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Abstract
We consider the canonical generalization of the well-studied Longest Increasing Sub-
sequence problem to multiple sequences, called k-LCIS: Given k integer sequences
X1, . . . , Xk of length at most n, the task is to determine the length of the longest com-
mon subsequence of X1, . . . , Xk that is also strictly increasing. Especially for the case
of k = 2 (called LCIS for short), several algorithms have been proposed that require
quadratic time in the worst case. Assuming the Strong Exponential Time Hypothesis
(SETH), we prove a tight lower bound, specifically, that no algorithm solves LCIS
in (strongly) subquadratic time. Interestingly, the proof makes no use of normaliza-
tion tricks common to hardness proofs for similar problems such as Longest Common
Subsequence.We further strengthen this lower bound (1) to rule outO (

(nL)1−ε
)
time

algorithms for LCIS, where L denotes the solution size, (2) to rule outO (
nk−ε

)
time

algorithms for k-LCIS, and (3) to follow already from weaker variants of SETH. We
obtain the same conditional lower bounds for the related Longest Common Weakly
Increasing Subsequence problem.
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alignments · Parameterized complexity · SETH
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1 Introduction

The longest common subsequence problem (LCS) and its variants are computational
primitives with a variety of applications, which includes, e.g., uses as similarity mea-
sures for spelling correction [37,43] or DNA sequence comparison [5,39], as well
as determining the differences of text files as in the UNIX diff utility [28]. LCS
shares characteristics of both an easy and a hard problem: (Easy) A simple and ele-
gant dynamic-programming algorithm computes an LCS of two length-n sequences
in time O (

n2
)
[43], and in many practical settings, certain properties of typical input

sequences can be exploited to obtain faster, “tailored” solutions (e.g., [7,27,29,38]; see
also [14] for a survey). (Hard) At the same time, no polynomial improvements over the
classical solution are known, thus exact computation may become infeasible for very
long general input sequences. The research community has sought for a resolution of
the question “Do subquadratic algorithms for LCS exist?” already shortly after the
formalization of the problem [4,21].

Recently, an answer conditional on the Strong Exponential Time Hypothesis
(SETH; see Sect. 2 for a definition) could be obtained: Based on a line of research
relating the satisfiability problem to quadratic-time problems [3,15,41,44] and follow-
ing a breakthrough result for Edit Distance [9], it has been shown that unless SETH
fails, there is no (strongly) subquadratic-time algorithm for LCS [1,16]. Subsequent
work [2] strengthens these lower bounds to hold already underweaker assumptions and
even provides surprising consequences of sufficiently strong polylogarithmic improve-
ments.

Due to its popularity and wide range of applications, several variants of LCS have
been proposed. This includes the heaviest common subsequence (HCS) [32], which
introduces weights to the problem, as well as notions that constrain the structure of
the solution, such as the longest common increasing subsequence (LCIS) [46], LCSk
[13], constrained LCS [8,20,42], restricted LCS [26], and many other variants (see,
e.g., [6,19,33]). Most of these variants are (at least loosely) motivated by biological
sequence comparison tasks. To the best of our knowledge, in the above list, LCIS is
the only LCS variant for which (1) the best known algorithms run in quadratic time
in the worst case and (2) its definition does not include LCS as a special case (for
such generalizations of LCS, the quadratic-time SETH hardness of LCS [1,16] would
transfer immediately). As such, it is open to determine whether there are (strongly)
subquadratic algorithms for LCIS or whether such algorithms can be ruled out under
SETH. The starting point of our work is to settle this question.

1.1 Longest Common Increasing Subsequence (LCIS)

The Longest Common Increasing Subsequence problem on k sequences (k-LCIS) is
defined as follows: Given integer sequences X1, . . . , Xk of length at most n, determine
the length of the longest sequence Z such that Z is a strictly increasing sequence of
integers and Z is a subsequence of each Xi , i ∈ {1, . . . , k}. For k = 1, we obtain
the well-studied longest increasing subsequence problem (LIS; we refer to [22] for
an overview), which has an O (n log n) time solution and a matching lower bound in
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the decision tree model [25]. The extension to k = 2, denoted simply as LCIS, has
been proposed by Yang, Huang, and Chao [46], partially motivated as a generalization
of LIS and by potential applications in bioinformatics. They obtained an O (

n2
)
time

algorithm, leaving open the natural question whether there exists a way to extend the
near-linear time solution for LIS to a near-linear time solution for multiple sequences.

Interestingly, already a classic connection between LCS and LIS combined with a
recent conditional lower bound of Abboud et al. [1] yields a partial negative answer
assuming SETH.

Observation 1 (Folklore reduction, implicit in [29], explicit in [32]) After O (
kn2

)

time preprocessing, we can solve k-LCS by a single call to (k −1)-LCIS on sequences
of length at most n2.

Proof Let L(σ ) denote the decreasing sequence of positions j with X1[ j] = σ . We
define sequences X ′

i = L(Xi [0]) · · · L(Xi [|Xi | − 1]) for all i ∈ {2, . . . , k}. We claim
that for any �, there exists a length-� increasing common subsequence of X ′

2, . . . , X ′
k

if and only if there is a length-� common subsequence of X1, . . . , Xk . Thus, the length
of the LCIS of X ′

2, . . . , X ′
k is equal to the length of the LCS of X1, . . . , Xk , and the

claim follows since |L(σ )| � n for all σ .
To prove this claim, let (σ0, . . . , σ�−1) be any common subsequence of X1, . . . , Xk .

In particular, we have σ j = X1[p j ] for some strictly increasing sequence of positions
(p0, . . . , p�−1). We claim that (p0, . . . , p�−1) is a common increasing sequence of
X ′
2, . . . , X ′

k . Indeed, for any j ∈ {0, . . . , �− 1}, p j belongs to L(σ j ) by definition, so
(p0, . . . , p�−1) is a subsequence of L(σ0) . . . L(σ�−1), which in turn is a subsequence
of X ′

i for any i ≥ 2.
Conversely, let (p0, . . . , p�−1) be any common increasing subsequence of

X ′
2, . . . , X ′

k . Let σ j = X1[p j ] for j = 0, . . . , � − 1. The sequence (σ0, . . . , σ�−1) is
trivially a subsequence of X1. For i ∈ {2, . . . , k}, observe that every p j must belong to
L(Xi [r j ]) for some 0 ≤ r j < |Xi |, and that for any j1 < j2, we must have r j1 < r j2 ,
as L(σ ) is always a strictly decreasing sequence. Thus, (Xi [r0], . . . , Xi [r�−1]) is a
subsequence of Xi , where Xi [r j ] = σ j must hold, since p j appears in L(Xi [r j ]).
Thus (σ0, . . . , σ�−1) is a length-� subsequence of all the Xi sequences. ��

Corollary 1 Unless SETH fails, there is no O
(

n
3
2−ε

)
time algorithm for LCIS for any

constant ε > 0.

Proof Note that by the above reduction, an O
(

n
3
2−ε

)
time LCIS algorithm would

give an O (
n3−2ε

)
time algorithm for 3-LCS. Such an algorithm would refute SETH

by a result of Abboud et al. [1]. ��
While this rules out near-linear time algorithms, still an unsatisfying large polyno-

mial gap between best upper and conditional lower bounds persists.

1.2 Our Results

Our first result is a tight SETH-based lower bound for LCIS.
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Theorem 1 Unless SETH fails, there is no O (
n2−ε

)
time algorithm for LCIS for any

constant ε > 0.

We extend our main result in several directions.

1.2.1 Parameterized Complexity I: Solution Size

Subsequent work [18,35] improved over Yang et al.’s algorithm when certain input
parameters are small. Here, we focus particularly on the solution size, i.e., the
length L of the LCIS. Kutz et al. [35] provided an algorithm running in time
O (nL log log n + n log n). Clearly, L can be as large as n. However, when L is sig-

nificantly smaller, say L = n
1
2±o(1), this algorithm runs in strongly subquadratic time.

