involved in each

play and strategies are called by the coach; hence, tests of

equilibrium behavior are essentially a test not of an individ-

ual, but a joint test of the behavior of the coach and a group

of players.

This study is most similar to WW and HHT, but uses a new

tennis serve dataset that is two orders of magnitude larger

than those in existing published studies. I will specifically ad-

dress the conflicting findings regarding serial (in)dependence

in WW and HHT, which remains an important open issue.

While WW do not reject serial independence of serves, HHT

find evidence of statistically significant correlation across

serves. I extend the work in WW and HHT in three direc-

tions. First, by including analyses of behavior relative to the

player’s (own) ranking, i.e., examining whether more highly

ranked players conform more closely to equilibrium predic-

tions. A working paper by Gauriot et al. (2016), henceforth

GPW, uses another large dataset from another source to ex-

amine minimax behavior in tennis and its relationship to

player ranking. Note, the latter manuscript also investigates

the equilibrium prediction that winning rates for left and

right serves are equal. While there is some overlap between

our manuscripts in terms of the hypotheses tested, they are

largely complementary.

The following hypotheses based on individual player-level

analyses (rather than only population analyses) differentiate

my work from WW, HHT and GPW. The first hypothesis

regards whether players strategically condition their behav-

ior on the ranking of their opponent. Players capable of

using the equilibrium strategy — but consciously choosing

not to play accordingly — may in fact be rational if they hold

correct beliefs that their opponent will not choose the nor-

mative solution (Plott, 1996). Consider the case where low

ranked players are imperfect randomizers. If high-ranked

players are sophisticated in the sense of correctly predicting

low-ranked players’ deviations from the equilibrium, then ra-

tionality dictates that they exploit this. Of course, this would

lead to non-equilibrium behavior by the highly-ranked play-

ers, which however, would indicate rational behavior given

their opponent’s type. The second set of hypotheses regard

whether players condition on, or are affected by, match char-

acteristics such as: a) the tournament round of the match

(e.g., whether it is a final, semi-final etc.), which would fac-

tor in the effects of stress and the probability of winning the

tournament prize given the tournament’s progression, b) the

difficulty of the match (e.g., how close the score is), and the

number of points played in a match (a proxy for fatigue and

difficulty). To the best of my knowledge this is the first field

study in tennis to address all of these additional questions.

Table 1: The specification of a point game in terms of the

server winning probabilities, πas,ar

Receiver

L R

Server
L πL,L πL,R

R πR,L πR,R

2 Modeling tennis serves

I briefly describe the tennis serve model introduced by WW

and adopted by HHT (see WW for more details). Tennis

serves alternate in terms of the area of the court (box) within

which each serve must land to be valid (i.e., not declared as a

fault), referred to as deuce and ad courts. The collections of

points served by a player in each of these two courts are re-

ferred to as either ad or deuce point-games. For example, all

points in a match where a specific player’s serve was directed

to the ad box are referred to as that player’s ad point-game.

Since there are two players and two boxes, each match has

four point-games. Each point-game in the match is modeled

as a 2 × 2 normal form game with action spaces left (L) and

right (R) for both the server s and the receiver r — see Table

1. The payoffs of this game are equivalent to the probabili-

ties πas,ar of winning each point-game for the action profile

as, ar — consequently, this game is constant-sum. The prob-

abilities of winning differ conditional on whether serves are

made to the ad or deuce court due to differences in serving

and returning abilities; this is the reason why we must distin-

guish between point-games. Walker et al. (2011) show that

tennis belongs to the class of Binary Markov games, which

possess the property that the equilibrium play for every point

in the match can be solved independently of all other past

points and outcomes in the match. That is, the equilibrium of

the match corresponds to equilibrium play in each point of a

specific point-game. Every point-game played has a unique

mixed strategy Nash equilibrium under the assumptions that

πL,L < πR,L , πR,R < πL,R, πL,L < πL,R and πR,R < πR,L .2

3 Data

The data originate from the crowd-sourced Match Chart-

ing Project accessible at http://www.tennisabstract.com/

charting/meta.html, which compiles tennis match statistics.3

2These inequalities follow from the reasonable assumption that the server

is more likely to win a point if the direction of the serve and the direction

anticipated by the receiver are mismatched.

3The data at the Match Charting Project are updated often with new

statistics as volunteers upload information from more tennis matches. The

dataset used for the analysis was downloaded on 6/6/2016. Preliminary

analyses performed using snapshots of this dataset at various points in time

in 2015 (i.e., comprised of subsets of the final dataset) led to similar conclu-

sions. Further information on the Match Charting Project can be found at:

http://www.tennisabstract.com/charting/meta.html and https://github.com/

http://www.tennisabstract.com/charting/meta.html
http://www.tennisabstract.com/charting/meta.html
http://www.tennisabstract.com/charting/meta.html
https://github.com/JeffSackmann/tennis_MatchChartingProject
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The dataset covers 391 male players whose career-high rank-

ing ranged from Number 1 to Number 2076 (mean = 123,

median = 71) in the world, and includes 1,093 matches from

1975 to 2016.4 In total, I analyze the data from 143,743

serves resulting from 4,372 point-games. This is two orders

of magnitude larger than prior published studies of tennis

serves: 3,026 serves from ten matches in WW and 2,490

serves from ten mens matches in HHT.5 The mean (median)

number of matches per player is 5.6 (2); for top players who

are more likely to participate in these tournaments the dataset

holds significantly more matches, e.g., the maximum is for

Federer (160 matches), followed by Nadal (142), Djokovic

(126) and Murray (68). For these players there are 12413,

8708, 8984, and 4935 serve observations respectively. This

amount of data permits much more powerful tests of the

mixing behavior of athletes than previous studies. Further-

more, hypothesis testing targeted at the top players provides

the best chance of observing equilibrium behavior, as these

players are the most capable and the most highly incentivized

to pursue optimal behavior.

