
ar
X

iv
:1

81
1.

03
25

4v
1

 [
m

at
h.

O
C

]
 8

 N
ov

 2
01

8

(Near) Optimal Parallelism Bound for Fully Asynchronous

Coordinate Descent with Linear Speedup

Yun Kuen Cheung

Max Planck Institute for Informatics

Saarland Informatics Campus

Richard Cole Yixin Tao

Courant Institute, NYU

Abstract

When solving massive optimization problems in areas such as machine learning, it is a com-
mon practice to seek speedup via massive parallelism. However, especially in an asynchronous
environment, there are limits on the possible parallelism. Accordingly, we seek tight bounds on
the viable parallelism in asynchronous implementations of coordinate descent.

We focus on asynchronous coordinate descent (ACD) algorithms on convex functions F :
R

n → R of the form

F (x) = f(x) +
n∑

k=1

Ψk(xk),

where f : Rn → R is a smooth convex function, and each Ψk : R → R is a univariate and
possibly non-smooth convex function.

Our approach is to quantify the shortfall in progress compared to the standard sequential
stochastic gradient descent. This leads to a truly simple yet optimal analysis of the standard
stochastic ACD in a partially asynchronous environment, which already generalizes and improves
on the bounds in prior work. We also give a considerably more involved analysis for general
asynchronous environments in which the only constraint is that each update can overlap with at
most q others, where q is at most the number of processors times the ratio in the lengths of the
longest and shortest updates. The main technical challenge is to demonstrate linear speedup in
the latter environment. This stems from the subtle interplay of asynchrony and randomization.
This improves Liu and Wright’s [16] lower bound on the maximum degree of parallelism almost
quadratically, and we show that our new bound is almost optimal.

Keywords. Asynchronous Coordinate Descent, Asynchronous Optimization, Asynchronous
Iterative Algorithm, Coordinate Descent, Amortized Analysis.

http://arxiv.org/abs/1811.03254v1

1 Introduction

We consider the problem of finding an (approximate) minimum point of a convex function F :
R
n → R of the form

F (x) = f(x) +

n∑

k=1

Ψk(xk),

where f : Rn → R is a smooth convex function, and each Ψk : R → R is a univariate convex
function, but may be non-smooth. Such functions occur in many data analysis and machine learning
problems, such as linear regression (e.g., the Lasso approach to regularized least squares [27]) where
Ψk(xk) = |xk|, logistic regression [20], ridge regression [25] where Ψk(xk) is a quadratic function,
and Support Vector Machines [10] where Ψk(xk) is often a quadratic function or a hinge loss
(essentially, max{0, xk}).

Gradient descent is the standard solution approach for the prevalent massive problems of this
type. Broadly speaking, gradient descent proceeds by moving iteratively in the direction of the
negative gradient of a convex function. Coordinate descent is a commonly studied version of
gradient descent. It repeatedly selects and updates a single coordinate of the argument to the
convex function. Stochastic versions are standard: at each iteration the next coordinate to update
is chosen uniformly at random1.

Due to the enormous size of modern problems, there has been considerable interest in parallel
versions of coordinate descent in order to achieve speedup, ideally in proportion to the number of
processors or cores at hand, called linear speedup.

One important issue in parallel implementations is whether the different processors are all using
up-to-date information for their computations. To ensure this requires considerable synchroniza-
tion, locking, and consequent waiting. Avoiding the need for the up-to-date requirement, i.e. en-
abling asynchronous updating, was a significant advance. The advantage of asynchronous updating
is it reduces and potentially eliminates the need for waiting. At the same time, as some of the data
being used in calculating updates will be out of date, one has to ensure that the out-of-datedness
is bounded in some fashion.

Modeling asynchrony The study of asynchrony in parallel and distributed computing goes
back to Chazen and Miranker [6] for linear systems and to Bertsakis and Tsitsiklis for a wider
range of computations [3]. They obtained convergence results for both deterministic and stochastic
algorithms along with rate of convergence results for deterministic algorithms. The first analyses to
prove rate of convergence bounds for stochastic asynchronous computations were those by Avron,
Druinsky and Gupta [1] (for the Gauss-Seidel algorithm), and by Liu et al. [17] and Liu and
Wright [16] (for coordinate descent). Liu et al. [17] imposed a “consistent read” constraint on
the asynchrony; the other two works considered a more general “inconsistent read” model. 2

Subsequent to Liu and Wright’s work, several overlooked issues were identified by Mania et al. [19]
and Sun et al. [26]; we call them Undoing of Uniformity (UoU)3 and No-Common-Value.

