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ABSTRACT

Background: Intracortical myelin is a key determinant of neuronal synchrony and plasticity that underpin optimal
brain function. Magnetic resonance imaging (MRI) facilitates the examination of intracortical myelin but presents
with methodological challenges. Here we describe a whole-brain approach for the in vivo investigation of
intracortical myelin in the human brain using ultra-high field MRI.

Methods: Twenty-five healthy adults were imaged in a 7 Tesla MRI scanner using diffusion-weighted imaging and
a T;-weighted sequence optimized for intracortical myelin contrast. Using an automated pipeline, T; values were
extracted at 20 depth-levels from each of 148 cortical regions. In each cortical region, T; values were used to infer
myelin concentration and to construct a non-linearity index as a measure the spatial distribution of myelin across
the cortical ribbon. The relationship of myelin concentration and the non-linearity index with other neuroana-
tomical properties were investigated. Five patients with multiple sclerosis were also assessed using the same
protocol as positive controls.

Results: Intracortical T; values decreased between the outer brain surface and the gray-white matter boundary
following a slope that showed a slight leveling between 50% and 75% of cortical depth. Higher-order regions in
the prefrontal, cingulate and insular cortices, displayed higher non-linearity indices than sensorimotor regions.
Across all regions, there was a positive association between T; values and non-linearity indices (P < 10~°). Both
T; values (P < 107%) and non-linearity indices (P < 10’15) were associated with cortical thickness. Higher myelin
concentration but only in the deepest cortical levels was associated with increased subcortical fractional
anisotropy (P =0.05).

Conclusions: We demonstrate the usefulness of an automatic, whole-brain method to perform depth-dependent
examination of intracortical myelin organization. The extracted metrics, T; values and the non-linearity index,
have characteristic patterns across cortical regions, and are associated with thickness and underlying white matter
microstructure.

1. Introduction

Nearly half the human brain comprises myel
brain regions with each other. Myelin is formed

sheath and insulate neuronal axons (Nave and Werner, 2014). Myelina-
tion supports the speed of axonal conduction which determines the time
inated axons that connect of arrival of signals from multiple axons and hence neuronal spiking
by oligodendrocytes that (Nave and Werner, 2014). Myelin also provides trophic axonal support
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which is particularly relevant for longer axons that extend far beyond the
neuronal soma (Bercury and Macklin, 2015). Myelination is therefore
essential for the efficient inter-neuronal communication that underlies
mental processing and experience-induced plasticity (Fields et al., 2014;
Fields, 2015; Hunt et al., 2016; Glasser et al., 2014).

Although myelination is a prominent feature of deep white matter,
oligodendrocytes are also abundant within the cortical ribbon. Within
the cortex, myelin density is higher in deeper compared to superficial
layers and in sensorimotor compared to association regions (Nave and
Werner, 2014). Intracortical myelin has a prolonged period of maturation
extending into late adolescence and adulthood (Carey et al., 2017; Shafee
et al., 2015; Whitaker et al., 2016) which is associated with age-related
changes in gray matter volume (Mills et al., 2016) and in functional
connectivity (Huntenburg et al., 2017). Intracortical myelin is sensitive
to experience-dependent neuronal activity throughout the lifespan thus
actively contributing to brain plasticity and remodeling (Fields, 2015;
Purger et al., 2016). These features suggest that myeloarchitecture is
relevant to the fine-tuning of cortical circuits, a notion that is supported
by the association between intracortical myelin and individual variability
in cognitive function (Grydeland et al., 2013).

The majority of studies on cortical myelination to date have been
performed at the standard field strength of 3 Tesla with typical spatial
resolutions of 1 mm. Since the thickness of the human cortex ranges from
approximately 2 mm-4 mm, these standard MR techniques are subopti-
mal for the characterization of intracortical myelin concentration. Ultra-
high field imaging at 7 Tesla now allows for the sub-millimeter resolution
in MR sequences (Fracasso et al., 2016; Waehnert et al., 2016; Marques
et al., 2010, 2017; Sanchez-Panchuelo et al., 2010; Tardif et al., 2015).
Initial studies suggest that depth-dependent intracortical myelin prop-
erties in the sensorimotor (Dinse et al., 2015) and the visual (Fracasso
et al., 2016) cortices obtained using ultra-high field MRI are consistent
with post mortem histological data. MRI-based laminar T; maps align
with cortical folding patterns (Tardif et al., 2015) and with regional
functional specialization (Sanchez-Panchuelo et al., 2010; Kuehn et al.,
2017), further supporting a close relationship between plasticity and
laminar myelin.

