
Application of the parareal algorithm to simulations of

ELMs in ITER plasma

D. Samaddara,, D.P. Costerb, X. Bonninc, L.A. Berryd, W.R. Elwasifd, D.B.
Batchelord

aCCFE, Culham Science Centre,Abingdon, Oxon, OX14 3DB, UK
bMax-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany

cITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France
dOak Ridge National Laboratory, Oak Ridge, USA

Abstract

This paper explores the application of the parareal algorithm to simulations
of ELMs in ITER plasma. The primary focus of this research is identifying
the parameters that lead to optimum performance. Since the plasma dynam-
ics vary extremely fast during an ELM cycle, a straightforward application
of the algorithm is not possible and a modification to the standard parareal
correction is implemented. The size of the time chunks also have an impact
on the performance and needs to be optimized. A computational gain of 7.8
is obtained with 48 processors to illustrate that the parareal algorithm can
be successfully applied to ELM plasma.
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1. Introduction

The ever increasing demand for improving complexities in simulations re-
quires maximizing the efficient use of computational resources. Traditional
parallelization techniques (such as space parallelization) although reducing
the wallclock time, often reach saturation on modern supercomputing ma-
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chines. Parallelizing the time domain ushers in a new possibility of optimiz-
ing resource utilization. Parallel in time algorithms are not a replacement
for, but are complementary to, other schemes of parallelization. This there-
fore allows utilization of the gain achieved from existing parallelization and
adding a large improvement in computational gain.

Various parallel in time algorithms exist such as PITA [1], parareal [2],
RIDC [3, 4], PFASST [5]. This work explores the application of the Parareal
algorithm to a complex, non-linear simulation in fusion plasma. Of all the
algorithms that achieve temporal parallelization, the Parareal algorithm has
been the one to have been used the most in non-linear plasma physics simu-
lations over the years [6, 7, 8]. The algorithm was introduced in [2] and its
convergence and stability have been analyzed in great detail in [9, 10, 11, 12,
13, 14, 15, 16, 17].

This work seeks to explore temporal parallelization of simulations of Edge
Localized Modes (ELMs) that play a crucial role in the successful operation
of any fusion device [18, 19, 20, 21, 22]. ELMs are simulated using the
multi-fluid codes SOLPS 5.0 [23, 24] and SOLPS-ITER [25, 26]. ELMs have
been observed in experiments on present machines[27, 28]. These modes
exhibit irregular or quasi-regular periodicity and lead to deposition of huge
power fluxes on plasma facing walls . While ELMs are an area of strong
active research in the fusion community and there is significant information
collected from experimental databases, a complete understanding of ELMs
is still elusive to scientists.

ELMs are an MHD phenomena and MHD codes such as JOREK [29] are
used to investigate the cause of an ELM. ELMS can also be studied using full
scale turbulence codes such as BOUT + + [30]. However, investigating the
impact of ELMs on the evolution of the plasma properties due to interactions
between all ion species and electrons requires a different approach involving
transport equations such as in SOLPS. A number of largely parallel codes
like NIMROD [31], GEM [32], M3D [33] are used to investigate ELMS but
no simulation currently fully captures both aspects (cause and impact) of
ELMs.

SOLPS solves the fluid equations (which are not parallelized) for the ions
and can be coupled with the parallel Eirene code to simulate the neutral
particles in the plasma. However, simulating 1s of ELM can take 100 days of
walltime. The cases discussed in [34] which involved a much smaller tokamak
AUG than ITER typically took 200 days of wall clock time.

Since a major hindrance in studying the behavior of ELMs using com-
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puter simulations is their demand for extremely large wall clock times. This
is why adding a new dimension to the parallelization is of significance in
ELM research. A successful application of the Parareal algorithm makes
these simulations much more feasible, allowing the inclusion of more com-
plex physics while still maintaining a reasonable computation time. However,
due to the strong non-linear phenomena involved, the application of temporal
parallelization to simulations of ELMs is unsurprisingly far from straightfor-
ward and this work attempts to identify the computational parameters and
regimes that allow the best performance.