In brief, as the asynchrony assumptions were relaxed, the bounds that could be shown, particu-
larly in terms of achievable speedup, became successively weaker. In this work we ask the following
question:

1There are also versions in which different coordinates can be selected with different probabilities.
2“Consistent read” mean that all the coordinates a core read may have some delay, but they must appear simulta-

neously at some moment. Precisely, the vector of x̃ values used by the update at time t must be xt−c for some c ≥ 1.
“Inconsistent reads” mean that the x̃ values used by the update at time t can be any of the (xt−c1

1
, · · · , xt−cn

n), where
each cj ≥ 1 and the cj ’s can be distinct.

3In [1], the authors also raised a similar issue about their asynchronous Gauss-Seidel algorithm.

1

Can we achieve both linear speedup and full asynchrony

when applying coordinate descent to non-smooth functions F?

Our answer to this question is “yes”, and we obtain the maximum possible parallelism while
maintaining linear speedup (up to at most

√
log n factor). Our results match the best speedup,

namely linear speedup with to
√
n processors as in [17], but with no constraints on the asynchrony,

beyond a requirement that unlimited delays do not occur. Specifically, as in [16], we assume there
is a bounded amount of overlap between the various updates. We now state our results for strongly
convex functions informally.

Theorem 1 (Informal). Let q be an upper bound on how many other updates a single update can
overlap. Lres, Lmax and Lii are Lispschitz parameters defined in Section 2.

(i) Let F be a strongly convex function with strongly convex parameter µF If q = O
(√

nLmax

Lres

)
and

if Γ ≥ Lmax, then E
[
F (xT)− F ∗] =

((
1− 1

3
µF
nΓ

)T) ·
(
F (x0)− F ∗).

(ii) This bound is tight up to a
√
log n factor: there is a family of functions, with Lmax, Lres = O(1),

such that for q = Θ(
√
n lnn), with probability 1 − O(1n), after nc−1 updates, the current point is

essentially the starting point.

Standard sequential analyses [18, 24] achieve similar bounds with the 1
3 replaced by 1; i.e. up to

a factor of 3, this is the same rate of convergence.
Asynchronicity assumptions The Uniformity assumption states that the start time ordering

of the updates and their commit time ordering are identical. Undoing of Uniformity (UoU) arises
because while each core initiates an update by choosing a coordinate uniformly at random, due to
the possibly differing lengths of the different updates, and also due to various asynchronous effects,
the commit time ordering of the updates may be far from uniformly distributed. In an experimental
study, Sun et al. [26] showed that iteration lengths in coordinate descent problem instances varied
by factors of 2–10, demonstrating that this effect is likely.

The Common Value assumption states that regardless of which coordinate is randomly selected
to update, the same values are read in their gradient computation. If coordinates are not being read
on the same schedule, as seems likely for sparse problems, it would appear that this assumption
too will be repeatedly violated.

Related work Coordinate Descent is a method that has been widely studied; see Wright for
a recent survey [31]. There have been multiple analyses of various asynchronous parallel imple-
mentations of coordinate descent [17, 16, 19, 26]. We have already mentioned the results of Liu et
al. [17] and Liu and Wright [16]. Both obtained bounds for both convex and “optimally” strongly
convex functions4, attaining linear speedup so long as there are not too many cores. Liu et al. [17]
obtained bounds similar to ours (see their Corollary 2 and our Theorem 2), but the version they
analyzed is more restricted than ours in two respects: first, they imposed the strong assumption of
consistent reads, and second, they considered only smooth functions (i.e., no non-smooth univariate
components Ψk). The version analyzed by Liu and Wright [16] is the same as ours, but their result
requires both the Uniformity and Common Value assumptions. Our bound has a similar flavor
but with a limit of Θ(n1/2). The analysis by Mania et al. [19] removed the Uniformity assumption.
However, the maximum parallelism was much reduced (to at most n1/6), and their results applied
only to smooth strongly convex functions. We note that a major focus of their work concerned
the analysis of Hogwild, a coordinate descent algorithm used for functions of the form

∑
i fi(x),

where each of the fi is convex, and the bounds there were optimal. The analysis in Sun et al. [26]

4This is a weakening of the standard strong convexity.