The ability to approximate the distribution of myelin across lamina by
sub-sampling the cortex at different depth-levels is an important new
development for two reasons. Firstly, myelin is highly unequally
distributed across cortical lamina. Hence, measuring myelin at low
spatial resolutions yields metrics that are influenced by partial volume
effects across lamina, and are therefore less sensitive to inter-regional or
inter-individual variation than depth-specific estimates. Secondly,
cortical myelination across development (Konner, 1991) and the myeli-
nation response to inflammation (Gardner et al, 2013) are
lamina-specific processes. Thus, myelin concentration in different
cortical layers can play distinct roles in neuronal circuit functioning,
neurodevelopment and pathology. In psychiatric disorders such as
schizophrenia, the importance of layer-specific cortical investigations has
also been emphasized in the context of histological studies (Hoistad et al.,
2013; Rajkowska et al., 2002).

In order to study lamina-specific myelin pathology in histology, each
layer tends to be investigated separately for clinical associations with cell
density or myelin stains. However, explorative whole-brain MRI studies
would benefit from a single marker for cross-laminar distribution of
myelin, as increased multiple testing results in low statistical power. In
the present study, we present an optimized whole-brain MR sequence
and automated pipeline for the investigation of the myeloarchitecture of
the brain in healthy individuals using ultra-high field imaging. In addi-
tion to analyzing T; values at each cortical depth level, we explored
myelin profile nonlinearity as a single index of myelin organization. To
aid interpretation of this new metric, we provide information on how this
nonlinearity index relates to standard MRI measures of cortical thickness
and sub-cortical white matter fractional anisotropy (FA) measured using
diffusion weighted imaging.
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2. Methods
2.1. Sample

The sample consisted of 25 healthy volunteers (14 male and 11 fe-
male) with a mean age of 29 years (sd = 5.88) recruited through adverts
in the local community. They were interviewed to exclude any past or
current medical disorder or head trauma and any psychiatric disorder
based on the Mini-International Neuropsychiatric Interview (M.L.N.IL)
(Sheehan et al., 1998). We also recruited 5 patients from the local
specialist clinic diagnosed with multiple sclerosis (MS) (2 male and 3
female; age range: 32-55 years), as “positive controls” since MS repre-
sents the prototypical demyelinating condition (details in Supplement).
The study was approved by the institutional review board of the Icahn
School of Medicine at Mount Sinai (ISMMS). All study participants pro-
vided written informed consent.

2.2. MRI acquisition

All participants were scanned at ISMMS using a 7T MR scanner
(Magnetom, Siemens Healthcare) with a 32-channel with a Nova head
coil (Nova Medical, Wilmington MA). Whole brain T;-weighted images
were acquired using ultra-high resolution MP2RAGE sequence with the
following parameters: 0.5mm isotropic resolution, repetition time
(TR) =5000ms, echo time (TE)=5.75ms, inversion time (TI) TI;/
TI, =900 ms/2780 ms, 224 axial slices with slab thickness 11.5 cm, field-
of-view = 224.5 x 203 x 112 mm3, and slab selective excitation and flow
suppression (Marques et al., 2010). Total scan time was 25 min. Images at
the two inversion times (TI;/TI;) were used to calculate bias-field cor-
rected quantitative T; maps and T; weighted images.

Diffusion-weighted images were also acquired in the same session
with a single shot spin echo EPI sequence with monopolar diffusion
encoding (Ugurbil et al., 2013; Vu et al., 2015). Parameters included:
2mm isotropic resolution, 108 directions/b-values from O to
2000 s/mm?, TR/TE = 4000/62 ms, whole brain coverage, multi-band
factor of 2 (Auerbach et al., 2013), in-plane GRAPPA acceleration
R = 3. Paired acquisitions with reversed phase encoding in the AP/PA
direction were acquired at 7.5 min per scan for a total scan time for dMRI
of 15 min. The gradient table for the scan was identical to that presented
in Chiang and colleagues (Chiang et al, 2014) with 99
diffusion-encoding  directions isotropically  distributed  from
b=200s/mm? to b=2000s/mm? with 9b=0s/mm? images inter-
leaved. De-identified data may be made available to researchers in other
institutions, upon request to the corresponding author, under a legally
binding data use agreement that specifies of the planned data use.

