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We present a novel representation of coupled matter-photon systems that allows the application of
any many-body method developed for purely fermionic systems. We do so by rewriting the original
coupled light-matter problem in a higher-dimensional configuration space and then use photon-
dressed orbitals as a basis to expand the thus ”fermionized” coupled system. As an application
we present a dressed time-dependent density-functional theory (TDDFT) approach. The resulting
dressed Kohn-Sham (KS) scheme allows for straightforward non-adiabatic approximations to the
unknown exchange-correlation potential that explicitly includes correlations. We highlight this for
simple model systems placed inside a high-Q optical cavity and show also results for novel types of
observables such as photon-field fluctuations. We finally highlight how the dressed-orbital approach
goes beyond the context of cavity quantum electrodynamics and can be applied to, e.g., van-der-

Waals problems.

PACS numbers: 31.15.E-,42.50.Pq, 71.15.Mb

In the last decade experiments at the interface be-
tween chemistry, material science and quantum optics
have uncovered situations in which the strong interplay
between the quantized electromagnetic field and the mat-
ter degrees of freedom lead to interesting physical phe-
nomena and novel states of matter [1-4]. For instance,
by strongly coupling molecules to the vacuum field of
an optical cavity chemical reactions can be modified
[5, 6], strong exciton-photon coupling in light-harvesting
complexes is expected to modify energy transfer [7] or
the coupling to quantum matter can lead to attractive
photons [8]. Experimental results show that the emer-
gence of hybrid light-matter states, so-called polaritonic
states that strongly mix matter and photon degrees of
freedom, is the reason for these interesting phenom-
ena. While the theoretical understanding of these ef-
fects are mostly based on simplified Dicke-type models
(several few-level systems coupled to one mode) [9], an
accurate and unbiased description of the physical situa-
tion calls for calculations of the coupled matter-photon
systems from first principles [3, 4, 10, 11]. An ap-
pealing such first-principles method is an extension of
density-functional theory to coupled matter-photon sys-
tems [12-15], which is called quantum-electrodynamical
density-functional theory (QEDFT). By reformulating
the fully coupled fermion-boson problem in a formally
exact quantum-fluid description, where the charge cur-
rent is coupled in a non-linear way to the Maxwell field,
it avoids a solution in terms of the usually infeasible wave
function. The major drawback of such density-functional
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approaches are that the internal force terms of the quan-
tum fluids are only known implicitly (in terms of the wave
function) and approximations have to be used in gen-
eral. The most successful approximation strategy is the
Kohn-Sham (KS) scheme, where the local-force expres-
sions of a non-interacting auxiliary system is used as a
starting point to model the fully interacting case [16, 17].
First calculations for real molecules coupled to photons
in and out of equilibrium [18; 19] show the potential of
first-principle calculations of coupled matter-photon sys-
tems. However, approximations based on the standard
KS scheme are hard to improve towards strongly-coupled
systems, which in the context of coupled matter-photon
systems promise interesting physical effects [20]. Alter-
native approximation schemes either rely on a different
auxiliary system, such as the strictly-correlated electron
system [21] or go beyond the single Slater-determinant
Ansatz [22].

In this work we provide a completely different route to
describe matter-photon systems from first-principles by
reformulating the physical problem in a space with aux-
iliary extra dimensions. This higher-dimensional refor-
mulation reduces to the standard formulation in physical
space in a straightforward manner, providing us with an
“holographic” perspective of the original problem that al-
lows us to work with explicitly-correlated/dressed higher-
dimensional orbitals. Since this leads to a ”fermion-
ization” of the coupled fermion-boson system it allows
us to employ any fermionic many-body method devel-
oped, such as, e.g., Greens’ function techniques [23, 24]
or density-functional methods. Here we exemplify the
possibilities of this approach by applying it in the context
of TDDFT and find that already the simplest approxi-
mations are non-adiabatic from the start and include ex-
plicit correlations that can otherwise only be captured
by advanced functionals for the standard KS scheme.



We illustrate this dressed KS construction for the case
of an electronic quantum system coupled to the photons
of an optical cavity. We show how simple approximations
in terms of dressed (mixed matter-photon) orbitals cap-
tures the right Rabi-oscillation induced by the photon-
matter coupling for a Rabi model. We further show how
it captures the non-adiabatic dynamics of a “bare” model
helium that is brought inside an optical cavity (sponta-
neous emission), and how the dressed KS approach allows
to also determine novel types of observables such as the
photon field fluctuations. Finally we highlight that this
scheme can be used also in other physical situations to
capture strong correlations, e.g., for dispersion interac-
tions.

Let us consider the case of a general electronic system
with frozen ions inside an optical cavity (the extension to
include the nuclei as quantum particles is straightforward
[3, 11]). As the spatial extension of the matter system is
small compared to the wave length of the cavity modes,
we can treat the matter-photon coupling in dipole ap-
proximation (atomic units are used throughout) [25, 26].
In this case the interacting Hamiltonian reads
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where the first line corresponds to the usual many-body
Hamiltonian T+ V() +W describing the uncoupled mat-
ter system of N electrons interacting via the Coulomb
potential w(r,r’) and moving in an external time depen-
dent potential v(r,t). The second line describes M pho-
ton modes with frequency w, and polarization vectors
A, coupled to the total dipole of the electronic system.
Furthermore, the photon modes are allowed to couple to
an external source j,(t) that corresponds to the time-
derivative of a mode resolved external current [13, 26].

We first introduce auxiliary extra dimensions
(Pa,2; --sPa,n) for each mode, and then consider the

extended Hamiltonian ﬁ’(t) = f[(t)—&-f{aux, with Hyux =
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We then change coordinates to (ga,1, ...,q;,N) for each
mode, where (¢q,1, ..., ¢a,n) is any coordinate set related
to (PasPa,2s -, Pa,N) by an orthogonal transformation
(the specific choice does not matter) that further allows
us to specify the photon-displacement coordinates p, as

Pa = ﬁ (Q(Ll + ...+ QQ,N) . (2)

This is the inverse of a center-of-mass coordinate trans-
formation [27] (see Supplemental Material Sec. I for an
explicit example). Introducing a (3 + M)-dimensional
dressed vector of space and auxiliary photon coordinates

z = (r,q1,...,qnm) we can then rewrite ﬁ’(t) as
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is the normalized solution of the extended TDSE
18t\IJ (t) = H'(t)V’(t) with a x(t) that evolves from an
arbitrary, normalized initial state yo under ﬁaux. Since
U(¢t) depends only on the coordinates defined in Eq. (2),
it is invariant under the exchange of g, 1 with gq;. If we
further choose xo symmetric with respect to exchange of
Jok and g, we find that U’'(¢) is anti-symmetric with
respect to (zo). Thus it can be expanded in Slater-
determinants of (3 + M)-dimensional dressed orbitals
¢'(zo) (for the details see also Supplemental Material
Sec. II). These observations make the application of well-
established many-body methods such as the KS approach
to TDDFT possible in a straightforward manner.