2

removed the Common Value assumption and partially removed the Uniformity assumption. How-
ever, this came at the cost of achieving no parallel speedup. [26] also noted that a hard bound on
the parameter q could be replaced by a probabilistic bound, which in practice is more plausible.

Asynchronous methods for solving linear systems have been studied at least since the work of
Chazan and Miranker [6] in 1969. See [1] for an account of the development. Avron, Druinsky
and Gupta [1] proposed and analyzed an asynchronous and randomized version of the Gauss-Seidel
algorithm for solving symmetric and positive definite matrix systems. They pointed out that in
practice delays depend on the random choice of direction (which corresponds to coordinate choice
in our case), which is indeed one of the sources leading to Undoing of Uniformity. Their analysis
bypasses this issue with their Assumption A-4, which states that delays are independent of the
coordinate being updated, but the already mentioned experimental study of Sun et al. indicates
that this assumption does not hold in general.

Another widely studied approach to speeding up gradient and coordinate descent is the use of
acceleration. Very recently, attempts have been made to combine acceleration and parallelism [14,
12, 9]. But at this point, these results do not extend to non-smooth functions.

Organization of the Paper In Section 2, we describe our model of coordinate descent and state
our main results, focusing on the SACD algorithm applied to strongly convex functions. In Section
3, we give a high-level sketch of the structure of our analyses. Then, in Section 4, we show that
with the Common Value assumption we can obtain a truly simple analysis for SACD; this analysis
achieves the maximum possible speedup (i.e. linear speedup with up to

√
n processors). Note that

this is the same assumption as in Mania et al.’s result [19] and less restrictive than the assumptions
in Liu and Wright’s analysis [16]. We follow this with a discussion of some of the obstacles that
need to be overcome in order to remove the Common Value assumption, and some comments on
how we achieve this. The full analysis of SACD is deferred to the appendix.

2 Model and Main Results

Recall that we are considering convex functions F : Rn → R of the form F (x) = f(x)+
∑n

k=1Ψk(xk),
where f : Rn → R is a smooth convex function, and each Ψk : R→ R is a univariate and possibly
non-smooth convex function. We let x∗ denote a minimum point of F and X∗ denote the set of all
minimum points of F . Without loss of generality, we assume that F ∗, the minimum value of F , is
0.

We recap a few standard terminologies. Let ~ej denote the unit vector along coordinate j.

Definition 1. The function f is L-Lipschitz-smooth if for any x,∆x ∈ R
n, ‖∇f(x + ∆x) −

∇f(x)‖ ≤ L · ‖∆x‖. For any coordinates j, k, the function f is Ljk-Lipschitz-smooth if for any
x ∈ R

n and r ∈ R, |∇kf(x+ r · ~ej)−∇kf(x)| ≤ Ljk · |r|; it is Lres-Lipschitz-smooth if ||∇f(x+

r · ~ej)−∇f(x)|| ≤ Lres · |r|. Finally, Lmax := maxj,k Ljk and Lres := maxk

(∑n
j=1(Lkj)

2
)1/2

.

The difference between Lres and Lres In general, Lres ≥ Lres. Lres = Lres when the rates of
change of the gradient are constant, as for example in quadratic functions such as xTAx+ bx+ c.
We need Lres because we do not make the Common Value assumption. We use Lres to bound terms
of the form

∑
j |∇jf(y

j)−∇jf(x
j)|2, where |yjk − xjk| ≤ |∆k|, and for all h, i, |yik − yhk |, |xik − xhk | ≤

|∆k|, whereas in the analyses with the Common Value assumption, the term being bounded is∑
j |∇jf(y)−∇jf(x)|2, where |yk−xk| ≤ |∆k|; i.e., our bound is over a sum of gradient differences

along the coordinate axes for pairs of points which are all nearby, whereas the other sum is over
gradient differences along the coordinate axes for the same pair of nearby points. Finally, if the

3

convex function is s-sparse, meaning that each term ∇kf(x) depends on at most s variables, then
Lres ≤

√
sLmax. When n is huge, this would appear to be the only feasible case.

By a suitable rescaling of variables, we may assume that Ljj is the same for all j and equals Lmax.
This is equivalent to using step sizes proportional to Ljj without rescaling, a common practice.