In the dataset, tennis serve directions were encoded as

either “4”, “5”, or “6”, corresponding to left, center and

right respectively. I found 21,159 cases, where other symbols

were used in the encoding. This may be either due to data-

entry error, or because the data-coders were uncertain how to

categorize the serve direction. These cases were not included

in the analysis, as is the case for serves in the direction of the

center — the latter is standard practice in the literature, i.e.,

prior studies analyzed only the left and right serve directions.

The complete dataset was compiled by merging point-by-

point data files with player-ranking data files ranging from

22/12/1980 to 1/2/2016. I use both the career-high and

current ranking (at the time of the match) in the analyses; in

some cases the former may be more appropriate as players’

current rankings may misleadingly fluctuate wildly due to

injuries.6 The following notation is used throughout. Let i

index the players, pg index the point-games from all players’

matches, and pgi index the point games for a player i.

JeffSackmann/tennis_MatchChartingProject. The data are available under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-

tional license (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/

by-nc-sa/4.0/.

4The data from one match were excluded as the column titles clearly

did not match the data entries (Match-ID=20130810, Aptos Tournament,

Semi-final between Klahn and Donskoy on 10/08/13).

5Magnus & Klaassen (1999); Klaassen & Magnus (2009) used a large

dataset of 59,466 observations from Wimbledon, but do not report infor-

mation about serve directions.

6Seven missing values for player career-high rankings were replaced

with the rankings as recorded at the ATP website http://www.atpworldtour.

com/en/rankings/singles.

4 Results

The serial independence of tennis serve directions is tested

at two different levels of aggregation: the (dis-aggregated)

point-game level and the player level (aggregating over the

point-games of each player). WW and HHT tested serial de-

pendence using the distribution of point-game statistics since

they did not have not enough observations per player. Testing

at the player-level is more desirable because it matches the

expected structure of the data, particularly the heterogeneity

that may exist between players (based on their ability, expe-

rience etc.). Below, I summarize the statistical procedures

— details can be found in Appendix A.

Serial dependence for each point-game in the data is exam-

ined using the two-sided exact runs test (see Eq. 2). To test

whether a set of these points-game statistics (either for the

whole population of players or for a specific player) are dis-

tributed according to the null hypothesis of no serial depen-

dence requires the randomization of the test statistics. These

randomized statistics are generated according to Walker &

Wooders (2001, p. 1533) — a set of these statistics can

then be tested using the standard Kolmogorov-Smirnov test.

The individual point-game level test is a KS-test on the dis-

tribution of the randomized (exact run) test statistics at the

point-game level for all the players — this is the test in WW

and HHT. For the player-level analysis it is the Kolmogorov-

Smirnov test on the distribution of point-game statistics for

each player only. The latter permits the testing of serial

independence for each player rather than the set of players.

4.1 Analysis at the point-game level

At the point-game level, the null hypothesis of serially in-

dependent serve directions was rejected at the 5% level for

12% of the point-games (9.5% for over-alternating, 2.5% for

under-alternating). Controlling for multiple comparisons

using the Bonferonni-Holm correction, the hypothesis of

no serial correlation is rejected for 172 individual point-

games, i.e., 3.9% of the cases (3.7% for over-alternating,

0.2% for under-alternating). Alternatively, following WW

and HHT, the randomized KS-test on the distribution of the

point-games strongly rejects the null hypothesis of serial in-

dependence
(

K = 0.06, p = 2.2 × 10−14
)

. I conclude that

the hypothesis of serial independence is rejected, predom-

inantly due to over-alternation of the serve direction. This

finding corroborates the conclusions drawn by WW, but not

HHT — calculations in Appendix C reveal that, given the

samples sizes of these two studies, there would be roughly

a 50% chance that two independent studies would arrive at

the opposite conclusions. The GPW working paper also re-

jects serial independence using a large dataset with sufficient

power.

https://github.com/JeffSackmann/tennis_MatchChartingProject
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.atpworldtour.com/en/rankings/singles
http://www.atpworldtour.com/en/rankings/singles
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Table 2: Population averaged marginal and conditional

probabilities of serve direction

Marginal Conditional (Transition matrix)

Ad Deuce Ad Deuce

L R L R

L 0.537 0.486 L 0.51 0.49 L 0.461 0.539

R 0.463 0.514 R 0.57 0.43 R 0.513 0.487

4.2 Analysis at the player level

Let the marginal probabilities of each player i serving to the

left and to the right be denoted by qL
i

and qR
i

respectively.

Recall that these must be separately estimated for the ad

and deuce point-games; the subscript related to the point-

games is dropped for simplicity. Similarly, the set of con-

ditional probabilities are denoted by
{
qLL
i
, qLR

i
, qRL

i
, qRR

i

}
,

where the first letter of the superscript denotes the serve di-

rection at t − 1 and the second to the serve direction at t.

