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Figure 1. We propose a novel multi-matching method that is both scalable and able to account for geometric consistency. Left: the centaurs
(in different poses) are consistently matched by our approach, as indicated by the coloured dots. Centre: methods that ignore geometric
relations (Tron et al. [43], Pachauri et al. [34]) lead to wrong matchings, as evidenced by mismatching colours in the magnifications.
Right: existing methods that account for geometric consistency (Yan et al. ’15 [50], Yan et al. ’16 [47], Wang et al. [45]) do not scale to
large problems (shown are runtimes when matching 5–50 objects, each having 20 points, so that a total of 100–1000 points are matched).

Abstract

The matching of multiple objects (e.g. shapes or images)
is a fundamental problem in vision and graphics. In order
to robustly handle ambiguities, noise and repetitive patterns
in challenging real-world settings, it is essential to take ge-
ometric consistency between points into account. Compu-
tationally, the multi-matching problem is difficult. It can
be phrased as simultaneously solving multiple (NP-hard)
quadratic assignment problems (QAPs) that are coupled via
cycle-consistency constraints. The main limitations of ex-
isting multi-matching methods are that they either ignore
geometric consistency and thus have limited robustness, or
they are restricted to small-scale problems due to their (rel-
atively) high computational cost. We address these short-
comings by introducing a Higher-order Projected Power It-
eration method, which is (i) efficient and scales to tens of
thousands of points, (ii) straightforward to implement, (iii)
able to incorporate geometric consistency, and (iv) guaran-
tees cycle-consistent multi-matchings. Experimentally we
show that our approach is superior to existing methods.

1. Introduction

Establishing correspondences is one of the fundamental
problems in vision and graphics, as it is relevant in a wide
range of applications, including 3D reconstruction, track-

ing, recognition, or shape matching. The overall goal of
correspondence problems is to identify points in objects
(e.g. images, meshes, or graphs) that are semantically sim-
ilar. While matching points independently of their neigh-
bourhood context is computationally tractable (e.g. via the
linear assignment problem (LAP) [9]), such approaches are
limited to simple cases without ambiguities or repetitive
patterns. In order to resolve ambiguities and avoid mis-
matches in challenging real-world scenarios, it is crucial to
additionally incorporate the geometric context of the points,
so that spatial distances between pairs of points are (approx-
imately) preserved by the matching. To this end, higher-
order information is commonly integrated into the matching
problem formulation, e.g. via the NP-hard quadratic assign-
ment problem (QAP) [26].

Multi-matching, i.e. finding matchings between more
than two objects (e.g. an image sequence, a multi-view
scene, or a shape collection) plays an important role in var-
ious applications, such as video-based tracking, multi-view
reconstruction (e.g. for AR/VR content generation) or shape
modelling (e.g. for statistical shape models in biomedicine
[21]). Computationally, finding valid matchings between
more than two objects simultaneously is more difficult com-
pared to matching only a pair of objects. This is because one
additionally needs to account for cycle-consistency, which
means that compositions of matchings over cycles must be
the identity matching—even when ignoring higher-order
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terms, an analogous multi-matching variant of the linear
assignment problem that accounts for cycle-consistency re-
sults in a (non-convex) quadratic optimisation problem over
binary variables, which structurally resembles the NP-hard
quadratic assignment problem. When additionally consid-
ering higher-order terms in order to account for geometric
relations between the points, multi-matching problems be-
come even more difficult. For example, a multi-matching
version of the quadratic assignment problem either results
in a fourth-order polynomial objective function, or in a
quadratic objective with additional (non-convex) quadratic
cycle-consistency constraints, both of which are to be opti-
mised over binary variables.

Practical approaches for solving multi-matching prob-
lems can be put into two categories: (i) methods that
jointly optimise for multi-matchings between all objects
(e.g. [22, 47, 40, 43, 6]) and (ii) approaches that first es-
tablish matchings between points in each pair of objects in-
dependently, and then improve those matchings via a post-
processing procedure referred to as permutation synchro-
nisation [34, 11, 55, 39, 29]. The approaches that jointly
optimise for multi-matchings either ignore geometric rela-
tions between the points [43], or are prohibitively expen-
sive such that they can only cope with small-scale problems
(cf. Fig. 1). In contrast, while the synchronisation-based ap-
proaches are generally much more scalable (e.g. synchroni-
sation problems with a total number of points in the order of
10k-100k can be solved), they completely ignore geometric
relations (higher-order terms) during the synchronisation,
and thus achieve limited robustness in ambiguous settings
(cf. Fig. 1).