Next, we define strong convexity.

Definition 2. Let f : Rn → R be a convex function. f is strongly convex with parameter µf > 0,
if for all x, y, f(y)− f(x) ≥ 〈∇f(x), y − x〉+ 1

2µf ||y − x||2.

The update rule Recall that in a standard coordinate descent, be it sequential or parallel
and synchronous, the update rule, applied to coordinate j, first computes the accurate gradient
gj := ∇jf(x

t−1), and then performs the update given below.

xtj ← xt−1
j + argmin

d
{gj · d + Γd2/2 + Ψj(x

t−1
j + d)−Ψj(x

t−1
j)} ≡ xt−1

j + d̂j(gj , x
t−1
j)

and ∀k 6= j, xtk ← xt−1
k , where Γ ≥ Lmax is a parameter controlling the step size.

However, in an asynchronous environment, an updating core (or processor) might retrieve out-
dated information x̃ instead of xt−1, so the gradient the core computes will be g̃tj ≡ g̃j := ∇jf(x̃),

instead of the accurate value ∇jf(x
t−1). Our update rule, which is naturally motivated by its

synchronous counterpart, is

xtj ← xt−1
j + d̂j(g̃j , x

t−1
j) = xt−1

j +∆xtj and ∀k 6= j, xtk ← xt−1
k . (1)

We let

Ŵj(g, x) := − [g · d̂j(g, x) + Γ · d̂j(g, x)2/2 + Ψj(x+ d̂j(g, x)) − Ψj(x)].

It is well known that in the synchronous case, Ŵj(∇jf(x
t−1), xt−1

j) is a lower bound on the reduction
in the value of F , which we treat as the progress. We let kt denote the coordinate being updated
at time t.

2.1 The SACD Algorithm

Algorithm 1: SACD Algorithm.

INPUT: The initial point x◦ = (x◦1, x
◦
2, · · · , x◦n).

Multiple cores use a shared memory. Each core iteratively repeats the following

six-step procedure, with no global coordination among them:

1 Choose a coordinate j ∈ [n] uniformly at random.
2 Retrieve coordinate values x̃ from the shared memory.
3 Compute the gradient ∇jf(x̃).
4 Request a lock on the memory that stores the value of the j-th coordinate.
5 Retrieve the most updated j-th coordinate value, then update it using rule (1). a

6 Release the lock acquired in Step 4.

aEven if the core had retrieved the value of the j-th coordinate from the shared memory in Step 2, the core needs
to retrieve it again here, because it needs the most updated value when applying update rule (1).

The coordinate descent process starts at an initial point x◦ = (x◦1, x
◦
2, · · · , x◦n). Multiple cores

then iteratively update the coordinate values. We assume that at each time, there is exactly one
coordinate value being updated. In practice, since there will be little coordination between cores,

4

it is possible that multiple coordinate values are updated at the same moment ; but by using an
arbitrary tie-breaking rule, we can immediately extend our analyses to these scenarios.

In Algorithm 1, we provide the complete description of SACD. The retrieval times for Step 2 plus
the gradient-computation time for Step 3 can be non-trivial, and also in Step 4 a core might need
to wait if the coordinate it wants to update is locked by another core. Thus, during this period of
time other coordinates are likely to be updated. For each update, we call the period of time spent
performing the six-step procedure the span of the update. We say that update A interferes with
update B if the commit time of update A lies in the span of update B.

In Appendix F we discuss why locking is needed and when it can be avoided; we also explain
why the random choice of coordinate should be made before retrieving coordinate values.

Timing Scheme and the Undoing of Uniformity Before stating the SACD result formally,
we need to disambiguate our timing scheme. In every asynchronous iterative system, including our
SACD algorithm, each procedure runs over a span of time rather than atomically. Generally, these
spans are not consistent — it is possible for one update to start later than another one but to
commit earlier. To create an analysis, we need a scheme that orders the updates in a consistent
manner.