Interestingly, exactly for this case, the reduction from 3-LCS to LCIS of Observation 1

already yields a matching SETH-based lower bound of (Ln)1−o(1) = n
3
2−o(1). How-

ever, for smaller L , this reduction yields no lower bound at all and only a non-matching
lower bound for larger L . We remedy this situation by the following result.1

Theorem 2 Unless SETH fails, there is no O (
(nL)1−ε

)
time algorithm for LCIS for

any constant ε > 0. This even holds restricted to instances with L = nγ±o(1), for
arbitrarily chosen 0 < γ � 1.

1.2.2 Parameterized Complexity II: k-LCIS

For constant k � 2,O (
nkpolylog(n)

)
time algorithms for k-LCIS follow from [18,35],

and a folklore DP approach yields an O (
nk

)
solution (see the appendix). While it is

known that k-LCS cannot be computed in timeO (
nk−ε

)
for any constant ε > 0, k � 2

unless SETH fails [1], this does not directly transfer to k-LCIS, since the reduction
in Observation 1 is not tight. However, by extending our main construction, we can
prove the analogous result.

Theorem 3 Unless SETH fails, there is no O (
nk−ε

)
time algorithm for k-LCIS for

any constant k � 2 and ε > 0.

1.2.3 Longest CommonWeakly Increasing Subsequence (LCWIS)

We consider a closely related variant of LCIS called the Longest Common Weakly
Increasing Subsequence (k-LCWIS): Here, given integer sequences X1, . . . , Xk of
length at most n, the task is to determine the longest weakly increasing (i.e. non-
decreasing) integer sequence Z that is a common subsequence of X1, . . . , Xk . Again,
we write LCWIS as a shorthand for 2-LCWIS. Note that the seemingly small change
in the notion of increasing sequence has a major impact on algorithmic and hardness
results: Any instance of LCIS in which the input sequences are defined over a small-
sized alphabet � ⊆ Z, say |�| = O (

n1/2
)
, can be solved in strongly subquadratic

1 Wemention in passing that a systematic study of the complexity of LCS in terms of such input parameters
has been performed recently in [17].

123



Algorithmica

time O (nL log n) = O (
n3/2 log n

)
[35], by using the fact that L � |�|. In contrast,

LCWIS is quadratic-time SETH hard already over slightly superlogarithmic-sized
alphabets [40]. We give a substantially different proof for this fact and generalize it to
k-LCWIS.

Theorem 4 Unless SETH fails, there is no O (
nk−ε

)
time algorithm for k-LCWIS for

any constant k � 2 and ε > 0. This even holds restricted to instances defined over an
alphabet of size |�| � f (n) log n for any function f (n) = ω(1) growing arbitrarily
slowly.

1.2.4 Strengthening the Hardness

In an attempt to strengthen the conditional lower bounds for Edit Distance and
LCS [1,9,16], particularly, to obtain barriers even for subpolynomial improvements,
Abboud et al. [2] gave the first fine-grained reductions from the satisfiability problem
on branching programs. Using this approach, the quadratic-time hardness of a problem
can be explained by considerably weaker variants of SETH, making the conditional
lower bound stronger. We show that our lower bounds also hold under these weaker
variants. In particular, we prove the following.

Theorem 5 There is no strongly subquadratic time algorithm for LCIS, unless there is,
for some ε > 0, anO (

(2 − ε)N
)

algorithm for the satisfiability problem on branching
programs of width W and length T on N variables with (log W )(log T ) = o (N ).

1.3 Discussion, Outline and Technical Contributions

Apart from an interest in LCIS and its close connection to LCS, our work is also
motivated by an interest in the optimality of dynamic programming (DP) algorithms.2

Notably, many conditional lower bounds in P target problems with natural DP algo-
rithms that are proven to be near-optimal under some plausible assumption (see, e.g.,
[1,3,9–11,15,16,23,34,45] for an introduction to the field). Even if we restrict our
attention to problems that find optimal sequence alignments under some restrictions,
such as LCS, Edit Distance and LCIS, the currently known hardness proofs differ
significantly, despite seemingly small differences between the problem definitions.
Ideally, we would like to classify the properties of a DP formulation which allow for
matching conditional lower bounds.

One step in this direction is given by the alignment gadget framework [16].
Exploiting normalization tricks, this framework gives an abstract property of sequence
similarity measures to allow for SETH-based quadratic lower bounds. Unfortunately,
as it turns out, we cannot directly transfer the alignment gadget hardness proof for
LCS to LCIS – some indication for this difficulty is already given by the fact that LCIS
can be solved in strongly subquadratic time over sublinear-sized alphabets [35], while
the LCS hardness proof already applies to binary alphabets. By collecting gadgetry
needed to overcome such difficulties (that we elaborate on below), we hope to pro-

2 We refer to [47] for a simple quadratic-time DP formulation for LCIS.
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vide further tools to generalize more and more quadratic-time lower bounds based on
SETH.

1.3.1 Technical Challenges

The known conditional lower bounds for global alignment problems such as LCS and
Edit Distance work as follows. The reductions start from the quadratic-time SETH-
hard Orthogonal Vectors problem (OV), that asks to determine, given two sets of
(0, 1)-vectors U = {u0, . . . , un−1},V = {v0, . . . , vn−1} ⊆ {0, 1}d over d = no(1)

dimensions, whether there is a pair i, j such that ui and v j are orthogonal, i.e., whose
inner product (ui · v j ) := ∑d−1

k=0 ui [k] · v j [k] is 0 (over the integers). Each vector
ui and v j is represented by a (normalized) vector gadget VGx(ui ) and VGy(v j ),
respectively. Roughly speaking, these gadgets are combined to sequences X and Y
such that each candidate for an optimal alignment of X and Y involves locally optimal
alignments between n pairs VGx(ui ),VGy(v j )—the optimal alignment exceeds a
certain threshold if and only if there is an orthogonal pair ui , v j .

An analogous approach does not work for LCIS: Let VGx(ui ) be defined over an
alphabet � and VGx(ui ′) over an alphabet �′. If� and�′ overlap, then VGx(ui ) and
VGx(ui ′) cannot both be aligned in an optimal alignment without interference with
each other. On the other hand, if � and �′ are disjoint, then each vector v j should
have its corresponding vector gadget V Gy(v j ) defined over both � and �′ in order
to allow aligning VGx(ui ) with VGy(v j ) as well as VGx(ui ′) with VGy(v j ). The
latter option drastically increases the size of vector gadgets. Thus, we must define
all vector gadgets over a common alphabet � and make sure that only a single pair
VGx(ui ),VGy(v j ) is aligned in an optimal alignment (in contrast with n pairs aligned
in the previous reductions for LCS and Edit Distance).

1.3.2 Technical Contributions and Proof Outline

Fortunately, a surprisingly simple approachworks: As a key tool, we provide separator
sequences α0 . . . αn−1 and β0 . . . βn−1 with the following properties: (1) for every
i, j ∈ {0, . . . , n − 1} the LCIS of α0 . . . αi and β0 . . . β j has a length of f (i + j),
where f is a linear function, and (2)

∑
i |αi | and∑

j |β j | are bounded by n1+o(1). Note
that existence of such a gadget is somewhat unintuitive: condition (1) for i = 0 and
j = n − 1 requires |α0| = 
(n), yet still the total length

∑
i |αi | must not exceed the

length of |α0| significantly. Indeed, we achieve this by a careful inductive construction
that generates such sequences with heavily varying block sizes |αi | and |β j |.

We apply these separator sequences as follows.Wefirst define simple vector gadgets
VGx(ui ),VGy(v j ) over an alphabet� such that the length of an LCIS of VGx(ui ) and
VGy(v j ) is d − (ui · v j ). Then we construct the separator sequences as above over an
alphabet �< whose elements are strictly smaller than all elements in �. Furthermore,
we create analogous separator sequences α′

0 . . . α′
n−1 and β ′

0 . . . β ′
n−1 which satisfy

a property like (1) for all suffixes instead of prefixes, using an alphabet �> whose
elements are strictly larger than all elements in �. Now, we define

X = α0VGx(u0)α
′
0 . . . αn−1VGx(un−1)α

′
n−1,
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Y = β0VGy(v0)β
′
0 . . . βn−1VGy(vn−1)β

′
n−1.