The aim of this work is to provide a scalable solution for
multi-matching that addresses the mentioned short-comings
of previous approaches. Our main contributions are:
• We propose a method that jointly optimises for multi-

matchings which is efficient and thus applicable to
large-scale multi-matching problems.
• Our method is guaranteed to produce cycle-consistent

multi-matchings, while at the same time considering
geometric consistency between the points.
• To this end, we propose a Higher-order Projected

Power Iteration (HiPPI) method that can be imple-
mented in a few lines of code.
• We empirically demonstrate that our method achieves

beyond state-of-the-art results on various challenging
problems, including large-scale multi-image matching
and multi-shape matching.

2. Background & Related Work
In this section we review the most relevant works in the

literature, while at the same time providing a summary of
the necessary background.

Pairwise Matching: The linear assignment problem

(LAP) [9] can be phrased as

min
X∈P

〈A,X〉 , (1)

where A is a given matrix that encodes (linear) matching
costs between two given objects, and X ∈ P is a permu-
tation matrix that encodes the matching between these ob-
jects. The LAP can be solved in polynomial time, e.g. via
the Kuhn-Munkres/Hungarian method [30] or the (empiri-
cally) more efficient Auction algorithm [7]. The quadratic
assignment problem (QAP) [26], which reads

min
X∈P

vec(X)TW vec(X) , (2)

additionally incorporates pairwise matching costs between
two objects that are encoded by the matrix W . The QAP
is a (strict) generalisation of the LAP, which can be seen
by defining W = diag(vec(A)): since X ∈ P, we ob-
tain that X = X � X , where � is the Hadamard product.
However, in general the QAP is known to be NP-hard [35].
The QAP is a popular formalism for graph matching prob-
lems, where the first-order terms (on the diagonal of W )
account for node matching costs, and the second-order
terms (on the off-diagonal ofW ) account for edge matching
costs. Existing methods that tackle the QAP/graph match-
ing include spectral relaxations [27, 14], linear relaxations
[42, 41], convex relaxations [53, 37, 33, 18, 1, 24, 17, 6],
path-following methods [52, 54, 23], kernel density estima-
tion [44], branch-and-bound methods [5] and many more, as
described in the survey papers [35, 28]. Also, tensor-based
approaches for higher-order graph matching have been con-
sidered [16, 32].

While the requirement X ∈ P implies bijective match-
ings, in the case of matching only two objects, the formula-
tions (1) and (2) are general in the sense that they also apply
to partial matchings, which can be achieved by incorporat-
ing dummy points with suitable costs. However, due to am-
biguities with multi-matchings of dummy points, this is not
easily possible when considering more than two objects.

Multi-matching: In contrast to the works of [46], where
cycle-consistency has been modelled as soft-constraint
within a Bayesian framework for multi-graph matching, in
[49, 48] the authors have addressed multi-graph matching
in terms of simultaneously solving pairwise graph matching
under (hard) cycle-consistency constraints. In [50], the au-
thors have generalised factorised graph matching [54] from
matching a pair of graphs to multi-graph matching. Another
approach that tackles multi-graph matching is based on a
low-rank and sparse matrix decomposition [51]. In [47], a
composition-based approach with a cycle-consistency regu-
lariser is employed. In [24], the authors propose a semidefi-
nite programming (SDP) relaxation for multi-graph match-
ing by (i) relaxing cycle-consistency via a semidefinite con-
straint, and (ii) lifting the n×n permutation matrices to



n2×n2-dimensional matrices. In order to reduce compu-
tational costs due to the lifting of the permutation matrices,
the authors in [6] propose a lifting-free SDP relaxation for
multi-graph matching. In [36], the authors propose a ran-
dom walk technique for multi-layered multi-graph match-
ing. While there is a wide range of algorithmic approaches
for multi-graph matching, the aforementioned approaches
have in common that they are computationally expensive
and are only applicable to small-scale problems, where the
total number of points does not significantly exceed a thou-
sand (e.g. 20 graphs with 50 nodes each). In contrast,
our method scales much better and handles multi-matching
problems with more than 30k points.