2.3. High resolution intracortical myelin profiling using T; maps

Image preprocessing followed the procedures developed by Dinse and
colleagues (Dinse et al., 2015). The T; maps, T;-weighted images and TI,
images were skull-stripped, background-masked and aligned (using rigid
6 degrees-of-freedom registration, normalized mutual information) to a
0.4mm MNI template using the CBS Tools (https://www.nitrc.org/
projects/cbs-tools). Next, images were corrected for field
homogeneities and histogram-matched to a template image from the
sample of Dinse at al. (2015) using 3D Slicer (https://www.slicer.org/).
Using the Topology-preserving, Anatomy-Driven Segmentation (TOADS)
(Bazin and Pham, 2007) and Multi-object Geometric Deformable Model
(MGDM) (Bazin et al., 2014) segmentation algorithms as integrated in
the CBS Tools, images were filtered with arteries and dura segmenta-
tions, corrected for partial volume effects and were then segmented into
gray matter, white matter and cerebrospinal fluid (CSF). The cortex was
extracted using the CRUISE algorithm (Landman et al., 2013), which is
robust to white matter lesions (Shiee et al., 2014), and divided into 20
cortical depth-levels using a volume-preserving approach as imple-
mented in the Volumetric Layering module of CBS Tools (Waehnert et al.,
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2014). This level-set approach generates one 2-dimensional surface per
layer containing T; values at each surface location. Next, the Profile
Sampling module of CBS Tools was used to transform the 2-dimensional
level-sets to 3-dimensional representations of T; values. This trans-
formation represents each vertex T-values of each level-set surface as a
column of identical Ty values perpendicular to the surface (Dinse et al.,
2015). The final result of this pipeline is 20 vol of cortical profiles, one for
each depth-level, for each of 15 healthy and the 5 MS patients. The whole
process was completed within each individual's native space. A set of
exemplary results from healthy individuals and patients with MS are
shown in Supplemental Figures 1 and 2.

Next, the cortex was segmented and parcellated in native space using
Freesurfer (https://surfer.nmr.mgh.harvard.edu/). This parcellation was
based on the pre-processed T;-weighted images alone (independent of
the cortex extraction described above) and was used to obtain 148
cortical regions-of-interest (ROIs) in native-space based on the Destrieux
atlas. We used the Destrieux atlas, which separates gyri from sulci
(Destrieux et al., 2010) because cortical myelin profile and content varies
between gyri and sulci (Waehnert et al., 2014; Sereno et al., 2013). Prior
to further analyses, we implement a strict quality control protocol
whereby whole brain 3D segmentations were visually inspected and we
further checked the Freesurfer cortical thickness estimates for regions
around long/short gyri and the claustrum where segmentation is often
challenging. Mean thickness values, for left and right respectively, were
3.44 mm and 3.37 mm for the short gyrus, 2.92 mm and 2.94 mm for the
anterior insula, 2.59mm and 2.50 mm for the inferior insula, and
2.54mm and 2.74 mm for the superior insula. Overall mean cortical
thickness according to FreeSurfer was 2.47 (sd = 0.32).

In each participant and for each cortical ROI, we estimated (a) the
absolute T; value as an index of myelin concentration at each depth-level,
(b) the non-linearity index, a novel measure reflecting the depth-
dependent distribution of T; values along the cortical depths from the
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outer CSF boundary to the inner white-matter boundary, (c) distinct
positive and negative deviations from linearity, (d) cortical thickness as
provided in the Freesurfer output. The non-linearity index is the devia-
tion from linearity from the curve of T; value distribution along the
cortical ribbon, which was calculated as the squared difference between
the observed T values and the linear regression line approximated by the
curve (Fig. 1). The positive and negative deviations from linearity
represent respectively the area above and underneath the regression line
in Fig. 1. Fig. 1 also contains two illustrative examples from occipital and
prefrontal regions, respectively with low and high profile nonlinearity.
We chose to derive cortical thickness from Freesurfer on the basis of the
T;-weighted maps alone, independent of the myelin profiling pipeline, to
minimize confounding of cortical thickness estimation with the T; values
and the cortex extraction. The scripts we used to run the pipeline is
available upon request, here.