As we will show in Sect. 3, the length of an LCIS of X and Y is C − mini, j (ui · v j )

for some constant C depending only on n and d.
In contrast to previous such OV-based lower bounds, we use heavily varying sepa-

rators (paddings) between vector gadgets.

2 Preliminaries

As a convention, we use capital or Greek letters to denote sequences over integers. Let
X , Y be integer sequences. We write |X | for the length of X , X [k] for the k-th element
in the sequence X (k ∈ {0, . . . , |X | − 1}), and X ◦ Y (or just XY , interchangeably)
for the concatenation of X and Y . We say that Y is a subsequence of X if there exist
indices 0 � i0 < i1 < · · · < i|Y |−1 � |X | − 1 such that X [ik] = Y [k] for all
k ∈ {0, . . . , |Y | − 1}. Given any number of sequences X1, . . . , Xk , we say that Y is a
common subsequence of X1, . . . , Xk if Y is a subsequence of each Xi , i ∈ {1, . . . , k}.
X is called strictly increasing (or weakly increasing) if X [0] < X [1] < · · · < X [|X |−
1] (or X [0] � X [1] � · · · � X [|X |−1]). For any k sequences X1, . . . , Xk , we denote
by lcis(X1, . . . , Xk) the length of their longest common subsequence that is strictly
increasing.

2.1 Hardness Assumptions

All of our lower bounds hold assuming the Strong Exponential Time Hypothesis
(SETH), introduced by Impagliazzo and Paturi [30,31]. It essentially states that no
exponential speed-up over exhaustive search is possible for the CNF satisfiability
problem.

Hypothesis 1 [Strong Exponential Time Hypothesis (SETH)] There is no ε > 0 such
that for all q � 3 there is an O (

2(1−ε)n
)
time algorithm for q-SAT.

This hypothesis implies tight hardness of the k-OrthogonalVectors problem (k-OV),
which will be the starting point of our reductions: Given k sets U1, . . . ,Uk ⊆ {0, 1}d ,
each with |Ui | = n vectors over d = no(1) dimensions, determine whether there is a
k-tuple (u1, . . . , uk) ∈ U1 × · · · ×Uk such that

∑d−1
�=0

∏k
i=1 ui [�] = 0. By exhaustive

enumeration, it can be solved in time O (
nkd

) = nk+o(1). The following conjecture
is implied by SETH by the well-known split-and-list technique of Williams [44] (and
the sparsification lemma [31]).3

3 We sketch how the split-and-list technique reduces q-SAT to k-Orthogonal Vectors. Given a q-CNF
formula on N variables and M clauses, the key idea is to split the variables into k sets V1, . . . , Vk of

roughly equal size. For each i , we then construct the vector set Ui as follows: for each of the O
(
2N/k

)

possible assignments to the variables Vi , we include a vector in {0, 1}M that represents the clauses that
are not already satisfied by this partial assignment. It is easy to see that the q-SAT instance is satisfiable
if and only if there are vectors (u1, . . . , uk ) ∈ U1 × · · · × Uk with

∑M−1
�=0

∏k
i=1 ui [�] = 0. This yields
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Hypothesis 2 (k-OV conjecture) Let k � 2. There is no O (
nk−ε

)
time algorithm for

k-OV, with d = ω(log n), for any constant ε > 0.

For the special case of k = 2, which we simply denote by OV, we obtain the
following weaker conjecture.

Hypothesis 3 (OV conjecture) There is no O (
n2−ε

)
time algorithm for OV, with

d = ω(log n), for any constant ε > 0. Equivalently, even restricted to instances with
|U1| = n and |U2| = nγ , 0 < γ � 1, there is no O (

n1+γ−ε
)
time algorithm for OV,

with d = ω(log n), for any constant ε > 0.

A proof of the folklore equivalence of the statements for equal and unequal set sizes
can be found, e.g., in [16].

3 Main Construction: Hardness of LCIS

In this section,weprove quadratic-timeSETHhardness ofLCIS, i.e., proveTheorem1.
We first introduce an inflation operation, which we then use to construct our separator
sequences.After defining simple vector gadgets,we showhow to embed anOrthogonal
Vectors instance using our vector gadgets and separator sequences.

3.1 Inflation

We begin by introducing the inflation operation, which simulates weighing the
sequences.

Definition 1 For a sequence A = 〈a0, a1, . . . , an−1〉 of integers we define:

inflate(A) = 〈2a0 − 1, 2a0, 2a1 − 1, 2a1, . . . , 2an−1 − 1, 2an−1〉 .

Lemma 1 For any two sequences A and B,

lcis(inflate(A), inflate(B)) = 2 · lcis(A, B).

Proof Let C be the longest common increasing subsequence of A and B. Observe that
inflate(C) is a common increasing subsequence of inflate(A) and inflate(B) of length
2 · |C |, thus lcis(inflate(A), inflate(B)) � 2 · lcis(A, B).

Conversely, let Ā denote inflate(A) and B̄ denote inflate(B). Let C̄ be the longest
common increasing subsequence of Ā and B̄. If we divide all elements of C̄ by 2 and

Footnote 3 continued
a k-OV instance with sets of size n = O

(
2N/k

)
and vector dimension d = M . Roughly speaking, the

sparsification lemma now allows us to assume that our q-CNF formula only has M = O (N ) = O (log n)

clauses, where the hidden constant depends on q. Thus, any O
(

nk−ε
)
algorithm for k-OV with vector

dimension d = ω(log n) would imply an O
(
2N/k·(k−ε)

)
= O

(
2(1−δ)N

)
algorithm for q-SAT for some

δ > 0 that is independent of q.
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round up to the closest integer, we end up with a weakly increasing sequence. Now, if
we remove duplicate elements tomake this sequence strictly increasing, we obtainC , a
common increasing subsequence of A and B. At most 2 distinct elements may become
equal after division by 2 and rounding, therefore C contains at least

⌈
lcis( Ā, B̄)/2

⌉

elements, so 2 · lcis(A, B) � lcis( Ā, B̄). This completes the proof. ��

3.2 Separator Sequences

Our goal is to construct two sequences A and B which can be split into n blocks,
i.e. A = α0α1 . . . αn−1 and B = β0β1 . . . βn−1, such that the length of the longest
common increasing subsequence of the first i blocks of A and the first j blocks of B
equals i + j , up to an additive constant. We call A and B separator sequences, and
use them later to separate vector gadgets in order to make sure that only one pair of
gadgets may interact with each other at the same time.

We construct the separator sequences inductively. For every k ∈ N, the sequences

Ak and Bk are concatenations of 2k blocks (of varying sizes), Ak = α0
k α1

k . . . α2k−1
k

and Bk = β0
k β1

k . . . β2k−1
k . Let sk denote the largest element of both sequences. As we

will soon observe, sk = 2k+2 − 3.
The construction works as follows: for k = 0, we can simply set A0 and B0 as one-

element sequences 〈1〉. We then construct Ak+1 and Bk+1 inductively from Ak and Bk

in two steps. First, we inflate both Ak and Bk , then after each (now inflated) block we
insert 3-element sequences, called tail gadgets, 〈2sk + 2, 2sk + 1, 2sk + 3〉 for Ak+1
and 〈2sk + 1, 2sk + 2, 2sk + 3〉 for Bk+1. Formally, we describe the construction by
defining blocks of the new sequences (see Figs. 1 and 2). For i ∈ {0, 1, . . . , 2k − 1},

α2i
k+1 = inflate(αi

k) ◦ 〈2sk + 2〉 , α2i+1
k+1 = 〈2sk + 1, 2sk + 3〉 ,

β2i
k+1 = inflate(β i

k) ◦ 〈2sk + 1〉 , β2i+1
k+1 = 〈2sk + 2, 2sk + 3〉 .

Note that the symbols appearing in tail gadgets do not appear in the inflated sequences.
The largest element of both new sequences sk+1 equals 2sk + 3, and solving the
recurrence gives indeed sk = 2k+2 − 3.

Now, let us prove two useful properties of the separator sequences.

Lemma 2 |Ak | = |Bk | = ( 3
2k + 1

) · 2k = O (
k2k

)
.