In [13], the authors use a two-stage approach with a
sparsity-inducing `1-formulation for multi-shape matching.
While the effect of this approach is that only very few
multi-matchings are found, our approach obtains signifi-
cantly more multi-matchings, as we will demonstrate later.

Rather than modelling higher-order relations between
points, the recent approach [45] accounts for geometric con-
sistency in 2D multi-image matching problems by impos-
ing a low rank of the (stacked) 2D image coordinates of
the feature points. On the one hand, this is based on the
(over-simplified) assumption that the 2D images depict a
3D scene under orthographic projections, and on the other
hand such an extrinsic approach is not directly applicable
to distances on non-Euclidean manifolds (e.g. multi-shape
matching with geodesic distances). In contrast, our ap-
proach is intrinsic due to the use of pairwise adjacency ma-
trices, and thus can handle general pairwise information in-
dependent of the structure of the ambient space.

Synchronisation methods: Given pairwise matchings
between pairs of objects in a collection, synchronisation
methods have the purpose of improving the given input
matchings. The motivation of permutation synchronisation
methods is to achieve cycle-consistency in the set of pair-
wise matchings:

Definition 1. (Cycle-consistency)
Let X = {Xij ∈ Pmimj}ki,j=1 be the set of pairwise match-
ings in a collection of k objects, where each Xij is an ele-
ment of the set of partial permutation matrices

Ppq = {X ∈ {0, 1}p×q : X1q ≤ 1p,1
T
pX ≤ 1Tq } . (3)

The set X is said to be cycle-consistent, if for all i, j, ` ∈
[k] := {1, . . . , k} it holds that:

(i) Xii = Imi (identity matching),

(ii) Xij = XT
ji (symmetry), and

(iii) XijXj` ≤ Xi` (transitivity).

For the case of full permutation matrices, i.e. in (3) the
inequalities become equalities and p=q, Pachauri et al. [34]

have proposed a simple yet effective method to achieve
cycle-consistency based on a spectral decomposition of the
matrix of pairwise matchings. The authors of [39] provide
an analysis of such spectral synchronisations. Earlier works
have also considered an iterative refinement strategy to im-
prove pairwise matchings [31].

While the aforementioned synchronisation methods con-
sidered the case of full permutations, some authors have
also addressed the synchronisation of partial matchings, e.g.
based on semidefinite programming [11], alternating direc-
tion methods of multipliers [55], or a spectral decomposi-
tion followed by k-means clustering [2]. A spectral ap-
proach has also been presented in [29], which, however,
merely improves given initial pairwise matchings without
guaranteeing cycle-consistency.

Rather than explicitly modelling the cubic number of
cycle-consistency constraints (cf. Def. 1), most permuta-
tion synchronisation methods leverage the fact that cycle-
consistency can be characterised by using the notion of uni-
verse points, as e.g. in [43]:

Lemma 2. (Cycle-consistency, universe points)
The set X of pairwise matchings is cycle-consistent, if there
exists a collection

{X` ∈ Pm`d : X`1d = 1m`
}k`=1 , (4)

such that for each Xij ∈ X it holds that Xij = XiX
T
j .

Proof. We show that conditions (i)-(iii) in Def. 1 are ful-
filled. Let i, j, ` ∈ [k] be fixed. (i) We have that Xi1d =
1mi

and Xi ∈ Pmid imply that XiX
T
i = Imi

, so that
Xii = XiX

T
i = Imi

. (ii) Moreover, Xij = XiX
T
j means

that XT
ij = (XiX

T
j )

T = XjX
T
i = Xji. (iii) We have that

Xj ∈ Pmjd implies XT
j Xj ≤ Id. We can write

XijXj` = (XiX
T
j )(XjX

T
` ) (5)

= Xi (X
T
j Xj)︸ ︷︷ ︸
≤Id

XT
` ≤ XiX

T
` = Xi` . �

Here, the (m`×d)-dimensional object-to-universe
matching matrix X` assigns to each of the m` points of
object ` exactly one of d universe points—as such, all
points among the k objects that are assigned to a given
(unique) universe point are said to be in correspondence.