For the MS patients, we simply transformed their T; values to Z-scores
based on the T; distributions in the healthy individuals, and inspected
the degree of deviation from the normative values as a qualitative vali-
dation of the interpretation of the T; profiles.

2.4. Quality assessment of T; profiling in the healthy participants

Several steps were undertaken to ensure the data quality of the final
T, profiles. First, three participants were excluded after visual inspection
of the raw volumes and the Freesurfer cortical parcellations. Second,
across all participants we excluded individual regions with outlier values
based on the deviation from the median T; profile of each region. To this
end, we calculated shape of the median profile of each region which
closely a cubic spline (all R? > 0.98). Individual regions were excluded
case-wise (1) their fit (RZ) to the median spline was <0.70; or (2) their
absolute deviation from the median spline was at the 5% extreme end of
the sample. These criteria allowed stricter control with regards to the

Fig. 1. Two examples of myelin profiles,
representative of a high non-linearity index
(top) and low nonlinearity index (bottom).
The top example is the left mid-anterior cingulate
cortex; the bottom example is the left superior
occipital gyrus. The left column shows profiles for
each individual participant. The right column
highlights the nonlinearity index (yellow area) for
a single participant, as the deviation from the
linear fit (blue) to the profile (red). Figures of all
individual profiles for all regions are available in
Supplemental Information-2.

depth

depth


https://surfer.nmr.mgh.harvard.edu/
https://www.researchgate.net/publication/327201707_Procedures_and_scripts_for_myelin_profiling

E. Sprooten et al.

shape of the cortical myelin profiles and less strict control on the height
of the curve. This is because we considered significant deviations from
the typical regional myelin profile shape as indicators of poor data
quality. A deviation in myelin content at a specific depth-level may, on
the other hand, indicate subtle but real differences in cortical organiza-
tion. Following the application of these quality control criteria, 34 of the
148 cortical regions were excluded completely from the analysis because
many participants had deviant profiles (Supplemental Table 1).
Figures of all myelin profiles are available in Supplemental Information-
2, with profiles excluded after quality control depicted in red. Visual
inspection of these figures suggests that the objective quality control
criteria was adequate at consistently identifying profiles that deviated a
lot from typical patterns. In accordance with previous reports (Glasser
and Van Essen, 2011; Haast et al., 2016), artifacts due to residual in-
homogeneity were observed in the medial orbitofrontal and inferior
temporal lobes. We also observed artifacts in the most superior medial
fronto-parietal regions due to RF inhomogeneity and reduced field of
view. As mentioned, these regions were removed from the analyses
following our quality control procedures. The data for the MS patients
were subject to quality control as described above but we did not exclude
patients on the grounds of deviation the myelin profiles because such
deviations from “typical” profiles are likely in this population. Generally,
it is (as always) possible that some subtle artifacts or segmentation biases,
not visible by the naked eye or not captured by our quality control al-
gorithm, could have persisted. However, to really alter our conclusions,
they would have to be non-random in relation to cortical depth and
thickness, and this we consider unlikely.