Proof Observe that |Ak+1| = 2|Ak | + 3 · 2k . Indeed, to obtain Ak+1 we first double
the size of Ak and then add 3 new elements for each of the 2k blocks of Ak . Solving
the recurrence completes the proof. The same reasoning applies to Bk . ��
Lemma 3 For every i, j ∈ {

0, 1, . . . , 2k − 1
}
, lcis(α0

k . . . αi
k, β

0
k . . . β

j
k ) = i + j +2k .

Proof The proof is by induction on k. For k = 0, we have lcis(α0
0, β

0
0 ) =

lcis(〈1〉 , 〈1〉) = 1, as desired. Assume the statement is true for k and let us prove
it for k + 1.
The “�” direction. First, consider the case when both i and j are even. Observe
that inflate(α0

k . . . α
i/2
k ) and inflate(β0

k . . . β
j/2

k ) are subsequences of α0
k+1 . . . αi

k+1
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2sk + 2 2sk + 1 2sk + 3

︸ ︷︷ ︸

α2i+1
k+1

︸ ︷︷ ︸

α2i
k+1

αi
k

︷ ︸︸ ︷

x x + 2

· · · 2sk + 2 2sk + 1 2sk + 3

· · · 2sk + 1 2sk + 2 2sk + 3

︸ ︷︷ ︸

β
2j+1
k+1

Ak+1

Bk+1

lcis =

︸ ︷︷ ︸

β
2j
k+1

α2i+1
k+1

︷ ︸︸ ︷

α2i
k+1

︷ ︸︸ ︷

x = 2i + 2j + 2k+1

Ak

Ak+1

tail gadget
︷ ︸︸ ︷

x + 1

Fig. 1 Constructing Ak+1 from Ak (left), and intuition behind tail gadgets (right)

1 2 3 4 5 6 11 12 7 8 9 1011 13 11 1211 13

tail gadget
︷ ︸︸ ︷

inflate(α0
1)

︷ ︸︸ ︷

1 2

α0
1

3 4 5

α1
1

inflate(α1
1)

︷ ︸︸ ︷
tail gadget

︷ ︸︸ ︷

α0
2 α1

2 α2
2 α3

2

1

inflate(α0
0)

︷ ︸︸ ︷
tail gadget

︷ ︸︸ ︷

α0
0

A1

A2

A0

1

β0
0

B0 1 2

β0
1

4 3 5

β1
1

inflate(β0
0)

︷ ︸︸ ︷
tail gadget

︷ ︸︸ ︷

B1

1 2 3 4 7 8 11 11 5 6 9 1012 13 11 1112 13

tail gadget
︷ ︸︸ ︷

inflate(β0
1)

︷ ︸︸ ︷
inflate(β1

1)
︷ ︸︸ ︷

tail gadget
︷ ︸︸ ︷

β0
2 β1

2 β2
2 β3

2

B2

Fig. 2 Initial steps of the inductive construction of the separator sequences
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and β0
k+1 . . . β

j
k+1, respectively. Thus, using the induction hypothesis and inflation

properties,

lcis(α0
k+1 . . . αi

k+1, β
0
k+1 . . . β

j
k+1) �

� lcis(inflate(α0
k . . . α

i/2
k ), inflate(β0

k . . . β
j/2

k )) =
= 2 · lcis(α0

k . . . α
i/2
k , β0

k . . . β
j/2

k ) = 2 · (i/2 + j/2 + 2k) = i + j + 2k+1.

If i is odd and j is even, refer to the previous case to get a common increasing
subsequence of α0

k+1 . . . αi−1
k+1 and β0

k+1 . . . β
j

k+1 of length i −1+ j +2k+1 consisting
only of elements less than or equal to 2sk , and append the element 2sk + 1 to the
end of it. Analogously, for i even and j odd, take such an LCIS of α0

k+1 . . . αi
k+1 and

β0
k+1 . . . β

j−1
k+1 , and append 2sk + 2. Finally, for both i and j odd, take an LCIS of

α0
k+1 . . . αi−1

k+1 and β0
k+1 . . . β

j−1
k+1 , and append 2sk + 1 and 2sk + 3.

The “�” direction. We proceed by induction on i + j . Fix i and j , and let L be a
longest common increasing subsequence of α0

k+1 . . . αi
k+1 and β0

k+1 . . . β
j

k+1.
If the last element of L is less than or equal to 2sk , L is in fact a common increasing

subsequence of inflate(α0
k . . . α

�i/2
k ) and inflate(β0

k . . . β
� j/2
k ), thus, by the induction

hypothesis and inflation properties, |L| � 2 · (�i/2 + � j/2 + 2k) � i + j + 2k+1.
The remaining case is when the last element of L is greater than 2sk . In this case,

consider the second-to-last element of L . It must belong to some blocks αi ′
k+1 and

β
j ′

k+1 for i ′ � i and j ′ � j , and we claim that i = i ′ and j = j ′ cannot hold
simultaneously: by construction of separator sequences, if blocks αi

k+1 and β
j

k+1 have
a common element larger than 2sk , then it is the only common element of these two
blocks. Therefore, it cannot be the case that both i = i ′ and j = j ′, because the
last two elements of L would then be located in αi

k+1 and β
j

k+1. As a consequence,
i ′ + j ′ < i + j , which lets us apply the induction hypothesis to reason that the
prefix of L omitting its last element is of length at most i ′ + j ′ + 2k+1. Therefore,
|L| � 1 + i ′ + j ′ + 2k+1 � i + j + 2k+1, which completes the proof. ��

Observe that ifwe reverse the sequences Ak and Bk alongwith changing all elements
to their negations, i.e. x to −x , we obtain sequences Âk and B̂k such that Âk splits

into 2k blocks α̂0
k . . . α̂2k−1

k , B̂k splits into 2k blocks β̂0
k . . . β̂2k−1

k , and

lcis(α̂i
k . . . α̂2k−1

k , β̂
j

k . . . β̂2k−1
k ) = 2 · (2k − 1) − i − j + 2k . (1)

Finally, observe that we can add any constant to all elements of the sequences Ak

and Bk (as well as Âk and B̂k) without changing the property stated in Lemma 3 (and
its analogue for Âk and B̂k , i.e. Eq. (1)).

3.3 Vector Gadgets

Let U = {u0, . . . , un−1} and V = {v0, . . . , vn−1} be two sets of d-dimensional (0, 1)-
vectors.
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For i ∈ {0, 1, . . . , n−1} let us construct the vector gadgetsUi and Vi as 2d-element
sequences, by defining, for every p ∈ {0, 1, . . . , d − 1},

(Ui [2p], Ui [2p + 1]) =
{

(2p, 2p + 1) if ui [p] = 0,

(2p, 2p) if ui [p] = 1,

(Vi [2p], Vi [2p + 1]) =
{

(2p + 1, 2p) if vi [p] = 0,

(2p + 1, 2p + 1) if vi [p] = 1.

Observe that at most one of the elements 2p and 2p + 1 may appear in the LCIS
of Ui and Vj , and it happens if and only if ui [p] and v j [p] are not both equal to one.
Therefore, lcis(Ui , Vj ) = d − (ui · v j ), and, in particular, lcis(Ui , Vj ) = d if and
only if ui and v j are orthogonal.

3.4 Final Construction

To put all the pieces together, we plug vector gadgets Ui and Vj into the separator
sequences from Sect. 3.2, obtaining two sequences whose LCIS depends on the min-
imal inner product of vectors ui and v j . We provide a general construction of such
sequences, which will be useful in later sections.

Lemma 4 Let X0, X1, . . . , Xn−1, Y0, Y1, . . . , Yn−1 be integer sequences such that
none of them has an increasing subsequence longer than δ. Then there exist sequences
X and Y of length O (δ · n log n) + ∑ |Xi | + ∑ |Y j |, constructible in linear time,
such that:

lcis(X , Y ) = max
i, j

lcis(Xi , Y j ) + C

for a constant C that only depends on n and δ and satisfies C = O (nδ).