The KS approach to TDDFT [28] maps the interact-
ing many-body problem of Eq. (3) to a non-interacting
auxiliary problem, i.e., IA{f{S(t) =7 + Vés(t) This aux-
iliary dressed KS system, usually given in terms of a
Slater determinant ®’(¢) of dressed orbitals with spatial
part ¢} (z,t), is enforced to generate the same (3+M)-
dimensional expectation value

n'(z,1) = (V' ()| (2)| W'(1))
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of the dressed density operator #/(z) = Zszl 0(z — z1).
To ensure this, a mean-field exchange-correlation (Mxc)
potential v}, .[¥f, Py, n'] = v [ 0, '] —vL[®, n'] is intro-
duced, where v'[U(,n] and v}[®(,n'] are the potentials
that yield the density n’'(z, t) in an interacting respec-
tively non-interacting dressed system starting from the
initial states W, respectively ®(. This leads to non-linear
dressed single-particle equations
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where the exact dressed density is given by n/(z,t) =
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Zivzl |0} (2, t)]?. Similarly we can of course also set up a



dressed ground-state density-functional theory [29]. By
construction the dressed density reduces to the exact
electron density via n(r,t) fdqu (z,t) and to the
exact expectation value of p,(t) = [dG+M)z 7 Jen/(2,1)
(see Supplemental Material Sec. I).

In order for the dressed KS approach to be practical
we need two things. The first is to be able to handle the
dimensionality of the dressed orbitals. In most situations
of cavity quantum electrodynamics only one mode is im-
portant, making the application of this approach only
one dimension more expensive than the standard KS ap-
proach. On the other hand, if more than one cavity mode
is important, we can adopt a reduction of the basis set
similar to the calculations done in Ref. [3] for a multi-
mode cavity, where only up to a few-photon states are
considered. In the case that many photons are involved,
a simple mean-field treatment within the standard KS
approach becomes accurate again [16] and a dressed ap-
proach becomes less attractive. The other thing we need
for the dressed KS approach to be practical is an ap-
proximation for the Mxc potential. In this regard it is
interesting to compare the equations of motion for the
physical and the dressed KS systems (for the derivations,
and a more complete analysis, we refer to Supplemental
Material Sec. IIT). The physical equation of motion for
the density [13, 30], obtained by Heisenberg’s equations,
is given by
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where Q(r, ) = (W (t)|[T+ W, J(r)]|¥(t)) is the physical
momentum—strebb and mter%ctlon— ress forces. In turn
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are the forces the photons exert on the electron den-
sity [13]. Here pa(r,r’,t) = %Ek#(\ll(t)w(r —11)0(r —
r;)|¥(t)) is the pair density. In contrast the dressed KS
equation of motion (also for approximate vy,.) reads,

Lol (a,t) = Vg - [0 (2,6) Voo (2,1) + Ve, )]
- vZ . Q%S(Zv t)a (4)
where Qig(z,t) = (@' (t)|[T", J'(2)]|®'(t)) and J'(z) =

% ZIJLI(J(Z — zk)?zk —V,,0(z—2z)). Inserting the ex-
pression for v'(z,t) and integrating this equation over all

g-coordinates, we find (again also for approximate vy,.)
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and Qi (r,t) = (@' (t)|[T, J(r)]|®'(t)). That is, we get
the v(r,t) term as well as part of Faip(r,t) and th(r t)
already from v'(z,t), even if we set vy, .(z,t) = 0. We
also get the kinetic forces Q4 (r,t), and v}, .(z,t) then
has to provide the rest of all the forces. To reproduce the
exact n/(z,t), V. (2,t) should of course reproduce the
exact forces for n/(z,t). However, more pragmatically,
we often just want to get the right forces for n(r,t) that
different v};,.(z,t) can achieve, which may be simpler.

To model the forces from W’ that we are clearly missing,
we can approximate them by their KS values [31] using

(I, J'(2)]| 9 (1)),

which we call mean-field exchange (Mx). In general we
expect that designing vy, (2, t) to approximate Fqi,(r,t)
and Q(r,t) works the same as in the standard version of
QEDFT KS, since they depend only on the electronic
density. So the main difference is in how to approxi-
mate Fi,(r,t), and here we specifically get + Fiin(r,t)
automatically. This allows us to scale the part of v/(z, t)
—Yali € (Aq 1), by N to
get the exact force expression for Fy,(r,t). This does,
however, not automatically imply that we also get the
exact forces, since only for the exact n'(z,t) this would
be true. Especially, if we only aim to get n(r,t) right,
the differences in n’(z,t) must be compensated. Since
F)in may start out zero and often depends more on the
changes in n'(z,t) (of a specific kind that contributes to
the integral) than the initial n’(z,t), the force can be
very sensitive to this. Still, the fact that we can eas-
ily write the exact force expression in terms of n'(z,t),
which is hard in terms of the non-correlated quantities
of standard QEDFT KS, indicates this may be a better
starting point to approximate Fy;,,. Further note that the
standard version of QEDFT KS usually translates to a
special case of our dressed version (see Supplemental Ma-
terial Section IV), allowing us to transfer (and extend)
all standard approximations to here, but not vice versa.'
A full analysis of all these aspects is beyond the scope of
this work though. For the rest of this work we therefore
stay within the Mx approximation.

Vo [0 (2,6)V oy (2, 1)] = =V, - (P

responsible for this term,

1 This is somewhat different though, as it reproduces the n'(z,t)
of ®(t)x(t), instead of W(t)x(t), with ®(t) the standard KS wave
function. Nevertheless, both n’(z,t) yield the same n(r,t) and
Palt).



In the following we consider two examples of two par-
ticles in a singlet state coupled to one mode with no
external current j(t) = 0. Therefore we have v'(r,q,t) =
o(r, t)+3(Ar)?+ “’72q2 - %q(/\-r), and if we further take
the spatial part of the dressed KS wave function to be

described by a doubly-occupied dressed orbital ¢(r, ¢, 1),
we have explicitly that

(s 4, 1) = / Prdg |9 (' q, 1)

x () + (A1) 1) = ZaAr) = S5d ()
We note here, that if one employs this approximation for
& o(r,q,t) that is symmetric (o(r,q,t) = @(—r, —q,1),
like in our second example), only w(r,r’) contributes,
and the coupling to the photon mode is only due to v'.
In our first example, we consider a simple two-site

model with v = w =0,
1 82 5\ 2
Hf—tz & oo+ 010)+ 5 |- 2 + (wp—Ad) .

