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The basic theory of kinetic ballooning modes was developed in Ref. [1]. Here, the authors

solve the gyrokinetic equation by expanding in ε = v2
thi/ω2l2

c � 1, where vthi =
√

2Ti/mi is the

ion thermal speed, lc the connection length and ω � vthe/lc is the mode frequency, with vthe

the electron thermal speed. The general KBM equation below retains magnetic drift resonances,

gyro-averaging and magnetic compressibility effects, but trapped particles are neglected. The

result is a second order differential equation for the electrostatic potential φ that reads:
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where we defined the connection length lc and the coordinate z along the field is defined so

that lc∇‖ = ∂z, βi = 8π pi/B2
a, b = k2

⊥v2
thi/2Ω2

i B, k⊥ is the wavevector across the equilibrium

magnetic field, Ωi(B) = mic/(eB) is the ion cyclotron frequency, αn, j = 1− (ω∗i/ω)
(
1+nη j

)
,

τ = Te/Ti, ηi = Lni/LTi , ω∗i,e =
1
2kyρi,evth/Ln, ωB = (k⊥ρs/2) · vthsb̂×∇B/B, ρs = vths/Ωs(Ba),

where Ba is a reference constant magnetic field, ωκ = (k⊥ρs/2) · vthsb̂× (b̂ ·∇b̂), LTi,e and Ln

are the characteristic gradient lengths for temperature and density and Q, Q′, R are velocity-

space integrals (defined in [1]).

In the recently published work [2] the problem of kinetic ballooning mode instability was

revisited in simple tokamak geometry. The authors derived an appropriate β -ordering, which

allows Eq.(1) to be simplified greatly. The results of the kinetic instability analysis and its

comparison with numerics lead to a natural distinction between "high-temperature-gradient"

and "moderate-temperature-gradient" KBM regimes.
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Figure 1: Fastest growing mode dependence on β for the with a/LTi,e = 2 and kyρs in the range

from 0.05 to 0.8, in two different W7-X configurations (KJM and TEH) and two simulation

tubes (centred around the outboard midplane of the "bean" and "triangular" plane). (a): growth

rate of the instabilities. (b): real frequency of the corresponding modes. Large dots specify

where the magnetic equilibrium was varied.

In the first case, instability occurs only for mode frequencies such that ωr = ωpi/2, where

ωpi = ω∗i (1+ηi). The maximum growth rate is located at very long wavelength. If magnetic

drifts are kept consistent with the equilibrium pressure gradient, the gyrokinetic codes GS2

[3, 4] and GENE [5, 6] show excellent quantitative agreement with the familiar ideal-MHD

equation with a diamagnetic correction [7]:
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where ωp = ω∗i (1+ηi)−ω∗e (1+ηe) ≡ ωpi +ωpe and ωκ 6= ωB since β is finite. Keeping

ωκ = ωB does not give a satisfactory agreement between analytics and numerics.

In more complicated geometries, Eq.(1) is still valid. General KBM equation for stellarator

geometry:
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Here
√

gB is the determinant of the Jacobian matrix, K is described in Eq. (2). Therefore, the

magnetic geometry enters the KBM equation for stellarators through the magnetic field B, the

Jacobian and through the k⊥ terms. In the framework of a flux tube approach, all of these quan-

tities are functions of the field-line following coordinate. In the present work, linear electro-

magnetic gyrokinetic numerical simulations of microinstabilities have been performed with the

45th EPS Conference on Plasma Physics P5.1087



0.0 0.5 1.0 1.5 2.0 2.5 3.0
β (%)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k y
ρ s

0.0300.060

0.060

0.0
80

0.080

0.10
0

0.1
20

0.140

0.140
0.
16

0
0.16

0

0.1
80

0.0 0.5 1.0 1.5 2.0 2.5
β (%)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k y
ρ s

0.030

0.060
0.080

0.100

0.1
20

0.140

0.140

0.1
60

0.
18

0

0.1
80

Figure 2: Instabilities growth rates as a function of β and kyρs (colorcoded), when pressure

gradients are consistent with the plasma equilibrium. Left: simulations for standard tokamak

case. Right: W7-X standard configuration (KJM, "bean" tube).

GENE code in finite-β plasmas for different geometries in the stellarator device Wendelstein

7-X as well as a generic tokamak model. The results exhibit good agreement of the real fre-

quencies of KBMs with the diamagnetic modification of ideal MHD limit in the large-gradient-

regime for W7-X geometry. This finding agrees with a recent KBM study in simple tokamak

geometry [2].

Thresholds for KBM mode destabilization in W7-X configurations with different ideal MHD

stability properties have been compared and found to be correlated (see Fig. 1). Simulations of

the KBM instability in the standard (MHD-optimized) W7-X geometry with β= 3%, flat density

profile and temperature gradient a/LTi,e = 2 show that the KBM stability threshold (kyρs = 0.05)

is about 2.2% (simulation tube centred around the outboard midplane of the "triangular" plane)

and 1.9% ("bean") as compared with 0.65% in the non-optimized configuration, which has a

much lower MHD stability threshold. KBM critical β values correspond to the point of marginal

KBM stability were compared with the reference MHD estimates obtained by ideal ballooning

code and were found to be lower in KJM case. Thus we conclude that we may expect a rise of

KBM instability before corresponding iMHD threshold.

We further proceed with a comparison of the W7-X results with a generic tokamak case,

emphasising the consistency of the local pressure gradient and the plasma equilibrium. In Fig. 2

we show the growth rates obtained from the gyrokinetic calculations performed by GENE code

as functions of β and ky. The comparison of W7-X and a generic tokamak shows that one of the

significant features of the KBM in W7-X geometry is that the most unstable mode has kyρs = 0
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Figure 3: Instabilities growth rates as a function of β and kyρs (colorcoded), when pressure gra-

dients are not (!) consistent with the plasma equilibrium. Left: simulations for standard tokamak

case. Right: W7-X standard configuration (KJM, "bean" tube).

for a wide range of simulation parameters. This is in contrast to the tokamak configuration,

where the most unstable mode closer to the marginality has a finite kyρs. In W7-X, the ITG

mode is progressively suppressed with increasing β but is not stabilized completely and the

critical value for the onset of KBM is about β = 2.5% for a/LTi,e = 2, flat density gradient and

and ŝ ≈ −0.1. For the tokamak case, we observe a more significant β stabilization of the ITG

mode and more unstable KBMs (β = 2.1%). We conclude that this W7-X configuration appears

to be more stable than the tokamak case with respect to low ky modes, including KBMs.

In all these simulations, it is important to keep the magnetic equilibrium geometry consistent

with the varying pressure gradient in the gyrokinetic simulations. This is clearly seen when we

compare our results with simulations obtained without this sort of concordance (see Fig. 3).

It is noted that β stabilization of TEM in the tokamak case appears only if the equilibrium is

varied consistently with the pressure gradient, whereas in W7-X calculations, the TEM is also

(moderately) stabilized by β even if the equilibrium is kept fixed.
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