Proof First, we can assume that n = 2k for some positive integer k. If not, we can add
dummy one-element sequences as new Xi ’s and Y j ’s such that they have no common
element with any other sequences. This increases n at most twofold and

∑ |Xi | and∑ |Y j | by at most n.
Recall the sequences Ak , Bk , Âk and B̂k constructed in Sect. 3.2. Let A, B, Â,

B̂ be the sequences obtained from Ak , Bk , Âk , B̂k by applying inflation
⌈
log2 δ

⌉

times (thus increasing their length by a factor of � = 2�log2 δ� � δ). Each of these
four sequences splits into (now inflated) blocks, e.g. A = α0α1 . . . αn−1, where αi =
inflate�log2 δ�(αi

k).
We subtract from A and B a constant large enough for all their elements to be

smaller than all elements of every Xi and Y j . Similarly, we add to A′ and B ′ a constant
large enough for all their elements to be larger than all elements of every Xi and Y j .
Now, we can construct the sequences X and Y as follows:

X = α0X0α̂0α1X1α̂1 . . . αn−1Xn−1α̂n−1,
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Y = β0Y0β̂0β1Y1β̂1 . . . βn−1Yn−1β̂n−1.

We claim that

lcis(X , Y ) = � · (4n − 2) + M , where M = max
i, j

lcis(Xi , Y j ).

Let Xi and Y j be the pair of sequences achieving lcis(Xi , Y j ) = M . Recall that
lcis(α0 . . . αi , β0 . . . β j ) = � · (i + j + n), with all the elements of this common
subsequence preceding the elements of Xi and Y j in X and Y , respectively, and being
smaller than them. In the same way lcis(α̂i . . . α̂n−1, β̂ j . . . β̂n−1) = � · (2 · (n − 1) −
(i + j)+n)with all the elements of LCIS being greater and appearing later than those
of Xi and Y j . By concatenating these three sequences we obtain a common increasing
subsequence of X and Y of length � · (4n − 2) + M .

It remains to prove lcis(X , Y ) � � ·(4n −2)+ M . Let L be any common increasing
subsequence of X and Y . Observe that L must split into three (some of them possibly
empty) parts L = SGŜ with S consisting only of elements of A and B, G – only
elements of Xi and Y j , and Ŝ – elements of Â and B̂.

Let x be the last element of S and x̂ the first element of Ŝ. We know that x belongs
to some blocks αi of A and β j of B, and x̂ belongs to some blocks α̂î of Â and β̂ ĵ

of B̂. Obviously i � î and j � ĵ . By Lemma 3 and inflation properties we have
|S| � � · (i + j + n) and |Ŝ| � � · (2 · (n − 1) − (î + ĵ) + n). We consider two cases:

Case 1. If i = î and j = ĵ , then G may only contain elements of Xi and Y j .
Therefore

|L| � |S| + lcis(Xi , Y j ) + |Ŝ| � � · (4n − 2) + M .

Case 2. If i < î or j < ĵ , then G must be a strictly increasing subsequence of both
Xi ◦ · · · ◦ Xî and Y j ◦ · · · ◦ Y ĵ therefore its length can be bounded by

|G| � min(δ · (î − i + 1), δ · ( ĵ − j + 1)) � � · (min(î − i, ĵ − j) + 1) �
� � · (min(î − i, ĵ − j) + max(î − i, ĵ − j)) = � · (î − i + ĵ − j).

On the other hand, |S| + |Ŝ| � � · (4n − 2 − (î − i) − ( ĵ − j)). From that we obtain
|L| � � · (4n − 2), as desired. ��

We are ready to prove the main result of the paper.

Proof of Theorem 1 Let U = {u0, . . . , un−1}, V = {v0, . . . , vn−1} be two sets of
binary vectors in d dimensions. In Sect. 3.3 we constructed vector gadgets Ui and
Vj , for i, j ∈ {0, 1, . . . , n − 1}, such that lcis(Ui , Vj ) = d − (ui · v j ). To these
sequences we apply Lemma 4, with δ = 2d, obtaining sequences X and Y of length
O (n log npoly(d)) such that lcis(X , Y ) = C + d − mini, j (ui · v j ) for a constant C .
This reduction, combined with an O (

n2−ε
)
time algorithm for LCIS, would yield an
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O (
n2−εpolylog(n)poly(d)

)
algorithm forOV, refutingHypothesis 3 and, in particular,

SETH. ��
With the reduction above, one can not only determine whether there exist a pair

of orthogonal vectors or not, but also, in the latter case, calculate the minimum inner
product over all pairs of vectors. Formally, by the above construction, we can reduce
even the Most Orthogonal Vectors problem, as defined in Abboud et al. [1] to LCIS.
This bases hardness of LCIS already on the inability to improve over exhaustive search
for the MAX-CNF-SAT problem, which is a slightly weaker conjecture than SETH.

4 Matching Lower Bound for Output-Dependent Algorithms

To prove our bivariate conditional lower bound of (nL)1−o(1), we provide a reduction
from an OV instance with unequal vector set sizes.

Proof of Theorem 2 Let 0 < γ � 1 be arbitrary and consider any OV instance with
sets U ,V ⊆ {0, 1}d with |U | = n, |V| = m = nγ and d = no(1). We reduce this
problem, in linear time in the output size, to an LCIS instance with sequences X and Y
satisfying |X | = |Y | = O (nd log n) and an LCIS of lengthO (nγ d). Theorem 2 is an
immediate consequence of the reduction: anO (

(nL)1−ε
)
time LCIS algorithm would

yield anOV algorithm running in timeO
(

n1+γ−ε′)
, which would refute Hypothesis 3

and, in particular, SETH.
It remains to show the reduction itself. Let U = {u0, . . . , un−1} and V =

{v0, . . . , vm−1} be two sets of d-dimensional (0, 1)-vectors. By padding U , if nec-
essary, with some dummy 1d vectors, we can assume without loss of generality that
n = q · m for some integer q.

We start with the vector gadgets Ui and Vj from Sect. 3.4. This time, however, we
group together every q consecutive gadgets, i.e., (U0, . . . , Uq−1), (Uq , . . . , U2q−1),

and so on. Specifically, let U [r ]
i be the i-th vector gadget shifted by an integer r (i.e.

with r added to all its elements). We define, for each l ∈ {0, 1, . . . , m − 1},

Ūl = U [2qd]
lq U [2qd−2d]

lq+1 . . . U [2d]
lq+q−1.

In a similar way, for j ∈ {0, 1, . . . , m − 1}, we replicate every Vj gadget q times with
appropriate shifts, i.e.,

V̄ j = V [2qd]
j V [2qd−2d]

j . . . V [2d]
j .

Let us now determine lcis(Ūl , V̄ j ). No two gadgets grouped in Ūl can contribute
to an LCIS together, as the later one would have smaller elements. Therefore, only
one Ui gadget can be used, paired with the one copy of Vj having the match-
ing shift. This yields lcis(Ūl , V̄ j ) = maxlq�i<lq+q lcis(Ui , Vj ), and in turn, also
maxl, j lcis(Ūl , V̄ j ) = maxi, j lcis(Ui , Vj ) = d − mini, j (ui · v j ).

Observe that every Ūl is a concatenation of several Ui gadgets, each one shifted to
make its elements smaller than previous ones. Therefore, any increasing subsequence
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of Ūl must be contained in a single Ui , and thus cannot be longer than 2d. The same
argument applies to every V̄ j . Therefore, we can apply Lemma 4, with δ = 2d, to
these sequences, obtaining X̄ and Ȳ satisfying:

lcis(X̄ , Ȳ ) = C + d − min
i, j

(ui · v j ).

Recall that C is some constant dependent only on m and d, and C = O (md). The
length of both X̄ and Ȳ isO (dm logm + mqd) = O (nd log n), and the length of the
output is O (md), as desired. ��

5 Hardness of k-LCIS

In this section we show that, assuming SETH, there is no O (
nk−ε

)
algorithm for the

k-LCIS problem, i.e., we prove Theorem 3. To obtain this lower bound we show a
reduction from the k-Orthogonal Vectors problem (for definition, see Sect. 2). There
are two main ingredients of the reduction, i.e. separator sequences and vector gadgets,
and both of them can be seen as natural generalizations of those introduced in Sect. 3.