Here CL and ¢, are fermionic creation and annihila-
tion operators of the electrons at site k with spin o, and
d= 5 Eozl(cg’gclg - CL,CLJ) is the dipole operator.
As initial state we choose some spin-singlet electronic
state and the photon mode in its ground state, i.e., ¥y =

(118 (i v 1) 0,

where |0), is the electronic vacuum and |0),, the photonic
vacuum (the ground state of the harmonlc oscillator in
displacement representation). The resulting exact Rabi
oscillation for ¢t = 0.5, w = 1 and A = 0.01 is depicted in
Fig. 1 in red.
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FIG. 1. (color online) The exact (red), TDOEP-(GWy) ap-

proximated (orange) and dressed Mx approximated (blue)
dipole moment of two electrons on two sites coupled to one
mode.

Let us first compare to a relatively advanced func-
tional within the standard KS scheme. We use a time-
dependent optimized-effective potential (TDOEP) ap-
proach based on the exact-exchange energy expression

of the Lamb shift [17], i.e., the second-order pertur-
bation of the electronic system by the bare (W) pho-
tons. This functional accurately describes the correlated
ground state [17, 18] but does not take into account the
effect of novel light-matter correlated excited states (po-
laritons), i.e., the polaritonic eigenstates are not con-
tributing to the non-adiabatic potential. Using the initial
state Wy for the standard KS calculation, the mismatch
in the higher eigenstates then leads to a beating in the
(orange) dipole moment in Fig. 1, i.e., that represents the
energetic mismatch between correlated and uncorrelated
excited states. In contrast, if we employ the dressed Mx
approximation (blue) with ®; = ¥( ® |0),,, where |0),,
is the ground state of ﬂaux, we qualitatively reproduce
the right Rabi oscillations.

In our second example we go beyond a simple two-site
model, and consider a one-dimensional model of helium
using the soft Coulomb interaction, v(z) = —2/vz2 +1
and w(z,z’) = 1/+/|x — 2’| + 1 [32, 33], and with hard
wall boundary conditions at x = +5. Here we want to
investigate photon-induced dynamics in real space. We
first determine the ground-state of the “bare” helium (see
Fig. 2 (a)), i.e, outside of the cavity, which for the exact
calculation is a spin-singlet state ¥y and the excitation
frequency for the lowest excited state is w; = 0.58037.
Upon bringing helium into an empty cavity that is in
resonance with the excitation energy w = w; with A =
0.1, i.e., we use a tensor product ¥y = 1y ® |0), and let
it evolve with Eq. (1), we find the spontaneous emission
behaviour in Fig. 2 (b).

1 (a) 0.95 (d)

0 -5 0 -5

FIG. 2. (color online) (a) The exact (blue) and Mx (red)
ground-state densities of the bare (A = 0) one-dimensional
Helium model. The corresponding changes in the (b) exact
and (c) Mx density, dn(z,t) = n(z,t) — no(x), when placed
inside a cavity, and (d) the exact (blue) and Mx (red) field
fluctuations.



However, since we only have one mode the emitted
energy cannot dissipate but we will have a reoccurance
time of the spontaneous emission [3]. Since the density
is symmetric, the induced dipole moment is always zero
and thus also the expectation value of the induced field.
Hence, an approximation based on the photon-field ex-
pectation value p(t) (as in the standard KS approach to
coupled photon-matter systems) has a clear disadvantage
in reproducing this spontaneous emission process, as also
discussed in [3]. Now we investigate how the dressed KS
scheme performs. First we solve for the bare KS ground
state g using the Mx approximation for A = 0 (see Fig. 2
(a)) and then set up the corresponding matter-photon
initial state @ = o ® |0)p, ® |0)p,. The photon field is
then chosen with the same coupling strength A\ and fre-
quency w as in the exact reference calculation above. In
Fig. 2 (c) we can then see that a self-consistent propa-
gation using the simple Mx approximation qualitatively
recovers the photon-induced dynamics. Such a real-time
and real-space test of an approximation is a much harder
test than say, only looking at reduced quantities such
as the energy or dipole moments [11]. Comparing to
current studies about density-functional approximations
[22, 34] the dressed Mx approximation performs indeed
very good. If we drive the system, say with an external
laser v(r, t) or an external current j,(t), the results based
on the dressed Mx approximation improve considerably
as the external fields are taken into account exactly by
the dressed KS approach.

Finally, let us look at the new types of observables
that we can investigate. By construction both the ex-
act and the dressed Mx approximation generate the
exact p(t) = 0 in the above example. But we can
also consider more complicated, approximate function-
als. For instance, we can compare the field fluctua-
tions Ap(t) = (U(¢)[p?|¥(t)) — p?(t) of the photon field
to the approximated field-fluctuations [ d?z %n’ (z,t) —
(fd2z %n’(z, t))? from the dressed approach. Such ob-

servables become important, for instance, in the context
of determining the photon statistics of an induced field
[35]. Although the approximation to Ap(t) is not sup-
posed to become exact even for the exact dressed KS
system, we find that we have again a qualitative agree-
ment (see Fig. 2 (d)) in this otherwise very challenging
observable [3].

To conclude, we have presented an alternative ap-
proach to coupled light-matter systems based on a
higher-dimensional auxiliary system that explicitly corre-
lates light and matter. We exemplified the novel possibil-
ities by presenting an alternative KS construction. First
calculations for real systems, as have been performed only
recently in the context of the optimized effective potential
approach [18], are currently on the way. It is important
to note that any reasonably generic KS code can be used
to perform the dressed KS calculations. Besides the extra
dimensions, and slightly different v'(z,t) and v} (2, 1),
one has to select the proper orbitals (see Supplemental
Material Sec. II). Also the observables are computed
slightly differently. Finally, we point out that the dressed
approach can equally-well be applied beyond the context
of coupled light-matter systems. For instance, instead
of treating photon modes strongly correlated with mat-
ter one could consider strong coupling to phonon modes.
One can even think about modelling electron-electron
correlation with the help of auxiliary degrees of freedom.
This becomes specifically attractive for dispersion like in-
teractions that are dipole-dipole interactions such as the
van-der-Waals interaction and hence a dressed-state con-
struction can follow the above ideas. These are future
objectives that make this approach interesting also be-
yond the current physical context.
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I. AUXILIARY COORDINATE
TRANSFORMATION

Here we discuss the class of transformations allowing us
to rewrite the physical problem in a higher-dimensional
configuration space. We first specify this class abstractly,
as many different transformations will do, as long as
they satisfy a few basic properties. Although the specific
choice of transformation does not matter, for complete-
ness, and understanding, we also present one possible
explicit option. Finally, we also show how the physical
density n(r,t) and photon-displacement p,(t) are given
in terms of the dressed density n'(z,t).