2.5. Extraction of sub-cortical white matter FA values

Diffusion-weighted MRI data were pre-processed in accordance to
pipelines developed by the Human Connectome Project (HCP) (Glasser
et al., 2013) modified in-house to accommodate the imaging protocol
and the BO-eddy currents of our scanner (O'Halloran et al., 2015).
Multi-band dMRI images were reconstructed using SENSE (Sotiropoulos
et al., 2013). Preprocessing consisted of slice-wise eddy current correc-
tion of the first 2 acquired slice groups, fitting of the field map from
oppositely encoded non-diffusion-weighted (b = 0) images with “topup”
in FSL, correction of distortions due to eddy currents using FSL, and
correction of gradient non-linearities using “gradunwarp”, an HCP
routine implemented in python. The diffusion-weighted volumes were
visually inspected for quality assurance. The data were then
skull-stripped and diffusion tensors were calculated respectively using
“bet” and “dtifit” in FSL. To extract white matter FA-values underneath
each cortical region, the Destrieux cortical regions were dilated with
1 mm, binarized, and multiplied by the white matter segmentation. For
each subject, the individual T;-weighted image was linearly transformed
to each subject's bg image using “FLIRT2 in FSL with 6 degrees of freedom
and used to transform the Freesurfer ROIs to the FA map. The subcortical
regional masks were then overlaid on the FA maps to extract the mean FA
values underneath each region (Supplemental Figure 3).

2.6. Statistical analyses

Statistical analyses were implemented in R. To help interpret the non-
linearity index, we first investigated the contribution of each depth-level
to the non-linearity index. For this, we used stepwise mixed linear models
with non-linearity as dependent variable, cortical region as fixed factor,
subject as random factor (with random intercept), and all T; values at
each depth level as separate fixed regressors. Next, analyses of T; values
(indicative of myelin concentration) and analyses of the non-linearity
index were conducted separately using the same mixed linear models
with cortical thickness as continuous predictor. We also calculated
Spearman's rank correlation coefficients between cortical thickness and
Ty values and non-linearity indices within each region across all in-
dividuals as well as within each individual. The aim of these correlational
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analyses was to confirm that the pattern identified using the mixed
regression models was also observed at the level of univariate correla-
tions and not to make inferences about statistical significance. The same
methods (mixed-models and correlations) were used to investigate as-
sociations between subcortical FA values with T; and non-linearity
indices. To investigate whether positive deviations or negative de-
viations were mainly driving the observed associations with non-
linearity, significant associations of the non-linearity index were also
tested for positive and negative deviations from linearity specifically,
using the same mixed linear model approach.

We then tested whether regions formed separate clusters with respect
to their average non-linearity using Gaussian mixture modeling clus-
tering as implemented in the mclust package in R (Scrucca et al., 2016).
This algorithm uses an expectation-maximization algorithm to decide
upon the optimal clustering solution and also provides the Bayesian in-
formation criterion (BIC) to corroborate the choice.

3. Results
3.1. Properties of intracortical myelin profiles in healthy individuals

As expected T; values were (a) lower near the gray-white matter
boundary and higher near the CSF surface with a slight leveling between
50% and 75% of cortical depth and (b) lower around the central sulcus
and in the visual and auditory cortices. Fig. 2A shows the median Ty
values at three cortical depth-levels. At each level, the expected increase
in myelin around the central sulcus, the visual cortices and the auditory
cortices are clearly visible. Fig. 2B shows the distribution of the non-
linearity index across the cortical ribbon. Although cortical regions
differed in their non-linearity index these differences did not form
discreet clusters (Supplemental Table 2). Stepwise mixed model regres-
sion of nonlinearity across all regions, with T; values of all depth levels as
predictors revealed that, in general, T; values at 5%, 10%, 80% and
100% were the strongest negative predictors of non-linearity, whereas T;
values at 40%, 55% and 65% were the strongest positive predictors or
profile nonlinearity (all P < 0.0025). This indicates that nonlinearity
across regions was driven mostly by a T; “plateau” of lower myelin in the
middle layers in combination with higher myelin estimates at ends of the
curve. The nonlinearity indices of outliers were differently influenced by
T; values at each depth-level (interactions with depth-level:
0.01 < P < 10'9), indicating that nonlinearity profiles of these outliers
do not always represent the same characteristics as for the typical
profiles.

3.2. Comparison to MS patients

Fig. 3 and Supplemental Figure 4 show individual MS patients’ de-
viation from controls in terms of overall and region-specific intracortical
T; values. There was a high degree of inter-individual heterogeneity. One
patient very clearly had widespread and pronounced (Z > 4) reductions
in estimated myelin concentrations. At the other extreme, one patient
appeared to have increased myelin concentration in several, different
cortical regions. Taken together, results were most consistent at deeper
cortical levels around 75% of depth, and around the central sulcus and in
the cingulate cortex. In both of these regions 3 of the five patients showed
myelin levels that were 2-5 standard deviations lower than those in
controls.