5.1 Generalizing Separator Sequences

Please note that in this section we use a notation which is not consistent with the one
from Sect. 3, because it has to accommodate indexing over k sequences.

The aim of this section is to show, for any N that is a power of two, how to
construct k sequences A1, A2, . . . , Ak such that eachof themcanbe split into N blocks,
i.e. Ai = α0

i α1
i . . . αN−1

i , and for any choice of j1, j2, . . . , jk ∈ {0, 1, . . . , N − 1}

lcis(α0
1 . . . α

j1
1 , α0

2 . . . α
j2
2 , . . . , α0

k . . . α
jk
k ) = j1 + j2 + · · · + jk + N . (2)

As before, we construct separator sequences inductively, doubling the number of
blocks in each step. Again, for N = 1, we define the sequences by Ai = 〈1〉 , i ∈
{1, . . . , k}.

Suppose we have N -block sequences A1, A2, . . . , Ak , Ai = α0
i α1

i . . . αN−1
i

as above. We show how to construct 2N -block sequences B1, B2, . . . , Bk , Bi =
β0

i β1
i . . . β2N−1

i . Note that inflation properties still hold for k sequences, as the proof
of Lemma 1 works in exactly the same way, i.e. inflating all the sequences increases
their LCIS by a factor of 2.

To obtain Bi , we first inflate Ai , and then append a tail gadget after each block α
j
i .

However, tail gadgets are now more involved.
Let s denote the largest element appearing in A1, A2, . . . , Ak . Then the blocks of

Bi are

β
2 j
i = inflate(α j

i ) ◦ T 0
i , β

2 j+1
i = T 1

i ,
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where T 0
i is the sorted sequence of numbers of the form 2s+x for x ∈ {

1, . . . , 2k − 1
}

such that the i-th bit in the binary representation of x equals 0, while T 1
i contains those

with i-th bit set to 1. Note that for k = 2 this exactly leads to the construction from
Sect. 3.

During one construction step, every block doubles its size, and constant number of
elements (precisely, 2k − 1) is added for every original block. Therefore, the length
L(N ) of N -block sequences satisfies the recursive equation:

L(2N ) = 2 · L(N ) + (2k − 1) · N

which yields L(N ) = O (N log N ). Note also that the size of the alphabet S(N ) used
in N -block sequences gives the equation S(2N ) = 2S(N ) + 2k − 1, as a constant
number of elements is added in every step. Therefore S(N ) = O (N ).

Lemma 5 The constructed sequences satisfy

lcis(β0
1 . . . β

j1
1 , β0

2 . . . β
j2
2 , . . . , β0

k . . . β
jk

k ) = j1 + j2 + · · · + jk + 2N ,

for any ( j1, j2, . . . , jk) ∈ {0, 1, . . . , 2N − 1}.
Proof We prove the claim by induction on j1 + j2 + · · · + jk . In fact, to make the
induction work, we need to prove a stronger statement that there always exists a corre-
sponding LCIS that ends on an element less than or equal to 2s + x( j1, . . . , jk), where
x( j1, . . . , jk) is the integer given by the binary representation ( j1 mod 2, . . . , jk mod
2).

By the inflation properties and the observation that T 0
1 , . . . , T 0

k have no common
elements, we obtain lcis(β0

1 , . . . , β
0
k ) = 2 · lcis(α0

1, . . . , α
0
k ) = 2N , with a corre-

sponding LCIS using only elements bounded by 2s, which settles the base case for
induction.

Let j1, j2, . . . , jk be indices with j1+· · ·+ jk > 0. Let us first construct a common
increasing subsequence of length at least j1+· · ·+ jk +2N . If all indices j1, . . . , jk are
even, then, for every i ∈ {1, . . . , k}, the prefix β0

i . . . β
ji

i contains inflate(α0
i . . . α

ji /2
i )

as a subsequence. Thus we can find, by inflation properties, a common increasing
subsequence of length 2 · ( j1/2 + · · · + jk/2 + N ) = j1 + · · · + jk + 2N , as
desired. Now, let ji be any odd index, and let L be the LCIS of the prefixes cor-
responding to j1, . . . , ji−1, ji − 1, ji+1, . . . , jk , which ends on an element bounded
by x( j1, . . . , ji−1, 0, ji+1, . . . , jk), of length j1 + · · · + jk + 2N − 1 (which exists
by the induction hypothesis). Then L ◦ x( j1, . . . , ji−1, 1, ji+1, . . . , jk) is an LCIS
for the prefixes corresponding to j1, . . . , jk : Indeed, 2s + x( j1, . . . , jk) is a common
member of T j1 mod 2

1 , . . . , T jk mod 2
k , the last parts of these prefixes, and this element

is larger and appears later in the sequences than all elements in L (since all T j
i ’s are

sorted in the increasing order).
For the converse, let L denote theLCISofβ0

1 . . . β
j1
1 ,β0

2 . . . β
j2
2 , . . .,β0

k . . . β
jk

k . Note

that if the last symbol of L does not come from the last blocks, i.e. β j1
1 , β

j2
2 , . . . , β

jk
k ,

then L is an LCIS of prefixes corresponding to some j ′1, . . . , j ′k with j ′1 + · · · + j ′k <
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j1 + · · · + jk and the claim follows from the induction hypotheses. Thus, we may
assume that L ends on a common symbol of the last blocks.

If all the indices are even, the last blocks share only elements less than or equal to 2s
(since T 0

1 , . . . , T 0
k share no elements), thus L is the LCIS of inflate(α0

i , . . . , α
ji /2
i ), i ∈

{1, . . . , k} and the claim follows from the inflation properties. Otherwise, the only
element the last blocks have in common is x( j1, j2, . . . , jk), and thus L = L ′ ◦
x( j1, . . . , jk), where L ′ is the LCIS of prefixes corresponding to some j ′1, . . . , j ′k with
j ′1+· · ·+ j ′k < j1+· · ·+ jk . Thus, |L| � j ′1+· · ·+ j ′k +2N +1 � j1+· · ·+ jk +2N ,
as desired. ��

5.2 GeneralizingVector Gadgets

Each vector gadget is the concatenation of coordinate gadgets. Coordinate gadgets for
j-th coordinate use elements from the range {k j + 1, . . . , k j + k}. If a coordinate is 0,
the corresponding gadget contains all k elements sorted in decreasing order, otherwise
the gadget for the i-th sequence skips the k j + i element. Formally,

VGi (u) = CG0
i (u[0]) ◦ CG1

i (u[1]) ◦ · · · ◦ CGd−1
i (u[d − 1]),

where

CG j
i (0) = 〈k j + k, k j + (k − 1), . . . , k j + 1〉 ,

CG j
i (1) = 〈k j + k, k j + (k − 1), . . . , k j + (i + 1), k j + (i − 1), . . . , k j + 1〉 .

Thus, if all k vectors have the j-th coordinate equal 1, there is no common element
in the corresponding gadgets. Otherwise, if at least one, say i-th, vector has the j-
th coordinate equal 0, the element k j + i appears in all coordinate gadgets. Since
the coordinate gadgets are sorted in decreasing order, their LCIS cannot exceed 1.
Therefore,

lcis(CG j
1(u1),CG

j
2(u2), . . . ,CG

j
k (uk)) = 1 −

k∏

i=1

ui [ j],

and ultimately

lcis(VG1(u1),VG2(u2), . . . ,VGk(uk)) = d −
d−1∑

j=0

k∏

i=1

ui [ j].

5.3 Putting Pieces Together

We can finally prove our lower bound for k-LCIS, i.e., Theorem 3.
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Proof of Theorem 3 Let U1, . . . ,Uk ⊆ {0, 1}d be a k-OV instance with |Ui | = n. By
at most doubling the number of vectors in each set, we may assume without loss of
generality that n is a power of two.