A. Abstract Transformation

To establish a transformation from p; to ¢ coordinates
that is orthogonal and also satisfies p = ﬁ (g1+...+qn),
all we need to do is to require that the p-axis lies along
the unit vector ﬁ(l, .., 1) in g-space, while the other
axes must simply be orthogonal to this and each other.
If we further keep the same scale for all p, and ¢ axes,
we have our desired transformation.

B. Explicit Transformation

To give one explicit special case of the above class of
transformations, we may use the following for 4 electrons,

p="Tz(@+a+ta+ta),
PzZ%(fh—(D),
PBZ%(Q1+Q2*QQB),

p4=\/%(Q1+QQ+Q3—3Q4),

which clearly has an orthogonal transformation matrix.
This transformation is easily generalised to any number
of electrons using

Pk = \/k;—% (@1 + -+ qu—1 — [k — qx)

for 2 < k < N, of course, alongside p = ﬁ(qlJr...Jqu).
The inverse of an orthogonal matrix is just the transpose,

so for example for 4 electrons the inverse transformation
(the one actually used to go from p- to g-coordinates) is

@ = 5D+ 5P+ J5ps + P
G2 = 20— JsP2 + b3+ b
qs = ﬁp* %m + \/%m

q4 = ﬁp— \/%m

C. Wave Function Relations

For normalised Y(rioi,..,rNoN,P1,-..,PM,1) and
X125 s PN, t) and V'(z101,...,zn0N, 1) = Ux we
find that

1= Z /d?’j\frd]‘/”\fp|\I!)(|2

O1,.-,0N
= X faormorar
01,---,0N

so the total wave function ¥’ is also normalised. For ¥’
properly anti-symmetrized we further find that,

n(r,t) =N Z /d?’(N_l)rd]V”Vp|\I/><|2

01, 0N
/dMqN Z /d(3+M)(N—1)Z|\I]/|2’
O1,.-sON

=n'(z,t)

palt)= Y0 [dVra Vpp,ux? (1)

= /d3+Mz q—\/‘”ﬁn'(z, t).

For later convenience, let us finally introduce the physical
and dressed two-particle densities [1],

pa(r, v’ 1) = ML BT / A2 aMp w2,
o1 ON

phla ) = MO YT [anne
o1

yooON

and note the relation po(r,1r’,t) = [dMqdM ¢ ph(z,2',t).



II. SYMMETRIES

The dressed Hamiltonian H’ (t) is by design equivalent
with the physical Hamiltonian when v’(z,t), w’(z,z’) and
U’(t) correspond to a physical system. At the same time,
it is also an extension to any v'(z,t), w’(z,2’) and W' (¢).1
The dressed KS formulation is based on this extension,
and comprises a ®(, and viq(z, t) that recreate the n'(z,t)
of the physical ¥’(t), and thereby n(r,t) as well as p,(t).
Unless all A, = 0, any dressed ®’(¢) therefore lacks cer-
tain fundamental symmetries that all W(¢)x(¢) possess.
This difference of ®'(t) and the W’(¢) that it recreates
the density of is compensated by v}..(z,¢). It has to
be build into approximate vj;.(z,t) to do the same.
More generally we may consider any ®{ and vig(z,t)
that recreate n(r,t) and p,(t), but different n’(z,t).> A
special case is the standard version of QEDFT [2] with
KS wave function ®(t), which corresponds to recreate
the n'(z,t) of ®'(t) = ®(¢)x(¢t). This n'(z,t) separates
in n(r,t)Hi/Izln;a(qa,t). Therefore, while the dressed
vks(2z,t) is generally correlated, that of standard KS
separates in vig .(r,t) + M Vks.q. (Qast).  Accord-
ingly, the corresponding ¢ (z,t) orbitals of ®'(¢) usu-
ally also do not separate for the dressed KS approach,
while the orbitals of the traditional KS approach do.
Traditional KS has the advantage that ®'(t) by design
corresponds to a physical ®(¢), and so has the corre-
sponding symmetries (and we can also solve it without
the dressed description). However, if correlated orbitals
capture the electron-photon correlation better, the cor-
responding ®'(¢) may well still be closer to ¥’'(¢) overall.

In this Section we discuss some of the symmetries that
dressed Hamiltonians and wave functions corresponding
to a physical system possess, and how approximations
typically break these symmetries unless the Hamiltonian
and initial state stay within the subspace corresponding
to a physical system. We also show how the dressed
KS Hamiltonian Hj.g only shares all of these symmetries
for Ao, = 0 (while that of standard KS always shares
them), and how recovering the proper symmetries in this
limit provides some insight into how to choose the KS
initial state ®f. Finally, we show that even if ®’'(t) lacks
some symmetries of ¥'(¢), many derived quantities like

I To characterise the subsets of v'(z,t) and w’(z,z’) corresponding
to a physical system note that these can be written in the form
V(2 1) =v(r, )+ 0L, [j0ded — 9% da(Ra - 1)+ § (Ao -1)2+ 25000
and w/ (7, 2') = w(r, ©) + T4 [ 2% o (A ¥) — 22/, (Aa-T)
+(Xa r)(Aa-r’)] for arbitrary v(r, t), w(r,r’), wa, Ao and jo (t).
The wq and Aq used must be identical for v/(z,t) and w'(z,z’)
though, linking the two spaces (as also seen in Subsection A).
The subset of ¥{ corresponding to a physical W is characterised
by separability, i.e., ¥( = Wqxo, where the Wg has ryoi < ri0;
exchange anti-symmetry and the xo has g,k <+ qq,; symmetry.
To be precise, there will be a difference in how well ®'(t) directly
reproduce other quantities not given in terms of n(r,t) and pa(t),
but that is about the only difference.

the corresponding electron n-body densities often recover
these symmetries.

A. Symmetries of Dressed Physical Systems

Since electrons are fermions, H(t) is symmetric under
exchange of ryo; and ryo;. It is further symmetric under
exchange of g, and g, when written in terms of gq,x
instead of the p,, as the p, by design have this symmetry.
Since further all H,x,q share these exchange symmetries,
H'(t) = H(t) + Ziil ﬁaux’a inherits both these as well.
This in turn also implies that H’(t) is symmetric under
exchange of z; o, and z;0;, since this is just a combination
of the other symmetries.