3.3. Association between T; values and cortical thickness

Across all regions (modeling region as a fixed factor and subject as a
random factor), there was a positive association (4.23 < t< 14.69; P
values between 10~* and <1073) between cortical thickness and T
values at deeper (30%-100%) but not outer (0%-25%) cortical depth-
levels (Supplemental Table 3). This pattern was also apparent in the
univariate correlations across and within individuals. The correlation
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A. Median T, values

At 25% depth (towards pia)

high gg1850 high

myelin B T1 value myelin

low ™ 2100

At 50% depth

T1 value

At 75% depth (towards GWB)

high gg1600

myelin BT1 value

low " 1800

Fig. 2. Median T, values and Non-linearity indices across cortical regions-of-interest. Red indicates higher myelin concentrations (i.e., lower T; values); Blue
indicates lower myelin concentrations (i.e., higher T; values); Gray indicates regions excluded after following quality control (details on see methods 2.4).

GWB = gray-white matter boundary.

Myelin

MS < HC

B s0

-1.50
Ms > He 8

4.0

Fig. 3. Individual MS patients' Z-scores relative to healthy controls at 75% of cortical depth. Each column is a patient with MS. Rows, from top to bottom: left

lateral surface, left medial surface, right lateral surface, right medial surface.

between T; values and cortical thickness was positive across individuals
at 75% of cortical depth but not at 25% (Supplemental Table 4). Within
individuals, T; values across regions also correlated consistently with
cortical thickness in the deeper (p range: 0.32 to 0.62) rather than outer
cortical depth-levels (p range: —0.10 to 0.38) (Supplemental Table 5).
There were no noteworthy effects of age, age? but there were region-by-
sex interactions on T; at 25% (P = 0.003), 50% (P = 5.83*1075), and
75% of cortical depth-level (P = 1.88*10’7); women tended to have

31

higher T; values compared to men (Supplemental Table 6).

3.4. Association between non-linearity indices and cortical thickness

Across all regions (modeling region as a fixed factor and subject as a
random factor), there was a positive relationship between non-linearity
indices and cortical thickness (t=8.27; P < 1071°). This was a consis-
tent observation across and within individuals (Supplemental Tables 7
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and 8). The association between cortical thickness and profile non-
linearity was equally driven by both positive (t=6.30; P <107°) and
negative (t=6.33; P P < 107%) deviations from linearity. Similar ana-
lyses also found a positive relationship between non-linearity index and
average T; values (t=4.54; P <107 %). The prefrontal and cingulate
cortices and the insula, displayed markedly more profile nonlinearity
than sensorimotor regions such as occipital regions, the superior tem-
poral gyri, and the postcentral gyri (Fig. 2B). When we included the
outliers in the analysis, the overall association of nonlinearity with
cortical thickness in the general mixed model remained significant,
although somewhat attenuated (all P < 10-5). There were no noteworthy
effects of age, age® or sex on non-linearity indices in any region (all
P >0.39).

3.5. Association between subcortical FA and intracortical myelin measures

There was an interaction between depth-level and FA on T; value
(F=80.41,P < 2.2*10’16). At 95% of cortical depth every individual
displayed a negative correlation between FA and T; value, ranging from
—0.13 (P =0.18) to —0.46(P < 10-7)(Fig. 4), indicating that regions with
higher myelin concentration at the gray matter — white matter boundary
also have higher FA below this boundary. Correlations at multiple
cortical depth-levels, within regions, and within individuals, are avail-
able in Supplementary Tables 10-11. There was a positive correlation
between subcortical FA and non-linearity indices across regions for all
individuals (0.06 < p < 0.54; 10~° < P < 0.50, Supplemental Tables 12-
13). For both positive and negative deviations from linearity correlations
with FA were between 0.10 (P =0.29) and 0.56 (P < 10-9). When we
included the outliers, the individual correlations with FA remained
consistently positive (0.10 < rho < 0.54).