The conditional probabilities reveal whether players tend to

over- or under-alternate. Since these probabilities are con-

ditioned only on the immediately prior serve direction (for

the same point-game), they can be represented as the first-

order transition matrix of a two-state Markov-chain model:
Direction at t

L R

Direction at t − 1
L qLL

i
qLR
i

R qRL
i

qRR
i

Over-alternation implies that qLL
i
< qL

i
and qRR

i
< qR

i
,

and under-alternation implies the opposite signs. The max-

imum likelihood estimates of the marginal and conditional

probabilities of serve directions for both point games are pre-

sented in Table 2 — these are the averages of the estimates

for each point-game in the dataset. As expected, there are

differences in the marginal and conditional probabilities for

the two point games, arising from differences in the ability

to serve and return for the ad and deuce courts. For both

the ad and deuce point-games and both serve directions, the

population of players exhibit over-alternation on average, as

qLL < qL and qRR < qR for both point-games — see Table

2.

Aside from the conditional probabilities, an alternative

measure of the degree of deviation from serial independence,

which can be used to compare across players, can be con-

structed based on the number of runs in a sequence. Let rdev
i

be the % deviation for each player in the number of runs in all

point-games rpgi
compared to the expected number of runs

Figure 1: Histogram of the individual player percentage de-

viation in the number of runs, rdev
i

r
i

dev

F
re

q
u
e
n
c
y

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

−30 −20 −10 0 10 20 30 40

of a serially independent sequence Exp
(

rpgi

)

:

rdevi = Epgi
*.
,

rpgi − Exp
(

rpgi

)

Exp
(

rpgi

)

+/
-

Figure 1 presents a histogram of the empirical distribu-

tion of rdev
i

. Over-alternation, i.e., switching too often or

negative serial correlation, occurs if rdev
i
> 0 and under-

alternation if rdev
i
< 0. Negative serial correlation is found

for 69% of the players and the mean of rdev
i

is 5.55%, in line

with the conclusions of over-alternation on average drawn

from the empirical conditional probabilities. Furthermore,

the 5th and 95th percentiles are large in magnitude, −14.6%

and 23.7% respectively.

The power of the statistics conditional on this dataset is

significantly higher than prior investigations, but varies ac-

cording to the data available per player. Detailed simulations

verifying the statistical power can be found in Appendix B.

Based on these calculations, I refer to subjects with at least

fifty matches as the high-power group, between twenty and

fifty matches as the moderate-power group, and less than

twenty matches as the low-power group. For the high-power

group, the statistics have 80% power to detect an average

effect size, and for the moderate-power group, 80% power

to detect a higher (yet still plausible) effect size. Table 3

presents the statistics of all players who are represented in

the high-power and moderate-power groups. The high power

group consists of four players, three of whom were ranked

Number 1 (Federer, Nadal, Djokovic) and the other Num-
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ber 2 (Murray) in the world. The null hypothesis of serial

independence is strongly rejected (p < 0.005) for all four

players. The mean percentage deviation in the number of

runs, rdev
i

, is −10.7%, 6.9%, −13.4%, and −3.4% respec-

tively. Also, the probability of finding over-alternation in

each player’s point-game runs statistics is 0.25, 0.65, 0.2 and

0.42 respectively.

The moderate-power group of players consists of fourteen

players, all of whom are Top 10 (career-high) ranked players

with the exception of two players. The null hypothesis of

serial independence is rejected for nine players. Notably,

out of both power groups (high and moderate), four out

of the five number 1 ranked players were found to exhibit

serial dependence — the exception is Andre Agassi. These

results are not sensitive to the grouping of players according

to high- and moderate-power. Running the KS-tests on all

players (including the low-power group) leads to a rejection

of the null hypothesis of no serial correlation at the 5% level

for 19.69% of the players. The B-H multiple-comparisons

correction yields a rejection rate of 2.3% (nine players) —

this correction is overly conservative due to the players in

the low-power group. The rejections still include very highly

ranked players (including No. 1), e.g., Federer, Nadal, and

Djokovic. A table reporting all the player-level statistics can

be found in the supplement.

Returning to the question of economic significance of the

observed deviations, note that the mean number of runs per

point-game is 16.5, i.e., roughly 33 per match. Therefore,

the deviations from serial independence of the top-ranked

players in the high-power group Federer, Nadal, Djokovic

correspond to approximately 3.5 fewer runs, 2.3 more runs,

and 4.4 fewer runs than expected respectively. The moderate-

power group also includes players whose statistically signifi-

cant deviations are approximately of the same magnitude —

see Berdych, Ferrer and Dimitrov. These individual devia-

tions may be difficult to detect for the average player, unless

two players are matched up often enough, which is not unrea-

sonable for the very best players. Furthermore, the average

population tendency to over-alternate will be more readily

detectable by attentive players due to the large number of

observations. I return to this issue later in the manuscript.

4.2.1 Are within-subject deviations from serial

(in)dependence a result of strategic best response

to lower-ranked players or match characteristics?

Experimental and field studies have shown that beliefs about

opponents’ rationality can affect the likelihood of reaching

the normative solution of a game. Palacios-Huerta & Volij

(2009) find that the subgame-perfect equilibrium in the Cen-

tipede game is more likely to result if both players are expert

chess players, less likely if chess players are matched with

students, and least likely when students play other students.

Similarly, Bosch-Domenech et al. (2002) find extensive iter-

ated belief-based reasoning about the sophistication of oppo-

nents in a guessing game — many subjects who showed an

understanding of the Nash equilibrium nevertheless chose

to deviate. For example, suppose that the receiver is sus-

ceptible to the representativeness bias concerning random

sequences or the law of small numbers (Tversky & Kahne-

man, 1971), i.e., believes that a switch in the serve direction

is more likely after a sequence of the same serve directions.