Given some physical time-independent Hamiltonian H,
we may thus compute its rpor <> r;0; anti-symmetric
eigenstates and the gq 1 < g1 symmetric eigenstates of
the ]?Iaux,a. These can then be combined into eigenstates
of H’ of the form ¥/ = ¥ Ha 1 Xa With both symmetries
and therefore also with the dressed fermionic zxoy <> z0;
anti-symmetry. Conversely, given a time-independent H’
separating in a H and sum of Hyyx o (using these depend
on ri01,....,YNON,P1y---sPM respectively Pa,2, ...,pa,N),
with proper exchange-symmetries, we may always pick
all the relevant eigenstates to be of this particular form.
An initial state U{, separating into ¥q Hf\le Xa,0 and/or
with (some of) the above symmetries, will thus also keep
these properties through evolution under the exact H "(%).
Note that the ground state of f[aux « 18 just a product of
harmonic oscillator ground states (%= yL/4 exp(—“5*p2 1),
since this simple product has the g, 1 < g, Symmetry.
However, this is special to the harmonic oscillator ground
states, and even for excited states it is more complicated.

Note that V() and W’ do not individually possess the
r,0% <> rio; and ¢o .k <> go, exchange symmetries, only
the dressed zpo, > z;0; symmetry, in contrast to V(t)
and W. Further, they do not individually separate into
two terms of ry01,....,'YNON,P1y---s PM and P12, - PM,N
like H'(t). These symmetries and the separation thus
rely on a fine balance between V’(t) and W, which is
rather unique to v'(z,t) and w’(z,z’) that correspond to
a physical system. Approximations can therefore break
these symmetries. The only case where V'(t) and W’
have these extra properties is if all A, = 0.

For all A, = 0, H' further separates in electron and
photon parts H' = Iﬂ:—i—zyzlﬁﬁa, ﬁﬁa = ﬂ;,a"i-ffaux,w
Here I:IZ’)a = —%% + %wi (Pa —Pa)? — %wiﬁi is a shifted
harmonic oscillator shifted by p, = —i—‘é.

eigenstates of ﬁﬁ,,a takes the form @ig,a =¢p., (Pa—Pa)Xas
where ¢, (p) is a harmonic oscillator eigenstate, and x

The separating

still is an eigenstate of H'aux,a with go ik < go,1 symmetry
(so both parts have this symmetry) In gq 1 coordinates,

Hllj,a Zk 1( 28q + w (qdk_%)z Q}Vwozpa)




of N
orbitals, ¢;  ;(¢ga— %), where each orbital is a harmonic

Here the symmetric eigenstates are permanents (I);(,

oscillator eigenstate that need not be the same for all k.
Many of these permanents are degenerate, namely if the
orbital excitation levels add to the same total. To find
the eigenstates that further separate in ¢, (Pa — Pa)Xa
(i.e., to find ®p , in ga,x coordinates), we need to form
hnear combinations of these degenerate & permanents.
It is beyond our scope to determine the coefficients of
these linear combinations, since we are mainly interested
in the ground state, or possibly low excitations of ¢p_,
where the coefficients are easy to find. The ground state
is a product (a single permanent of identical orbitals)
H]kV:ﬁP;a((Ja,k - %) of harmonic oscillator ground states

(since the ground state x, is a product of such). For low
©p., only a few coefficients need to be found.?

B. Symmetries of Kohn-Sham Systems

Since individually V' (¢) and W’ generally only possess
z,0% < ;07 symmetry, dressed KS Hamiltonians ﬁf(s(t)
generally also only have this symmetry, while H. ks(®)
that correspond to standard KS have all physical proper-
ties.* In Section IV, we will thus show that the standard
KS Hamiltonian Hj.«(t) separates in electron and photon

= I?I'<S7E(t)+zoﬂt/[:1ﬁf<s7p’a(t). The photon
mode Hamiltonians f[ﬁs)P,a (t) are as in the exact case,
Aks,Pva(t) = Aﬁ,ya(t), only here P, (t) = —%—F)“’TI:(”-
They therefore have the same properties and eigenstates.
The only case that the dressed Hjq(t) also have these
properties is if all A, = 0, where the dressed and standard
KS descriptions usually coincide and both reduce to pure
electronic K$S as there is no electron-photon correlation.®
Especially, vy, (2, t) also reduces to the purely electronic
Ve (T, 1), as the only two-body part of H'(t) is purely
electronic (w'(z,2") = w(r,r’)). For A, # 0 the dressed

parts, Hi(t)

3 For example, for the second excited ¢, and ground state x we get
epx = J5[20(p—p)? —1](£)N/* exp(— 3wl(p—p)* + 311, PR]) =
{ Zk 1\[[2“’((& 7) - ]JFfNEk;el 1\/7(Qk* pN)
Vaw(a — N )N/4 exp(—3w X4l (ar — 5)?). Thisis a
linear combinatlon of the two <I> q. Permanents Wlth excitations
that add to 2; one with all orbitals in their ground state except
one second excited orbital, and one with two first excited orbitals.
In general, it is limited how many <I>f1a permanents are needed
(i-e., how many combinations of excitations add to a fixed total).

4 This comes back to the fact that the dressed vjcg(z,t) = v'(z,t)+

V) rxe (2, 1) is only of the form of Footnote 1 (with the common

Ao = 0 as w'(z,2') = 0) for all Ao = 0, while that of standard

KS always takes this specific form.

For a separating eigenstate W/ = W[ [To_ the dressed and

standard KS descriptions indeed Coin(:lde as the corresponding

standard KS @' = &}, Hg’zl @}, shares the same density n'(z).

For correlated \116, the n’(z,t), and hence the descriptions, differ

though (and do not reduce to electronic KS), even if all Ao = 0.

M q>/

Hj.s(t) does not separate at all. From the form of Hg(t),
we see that the vi4(2,t) of standard KS, or dressed with
all Ao = 0, separates into vig . (T, t)+2£\f:1 VKS. g0 (Qas )-
This is due to the fact that n’(z, t) separates. In contrast,
the dressed n'(z,t) and therefore viq(z,t) do not sepa-
rate for A, # 0 (so approximate vig(z,t) should also
only separate if all A, = 0).