The present research is a follow-up of the work detailed in [8]. [8] demon-
strated that the parareal algorithm is applicable to edge plasma simulations
but relatively ’steady’ states were used as test beds. This work extends that
application to more strongly coupled non-linear phenomena called ELMs.
Due to the complex non-linear behavior of ELMs, the application poses new
challenges. The characteristic time-scale of the plasma in [8] was ∼ 10ms
while the time scales involved in this present work are very different. ELMs
involve time dependent behaviour with dramatic changes to the system that
last for 1ms. The plasma conditions continue to evolve after an ELM and
before the onset of the next ELM. During an ELM, the power at the targets
can vary by more than an order of magnitude for example.

A modification to the application of the parareal correction allows con-
vergence and generates computational gain.

This paper is organized as follows: ELMs are described in sec.2 and sec.3
details how they are implemented in the code to be observed in the simula-
tions. Sec.4 describes the Parareal Algorithm and the results are described
in sec.5.

2. ELMs

Edge Localized Modes(ELMs) [35, 36] are periodic bursts of instabilities
at the plasma edge in a tokamak. A tokamak is a fusion device of toroidal
geometry with complex magnetic field lines to confine the burning plasma
of a few hundred million Kelvin within the vessel. As has been mentioned
in [8], simulations of the plasma edge are particularly challenging due to the
interactions with the materials of the walls of the vessel accompanied by both
radial (perpendicular to the magnetic field lines) and parallel (parallel to the
field lines) transports.
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It is desirable to operate a tokamak in the H-mode (High Confinement
Mode) [18, 37, 38, 39] since that greatly enhances the energy confinement
time of the plasma. The energy confinement time τ is the characteristic time
scale in which the energy escapes the plasma. In fact, H-mode confinement
time is typically twice that of L-mode (Low Confinement mode). The sharp
transition from L-mode to H-mode occurs when the input heating power is
above a certain threshold. A sharp increase in the profile gradients (such
as of pressure, density or temperature) occurs over a very narrow region
(typically a few cm) at the plasma edge. This results in the formation of the
’edge transport barrier’ or ’H-mode pedestal’ which generates the improved
confinement. The suppression of turbulent transport at the plasma edge
is believed to be the reason behind the improved confinement - although a
complete understanding of the mechanisms at play is still an area of active
research.

While the improved confinement makes the H-mode an attractive oper-
ating regime, the presence of instabilities makes it more challenging. Two
MHD instabilities become prominent. The increasing pressure gradient leads
to ballooning instabilities and the gradient in the edge current generates the
peeling instability. These two instabilities are believed to be responsible for
ELMs [18, 19].

ELMs are characterized by sudden bursts of energy and a transient rise
of heat loads on the divertor targets of the device. Depending on their am-
plitudes and frequencies, ELMs are classified into types I (large amplitudes
- hence often termed as ’giant’ ELMs) and II and III (smaller, hence of-
ten known as ’grassy’ ELMs). Current predictions estimate [21, 40, 41] the
heat flux due to ELMs on the divertor plates at ITER (the world’s biggest
experimental tokamak) will be up to 20 times larger than what can be tol-
erated for a reasonable lifetime of the target materials. This makes research
into ELM control and mitigation of primary importance for making fusion a
viable source of energy.

Despite the potential significant reduction of ITER’s divertor target life-
time due to power loads by ELMs, the particle outflux associated with the
ELMs has positive effects on H-mode plasma performance. Indeed ELMs
are required in present experiments to exhaust impurities from the confined
plasma and a similar role is expected for ITER. As a result, controlled ELMs
in H-mode is the desired operational mode for ITER.
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3. ELMs in the SOLPS code

The SOLPS 5.0 and SOLPS-ITER codes are described in detail in [23, 24,
25, 26]. SOLPS stands for Scrape Off Layer Plasma Simulator which, as the
name suggests, simulates the Scrape Off Layer (SOL). The SOL is the region
between the wall of the device and the Last Closed Flux Surface (LCFS),
characterized by open field lines. Both codes solve the same set of equations
and SOLPS-ITER is considered to be an upgraded version of SOLPS5.0.
Both codes use the B2.5 package that solve the Braginskii fluid equations for
multiple species or all charge states of every individual element present in
the plasma [20]. The density equation is given by eq.1 as an example of the
set of equations solved, which are described in detail in [23].
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In eq.1 n is density, V is the velocity and Sn is the density source term.
Following [23], the coefficients h and g are given by hx = 1

‖∇x‖ , hy = 1
‖∇y‖ ,

hz = 2πR with R being the major radius and
√
g = hxhyhz. The ‖ and ⊥

components are with respect to the direction of the magnetic field.
The regimes studied are sufficiently collisional to justify the use of fluid

equations. In the present case, the fluid model is used for both the charged
species as well as the neutrals in the plasma as in [20]. Ideally, it is desirable
to use a kinetic model to simulate the neutral species in the plasma, but
using the fluid model makes the computations tractable.