For notational brevity, it is convenient to consider a ma-
trix formulation of Lemma 2. With mi being the number of
points in the i-th object and m =

∑k
i=1mi, let X be the

(m×m)-dimensional pairwise matching matrix

X = [Xij ]
k
i,j=1 ∈ [Pmimj ]

k
i,j=1 (6)

and let

U = {U ∈ [Pmid]i : U1d = 1m} ⊂ {0, 1}m×d . (7)



Lemma 2 translates into the requirement that there must be
a U ∈ U , such that

X = UUT . (8)

With this matrix notation it becomes also apparent that
one can achieve synchronisation by matrix factorisation,
such as pursued by the aforementioned spectral approaches
[34, 39, 2, 29]. While recently a lot of progress has been
made for permutation synchronisation, one of the open
problems is how to efficiently integrate higher-order infor-
mation to model geometric relations between points. We
achieve this goal with our proposed method and demon-
strate a significant improvement of the matching accuracy
due to the additional use of geometric information.

Power method: The power method is one of the clas-
sical routines within numerical linear algebra for com-
puting the eigenvector corresponding to the largest (abso-
lute) eigenvalue. For a given (symmetric) matrix A, the
power method iteratively updates xt+1=

1
‖Axt‖Axt, where

it can be shown that xt converges to an eigenvector of
A [20]. Moreover, it is well-known that the eigenvector cor-
responding to the largest (absolute) eigenvalue maximises
the Rayleigh quotient x

TAx
xT x

, which, up to scale, is equiva-
lent to maximising the (not necessarily convex) quadrative
objective xTAx over the unit sphere. In addition to com-
puting a single eigenvector, straightforward extensions of
the power method are the Orthogonal Iteration and QR It-
eration methods [20], which simultaneously compute mul-
tiple (orthogonal) eigenvectors. Analogously to the power
method, such methods can be used to maximise the (not
necessarily convex) quadratic objective tr(XTAX) over
the Stiefel manifold, i.e. under the orthogonality constraint
XTX = I.

Power method generalisations: In addition to opti-
mising quadratic objective functions, higher-order gener-
alisations of the power method have been proposed. For
rank-1 tensor approximation, Lathauwer et al. have pro-
posed the Higher-order Power Method [15]. In [40], the
authors propose Tensor Power Iterations for the problem of
multi-graph matching. However, their approach has a run-
time complexity that is exponential in the number of graphs
and thus prevents scalability (e.g. matching 12 graphs, each
with 10 nodes, takes about 10 minutes). In [10], the au-
thors propose a Projected Power Method for the optimisa-
tion of quadratic functions over sets other than the Stiefel
manifold, such as permutation matrices. In a permutation
synchronisations setting, their method obtains results that
are comparable to semidefinite relaxations methods [11, 22]
at a reduced runtime. However, due to the restriction to
quadratic objective functions, their approach cannot han-
dle geometric relations between points, as they would be-
come polynomials of degree four, as will be explained in
Sec. 3. Our method goes beyond the existing approaches as

we propose a method that resembles a projected power it-
eration for maximising a higher-order objective over the set
U . With that, we can incorporate geometric information be-
tween neighbouring points using a fourth-order polynomial,
while always maintaining cycle-consistency.

3. Method
The overall idea of our approach is to phrase the multi-

matching problem as simultaneously solving k2 pairwise
matching problems that incorporate linear (first-order) and
quadratic (second-order) terms. However, instead of di-
rectly optimising over pairwise matchings, we parametrise
the pairwise matchings in terms of their object-to-universe
matchings, cf. Lemma 2 and Eq. (8). While this has the
advantages that (i) cycle-consistency is guaranteed to be al-
ways maintained, as well as that (ii) one only optimises for
m × d (rather than m × m variables in the pairwise case;
where commonly d � m), one disadvantage is that the
linear term becomes quadratic, and the quadratic term be-
comes quartic (a fourth-order polynomial). In the following
we will elaborate on this.