Given some time-independent standard KS Hamilto-
nian Hj (or dressed with all A, = 0) we may thus
compute the ryoy > rjo; anti-symmetric eigenstates ®f,
of }AI%SE These take the form of a single (or a sum of
a few) Slater determinant @/, of ¢! _, (ro) orbitals since
the KS electrons do not interact. We may again further
compute the separating and gq i <+ ¢n, Symmetric eigen-

states ®p , of fIf(&P’a. We may then combine the ®f

and @}, , to form the eigenstates &' = &y H 1 Pp, of

I;TI’(S, which have all the exchange symmetries and sep-
arate in all the physical ways. In zo coordinates the
combined @’ ground state is a single Slater determinant
(or a sum of such if ®f is a sum) of the combined or-
bitals ¢} (z0) = ga;gk(rcr) Hff 1 4 (da — Z=). This
follows as H = H Hk 190%(% E— \/&) in
this case (as showed earlier), which is a common part
in all terms of the Slater determinant for the photon
part. In ground-state KS this is all we need. In general
though, the eigenstates are linear combinations of M-
fold sums > 1.5 m @/, gy of Slater determinants

®’, . This follows since ®f and each ®&p o 15 a lin-

ear combination of determinants ®._ respectively per-

manents <I>;u, and each determinant-permanents prod-

uct P, Hi/[ 1 @, equals such an M-fold sum. The N
orb1tals of each of the Slater determinants <I> m are
glVGH by 907_1’ “’_’_M’k(ZU) = Sormk(ro-) Hazl(pqug (qa - L\/QN)
Each of the 7% sums in the M-fold sum then runs over
all permutations 7* of the sequence (1,...,N), and acts

6 For the all Ao = 0 separating eigenstates U/ = W/, Ha 1 ®Pa’
the &' = &, [TAL, of
In contrast it does not for the Ay # 0 correlated ¥’ eigenstates.
The dressed ®’ that recreates a non-correlated n/(z) therefore
also has to be correlated (as a non-correlated ®’ would just give
a non-correlated n’(z)). Now, since for all Aq = 0 the dressed
and standard KS coincide, ®’ and ¢’(zo) separate in this case.
Therefore, since the form of &’ should not change for Ay # 0,
only the ¢’(zo) change and the correlation of ® must come from
the ¢'(zo). In turn this implies vj¢(z,t) must get correlated.
As a side remark, note that the separation of vi(s (z,t) is directly
related with the exchange symmetries. For example, for two

electrons and one mode, Viig(t) = vig(r1, q1,t) + vikg(ra, g2,t).

of standard KS, n’(z) clearly separates.

The only case in which Vés(t) is symmetric under exchange of
rio1 and rgoz or q1 and g2 is when vi(r,q,t) separates into
Vs r(T:1) + Vg (4, F). For Vf(s (t) to separate in two terms of
rio1,r20o2,p1 and p1 2 further requires a suitable U%S’q(q, t), so
the v/(z,t) and w’(z,z’) of Footnote 1 are indeed rather special
to have these properties.



as a symmetrizer for the qor <> ¢o,; exchange sym-
metry for the given « since it sums over all permuta-
tions of the ¢} ;(qa — %) orbitals. In the special
case that all orbitals in each permanent ®; are the
same, all the <I>T _u become identical, and the M-
fold sum reduces to a single determinant of ¢} (zo) =
Pror(r0) Hi/[ 1 Pq.(da) orbitals similar to the ground-
state case. Unlike the individual, degenerate ®, o
(with only zpor <> r;o; anti-symmetry), the <I> linear
combinations of M-fold sums have all the exchange sym-
metries and separate in all the physical ways. They fur-
ther yield a different expression for n’(z) in terms of the
orbitals. Therefore, although in principle one may also
just use one of the (I)/rl,...,rM for @’ (if one only demands

M

Z0) > 2,07 anti-symmetry) we expect a simpler vy, .(2)
using these ®. Note that if we use the full vi(z,t)
to find the ¢} (zo) of a ground state ®’, as opposed to
use that it separates and then determine ¢, (ro) and
©4. (4a) individually, we should still require the ¢, (ro)
part of all ¢} (zo) (of each @) differ (since the orbitals
of each @, must still differ). The orbitals with low-
est energy then all have the same ground state photon
part and we get the ¢} (zo) of before. For excited state
®’ one has to identify all ¢'(zo) that correspond to a

ga’mk(ra)nyzlgo;ng (o) of the given @'

To generalise this to non-zero A, also for dressed Hf{&
we may for the ® ground state still just use a single (or a
simple sum of) determinant(s) of ¢} (zo) orbitals. Only,
the orbitals do no longer separate and ®’ only has the
z;,0% <> z;0; anti-symmetry. To recover the above form if
we set all A, = 0, we should again select the orbitals with
lowest energy that further have different electron parts,
though as the orbitals no longer perfectly separate, we
need to refine what exactly we mean by this. The optimal
way to do this is beyond our scope, but it is usually easy
as long as the interaction is not too strong. For excited ®’
one has to identify all ¢’(zo) that for A, = 0 correspond
toa py, . (ro) H(]y:l Pga,ro (4a) of @', Using the @’ linear
combinations of M-fold sums with these orbitals we then
recover all properties for A, = 0.

For propagation, ®'(t) at least always stay zior, <> 20y
anti-symmetric and of a numerically efficient zo-orbital
form. The initial state ®{ may have further properties,
but these are only kept under evolution using a standard
Hi(t), or a dressed if all A, = 0.

Finally, note that even if ®'(¢) only has zioy + 20y
anti-symmetry, many derived physical quantities such as
all electron n-body densities and density matrices recover
appropriate exchange symmetries due to this symmetry.
For example, take a spin-independent expectation value
O(ry,....rn, {ps},t) = (D' )|O(r1,....,rn, {ps})|P'(t)).
In general it may depend on 0 < n < N spatial coor-
dinates and a subset {pg} of the photon coordinates p,.
To evaluate it we may need a coordinate transformation.
Since the RHS is typically a spin-summed integral of a
z,0k <> z;0; symmetric integrand, also the LHS has this

symmetry. For the LHS this is equivalent with ry <> r;
symmetry, since all the pg are symmetric under exchange
of gz, and gg,, so this part of the z,o <+ z;0; exchange
has no effect, and the two kinds of exchange are identical.
Note the argument generalises trivially to spin-dependent
operators. We only restricted us for notational simplicity.
In general it is thus only internal quantities like p5(z, 2’, )
that lack the ry <> r; (anti)-symmetry. Also, even if @’ ()
does not separate in a ®(t)x(¢), the O(r1,....rpn, {ps},t)
expectation values only depend on the coordinates of ®(¢).