It is interesting to note that ELMs are believed to be intrinsically MHD
phenomena while SOLPS is not an MHD code. It must be clarified that
a code like SOLPS is used to study the impact of ELMs (and provide in-
sight into the effects of individual species which is impossible to perform in
an MHD code) rather than the mechanisms for their generation (which is
typically studied using MHD codes [29]).

ELMs characteristically enhance the radial transport in a plasma [42].
This is typically simulated by increasing the diffusive or convective coefficient
for a brief period (say 1 ms) at regular intervals. The impact of that increase
successfully lasts much longer than 1 ms and simulates the behaviour of an
ELM-plasma. These simulations have been successfully benchmarked against
experiments in the JET, TCV and AUG tokamaks [21, 22, 34].

5



[8] studied relatively simpler cases in the tokamaks MAST and DIII-D.
The present work simulates a significantly larger device - ITER - with a much
higher number of species mix (98) in the plasma. The physics involved in
these simulations are very similar to the cases described in [20]. The species
include all ions and neutrals of Deuterium, Tritium, Helium, Beryllium, Neon
and Tungsten and the complex interactions between the various charge states
are included in the simulations. As in [20], prompt redeposition of Tungsten,
which is otherwise released into the plasma as a result of sputtering at the
divertor targets, is included in the calculations. It may be clarified that the
redeposition is based on a simple approximation but a more accurate ELM
based calculation is beyond the scope of this work. The density gradient
driven diffusivity has been increased by 10 times for 1 ms in every 20 ms
to simulate the ELM triggered plasma. This is illustrated in Fig.1 where
the diffusivity along the outer midplane is plotted for two different times.
The ELM affected area on the outer midplane is estimated to be 40 cm for
ITER. The ELM could also have been simulated by varying the convective
coefficient instead of the diffusive coefficient. However, as discussed in [20],
previous results have not demonstrated significant variation in the quantities
of concern such as the maximum total power flux at the divertors. But, look-
ing at the behaviour of parareal convergence where the ELMs are generated
by varying the convective coefficient may be investigated in the future.

A computational grid of size 96×36 as shown in Fig.2 was used as the
fine model for the SOLPS computations of ELMs in the ITER plasma. The
typical size of the timesteps for the fine computations was 10−5 sec. A typical
ELM cycle is shown in Fig.3 where the electron density (in m−3)at the sep-
aratrix on the midplane (henceforth will be referred to as nesepm) and the
maximum total power flux (in W.m−2) (henceforth referred to as pwmxap)
on the outer target are plotted against time. It is seen that both these quan-
tities are greatly increased during the ELM. The ELM-crash phase includes
the peak values which then decrease through the remaining crash phase.

The variables that are commonly being referred to in the rest of the paper
are summarized in Table1.

4. Parareal algorithm

The parareal algorithm was first introduced in [2]. It is described in
detail in [8]. The algorithm uses a predictor-corrector approach with an
accurate fine (F) integrator and another coarse integrator (G). Identifying
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Figure 1: The particle density gradient driven radial diffusivity is increased by 10 times
to simulate ELMs.
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Figure 2: A grid of size 96×36 was used for the fine or serial computation of the ELM
plasma in the ITER device.
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Figure 3: A typical ELM cycle using the SOLPS5.0 code package with the Fine solver as
aserial computation is demonstrated.
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Table 1: Variables used in the text.

Variable Description Units
nesepm electron density at the separatrix on outer midplane m−3

tesepm electron temperature at the separatrix on outer midplane eV
pwmxip maximum total power flux on inner divertor W.m−2

pwmxap maximum total power flux on outer divertor W.m−2

the optimum coarse predictor is generally the biggest challenge in all complex
applications. The parareal correction is given by eq.2.

λki+1 = F (λk−1i ) +G(λki )−G(λk−1i ) (2)

λki+1 is the initial state for the (i +1)th time slice at the kth iteration. At
the kth iteration λki is evolved to λki+1 using F(λki ) and G(λki ).