3.1. Multi-Matching Formulation

Our multi-matching formulation that optimises over the
object-to-universe matchings X1, . . . , Xk reads

max
X1,...,Xk

k∑
i,j=1

〈XiX
T
j ,Wij〉+ 〈XT

i AiXi, X
T
j AjXj〉

s.t Xi ∈ Pmid ∀ i ∈ [k] . (9)

Here, Wij ∈ Rmi×mj

+ encodes the (non-negative) similar-
ity scores between the points of object i and j (in anal-
ogy to linear terms when using pairwise matching matri-
ces). Ai ∈ Rmi×mi

+ denotes the (non-negative) adjacency
matrix of object i (e.g. a matrix that encodes the Gaussian
of pairwise Euclidean/geodesic distances between pairs of
points). The matrixXT

i AiXi is a row/column reordering of
the matrix Ai according to the universe points, and the in-
ner product 〈·, ·〉 between two reordered adjacency matrices
computes their correlation, which we aim to maximise. For
fixed (i, j), each term 〈XT

i AiXi, X
T
j AjXj〉 can be under-

stood as the object-to-universe formulation of second-order
matching terms when using pairwise matching matrices
(analogous to the QAP in Koopmans-Beckmann form [25]).
In compact matrix notation, Problem (9) can be written as

max
U∈U

tr(UTWU) + tr(UTAUUTAU) =: f(U) , (10)

where U = [XT
1 , . . . , X

T
k ]
T ∈ Rm×d, W = [Wij ]ij ∈

Rm×m, andA is the block-diagonal multi-adjacency matrix
defined as A = diag(A1, . . . , Ak) ∈ Rm×m. While (10) is
based on the U -matrix and hence intrinsically guarantees



cycle-consistent multi-matchings, the objective function is
a fourth-order polynomial that is to be maximised over the
(binary) set U .

3.2. Algorithm

In order to solve Problem (10) we propose to use an
alternating higher-order projected power iteration, as out-
lined in Algorithm 1. The main idea is to first perform a

Input: similarities W , multi-adjacency matrix A
Output: cycle-consistent multi-matching Ut ∈ U
Initialise: U0 ∈ U

1 for t = 1, 2, . . . do
// step for quartic term

2 Vt ← AUtU
T
t AUt

// step for quadratic term

3 V ′t ←WVt
// projection

4 Ut+1 ← projU (V
′
t )

5 if f(Ut+1) ≤ f(Ut) then
6 Ut+1 ← Ut
7 return
Algorithm 1: Higher-order Projected Power Iteration
(HiPPI) algorithm.

power iteration step with respect to the quartic term, fol-
lowed by a power iteration step for the quadratic term, and
eventually project onto the set U . The approach is extremely
simple, and merely comprises of matrix multiplications and
the Euclidean projection onto U . Similar as in other multi-
matching approaches (e.g. [55, 45]), we have found that an
initialisation U0 based on solutions of linear matching prob-
lems is sufficient (cf. Sec. 4). Moreover, in all conducted
experiments we have observed that Algorithm 1 is always
able to improve the initial objective f(U0) in (10), and that
it typically terminates after 10− 20 iterations, see Fig. 2.

iteration count

0 10 20 30

iteration

0

50

100

p
e

rc
e

n
ta

g
e

 o
f 

in
s
ta

n
c
e

s

5 10 15 20

iteration

1

1.5

2

2.5

3

re
la

ti
v
e

 i
m

p
ro

v
e

m
e

n
t

improvement to init.

Figure 2. Left: the histogram shows for a given iteration count
(horizontal axis) in what percentage of instances the algorithm was
still running. Right: improvement of f(Ut) relative to the initial
f(U0) for ten random instances from Sec. 4 (log-scale).

For the sake of completeness, we state the following result:

Lemma 3. Algorithm 1 terminates after a finite number of
iterations.

Proof. Since U is a finite set, f(U) is bounded above for
any U ∈ U . Moreover, since for any t > 0 we have that
Ut ∈ U (feasibility), the sequence (f(Ut))t=1,2,... produced
from lines 1–6 of Alg. 1 is bounded and non-decreasing (by
construction), and hence convergent. Since the Ut are dis-
crete, convergence implies that there exists a t0 ∈ N such
that for all t ≥ t0 it holds that f(Ut) = f(Ut0). Hence,
Algorithm 1 terminates. �

Projection onto U: The projection onto the binary set U
can be solved as linear assignment problem:

Lemma 4. The projection of V = [V T1 , . . . , V
T
k ]T onto

the set U , projU (V ) = argminU∈U ‖V−U‖2F , is given by
U = [XT

1 , . . . , X
T
k ]
T , where

Xi = argmax
Yi∈Pmid

,Yi1d=1mi

〈Yi, Vi〉 . (11)

Proof. We have that ‖V−U‖2F = 〈V, V 〉 − 2〈V,U〉 +
〈U,U〉. Moreover, U ∈ U means that U is a binary ma-
trix that has exactly a single element in each row that is 1.
Hence, 〈U,U〉 = m, and the only non-constant term that
remains when minimising ‖V−U‖2F over U is −2〈V,U〉.
When solving argmaxU∈U 〈V,U〉, the k blocks in V are de-
coupled, so that we can solve for them individually, i.e. for
U = [XT

1 , . . . , X
T
k ], we have

U∗ = argmax
U∈U

〈V,U〉 (12)

= argmax
{Xi∈Pmid

: Xi1d=1mi
}ki=1

〈V1...
Vk

 ,
X1

...
Xk

〉 (13)

=


argmax

X1∈Pm1d,X11d=1m1

〈X1, V1〉

...
argmax

Xk∈Pmkd,Xk1d=1mk

〈Xk, Vk〉

 . �

Lemma 4 shows that the projection onto U can be per-
formed by solving k individual (partial) linear assignment
problems, which can be performed efficiently with the Auc-
tion algorithm [7] (linear assignment problems with matri-
ces of sizes in the order of 104 × 104 can easily be solved).

Complexity analysis: The update rule in Algorithm 1
can be written as U = projU (((WA)U)(UT (AU))). The
matrix multiplications (lines 2 and 3 in Algorithm 1) have
time complexity O(md2), where the product WA, with
complexity O(m2d) must be computed only once and thus
does not affect the per-iteration complexity. Since the pro-
jection amounts to solving k independent (partial) linear as-
signment problems (each with sub-cubic empirical average
time complexity [38]), the overall (average) per-iteration
complexity is O(md2 + kd2 log(d)). The memory com-
plexity isO(m2) due to the matrix W ∈ Rm×m, which can
be improved by considering sparse similarity scores.
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Figure 3. Multi-image matching on the HiPPI dataset. Our method is the only one that considers geometric relations between points, while
at the same time being scalable to such large datasets. We clearly outperform other matching methods as well as synchronisation methods
in terms of the fscore (higher is better), while guaranteeing cycle-consistency, and being much faster compared to most competitors.

4. Experimental Results
In this section we extensively compare our method to

other approaches on three datasets. To be more specific, we
consider two multi-image matching datasets, Willow [12]
and HiPPI, as well as the multi-shape matching dataset
Tosca [8]. The datasets are summarised in Table 1.

Dataset Type Bij. # k m

HiPPI images no 31 [7,100] [2257,20703]
Willow images yes 5 [40,108] [400,1080]
Tosca shapes no 7 [6,20] [3000,10000]

Table 1. Overview of datasets. “Bij.” indicates whether the match-
ings are bijective, and “#” is the number of instances per dataset.

Similarity scores: The similarity scores between im-
age/shape i and j is encoded in the matrix Wij ∈ Rmi×mj

+ ,
which is defined using feature matrices Fi ∈ Rmi×f and
Fj ∈ Rmj×f of the respective image/shape, where f is the
feature dimensionality. As in [43], the similarity scores are
based on a weighted Gaussian kernel, i.e.

[Wij ]pq = ωpq exp(−
‖[Fi]p − [Fj ]q‖2

2σ2
) , (14)

where ωpq is a weight that depends on the distance between
the features and the closest descriptor from the same image.
For details we refer the reader to [43]. The particular choice
of features for each dataset are described below.

Adjacency matrices: The adjacency matrix Ai ∈
Rmi×mi

+ of image/shape i is based on Euclidean distances
between pairs of 2D image point locations in the case of
multi-image matching (or based on geodesic distances be-
tween pairs of points on the 3D shape surface in the case
of multi-shape matching). By denoting the distance be-
tween the points with indices p ∈ [mi] and q ∈ [mi]
as dpq , the elements of the adjacency matrix are based on

a Gaussian kernel, so that [Ai]pq=exp(− d2pq
2µσ2

A
). We set

σA=median(dmin), where [dmin]p=minq 6=p dpq for p ∈
[mi], and µ is a scaling factor.