III. EQUATIONS OF MOTION AND FORCES

In this Section we first present the equations of motion
for n(r,t) and p, (t) in the physical coordinates, to obtain
the physmal forces we want to capture with the dressed
KS scheme. We then present the equation of motion for
n/(z,t) in the auxiliary coordinates for general v'(z, )
and w'(z,2z’), which has the very same structure as the
usual divergence of local-forces equation. We then study
the special case where v'(z,t) and w'(z,2’) correspond
to a physical system characterised by a v(r,t), w(r,r’)
and j,(t), and again present the equations of motion for
n(r,t) and p,(t). But this time in terms of the quan-
tities of the dressed system. This then allows us to see
how the dressed system produces the same forces as the
physical system, and to establish exact relations between
the dressed and physical forces. Finally, we again present
the equations of motion for n'(z,t), n(r,t) and p,(t), but
this time in terms of the quantities of the dressed KS sys-
tem, to see how the Mxc potential produces the different
forces.

A. Physical Equations of Motion

We consider the physical electron-photon Hamiltonian

2 Z I‘k, I‘l (2)
k#l
N

2 .
E3 [ b -2 o) 2]

k=1

N
H(t) =Y [-1V2, +v(rs,t)]
k=1

The expectation values n(r,t) = (¥(¢)|a(r)|¥(¢)) and
J(r,t) = (U(t)|J(r)|¥(¢)) of the physical density and
= Z,ivzl 5(r —rp) and J(r) =

r,0(r — rg)) then obey the

current operators 7(r)

LY (60 — 1) Vi,

continuity equation
%n(r,t) = -V, - J(r,1).

Taking the second time-derivative, we then arrive at the
divergence of local-force equation [3]

Gan(r,t) = V- [n(r,t)Vyu(r, t)]
— Ve [Quin(r, ) + Qune (x, £) + Fap(r, £) + Fiin(r, 1)),



where Quin(r, 1) = i(W(1)[[T, J(r)]|¥(t)) and Qine(r,t) =
W)V, J()][U(0) = —2 [ dr’pa(r, v/, 6) Vew(r, v') ave
the physical momentum-stress and interaction-stress
forces, and,

M N
Faip (T Z Ao (T ()| Aa - Y Tr)i(r)| W (t
k=1

—_ i)\a (n(rt)()\a ‘r)+2 / dr'pa(r,r, ) (Aa - r’)) ;

M

Z)\

are the forces the photons exert on the electron density
[2]. Here Fyu(r,t) is due to the linear coupling between
the displacement field and the electrons, while Fai,(r, t)
is due to the dipole self-interaction, and balances the lin-
ear coupling such that the resulting Hamiltonian stays
bounded from below, i.e., allows for a ground state [4].

The physical displacement coordinates similarly satisfy
the mode-resolved Maxwell equations [2]

Flm |wapoc ( )|\11(t)>7

Ja(t)

wa !

%pa (£) = —w2pa(t) + waka - R(t) -

where R(t) = [d3rrn(r,t) is the total dipole.

B. Dressed Equations of Motion

We consider the dressed electron-photon Hamiltonian

N
:Z[ 2211} zi,21). (3)

k=1 k£l
"(z,t) = (V'(t)[7' (2)[ V(1))
(¢ )|J'( )|W’(t)) of the dressed den-
'(z) =

Zk 10(z — zg) and
2,0(2—2)) then obey

1V2 + v (zg, t

The expectation values n
and J'(z,t) = (¥
sity and current operators 7

J(z) = 5N ((2—24) Vo —

the continuity equation

S (z,) =

S5in —V, - J(z,t).

Taking the second time-derivative, we then arrive at
20 (2,1) =V, - [0/ (2, 1)V, (2, )] (4)
= V- [Q{(in(z7 t) + ant(zv t)]a

where  Qjy, (2, t) = (W ()|[17, ' (2)] |9 (1)
and th( )y = HWEOIW, SV =
—2 [ dZ'ph(z,2',t)V,w'(z,2') are  the  dressed

momentum stress and mteraction—stress forces [5].

C. Physical Dressed Equations of Motion

Substituting the expressions for v/(z, t) and w'(z,z’) in
Eq. (4) for a physical system, we obtain the equation of

motion for n'(z,t) in terms of v(r,t), w(r,r’) and j,(t).
This special case applies only for v'(z,t) and w'(z,2’)
that correspond to a physical system.

Integrating the resulting equation over all g, coordi-
nates, using that the integral of a divergence vanishes for
a closed system, we again find the equation of motion for
n(r,t), but this time expressed in terms of the quantities
of the extended system, i.e.,

8—271(1' t) =

2 Ve - [n(r, ) Veo(r, t)]

[len( ) + ant (I', t) + Fdlp( ) + th( )] .

Here the dressed stress and photon-matter forces are

Qili, (v, t) = W' (B)[[T, J(x)]| W (¢))
d(r,t) = —2/dr’ pa(r, v’ ) V,w(r, r')

+ (N - 1)th( )

722)\ /drper H(Aa - 1),
dlp Zkanrt )
Fi,(r,t) = ZA / dMq¥slen’ (2, 1),

where we note the 2°¢ term (N — 1)F{ (r,t) of Q¢ (r, 1)
relies on the gq 1 < g, exchange symmetry to estabhsh
that 2 [dr'dMqph(z,2',t) = (N — )n/(r,q, s @iy t)-
For later reference when we introduce approximations, we
note this is the only property the above expressions rely
on specific to the subset of physical v'(r,t) and w’'(z,z’).
Breaking this symmetry by, for example, adding a
dv'(z,t) without this symmetry, one has to replace the
Ao [dMgad+M %p’z(z,z’,t),
while all the other terms above remain unchanged.

given term by 2224:1

Multiplying the equation of motion for n/(z,t) by q—\/"‘ﬁ,
and integrating this over all z coordinates using Eq. (1),
we again find the mode-resolved Maxwell equations,

2 palt) = —w2pa(t) + waka - R(t) — L2,

with a contribution from v/(z,t) of
—Epa(t) + $ A0 R() - 212
and a contribution from w’(z,z’) of
B A R(D).
In the physical coordinates the mode-resolved Maxwell

equations instead originated from the second line of the
physical Hamiltonian (2).



D. Comparison of Force Terms: Exact Relations

The equations of motion for n(r,t) and p,(t) in terms
of the quantities of the physical and exact dressed system
must of course be the same, as trivial to confirm for p, ().
For the electron density n(r,t) this implies that

ka(r t) + th(r’ t) + ngp( r, ) + Flm( ) =
Qkin (I‘, ) + Qint (I‘, t) + Fdlp( ) + Flin (I‘, t)

This we can also easily confirm by using that for a dressed
system corresponding to a physical one, W' (t) = U(t)x(t)
(this also ensures equality of the physical and dressed de-
scriptions of n(r, t), pa(t) and pa(r,r’)), which establishes
the following interesting relations,

Qﬁin (I‘, t) = Qkin (I‘, t);

fe(rst) = th(r,t) + NPy (r, 1)

—22)\ /drpgrr ) (A - 1),

Fdlp( ):Fdip(r )
+22>\ [ paer 8 ),
Flm( t) = NFlin(ra t).