4. Discussion

We used quantitative ultra-high field MR imaging to examine intra-
cortical myelin organization in the living human brain in relation to

1600

- -h
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T1 value at 95% depth
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3

1400

0.2 04 0.6

FA

Fig. 4. Fractional anisotropy (FA) in the segment just below the cortex was
negatively associated with T; values in deep cortical layers. Each line represents
one subject, showing the consistency of these relationships across individuals.
Each line is a linear fit of one subject's T; values at 95% depth regressed on sub-
cortical FA values across the brain.
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cortical thickness and subcortical FA values. In addition to estimating
myelin concentration, we computed the non-linearity index, a novel
metric that assesses the spatial distribution of myelin along the cortical
ribbon.

We found that estimates of myelin concentration were higher in
sensory and motor cortices and lower in higher-order association areas
(Fig. 2A). Our results confirm previous findings in healthy individuals
obtained using the same acquisition and processing methods (Dinse et al.,
2015) as well other methods such as T;/T5 ratios (Glasser et al., 2014,
2016; Haast et al., 2016; Marques et al., 2017; Van Essen and Glasser,
2014), and Tp* (Haast et al., 2016; Marques et al., 2017). Qualitative
comparison with 5 patients with MS, used as “positive controls”, showed
that the current method identified cortical myelin concentration alter-
ations in this prototypical demyelinating disease.

Cortical thickness and estimated myelin concentration (inferred from
T, values) were positively associated. This association was present across
regions but also across individuals. This interregional variability in
cortical thickness and myelin concentration is also thought to underlie
inter-individual variability (Grydeland et al., 2013) although methodo-
logical explanations relating to cortical segmentation cannot be fully
ruled out. Failure to include highly myelinated deep cortical layers would
result in lower myelin concentration estimates while erroneous inclusion
of subcortical white matter would lead to higher estimates. However, our
results are less likely to be confounded by segmentation errors given that
the cortical thickness measures were derived from a different segmen-
tation than the myelin estimates.

The results reported here suggest that subcortical FA values are
associated with higher myelin concentrations at the deeper cortical levels
(Fig. 4). FA reflects a number of white matter properties including, but
not limited to, myelin. In general, FA values estimated near the gray-
white matter boundary are more susceptible to artifacts in the
modeling of white matter fibers close to the cortex. However, regions
where highly myelinated fibers enter or leave the cortex are expected to
have both higher FA and lower T; values. The consistency of this asso-
ciation across subjects, and its lack in the outer cortical layers, supports a
neurophysiological interpretation. Moreover, confounding effects due to
cortical segmentation errors are unlikely, because over-estimation of the
cortical depth is less likely for high-FA, stereotypical white matter. Thus,
the association between sub-cortical FA and quantitative T; values is in
line with neurophysiological properties and represents a cross-modal
confirmation of the T; profiling approach used here.

A key novelty of this paper is the introduction of the non-linearity
index as a measure of intracortical myelin organization (Fig. 1). The
availability of an automatically generated, single metric for myelin or-
ganization obtained from in vivo MRI benefits future, larger-scale, data-
driven studies in terms of statistical power and required resources. In
addition, in studies of pathology, the nonlinearity index will be more
sensitive to deviations from the norm in the presence of etiological het-
erogeneity in the type of myelin disorganization across patients, as may
be the case in major psychiatric disorders. Variability in the non-linearity
index was primarily driven by decreased myelin in the middle cortical
layers, in combination with increased myelin at both outer and inner
depth-levels. Associations of total nonlinearity with other anatomical
metrics was driven by equal contributions of both decreased myelin in
middle layers and increased myelin at both inner white matter and outer
CSF boundaries. The interregional correlations of T; values and profile
nonlinearity with cortical thickness and FA likely reflect general orga-
nizational principles of the brain linking regional morphology and con-
nectivity (Barbas, 2015; Beul et al., 2015; Huntenburg et al., 2017;
Scholtens et al., 2014). For example, unimodal sensory cortical are
relatively thin, have more myelinated neurons, fewer and less elaborate
dendrites, and sparser functional connections compared to higher-order
areas (Beul et al.,, 2015; Huntenburg et al., 2017; Scholtens et al.,
2014). Higher-order regions, on the other hand, contain less myelin, have
more abundant connections with the rest of the brain (Beul et al., 2015;
Huntenburg et al., 2017; Scholtens et al., 2014), and more complex
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dendritic arborization that takes up more unmyelinated space within the
cortex (Glasser and Van Essen, 2011). These organizational principles are
also reflected in distinct evolutionary origins and developmental trajec-
tories, where ontological and phylogenic early regions serve more pri-
mary functions and are less plastic throughout life, compared to late
evolved and late developing cortical regions. Raw T; values, cortical
profiles and nonlinearity indices appear to capture partly overlapping
and partly unique aspects of these general organizational principles of
the brain.