4.1. HiPPI Dataset

In this experiment we compare various multi-image
matching methods.

Dataset: The HiPPI dataset comprises 31 multi-
image matching problems. For each problem instance,
a (short) video sequence has been recorded (with resolu-
tion 1920×1080, frame-rate 30 FPS, and duration >5s).
In each video, feature points and feature descriptors have
been extracted using SURF [4] with three octaves. To ob-
tain ground truth matchings, these feature points were au-
tomatically tracked across the sequence based on their ge-
ometric distance and feature descriptor similarity. To en-
sure reliable ground truth matchings, we have conducted
the following three steps: (i) obvious wrong matchings be-
tween consecutive images have been automatically pruned,
(ii) we have manually removed those features that were in-
correctly tracked from the first to the last frame (by inspect-
ing the first and last frame), and (iii) in order to prevent
feature sliding in-between the first and last frame, we have
manually inspected the flow of each remaining feature point
and we have removed wrongly tracked points. Note that
steps (ii) and (iii) have been performed by two different per-
sons, which took in total about 20 − 24 hours. The multi-
matching problems were then created by extracting evenly
spaced frames from the sequence, where in each frame we
added a significant amount of outlier points (randomly se-
lected from the previously pruned points, where the num-
ber of points is chosen such that in each frame 50% of the
points are outliers), and we simulate occlusions (a rectan-
gle of size 0.2×0.2 of the image dimensions) in order to get
difficult partial multi-matching problems.

Multi-image matching: We compare our method with
QUICKMATCH [43], MATCHEIG [29], SPECTRAL [34]
(implemented by the authors of [55] for partial permutation
synchronisation), and MATCHALS [55]. The universe size
d is set to twice the average of the number of points per im-
age, as in [29]. We have used QUICKMATCH (ρden=0.7) for
initialising U0 in our method, and we set µ=1. The results



Instance PAIRWISE SPECTRAL MATCHALS QUICKMATCH WANG ET AL. OURS

Car 0.47 (6.1s) 0.59 (0.1s) 0.61 (3.5s) 0.36 (0.1s) 0.68 (5.3s) 0.85 (0.3s)
Duck 0.43 (7.9s) 0.64 (0.1s) 0.61 (5.6s) 0.20 (0.1s) 0.76 (6.2s) 0.78 (0.2s)
Face 0.86 (44.0s) 0.93 (0.1s) 0.94 (35.7s) 0.86 (0.3s) 0.95 (5.6s) 1.00 (0.5s)
Motorbike 0.30 (6.1s) 0.30 (0.1s) 0.29 (2.8s) 0.14 (0.1s) 0.54 (8.8s) 0.68 (0.5s)
Winebottle 0.52 (16.4s) 0.68 (0.1s) 0.70 (6.4s) 0.28 (0.2s) 0.84 (7.5s) 0.86 (0.3s)

Table 2. Fscores (higher is better) and runtimes for the Willow dataset. All methods are initialised based on pairwise matches with linear
costs (except QUICKMATCH [43], which is initialisation-free). OURS and WANG ET AL. [45] consider geometric relations between points.

are shown in Fig. 3, where it can be seen that our method
achieves a superior matching quality. Moreover, in contrast
to other methods (except QUICKMATCH), our method guar-
antees cycle-consistency, while being significantly faster
than MATCHEIG, SPECTRAL and MATCHALS.

4.2. Willow Dataset

For the evaluation on the Willow dataset [12], we use
the experimental protocol from [45], where deep features
have been used for matching (due to the large variation
of the object appearances). For this dataset the matchings
are bijective, and hence for all methods we set the uni-
verse size d to the number of annotated features. Since
QUICKMATCH [43] is tailored towards partial matchings,
as it implicitly determines the universe size during its inter-
nal clustering, we have found that it does not perform very
well on this dataset (see Table 2). Hence, we initialise our
method based on a spectral method applied to linear match-
ing scores and we use µ=10. In Table 2 it can be seen that
our method is superior compared to the other approaches.