Here we used for F{_(r,t) how pq, n(r,t) and n’(z,t) are
defined in Section I, as Well as the exchange symmetries of
physical ¥'(¢). This provides insight into how the differ-
ent forces get recast in the dressed system. For example,
it shows that the kinetic terms are the same in both cases,
and that F{ (r,t) gives & of Fyy,(r,t), while Q¢ (r, )
provides the rest. Further, Fg;,(r,t) comes from the
(Aa-R)? term in H (), which can be split into a one-body
and two-body part, i.e., a potential and interaction. The
one-body part leads to ngp(r, t) both in the physical and
the dressed system, while the two-body part then gives
Faip(r,t) — F; (r,1), so the dipole self-interaction is in-
deed treated the same in the two formulations (also in
the case of a KS calculation).

E. Dressed Kohn-Sham Equations of Motion

The equation of motion for the dressed KS density is,

D0l (2,1) = Vg - [0 (2. 4) Vo[t (2, 1) + Vhpye (2, 1)]

- VZ N Qi{s(z7 t).
Here the Mxc potential vy, . models the force differences

between the interacting and non-interacting systems, to
get the same forces in the two systems, and is given by

VZ ' [n/(zvt)val/\/Ixc(Zat)} = vZ ' (Qi{in,s(zat) - Q{(in(Z’tD
= Va Qine(z: 1) (5)

Here Q. (2, 1) = 1(®' (1) [, J/(2)]|(1)).

Like in Section III C, we may again obtain the equa-
tions of motion for n(r,t) and p,(¢) by integration (after
multiplication by q—\/“ﬁ in the latter case). This time, how-
ever, expressed in terms of the quantities of the dressed
KS system. Since the results in Section III C do not rely
on specific properties of the subset of physical v'(r,¢) and
w'(z,2"), we may in fact even reuse the results from there
for all but the v}, .(z,t) terms. The equations of mo-
tion that we get therefore also hold even for approximate

’U{VIXC(Z’ t)?

59:2 n(r,t)=V,- [n(r, t)Vyu(r, t) +/dMq n' (2, t) VeV (2, 1)

~Vr [Fdlp ks (r, t) + Fii, xs(rt) + Qs (r,1)]
2 w 3
%pa(t):—wapa( )+ ﬁAQ'R( )_%

- ﬁ/dzn’(z,t)aqavf\ﬁxc(z,t).

To reproduce the exact n'(z,t) we of course need to
design v}y, (2,t) to generate the right forces for n'(z,t).
However, more pragmatically we may also try to just get
the right forces for n(r,t) only, or for n(r,t) and p,(t),
but we then have to compensate for the errors in n’(z, t).

IV. RELATIONSHIP WITH STANDARD
CAVITY QUANTUM ELECTRODYNAMICS
KOHN-SHAM THEORY

The standard QEDFT KS Hamiltonian [2], with an
explicit mean-field contribution, reads,

N

I:IKs(t) = Z |:— %ka + U(I‘k,t) + vmxc(rk,t)
k=1
M
3 - R(E) — wapa (D) A }
a=1
M , .
+ Z [7%% + %(.L)Zpi - Wozp()/Aa . R(t) + jZit)pa:| )
a=1

where we denote with vy (r, t) the mean-field exchange-
correlation potential of standard QEDFT KS theory with
the mean-field coupling to the photon field made explicit.
Further, R(¢) and p,(t) are the expectation values of R
and p,. This leads to the single particle equations

10 pp (1, t) = {— %Vf +u(r, t) + Vmxe(r, 1)

M
+ (A

R t) - Wapa(t)))‘oe : I‘:| <M‘,k(r: t)a

i 2
et = | = i + 3k

- WapaAa : R(t) + %pa} Ppa (paa t)>



and the force equations,

Don(r,t) = Ve - [0(r, ) Ve 0(r, 1) + Ve (r, 1))
M
_ Vr . n(I‘,t) Z Aa(wapa(t) _ )\a . R(t))
B pa(t) = —w2pa(t) + waka - R(t) — L2

o1

where the prior includes the mean-field approximations
to Fiin(r,t) and Fy;p(r,t), and the second is the exact
mode-resolved Maxwell equations due to the mean-field.
To solve these equations one may solve the mode-resolved
Maxwell equations analytically, pq(t) = pa,o cos(wat) +
D0 gin(wet +f0 sin(wa (t—1'))Aa-R(#) — 22ED)dt’, and
substltute the results into the single particle e(fuatlons for
Pr.k (I‘7 t).

This problem can also be translated into a dressed KS
problem by exactly the same recipe as in the exact case.
That is, we add Hyux to Hgs (t) and switch coordinates to
(Ga,15 -+ Ga,N) for each mode to ﬁnd flf(S( ) =T"+Vig(t),
with vig(2,1) =(r, )+ v (T, >+E 1(Aa R(t)—wapa(t))Aa
+ Ea || 3wied— an)\ ‘R(t)+ f qa] We get no W,
so this is a non-interacting dressed KS Hamiltonian. Note

that vmxc(r,t) depends only on r, as usual in standard
KS, while the dressed v},.(2,t) depends on the full z.

We see that Hi(t) indeed separates in electron and
photon parts, His(t) = Hisp(t) + Yo Hispa(l),
where p,(t) = ]‘”(t) 4 2a R(t). The eigenstates then

take the form discussed in Section II B.

In conclusion, standard cavity QEDFT KS is a special
case of dressed KS, where one reproduces the n'(z,t) of
the standard KS system instead of the physical system
(but the same n(r,t) and p,(t)). It is best implemented
the standard way for numerical efficiency. The explicitly
correlated orbitals of the dressed scheme have a limited
extra numerical cost, but may capture electron-photon
correlation better.

V. OUTLOOK

In this supplemental material we have given many de-
tails of the properties of the dressed physical and KS
systems. We have further highlighted how the dressed
KS construction reproduces the exact density n’(z,t) by
emulating the missing forces of the dressed physical sys-
tem and thereby that of the original physical system.
Since the dressed KS system is based on explicitly corre-
lated orbitals, approximations to the Mxc potential are
automatically correlated (at the expense of violating cer-
tain physical symmetries). However, also the standard
QEDFT KS construction can be recast in the dressed
picture. This allows one to use standard functionals and
investigate them in the dressed setting. This interesting
option together with all the relations between the physi-
cal, dressed and KS forces is the subject of ongoing work
to find more accurate functionals for dressed QEDFT as
well as standard QEDFT.
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