Taken together, our results suggest that the non-linearity index
effectively captures inter-regional and inter-individual variation in
laminar myelin organization that is not represented by absolute T; values
or other metrics alone. However, an understanding of the physiological
properties underlying the non-linearity index is beyond the resolution of
neuroimaging. Evidence from post-mortem human studies suggests that
the higher non-linearity index observed in prefrontal regions may be due
to lower myelin content in deep layers (Nave and Werner, 2014). On the
other hand, investigations of the mouse cortex have shown that in the
superficial cortical layers 2 and 3 there exists a surprising amount of a
distinct type of myelin surrounding inhibitory neurons (Micheva et al.,
2016), raising the possibility that an increase in this myelin could in-
fluence nonlinearity. The non-linearity index may also be influenced by
cortical thickness per se as thicker cortices allow for improved sampling
of the T; values across the cortical ribbon leading to smaller partial
volume effects. Post-mortem evidence in humans and animal studies are
required to better understand the physiological underpinnings of the
non-linearity index. Given the importance of intracortical myelin orga-
nization for human behavior and neuropsychiatric disorders (Har-
outunian et al., 2014), the non-linearity index may be an enticing new
imaging phenotype to investigate in clinical populations and across the
lifespan. A notable advantage of the present work is that is extends
previous manual procedures of cortical myelin profiling to become
automated and data-driven, and therefore applicable to large datasets
and exploratory research in bran disorders with unknown etiology.

Several limitations of this study ought to be clarified. Firstly, the
signal-to-noise ratio was relatively low, but still acceptable, due to the
high resolution of our quantitative whole-brain T; maps. The inhomo-
geneous transmit field at 7T caused considerable signal dropout in the
most inferior regions and frequent clipping of the superior medial re-
gions. These cortical regions were therefore removed from our analysis
(Supplemental Table 1). This tradeoff allowed us to achieve maximum
brain coverage at 0.5 mm isotropic resolution in a reasonable scan time
ensuring that the data acquisition would be easily tolerated by partici-
pants. Issues of tolerability and cost-containment are particularly
important for the application of this method to larger samples and to
clinical populations. We choose to use cortical parcellation, rather than
vertex-wise analyses, to avoid normalization to a common template,
which requires reshaping individual cortical surfaces to a template and
can obscure inter-individual differences in folding. Moreover, we used
the Destrieux cortical parcellation scheme because it was developed ac-
cording to precise anatomical rules, taking into account cytoarchitectural
boundaries and curvature landmarks, and it produces anatomical labels
that are closely matched to expert manual tracings (Destrieux et al.,
2010). Therefore, whilst we might lose some anatomical resolution, we
argue that our approach achieves greater power, minimal confounding of
inter-individual variability in curvature and improved interpretability,
compared to template-normalized vertex-wise analyses. We note the
obvious limitation that T; values do not directly reflect myelin concen-
trations, but are a close approximation. T; values are also influenced to a
lesser extent by iron concentrations although this is unlikely to be a major
factor in a sample of young healthy individuals. Despite these limitations,
we obtained quantitative measurements that passed quality control, and
are consistent with previous in vivo and ex vivo reports from independent
research groups using variable methods. Intracortical myelin quantifi-
cation and high-field MRI are very fast developing areas of research, and
the present findings contribute to this work in progress.
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In conclusion, we demonstrate the use of an automatic, whole-brain
method to perform data-driven examination of intracortical myelin or-
ganization using quantitative MRI in vivo. The extracted metrics, Ty
values and the non-linearity index, have characteristic patterns across
cortical regions, and are associated with thickness and underlying white
matter microstructure. This approach enables large-scale and longitudi-
nal investigations of intracortical myelin throughout development and
aging and in clinical populations.
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