Consequently, even if the server is randomizing efficiently,

the receiver will expect the sequence of the serves to over-

alternate. The latter could be exploited by a server choosing

to under-alternate, leading to an increase in the probability

of mismatch in the sender and receiver directions, thereby

increasing the probability of the server winning the point.

I examine whether such strategic deviations occur in ten-

nis by using a cross-sectional regression model with fixed

effects to absorb the between-subject variation leaving the

within-subject variation to be modeled, i.e., within-player

strategic adaptation to an opponent and/or match character-

istics. The following independent variables are included.

The current match rankings (not career-high) of both the

server and the receiver (or opponent). The former captures

within-player variation in randomization, which may occur

as a result of the accumulation of experience/expertise (prox-

ied by the player’s own ranking). The latter represents the

combined ability and expertise of the opponent. If lower-

ranked players are more susceptible to the law of small num-

bers, then servers should deviate more from serial indepen-

dence in the direction of under-alternating, the lower-ranked

their opponent is. The current match rankings of both the

server and receiver
(

Ranks
t , Rankrt

)

are transformed into

Rown
t = 8− log2 Ranks

t as suggested by Klaassen & Magnus

(2009); the same transformation is used for R
opp
t where the

subscript t denotes the current — not career high — ranking.

Other variables capture possibly important match charac-

teristics. The length of a match, specifically the total number

of points played, is included as the variable Npoints . This

variable could capture the effects of fatigue (and difficulty

of the match) on the efficiency of serve randomization. The

variable Lrally denotes the mean number of shots played per

point, or the length of a rally. This variable could influ-

ence serve randomization in two possible ways. First, the

greater the rally length, the more time that elapses between

serves — consequently, a player who incorrectly conditions

on prior behavior in a biased attempt to randomize, may ac-

tually benefit from greater rally lengths. Second, although

the ranking of the opponent would capture the expected dif-

ficulty of a match, a greater length rally might indicate that

this specific match differs in difficulty.7 Consequently, this

might increase the incentives for a player to exert more ef-

fort or greater care in randomizing efficiently. The vari-

7For example, the opponent ranking would not capture elements such as

the effects of a recent injury, increased fatigue due to a busy schedule, the

effects of different court surfaces et cetera.

http://journal/18/18709a/supp.html
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Table 3: Individual player statistics

Name Career-high

ranking

Matches Serves Runs (K) Runs (p) rdev
i

(%)

High-power group

Roger Federer 1 160 12,413 0.258 0.000 −10.7

Rafael Nadal 1 142 8,708 0.169 0.000 6.9

Novak Djokovic 1 126 8,984 0.345 0.000 −13.4

Andy Murray 2 68 4,935 0.154 0.003 −3.4

Moderate-power group

Stanislas Wawrinka 3 42 3,035 0.180 0.007 −4.5

Tomas Berdych 4 38 2,244 0.370 0.000 13.9

David Ferrer 3 36 2,097 0.395 0.000 16.1

Milos Raonic 4 34 2,359 0.179 0.023 −7.5

Diego S. Schwartzman 57 31 2,078 0.196 0.014 4.1

Kei Nishikori 4 30 1,726 0.121 0.321 −3.6

Juan Martin DelPotro 4 29 2,025 0.174 0.054 2.4

Pete Sampras 1 28 2,260 0.272 0.000 −8.7

Bernard Tomic 17 26 1,961 0.136 0.266 −3.6

Richard Gasquet 7 24 1,535 0.150 0.211 3.2

Jo Wilfried Tsonga 5 23 1,480 0.209 0.030 −6.4

Grigor Dimitrov 8 23 1,484 0.482 0.000 18.4

Andre Agassi 1 22 1,693 0.138 0.343 2.0

Gilles Simon 6 21 1,524 0.298 0.001 9.4

able Wdiff also captures the difficulty of a specific match

as it is the difference between the rate at which the player

won and lost points in a given match. If Wdiff is close to

zero, then the match is relatively even. Finally, the variable

ln (Round) denotes the round of the match and is a proxy for

the expected tournament payoff (factoring in the probability

of winning) and the effects of stress or pressure in the later

rounds. The variable Round is coded as follows: if the match

is a final (Round = 1), semi-final (Round = 2), quarter-final

(Round = 3), pre-quarter-final or Top 16 (Round = 4), or

any lower qualifying round (Round = 5). Taking the loga-

rithm of this scale imposes a concave relationship, i.e., that

the effects of qualifying for each round have an increasingly

larger additional effect through the increase in player incen-

tives (monetary or otherwise).8

Note, however, that the causality of the variables
(

Npoints, Lrally,Wdiff

)

may also run in the opposite direc-

tion. That is, poor serve randomization could conceivably

have direct effects on these variables. For example, if a server

exhibits serial correlation and the receiver exploits this, then

the receiver would be more likely to return the serve leading

8Results are similar if instead the regression included dummy variables

of the round, which however reduces the degrees of freedom.

to longer rallies on average. Similarly, this could also affect

the percentage of points won by the player or the number of

points in the match. To remove the problem of endogeneity,

I calculate Npoints, Lrally,Wdiff only using data where the

player was the receiver, not the server.