Just as in [8], this paper also utilizes the event-based approach given in
detail in [43, 44, 45].

The coarse and fine calculations are repeated across a number of parareal
iterations k until convergence is achieved. Parareal convergence across a time
chunk or processor is said to have been achieved when the ’defect’ between
two successive fine calculations (k and k − 1) across that processor is below
a tolerance value. The sum of this defect in solutions across a time chunk
between ti and ti−1 is defined by

ζki =

∫ ti

ti−1

∣∣λk(t)− λk−1(t)
∣∣

|λk−1(t)|
dt. (3)

The solution is then converged for time slice i if,

ζki < tol, ∀i ≤ I. (4)

The integration in eq.3 is treated as a sum of discrete errors at every point
on the time axis, computed by the SOLPS integrator. For the purposes of
parareal convergence, eq.3 is applied to two variables pwmxap and pwmxip.
As already mentioned, pwmxap is the maximum total power flux (in W.m−2)
on the outer divertor. pwmxip is the same for the inner divertor.
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5. Results

The cases explored in this work used both the SOLPS5.0 and SOLPS-
ITER codes. In some cases, results from SOLPS-ITER were more stable
than those from SOLPS5.0. The value of tol in eq.4 was 0.005. The choice
of this value is based on the residual of the solved equations as described in
[8] and is justified by Fig.4 whick illustrates that the residuals of converged
parareal solutions are a serial fine solution are comparable.

Following the work in [8], a reduced grid model of size 48×36 with bigger
timesteps was used as a coarse predictor for the Parareal implementation.
While this approach was relatively straightforward for the cases explored
in [8], the treatment turned out to be much more challenging for a plasma
with ELMs. The parareal solutions had spurious rises and falls in the plasma
quantities such as temperature and density throughout the ELM cycles. One
such ’catastrophic’ case is illustrated in Fig.5b where there is a rise in nesepm,
the electron density at the separatrix on the midplane (it must be noted that
other quantities like temperature and ion densities also behave similarly)
when there is expected to be a decrease as is seen in Fig.3a. The fact that
there is no unexpected instability in the coarse solution at k = 1 as shown
in Fig.5a implies that the root of the problem lies in the parareal correction.
This was a simulation using 16 processors, with ntimF = 100 and dtG = 10∗
dtF . ntim is the number of time-steps solved per processor and dt represents
the size of each time step. The subscripts F and G represent the fine and
coarse cases, respectively. It may be noted that ntimF ∗ dtF = ntimG ∗ dtG
is the size of each ’time chunk’ solved on every processor.

A closer look at the parareal computation shows that in this case, the
unwanted ELM rise starts at the 14th time chunk, which subsequently affects
successive time chunks solved by other processors. Plotting nesepm against
time for both k= 1 and k= 2 in Fig.6 showed that the rise occurs at the
parareal iteration k= 2, which somewhat implies that the parareal correction
as given by eq.2 might be the cause for this behaviour.

A possible explanation might be obtained if we take into account that the
radial profiles and the subsequent plasma dynamics vary extremely rapidly
during an ELM cycle. This is illustrated for the electron density and tem-
perature along the midplane in Figs.7 & 8. With the fact that eq.2 is an
algebraic correction at all grid points, it is not very surprising that after
applying eq.2, the plasma profiles change to an ELM rise phase while it is
expected to be in an ELM crash phase or vice versa.
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(b) The norm of the residuals for the equations as computed by the SOLPS code
package for a converged case of the parareal formalism.

Figure 4: The tolerance of the parareal computation is chosen in such a way so that the
residual for the parareal calculation agrees with those of the fine (F ) simulation.
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Figure 5: A spurious rise in the electron density at the outer midplane obtained from the
parareal computation using a grid of 48× 36 and dtG = 10 ∗ dtF as the coarse solver. The
fact that the coarse solution at k = 1 is stable indicates the problem is in the parareal
method.
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Figure 6: The parareal solutions are very sensitive to initial values in case of ELMs.
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This issue due to the rapidly varying profiles during an ELM is a cause for
concern since the success of the parareal algorithm depends on eq.2. However,
implementing a restriction to the parareal correction appeared to solve the
problem. At the kth parareal iteration, the value of each primary variable
was not allowed to vary more than that of the fine value computed at the
(k − 1)th iteration by X%. To ensure that the study was restricted to the
correction to the grid points and to rule out any impact of choosing a dtG
greater than dtF , dtG = dtF = 10−5s was chosen with a grid of 48×36 for
the coarse predictor. A series of simulations were performed with different
values of X = 1, 5, 20, 40. While the undesirable behaviour in the solutions
was eradicated with a decreasing value of X, the number of iterations required
for parareal convergence was minimum at X = 1.