4.3. Tosca Dataset

Based on the experimental setup of [13] using the Tosca
dataset [8], we compare our method with two other ap-
proaches that guarantee cycle-consistency, namely QUICK-

MATCH, and the sparse multi-shape matching approach by
Cosmo et al. [13]. The feature descriptors on the shape sur-
faces are based on wave kernel signatures (WKS) [3], we use
QUICKMATCH (ρden=0.2) as initialisation, and set µ=5.

Multi-shape matching: Quantitative results are shown
in Fig. 4 and qualitative results are shown in Fig. 5. As
explained before, QUICKMATCH ignores geometric rela-
tions between points, and thus leads to geometric incon-
sistencies, as shown in the first row of Fig. 5. While the
method of Cosmo et al. [13] is able to incorporate geomet-
ric relations between points, one major limitation of their
approach is that only a sparse subset of matchings is found.
This may happen even when the shape collection is out-
lier free [13]. This behaviour can be seen in the second
row of Fig. 5, where only very few multi-matchings are ob-
tained and hence there are large regions for which no cor-
respondences are found. In contrast, our approach incor-
porates geometric consistency, produces significantly more
multi-matchings (Fig. 5), and results in a percentage of cor-
rect keypoints (PCK) that is competitive to the method of
Cosmo et al. [13], see Fig. 4.
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cat 88 518
centaur 51 551
david 136 511
dog 137 580
horse 21 511
michael 83 504
victoria 120 510

Figure 4. Our method obtains significantly more multi-matchings (bottom right, see also Fig. 5) compared to the method of
Cosmo et al. [13], while at the same time achieving comparable errors (percentage of correct keypoints, PCK).
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Figure 5. Qualitative results on the Tosca dataset for cat and centaur. Dots with same colour indicate matched points. QUICKMATCH (top)
does not take geometric consistency into account and thus leads to mismatches (red circles). While Cosmo et al. [13] (centre) obtain only
few reliable matchings, leading to regions without correspondences, our method (bottom) obtains significantly more reliable matchings.

5. Discussion & Limitations
Our method scales to much larger problems than

previous methods that consider geometric information
(cf. Figs. 1, 3, and Table 2). We evaluated problems with
m up to about 30,000 (k=10, mi≈3,000), resulting in a
runtime of about 1h. This is faster than the spectral ap-
proaches [34, 29] which take more than 1.5h while ignoring
geometric relations. Other methods that consider geometric
information [50, 40, 47, 45] are not applicable to such large
problems, cf. Fig. 1.

We have found that in all experiments the pro-
posed update rule Ut+1 = projU (WAUtU

T
t AUt)

improves upon the initial U0 obtained by a linear
multi-matching, as illustrated in Fig. 2 right. This
contrasts gradient-based approaches that cannot make
steps large enough to improve upon the initial U0,

2 4 6 8

iteration

Projected GD

Frank-Wolfe

Ours

as we show in the inset figure
for projected gradient descent
and the Frank-Wolfe method
(FW) [19], where the lat-
ter optimises over the convex
hull of U .

Our formulation of the geometric consistency term in
Problem (10) corresponds to the Koopmans-Beckmann

form of the QAP [25], which is strictly less general com-
pared to Lawler’s form vec(X)TW vec(X) [26]. An in-
teresting direction for future work is to devise an analo-
gous algorithm for solving Lawler’s form (e.g. by rewriting
vec(X)TW vec(X) as

∑q
i=1 tr(AiXBiX

T ), cf. [54], and
performing q consecutive power iteration steps).

6. Conclusion
We presented a higher-order projected power iteration

approach for multi-matching. Contrary to existing permu-
tation synchronisation methods [34, 11, 55, 39, 2, 29], our
method is able to take geometric relations between points
into account. Hence, our approach can be seen as a gener-
alisation of permutation synchronisation. Moreover, previ-
ous multi-matching methods that consider geometric con-
sistency (e.g. [50, 47]) only allow to solve problems with
up to few thousand points. In contrast, we demonstrated
that our approach scales to tens of thousands of points.

In addition to being able to account for geometric consis-
tency, key properties of our method are computational effi-
ciency, simplicity, and guaranteed cycle-consistency. More-
over, we have demonstrated superior performance on vari-
ous datasets, which highlights the practical relevance of the
proposed algorithm.
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