The complete model is shown below in Equation 1, errors

are normally distributed.9 To allow for the possibility that

players’ strategic adaptation may depend on whether they

are, on average, players who over- or under-alternate, the

model estimates the set of coefficients separately for these

two groups (the distinction is made on the basis of the sign

of rdev
i

). The coefficients are denoted separately as β+ for

players where rdev
i
> 0 and β− for players where rdev

i
< 0.

rdevpgi
= αi + β

±
1 Rown

t + β±2 R
opp
t + β±3 Npoints+

β±4 Lrally + β
±
5 Wdiff + β

±
6 ln (Round) + ǫpgi

(1)

The results of the regression are displayed in Table 4 — the

top half of the table presents the coefficients for players that

9The conclusions are robust to the assumption of normally distributed er-

rors, as bootstrapped standard errors did not alter the results. Also, because

current match rankings were not available before 1980 in the database, this

analysis is based on 4,336 point-games from 383 players; this is a minimal

reduction compared to the total of 4,372 point-games and 391 players.
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Table 4: The dependence of deviations in runs rdevpgi
on

player rankings and match characteristics

# of obs. 4336, # of players 383

Independent var.: F (12, 3941) = 0.38, p = 0.97

Fixed-effects: F (382, 3941) = 1.19, p = 0.01

Coeff. s.e. t p

α −0.165 1.998 −0.08 0.93

rdev
i
> 0

β+
1

(

Rown
t

)

0.057 0.436 0.13 0.90

β+
2

(

R
opp
t

)

0.033 0.179 0.19 0.85

β+
3

(

Npoints

)

0.011 0.015 0.77 0.44

β+
4

(

Lrally

)

0.022 0.380 0.06 0.95

β+
5

(

Wdiff

)

−0.879 1.218 −0.72 0.47

β+
6

(ln (Round)) 0.728 0.722 1.01 0.31

rdev
i
< 0

β−
1

(

Rown
t

)

−0.303 0.484 −0.63 0.53

β−
2

(

R
opp
t

)

0.054 0.213 0.26 0.80

β−
3

(

Npoints

)

0.005 0.013 0.38 0.71

β−
4

(

Lrally

)

0.405 0.438 0.92 0.36

β−
5

(

Wdiff

)

−0.434 1.352 −0.32 0.75

β−
6

(ln (Round)) 0.861 0.742 1.16 0.25

over-alternate on average, the bottom half those that under-

alternate. A joint F-test of the null hypothesis that the set

of independent variables are not different from zero cannot

be rejected (F (12, 3941) = 0.38, p = 0.97). Similarly, tests

for each independent variable cannot be rejected at the 5%

level. I conclude that players do not systematically strategi-

cally manipulate their serve randomization according to the

rank of their opponent, and furthermore that there is also no

significant effect of match characteristics on behavior. This

finding is robust to adding interactions between Rown
t and the

other variables in the regression model, which would allow

sensitivity to match characteristics to depend on a player’s

own rank — see Table 8 (Appendix D) for the regression re-

sults. Importantly, there is significant heterogeneity in rdev
i

between players as captured by the estimated fixed-effects

(F (382, 3941) = 1.19, p = 0.01).

Table 5 presents individual regressions using the same

set of regressors as above for the players in the high-power

group. These regressions allow for the possibility of hetero-

geneity not only in the fixed-effects but also in the estimated

coefficients of the independent variables. For example, it

is possible that top-ranked players may adapt strategically

to their opponent or the characteristics of each match, but

lower ranked players may lack this ability. The prior re-

Table 5: Individual regressions of rdevpgi
on player and match

characteristics

Player Federer Nadal Djokovic Murray

# of obs. 320 284 252 136

F 0.66 2.15 1.57 0.14

p 0.68 0.048 0.037 0.99

R2 0.012 0.045 0.037 0.006

Coeff. (s.e.)

β1

(

Rown
t

)

0.56 −2.80∗ −0.19 0.61

(0.93) (1.23) (1.60) (2.44)

β2

(

R
opp
t

)

0.43 0.97 −0.03 −0.50

(0.57) (0.74) (0.78) (0.88)

β3

(

Npoints

)

0.014 0.041 −0.062∗ 0.0004

(0.026) (0.033) (0.028) (0.043)

β4

(

Lrally

)

1.35 −0.59 −0.19 0.19

(1.14) (1.12) (0.93) (1.35)

β5

(

Wdiff

)

−0.40 −5.45 −9.45∗ −0.28

(3.79) (4.83) (4.49) (5.17)

β6 (ln (Round)) 1.97 4.51 −0.52 0.46

(1.77) (2.38) (2.19) (3.22)

α −24.48∗ 18.33 −5.86 −5.86

(8.37) (10.98) (14.28) (17.85)

∗ denotes significance at the 5% level.

gression on the whole set of players may thus have masked

this heterogeneity. Note, that the bulk of the observations of

Rown
t in these individual regressions fall within the Top 10

ranking range. Therefore, conclusions regarding the within-

subject variation in randomization with rank are valid only

within this range — it is possible that learning more efficient

randomization may occur at much lower rankings. By con-

trast, there is significant variation in R
opp
t allowing for more

general conclusions.