This might raise the issue that the coarse predictor is not very different
from the fine solution at all, and in fact, the necessity of the ’fine’ integrator
may be questioned. It must be noted here that the parareal correction is
applied only to the primary variables and the measurement of convergence is
based on the maximum total power fluxes (pwmxip and pwmxap) at the di-
vertors. These plasma quantities can vary more significantly with very slight
changes (even as small as 1%) to the primary variables. This is illustrated
in Fig.9 where for iteration k = 1 across a processor, with the same initial
values of primary variables, a variation in pwmxip is observed. The fact that
the parareal correction is required to achieve the solution otherwise obtained
by a serial, fine run is shown in Fig. 10. Fig. 10 actually illustrates the evo-
lution of the solution through parareal iterations, k with the original coarse
solution having a different width for the peak (of pwmxip in this case) as
well as a shift along the time axis. A comparison of the serial, fine solution
and the parareal computation is discussed later in this paper.

With this promise, the next numerical parameter that was explored was
the size of the time chunk solved per processor. This involved varying ntimF

and subsequently varying ntimG, keeping dtF and dtG constant. The size
of the time chunk has been a factor influencing parareal performances in a
large number of previous applications [6, 8] and was found to be a strong
one in the present case. Once again with restricting the time step sizes
such that dtG = dtF = 10−5s, a series of simulations were performed with
8 processors or time chunks varying the values of ntim. The results are
listed in Table2. It was observed that ntim = 200 allowed the best parareal
performance. This dependence on ntim has been observed many times but
a full mathematical understanding of the parareal algorithm with respect
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to it is still unclear. It may be argued that with a large ntim, the coarse
solution deviates sufficiently such that the parareal correction can no longer
recover the ’correct’ solution. Interestingly, with dtim = 10−5s, ntim = 2000
actually is the time that includes an entire ELM, that is an ELM rise and
crash phases. One might therefore expect, that parareal should be easier to
implement when ntim = 2000, as most of the radical changes in the plasma
dynamics are confined within a time chunk, and the breaks in the time line
occur at ’quiet phases’ in an ELM cycle. However, it was found that parareal
convergence was not at all achieved with chunk size, ntim = 2000. This could
indicate that the plasma dynamics were still varying rapidly during the ’quiet
phase’ and with such a long time chunk, the coarse predictor was deviating
enough to hinder parareal convergence.

Table 2: The number of iterations were minimum at ntimF = ntimG = 200 with parareal
correction restricted to X = 1.

ntim Parareal iteration k
20 4
200 2
300 3
400 No convergence
2000 No convergence

It is believed that SOLPS-like simulations with dt = 10−5s marginally
resolve ELM physics with very rapidly varying plasma dynamics. A step
size of 10−6s is desired. But a serial computation of a single ELM cycle
would then take about 16.25 days! However, once the optimum parameters
(ntimF = 200 & X = 1) were identified, a set of parareal simulations were
performed with dtF = 10−6s & dtG = 10−5s. With this coarsening of the pre-
dictor with respect to the fine integrator resulted in an increase in pararael
iteration (k) as in Table 2. The case of ntimF = 200 & X = 1 now converged
at k = 3. With the serial and parareal wallclock times defined as Tser and
TPR respectively, the computational gain is defined as gain = Tser

TPR
. A com-

putational gain of 7.8 was achieved with 48 processors, which is expected to
rise with increasing processor counts.

Before analysing the parareal solutions, it may be noted that very slight
changes to the integrator or the code itself can result in slight variations in
the solutions. This is evident in the results obtained from SOLPS 5.0 and
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SOLPS-ITER. Although both versions of the code solve the same sets of
equations, the solutions (pwmxip and pwmxap) over a complete ELM cycle
(2ms) are illustrated in Fig.11. The Root Mean Squared Errors (RMSE) for
these two datasets are computed. RMSE is defined by the formula given in
eq.5 and is normalized by eq.6, where N is the total number of datapoints,
vn and un are the nth variables of SOLPS-ITER and SOLPS 5.0 respectively.
Comparing solutions from SOLPS 5.0 and SOLPS-ITER, the normalized
RMSE for pwmxip is 1.557E-02 and for pwmxap it is 2.0203E-02.