We construct separator sequences consisting of n blocks. Inflate the sequences⌈
log2 kd

⌉
times, thus increasing their length by a factor � = 2�log2 kd�, and subtract

from all their elements a constant large enough for them to become smaller than all
elements of vector gadgets. Let Ai = α0

i . . . αn−1
i denote the thus constructed separator

sequence corresponding to set Ui .
Analogously (and as in the proof of Theorem 1), we construct, for each i ∈

{1, . . . , k}, the separator sequence Âi = α̂0
i , . . . , α̂n−1

i by reversing Ai , replacing each
element by its additive inverse, and adding a constant large enough to make all the
elements larger than vector gadgets (note that each α̂

j
i equals the reverse of α

n− j−1
i ,

with negated elements, shifted by an additive constant). In this way, the analogous
property to Equation (2) holds for suffixes instead of prefixes.

Finally, we construct sequences X1, X2, . . . , Xk by defining

Xi = α0
i VGi (u

0
i )α̂

0
i α1

i VGi (u
1
i )α̂

1
i . . . αn−1

i VGi (u
n−1
i )α̂n−1

i ,

where the VGi are defined as in Sect. 5.2. It is straightforward to rework the proof of
Theorem 1 to verify that these sequences fulfill

lcis(X1, X2, . . . , Xk) = � · (k · (n − 1) + 2n) + d − m,

where m = minu1∈U1,u2∈U2,...,uk∈Uk

∑d−1
j=0

∏k
i=1 ui [ j].

By this reduction, anO (
nk−ε

)
time algorithm for k-LCISwould yield anO

(
nk−ε′)

time k-OV algorithm (for any dimension d = no(1)), thus refuting Hypothesis 2 and,
in particular, SETH. ��

6 Hardness of k-LCWIS

We shortly discuss the proof of Theorem 4.

Proof sketch of Theorem 4 Note that our lower bound for k-LCIS almost immediately
yields a lower bound for k-LCWIS: Clearly, each common increasing subsequence of
X1, . . . , Xk is also a common weakly increasing subsequence. The claim then follows
after carefully verifying that, in the constructed sequences, we cannot obtain longer
common weakly increasing subsequences by reusing some symbols.

Our claim for k-LCWIS is slightly stronger, however. In particular, we aim to reduce
the size of the alphabet over which all the sequences used in the reduction are defined.
For this, the key insight is to replace the inflation operation inflate(〈a0, . . . , an−1〉) =
〈2a0 − 1, 2a0, . . . , 2an−1 − 1, 2an−1〉 by

inflate′(〈a0, . . . , an−1〉) = 〈a0, a0, . . . , an−1, an−1〉 ,
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which does not increase the alphabet size, but still satisfies the desired property for
k-LCWIS.

Replacing this notion in the proof of Theorem 3, we obtain final sequences
X1, . . . , Xk by combining separator gadgets over alphabets of size O (log n) with
vector gadgets over alphabets of size O (d), where d is the dimension of the vectors
in the k-OV instance. Correctness of this construction under k-LCWIS can be verified
by reworking the proof of Theorem 3. Thus, we construct hard k-LCWIS instances
over an alphabet of size O (log n + d), and the claim follows. ��

7 Strengthening the Hardness

In this section we show that a natural combination of constructions proposed in the
previous sections with the idea of reachability gadgets introduced by Abboud et al. [2]
lets us strengthen our lower bounds to be derived from considerably weaker assump-
tions than SETH. Before we do this, we first need to introduce the notion of branching
programs.

A branching program of width W and length T on N Boolean input variables
x1, x2, . . . , xN ∈ {0, 1} is a directed acyclic graph on W · T nodes, arranged into T
layers of size W each. A node in the k-th layer may have outgoing edges only to the
nodes in the (k + 1)-th layer, and for every layer there is a variable xi such that every
edge leaving this layer is labeled with a constraint of the from xi = 0 or xi = 1. There
is a single start node in the first layer and a single accept node in the last layer. We
say that the branching program accepts an input x ∈ {0, 1}N if there is a path from the
start node to the accept node which uses only edges that are labeled with constraints
satisfied by the input x .

The expressive power of branching programs is best illustrated by the theorem of
Barrington [12]. It states that any depth-d fan-in-2 Boolean circuit can be expressed
as a branching program of width 5 and length 4d . In particular, NC-circuits can be
expressed as constant width quasipolynomial length branching programs.

Given a branching program P on N input variables, the Branching Program Satis-
fiability problem (BP-SAT) asks if there exists an assignment x ∈ {0, 1}N such that P
accepts x . Abboud et al. [2] gave a reduction from BP-SAT to LCS (and some other
related problems, such as Edit Distance) on two sequences of length 2N/2 · TO(log W ).
The reduction proves that a strongly subquadratic algorithm for LCS would imply,
amongothers, exponential improvements over exhaustive search for satisfiability prob-
lems not only on CNF formulas (i.e. refuting SETH), but even NC-circuits and circuits
representing o

(√
n
)
-space nondeterministic Turing machines. Moreover, even a suf-

ficiently large polylogarithmic improvement would imply nontrivial results in circuit
complexity. We refer to the original paper [2] for an in-depth discussion of these
consequences.

In this section we prove Theorem 5 and thus show that a subquadratic algorithm for
LCIS would have the same consequences. Our reduction from OV to LCIS (presented
in Sect. 3) is built of two ingredients: (1) relatively straightforward vector gadgets,
encoding vector inner product in the language of LCIS, and (2)more involved separator
sequences, which let us combine many vector gadgets into a single sequence. In
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order to obtain a reduction from BP-SAT we will need to replace vector gadgets with
more complex reachability gadgets. Fortunately, reachability gadgets for LCIS can be
constructed in a similar manner as reachability gadgets for LCS proposed in [2].

Proof sketch of Theorem 5 Given a branching program, as in [2], we follow the split-
and-list technique of Williams [44]. Assuming for ease of presentation that N is even,
we split the input variables into two halves: x1, . . . , xN/2 and xN/2+1, . . . , xN . Then,
for each possible assignment a ∈ {0, 1}N/2 of the first half we list a reachability
gadget RGx(a), and similarly, for each possible assignment b ∈ {0, 1}N/2 of the
second half we list a reachability gadget RGy(b). We shall define the gadgets such
that there exists a constant C (depending only on the branching program size) such
that lcis(RGx(a),RGy(b)) = C if and only if a ◦ b is an assignment accepted by
the branching program, and otherwise lcis(RGx(a),RGy(b)) < C . The reduction
is finished by applying Lemma 4 to the constructed gadgets in order to obtain two
sequences such that their LCIS lets us determine whether a satisfying assignment to
the branching program exists. The rest of the proof is devoted to constructing suitable
reachability gadgets.

We assume without loss of generality that T = 2t + 1 for some integer t . For every
k ∈ {0, 1, . . . , t} and for every two nodes u, v being 2k layers apart from each other
we want to construct two reachability gadgets RGu→v

x and RGu→v
y such that, for some

constant Ck ,

lcis(RGu→v
x (a),RGu→v

y (b))

{
= Ck if there is a path u � v satisfied by a ◦ b,

< Ck otherwise,

holds for all a, b ∈ {0, 1}N/2.
Consider k = 0, i.e., designing reachability gadgets for nodes in neighboring layers

L j and L j+1. There is a variable xi such that all edges between L j and L j+1 are
labeled with a constraint xi = 0 or xi = 1. We say the left half is responsible for
xi if xi is among the first half x1, . . . , xN/2 of variables; otherwise, we say the right
half is responsible for xi . We set RGu→v

x (a) to be an empty sequence if the left half
is responsible for xi and there is no edge from u to v labeled xi = ai ; otherwise, we
set RGu→v

x (a) = 〈0〉. Similarly, RGu→v
y (b) is an empty sequence if the right half is

responsible and there is no edge from u to v labeled with xi = bi−N/2; otherwise
RGu→v

y (b) = 〈0〉. It is easy to verify that such reachability gadgets satisfy the desired
property for C0 = 1.

For k > 0, let w1, w2, . . . wW be the nodes in the layer exactly halfway between
u and v. Observe that there exists a path from u to v if and only if there exists a path
from u to wi and from wi to v for some i ∈ {1, 2, . . . , W }.