From Table 5, none of the variables are statistically sig-

nificant for Federer and Murray; however, the β1

(

Rown
t

)

coefficient for Nadal and β3

(

Npoints

)

and β5

(

Wdiff

)

co-

efficients for Djokovic are significantly different from zero
(

p = 0.023, 0.025 and 0.036, respectively
)

. Of course, by

increasing the sample size enough it is possible to reject any

hypothesis for an arbitrarily small effect size. Therefore,

the economic significance, or effect size, of the deviations

is important — if they are small, then we should be cau-

tious in concluding that players are not serving optimally

even if statistical significance is found. Relatively small

deviations may be either too difficult or too costly to de-

tect and/or exploit. The economic significance, or effect

size of these coefficients is more clearly illustrated by ω2
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Figure 2: Estimated weighted regression of the relationship between rdev
i

and career-high rank (circle size is proportional to

the number of point-games)
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or converting them to standardized beta coefficients.10 For

Nadal, ω2 for β1

(

Rown
t

)

is equal to 0.015. For Djokovic,

ω2 for β3

(

Npoints

)

and β5

(

Wdiff

)

is 0.016 and 0.014, re-

spectively. Consequently, I conclude that, while statistically

significant, these within-subject findings explain very little

variation, particularly compared to the between-subject (un-

conditional) deviations from serial independence for these

players found above. In conjunction with the insignificant

findings in the panel regression (Table 4), I conclude that

there is no significant and systematic evidence of the exis-

tence of strategic deviations conditional either on the oppo-

nent’s rank or the characteristics of a match.

10For Nadal, the standardized coefficient for β1

(

Rown
t

)

is equal to -0.143.

For Djokovic, the beta coefficients for β3

(

Npoint s

)

and β5

(

Wdiff

)

are

-0.147 and -0.134, respectively.

4.2.2 Are between-subject deviations from serial inde-

pendence dependent on a player’s own career-

high ranking?

Since the previous results have ruled out any systematic

within-subject variation in serve randomization, in this sec-

tion I focus solely on the between-player variation after av-

eraging the rdevpgi
observations into the player averages rdev

i
.

Figure 2 shows the estimated function for all players relating

rdev
i
= δ0+δ1Rown

max+ǫpgi
, where Rown

max = 8− log2 Rankown
max ,

where the subscript max indicates the career-high rank.11

The coefficient δ0 + 8δ1 corresponds to the mean value of

rdev
i

for No. 1 ranked players. To account for the different

number of observations determining rdev
i

for each player i, a

weighted regression is employed with weights proportional

to the number of point-games available for each player. Ro-

11Using instead linear and power law funcions of the rank in this regres-

sion led to higher RMSE, confirming the suggestion to use this logarithmic

transformation by Klaassen & Magnus (2009).
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Table 6: Regressions of rdev
i

on the rank of players.

Regression (1) (2) (3) (4)

Player ranks included: All Top 100 Top 20 Top 10

Obs. 391 229 98 75

F(1,389) 61.24 33.46 7.75 9.51

p 0.000 0.000 0.007 0.003

RMSE 9.06 8.7 8.66 8.86

δ1 −1.41 −1.51 −1.61 −2.64

s.e. (0.18) (0.26) (0.58) (0.86)

p 0.000 0.000 0.006 0.003

δ0 8.49 9.12 9.89 17.54

s.e. (0.98) (1.49) (3.82) (6.01)

p 0.000 0.000 0.01 0.005

δ0 + 8δ1 −2.76 −2.96 −2.95 −3.59

s.e. (0.74) (0.91) (1.25) (1.38)

p 0.000 0.001 0.02 0.01

bustness tests were performed by running the same regres-

sion not only on the whole set of players, but also the Top

100, Top 20 and Top 10 players separately — see regressions

(1)–(4) in Table 6. In all regressions, the estimate δ1 was

negative and statistically different from zero, i.e., players

were increasingly less prone to under-alternating and more

prone to over-alternating the lower ranked they were. Indica-

tively, the Ei

[
rdev
i
| Rankown

max

]
conditional on player rank-

ings [1, 10, 20, 50, 100, 500] are [−2.8, 1.9, 3.3, 5.2, 6.6, 9.8]

respectively (for the regression including all players) — see

the plotted regression fit in Figure 2. In all the regressions,

the value of Ei

[
rdev
i
| Rankown

max = 1
]

is negative and signifi-

cantly different from zero.12 GPW also find that more highly

ranked men players’ behavior is closer to equilibrium, but

their estimated logit regression on serve directions does not

imply under-alternation on average for No. 1 ranked players.

The group of players ranked No. 1 and No. 2 therefore

exhibit an average tendency to under-alternate, although at

the individual player level analysis above, we rejected serial

independence for some Top 2 players both because of under-

and over-alternating. Although under-alternating serves is

not an equilibrium strategy, if the majority of players are

over-alternating as receivers, then this would be consistent

with a best-response to the population of receivers. Recall

however, that no evidence was found of conditioning server

12This is robust to the exclusion of all other data, as the weighted mean of

rdev
i

for No. 1 ranked players only, is equal to -4.1% with 95% confidence

intervals −8.1% and 0.0%. Similarly, these statistics for Top 2 ranked

players are −3.75% with 95% confidence intervals −7.15% and −0.35%;

from Top 3 players onwards, the 95% confidence interval does not lie solely

in the negative domain.

randomization on the opponent’s rank, so players would have

to be learning deviations at the population level. Unfortu-

nately, this cannot be directly tested because the receivers’

actions are not easily observable. They would depend on the

exact position of the player in the court (further to the left or

right), also the grip they are using on the tennis racket, i.e.,

whether it is more appropriate for a backhand or forehand

shot, and any other preparation to receive the serve whether

mental or physical.