RMSE =

√∑N
n=1(vn − un)2

N
(5)

Normalized RMSE =
RMSE

umax − umin

(6)

A similar comparison is performed using the parareal solutions with re-
spect to the corresponding SOLPS 5.0 solutions in Fig.12. The error bars are
plotted using the maximum relative error (given by eq.7) between the SOLPS
5.0 and SOLPS-ITER solutions. The normalized RMSE for the parareal
computation was determined to be 1.95E-02 for pwmxip and 6.43E-03 for
pwmxap.

Relative error =
vn − un
un

(7)

5.1. Parareal using the event based method

Similar to the work in [8], the event based parareal scheme was employed
in this paper using the IPS (Integrated Plasma Simulator)framework [43] &
[44]. Following the same approach as in [8] let tG be the wall clock time for
the coarse(G) computation on a single time slice and let tF be the same for
a fine computation also on a single time slice as well. Let N be the total
number of time slices.

If at parareal iteration k, nc slices have converged then nk = N − nc

slices remain to perform a G and F calculation. In a traditional, sequential
MPI implementation of parareal, with G being a serial process and F being
performed in parallel, the wallclock time required per iteration k can then
be stated as:

tk = tG ∗ nk + tF (8)
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(a) The maximum total power flux on the inner target for an ELM cycle, obtained
from SOLPS 5.0 and SOLPS-ITER. The normalized RMSE defined by eq.6 for
these data sets is 1.557E-02.
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(b) The maximum total power flux on the outer target for the same case as
Fig.11a.The normalized RMSE for these data sets is 2.0203E-02.

Figure 11: The solutions obtained from serial versions of SOLPS 5.0 and SOLPS-ITER
are compared to one another.
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(a) The maximum total power flux on the inner target for an ELM cycle, obtained
from SOLPS 5.0 and parareal. The normalized RMSE defined by eq.6 for these
data sets is 1.95E-02.
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(b) The maximum total power flux on the outer target for the same case as
Fig.12a.The normalized RMSE for these data sets is 6.43E-03.

Figure 12: The solutions obtained from serial versions of SOLPS 5.0 and the parareal
computation are compared. The error bars represent the maximum relative error between
SOLPS 5.0 and SOLPS-ITER calculations using a serial processor.23



If K is the total number of iterations required for convergence of all N time
slices, then summing across all iterations gives the total time for a traditional
parareal implementation using MPI.

Ttrad =
K∑
k=1

tk (9)

The computational gain for sequential implementation of the parareal
algorithm using MPI may then be stated as:

gaintrad =
TF
Ttrad

=
tF ∗N
Ttrad

(10)

For the case with 48 processors yielding a computational gain of 7.8, the
average values for tG and tF were tG = 922s & tF = 14040s. Using eq.10,
which ignores communication overhead, the computational gain is 2.425 for
a traditional, MPI version of the parareal algorithm.

6. Conclusion

The parareal algorithm is shown to work for a complex case of ELM
simulations in ITER plasma with 98 species. The rapidly changing radial
profiles during an ELM cycle pose unique challenges for this application.
A modification to the application of the parareal algorithm alleviates the
problem. The parareal performance is also found to be sensitive to the size
of the time chunk solved per processor. An optimum value for it is identified,
and a simulation with 48 processors yielded a computational gain of 7.8.

This application illustrates that ELM simulations can become more tractable
using the parareal algorithm. As a result more complex physics can be in-
corporated into the model, such as kinetic neutrals, and long simulations of
multiple ELM cycles may be performed within much shorter wall clock time.
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L. A. Berry, W. R. Elwasif, D. B. Batchelor, Temporal parallelization
of edge plasma simulations using the parareal algorithm and the solps
code, Computer Physics Communications 221 (2017) 19–27.

25



[9] L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zérah, Parallel in time
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[21] B. Gulejová, R. Pitts, M. Wischmeier, R. Behn, D. Coster, J. Horacek,
J. Marki, Solps5 modelling of the type iii elming h-mode on tcv, Journal
of nuclear materials 363 (2007) 1037–1043.
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