Let RG
wi →v

x and RG
wi →v

y denote the sequences RGwi →v
x and RGwi →v

y with
every element increased by a constant large enough so that all elements are
larger than all elements of RGu→wi

x and RGu→wi
y . Observe that lcis(RGu→wi

x (a) ◦
RG

wi →v

x (a),RGu→wi
y (b)◦RGwi →v

y (b)) equals 2 ·Ck−1 if there is a path u � wi � v

satisfied by a ◦b, and otherwise it is less than 2 ·Ck−1. Now, for every i take a different
constant qi and add it to both RG

u→wi
x ◦RGwi →v

x and RGu→wi
y ◦RGwi →v

y so that their
alphabets are disjoint, and therefore, for i �= j , lcis((RGu→wi

x (a) ◦ RG
wi →v

x (a)) +
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qi , (RG
u→w j
y (b) ◦RGw j →v

y (b))+ q j ) = 0 (where + denotes element-wise addition).
Finally, apply Lemma 4 to these W pairs of concatenated reachability gadgets (where
we choose δ as the maximum length of these gadget) to obtain two reachability gad-
gets RGu→v

x and RGu→v
y such that lcis(RGu→v

x (a),RGu→v
y (b)) equals C + 2 · Ck−1

(for a constant C resulting from the application of Lemma 4) if there exists (for some
i ∈ {1, 2, . . . , W }) a path u � wi � v satisfied by a ◦ b, and is strictly smaller
otherwise, as desired.

Let ustart and uaccept denote the start node and the accept node of the branching
program. Then, RGx = RG

ustart→uaccept
x andRGy = RG

ustart→uaccept
y satisfy the property

that

lcis(RGx(a),RGy(b))

{
= Ct if the branching program accepts a ◦ b,

< Ct otherwise.

Since RGx(a) and RGy(b) are constructed in t steps of the inductive construction,
and each step increases the length of gadgets by a factor of O (W log W ), their final
length can be bounded byO (

(W log W )t
)
, which is TO(log W ). Combining the reach-

ability gadgets RGx(a), a ∈ {0, 1}N/2 and RGy(b), b ∈ {0, 1}N/2 using Lemma 4
(where we choose δ as the maximum length of the reachability gadgets) yields the
desired strings X , Y of length 2N/2 · N · TO(log W ) whose LCIS lets us determine
satisfiability of the given branching program, thus finishing the proof. ��

Similar techniques can be used to analogously strengthen other lower bounds in
our paper.

8 Conclusion and Open Problems

Weprove a tight quadratic lower bound for LCIS, ruling out strongly subquadratic time
algorithms under SETH. It remains open whether LCIS admits mildly subquadratic
algorithms, such as the Masek-Paterson algorithm for LCS [36]. Note, however, that
our reduction from BP-SAT gives evidence that shaving many logarithmic factors is
immensely difficult. Finally, we give tight SETH-based lower bounds for k-LCIS.

For the related variant LCWIS that considers weakly increasing sequences, strongly
subquadratic-time algorithms are ruled out under SETH for slightly superlogarithmic
alphabet sizes ( [40] and Theorem 4). On the other hand, for binary and ternary
alphabets, even linear time algorithms exist [24,35]. Can LCWIS be solved in time
O (

n2− f (|�|)) for some decreasing function f that yields strongly subquadratic-time
algorithms for any constant alphabet size |�|?

Finally, by an easy observation (see the appendix), we can compute a (1 + ε)-
approximation of LCIS in O (

n3/2ε−1/2polylog(n)
)
time. Can we improve upon this

running time or give a matching conditional lower bound? Note that a positive resolu-
tion seems difficult by the reduction in Observation 1: Any nα , α > 0, improvement
over this running time would yield a strongly subcubic (1 + ε)-approximation for
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3-LCS, which seems hard to achieve, given the difficulty to find strongly subquadratic
(1 + ε)-approximation algorithms for LCS.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Theorem 6 (folklore, generalization of [47]) For any k � 2, the LCIS of k sequences
of length n can be computed in O (

nk
)

time.

Proof Let X1, X2, . . . Xk be the input sequences. Let X [0 : i] denote the prefix con-
sisting of first i elements of X , with X [0 : 0] being the empty prefix. Now, for every
i1, . . . , ik ∈ {0, 1, . . . , n} we define R[i1, . . . , ik] to be the length of the LCIS of the
prefixes X1[0 : i1], X2[0 : i1], . . . , Xk[0 : ik] with an additional assumption that this
common subsequence must end with the element Xk[ik], i.e. the last element of the
last prefix. Observe that it is enough to compute all R[i1, . . . , ik], with the desired
answer being simply max0�ik�n R[n, . . . , n, ik].

The algorithm is based on the fact that R[i1, . . . , ik] satisfies the following two-case
recurrence:

– Case 1. If Xk[ik] �= Xs[is] for some s < k, the desired common subsequence
ends with Xk[ik] and thus it cannot contain Xs[is], so R[i1, . . . , is, . . . , ik] =
R[i1, . . . , is − 1, . . . , ik].

– Case 2. If X1[i1] = . . . = Xk[ik], let us call this common symbol σ , and observe
that σ is the last element of the LCIS. Consider the next-to-last element: it must
be certainly smaller than σ , and must appear in the Xk sequence at a position
earlier than at Xk[ik]. Therefore R[i1, . . . , ik] = 1 + max j<ik ,Xk [ j]<σ R[i1 −
1, . . . , ik−1 − 1, j].
To obtain the values of R inO (

nk
)
time, the algorithm iterates through all possible

i1, . . . , ik with the ik loop being the innermost one. Obviously, R[i1, . . . , ik] = 0 if
any of the indices is 0. Before every innermost ik loop, with fixed i1, i2, . . . , ik−1, the
algorithm checks whether X1[i1] = . . . = Xk−1[ik−1]. If so, it sets σ = X1[i1] =
. . . = Xk−1[ik−1], otherwise σ = null.

If σ �= null, for every 1 � i � n let D[i] = max j<i,Xk [ j]<σ R[i1 − 1, . . . , ik−1 −
1, j]. Observe that D[i] can be obtained from D[i−1] and R[i1−1, . . . , ik−1−1, i−1]
in constant time.Therefore, before the start of the ik loop, the algorithmcanprecompute
all the D[i] values in O (n) time, as all the needed R[i1 − 1, . . . , ik−1 − 1, i] values
are already known from earlier iterations.

Throughout the ik loop the algorithm checks if Xk[ik] = σ , which corre-
sponds to Case 2 above. If so, then R[i1, . . . , ik] = 1 + max j<ik ,Xk [ j]<σ R[i1 −
1, . . . , ik−1 − 1, j] = 1+ D[ik], which is already precomputed. If Case 1 holds, then
R[i1, . . . , is, . . . , ik] = R[i1, . . . , is − 1, . . . , ik] for some s < k. As the index s is
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easy to find, and the necessary values in R have been computed earlier, this step also
works in constant time (assuming k is fixed).

The above algorithm computes only the length of LCIS. However, it can be eas-
ily modified to reconstruct the sequence, using the common dynamic programming
techniques (e.g. by storing with every value in R a link to the previous element of
LCIS). ��
Theorem 7 A (1 + ε)-approximation of LCIS of sequences X , Y of length n can be
computed in O (

n3/2ε−1/2polylog(n)
)

time.

Proof First, delete all integers occurring more than 2
√

n/ε times in total in both of
the sequences. Since there are at most

√
nε such integers, this operation decreases the

length of theLCISby atmost
√

nε. In the resulting instance, there are atmost n3/2ε−1/2

matching pairs, i.e., indices i, j with X [i] = Y [ j]. Thus, the exact LCIS in this instance
can be computed in time O (

n3/2ε−1/2 log n log log n
)
using an algorithm of Chan et

al. [18] running in time O (M log L log log n + n log n), where L is the length of the
LCIS of X and Y and M is the number of matching pairs. Now, consider two cases. If
the algorithm returns a solution Z longer than

√
n/ε, then Z is a (1+ε)-approximation

of the LCIS of the original instance, since the LCIS is bounded by L � |Z | + √
nε �

(1+ε)|Z |. In the remaining case, it is guaranteed that L � |Z |+√
nε � (1+ε)

√
n/ε.

Thus, wemay compute the exact LCIS inO (
n3/2ε−1/2 log n

)
time using the algorithm

running in O (nL log log n + n log n) time [35]. ��
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