5 Conclusion

Using a new dataset with sufficient power to efficiently in-

vestigate the serial dependence in serve directions, I resolve

the striking difference in the conclusions drawn by Walker

& Wooders (2001) and Hsu et al. (2007) with respect to the

serial (in)dependence of tennis serves. I corroborate the con-

clusion of the former study that there exist statistically signif-

icant deviations from serial independence in serves. Impor-

tantly, serial independence has been rejected even for players

ranked Number 1 in the world at some point in their careers

such as Federer, Nadal, and Djokovic. Over-alternation, or

switching too often (negative serial correlation), was found to

be more prevalent than under-alternation in the whole group

of players — this is in line with the earlier results of the liter-

ature both in the laboratory and the field. Interestingly, Top

2 players were found to under-alternate on average — this

would be a best response to a belief that the majority of tennis

players tend to over-alternate in their direction as receivers.

Furthermore, the lower the ranking of a player, the higher

the degree of expected over-alternation. Within-player anal-

yses did not find evidence of strategic deviations from se-

rial independence by higher-ranked players when competing

against lower-ranked players. Consequently, the observed

serial dependence cannot be explained away as a rational

response to non-equilibrium behavior of individual lower-

ranked players with less experience and/or ability than the

top players. These deviations might be difficult to detect and

exploit at the level of each individual player, or within a sin-

gle match, due to the small number of datapoints available

for inference. However, learning the population-level ten-

dency (outside of the Top 2 players) to over-alternate should

be feasible and is one possible strategic explanation for the

Top 2 players under-alternating on average. This is backed by

extensive laboratory evidence that subjects playing repeated

constant-sum games are capable of learning and exploiting

the serial dependencies in their opponent’s behavior given

enough rounds of play (Spiliopoulos, 2012, 2013a,b, 2018).

Future work could be directed at ascertaining whether the

observed magnitude of deviations from randomness are eas-

ily detectable given the samples sizes observed in tennis

matches and whether doing so would lead to an econom-

ically important advantage for a player. The latter would
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require a formal model associating deviations from perfect

randomization with the probability of winning points and

ultimately the whole match. Also, more data covering the

whole career span of players would allow for more powerful

tests of within-player learning of randomization behavior.

Finally, match characteristics proxying for the difficulty of

a match, fatigue, induced pressure and incentives were not

found to systematically influence the randomization behavior

of players.
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Table 7: Power and size calculations (values are symmetric around qLL
= qRR

= 0.5)

qLL
= qRR

# of matches 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50

1 0.345 0.296 0.243 0.197 0.157 0.122 0.098 0.075 0.060 0.050 0.052

10 0.991 0.973 0.931 0.853 0.729 0.584 0.401 0.251 0.139 0.068 0.050

20 1.000 1.000 0.999 0.989 0.948 0.860 0.689 0.435 0.222 0.093 0.049

50 1.000 1.000 1.000 1.000 1.000 0.998 0.970 0.815 0.476 0.155 0.052

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.775 0.272 0.048

150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.917 0.375 0.050

Appendix A: Statistical tests

Serial dependence for each point-game in the data is per-

formed using the two-sided exact runs test. Let nL and nR

denote the number of serves to the left and right in a single

point-game, respectively; let nr denote the number of runs

in the sequence of nL + nR serves. The probability qpg (r)

of finding r runs in such a sequence is given by Equation 2

below; note, Qpg (r) denotes the cumulative distribution.

qpg (r) =



2

(

nL − 1
r
2
− 1

) (

nR − 1
r
2
− 1

)

(
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) r is even
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) +
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nL + nR

nL

) r is odd

(2)

Randomized test statistics are generated according to

Walker & Wooders (2001, p. 1533), to satisfy the require-

ments of the Kolmogorov-Smirnov test, namely that they

be identically and independently distributed, and possess a

continuous cumulative distribution function. The random-

ized test statistic tpg is a draw from the uniform distribution

U
[
Qpg (r) ,Qpg (r − 1)

]
.

The individual point-game level test is a KS-test on the

distribution of the randomized (exact run) test statistics at the

point-game level for all the players — this is the test in WW

and HHT. For the player-level analysis it is the Kolmogorov-

Smirnov test on the distribution of point-game statistics pgi

for each player only. The latter permits the testing of serial

independence for each player rather than the set of play-

ers. All Kolmogorov-Smirnov tests were implemented by

the kstest function in Matlab, based on the algorithm in

Marsaglia et al. (2003) capable of computing p-values with

13-15 digit accuracy for n ≥ 2 samples. The reported criti-

cal values are K = max
tpg

���F (

tpg
)

− tpg
���, where F

(

tpg
)

is the

cumulative distribution function of the (randomized) exact

runs test statistic tpg (or tpgi
for the player-level analysis) —

note, the reported critical values are not scaled by
√

n, as is

often done when using the asymptotic distribution.

Appendix B: Statistical power calcula-

tions

The amount of data for each player varies greatly in the

dataset, from only one match to 160 matches. Consequently,

the power of the statistical tests will also vary significantly

by player. I present approximate power and size calculations

of the proposed player-level test below. To simplify the

presentation of the calculations, I perform these on a single

“representative” point-game. From Table 2, the probability

of serving left and right are in the vicinity of 0.5 across

the ad and deuce point-games. Therefore, I perform the

calculations assuming that qL
= qR

= 0.5, and varying the

probabilities qLL
= qRR from 0.4 to 0.6, which includes

the range of empirical estimates found in the data. Figure 3

displays the results from 10,000 simulated draws for players

with varying numbers of matches ranging from 1 to 150 (the

maximum in the dataset is 160 matches for Federer) and

assuming 65 (left or right) serves per match (the average

observed in the data). Table 7 presents the exact values.

The probability of rejecting the null hypothesis of serial

independence (at the 5% significance level) is shown on

the y-axis against different effect sizes on the x-axis (devia-

tions from serial dependence as determined by qLL − qL
=

qRR − qR). If qLL
= qRR

= 0.5, then the simulated data

exhibits serial independence. Therefore, the probability of

(incorrectly) rejecting H0 is equivalent to the size of the test,

which should be 5%. As can be seen in the figure, the test has

the appropriate size regardless of the amount of serve data

available for a player. For all other values of qLL
= qRR, the
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Figure 3: Power and size calculations conditional on the number of matches
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curves specify the power of the test, i.e., of correctly rejecting

H0. I compute an approximate expected effect size from the

empirical data in the following way. Define the average effect

size as the mean of the differences
���qL − qLL ��� and

���qR − qRR ���
for both point-games of the estimates presented in Table 2 —

this is roughly 0.03.13 Therefore, treating this as the expected

effect size and under the assumption that qL
= qR

= 0.5, the

corresponding conditional probabilities associated with the

expected effect size are qLL
= qRR

= 0.47 and 0.53. The

evolved norm in the literature for adequate power is 80%;

this can be achieved at qLL
= qRR

= 0.47 with data from

50 matches. For a larger effect size at qLL
= qRR

= 0.45,

data from 20 matches achieves a little more than 80% power.

Based on these calculations, I refer to subjects with at least

fifty matches as the high-power group, between twenty and

fifty matches as the moderate-power group, and less than

twenty matches as the low-power group. Note, that the find-

ings in WW and HHT were based on twenty players from ten

matches. Therefore, the approximate power of these studies

to detect the expected effect size (at the population level)

of 0.03 is 44%.14 Therefore there is a significant chance

13For ad point-games, the differences are 0.537 − 0.51 = 0.027 and

0.463 − 0.43 = 0.33 for left and right serve directions respectively. For

the deuce point-games, the differences are 0.486 − 0.461 = 0.025 and

0.514 − 0.487 = 0.027 respectively.

14In the power analysis, the number of matches refers to each player. In

WW and HHT the analysis includes all twenty players from ten matches;

therefore the appropriate curve in the figure is the one for twenty matches,

that WW and HHT reached opposite conclusions due to the

relatively lower statistical power of the tests.

Appendix C: Reconciling WW and

HHT

The conflicting conclusions found in HHT and WW with

respect to the serial (in)dependence of tennis serves deserve

attention, especially since both studies used the same statisti-

cal tests. I conjecture that this difference may be attributed to

sampling variation (in the selection of matches to include in

a study) due to the relatively small number of matches used

in these studies. Both WW and HHT had 40 point-games

from ten men’s matches. Suppose that only 40 point-games

were randomly chosen from this study’s dataset to perform

the runs test. What is the probability of rejecting the null hy-

pothesis using the same number of point-games as both WW

and HHT? I resample 40 point-games for a total of 10,000

times from the complete set of point-games in the dataset

(alternatively, only from point-games for players ranked No.

1), and calculate the probability of rejecting serial inde-

pendence using these re-sampled datasets. Based on these

calculations the probability of rejecting serial independence

is 0.11 (or 0.36 for No. 1 ranked), i.e., in 11% (36%) of the

not ten matches (which would be the case for an individual player analysis).
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sub-samples. Consequently, the probability of two studies

(of 40 point-games each) reaching the opposite conclusions,

one rejecting and the other not rejecting the null is approxi-

mately 0.2 (or 0.46 for No.1). Note, that WW and HHT pre-

dominantly had very highly-ranked players including many

No. 1 players; therefore, the value of 0.46 estimated from

the No. 1 ranked players is likely the more accurate estimate.

I conclude that the sampling variation hypothesis — lower

power of the earlier datasets due to their small size — is a

likely cause of the different results reached in WW and HHT.

I note that the authors of both studies explicitly considered

the power of their statistical tests for their datasets, but they

were limited by the practical constraints of collecting and

encoding the data from a large number of tennis matches,

which is very time-consuming.

Appendix D: Other results

Table 8: The dependence of deviations in runs rdevpgi
on

player rankings and match characteristics (including interac-

tions)

Coeff. s.e. t p

α −0.265 3.859 −0.07 0.95

rdev
i
> 0

Rown
t −0.098 1.079 −0.09 0.93

R
opp
t −0.168 0.374 −0.45 0.65

Rown
t × Rt

opp 0.067 0.094 0.71 0.48

Npoints −0.030 0.031 −0.95 0.34

Rown
t × Npoints 0.009 0.006 1.50 0.14

Lrally 1.127 0.785 1.44 0.15

Rown
t × Lrally −0.273 0.166 −1.65 0.10

Wdiff 0.428 2.441 0.18 0.86

Rown
t ×Wdiff −0.404 0.620 −0.65 0.52

ln (Round) 0.077 1.455 0.05 0.96

Rown
t × ln (Round) 0.212 0.335 0.63 0.53

rdev
i
< 0

Rown
t −0.333 1.226 −0.27 0.79

R
opp
t −0.515 0.499 −1.03 0.30

Rown
t × Rt

opp 0.120 0.102 1.18 0.24

Npoints 0.043 0.041 1.04 0.30

Rown
t × Npoints −0.007 0.007 −1.02 0.31

Lrally −0.045 1.035 −0.04 0.97

Rown
t × Lrally 0.076 0.185 0.41 0.68

Wdiff 1.261 3.235 0.39 0.70

Rown
t ×Wdiff −0.359 0.668 −0.54 0.59

ln (Round) 2.004 1.807 1.11 0.27

Rown
t × ln (Round) −0.188 0.337 −0.56 0.58
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