Using the commit times of the updates for the ordering seems the natural choice, since this
ensures that future updates do not interfere with the current update. This is the choice made in
many prior works. However, this causes uniformity to be undone. To understand why, consider the
case when there are three cores and four coordinates, and suppose that the workload for updating
x1 is three times greater than those for updating x2, x3, x4. If kt = 1 for some t, then the probability
distribution which the random variable kt+1 follows is biased away from coordinate 1; precisely,
P [kt+1 = 1 | kt = 1] < 1/4. When there are many more cores and coordinates than the simple case
we just considered, and when the other asynchronous effects5 are taken into account, it is highly
uncertain what is the exact or even an approximate distribution for kt+1 conditioned on knowledge
of the history of k1, · · · , kt. However, all prior analyses apart from [19] and [26] proceeded by
making the idealized assumption that the conditional probability distribution remains uniform,
while in fact it may be far from uniform. While it seems plausible that without conditioning, the
t-th update to commit is more or less uniformly distributed, the prior analyses needed this property
with the conditioning, and they needed it for every update without fail.

To bypass the above issue, as in [19], we use the starting times of updates for the ordering
— then clearly the history has no influence on the choice of kt+1. However, this raises a new
issue: future updates can interfere with the current update. Here the term future is used w.r.t. the
update ordering, which is by starting time; recall that an update U1 with an earlier starting time
can commit later than another later starting update U2, and therefore U2 could interfere with U1.

We discuss the Common Value assumption futher in Appendix E.

2.2 Selected Results

We assume that our algorithms are run until exactly T coordinates are selected and then updated
for some pre-specified T , with the commit times constrained by the following assumption.

Assumption 1. There exists a non-negative integer q such that for any update at time t, the only
updates that can interfere with it are those at times t− 1, t− 2, · · · , t− q and t+1, t+2, · · · , t+ q.

5E.g., communication delays, interference from other computations (say due to mutual exclusion when multiple
cores commit updates to the same coordinate), interference from the operating system and CPU scheduling.

5

When asynchronous effects are moderate, and if the various gradients have a similar computa-
tional cost, the parameter q will typically be bounded above by a small constant times the number
of cores.

Theorem 2 (SACD Upper Bound). Given initial point x◦, Algorithm 1 is run for exactly T itera-

tions by multiple cores. Suppose that Assumption 1 holds, Γ ≥ Lmax, n ≥ 210, and q ≤ Γ
√
n

90Lres
. If F

is strongly convex with parameter µF , then

E
[
F (xT)

]
≤

[
1− 1

3n
· µF

µF + Γ

]T
· F (x◦).6 (2)

In the main body of the paper, we focus on the case of strongly convex F . The full result
(including the plain convex case) is in Appendix B. In Appendix C, we show that the bound on the
degree of parallelism given in Theorem 2 is essentially optimal. Theorem 2 states that w.h.p., for
the first nc updates, each point oscillates around its starting position in a range of one of ±[23 , 43],
i.e. there is no progress toward the optimum.

Theorem 3 (SACD Lower Bound). For any constant c ≥ 2 and Γ ≥ 2, for all large enough n, there
exists a convex function f : Rn → R with Lmax = 1, Lres ≤ 2, minimum point x∗ = 0, an initial
point x◦ satisfying x◦j ∈ ±1 for every coordinate j, and an asynchronous schedule for Algorithm 1,

such that with q = Θ(
√
cn lnn), at every one of the first nc−1 updates, |xj − x◦j | ≤ 1

3 for all but
O(log n) coordinates, with probability 1−O(1/n).

3 The Basic Framework

Let kt denote the index of the coordinate that is updated at time t, gtkt := ∇ktf(x
t−1) denote

the value of the gradient along coordinate xkt computed at time t using up-to-date values of the
coordinates, and g̃tkt denote the actual value computed, which may use some out-of-date values.

The classical analysis of stochastic (synchronous) coordinate descent proceeds by first showing

that for any chosen kt, F (xt−1)− F (xt) ≥ Ŵkt(g
t
kt
, xt−1

kt
,Γ,Ψkt). Taking the expectation yields

E
[
F (xt−1)− F (xt)

]
≥ 1

n

n∑

j=1

Ŵj(g
t
j , x

t−1
j ,Γ,Ψj). (3)

By [24, Lemmas 4,6], the RHS of the above inequality is at least 1
n ·

µF
µF+Γ−µf

· F (xt−1); for

completeness, we provide a proof of this result in Appendix A.4. Let α := µF
µF+Γ−µf

. Then

E
[
F (xt)

]
≤ (1− α

n) ·E
[
F (xt−1)

]
; iterating this inequality yields E

[
F (xt)

]
≤ (1− α

n)
t · F (x◦).

To handle the case where inaccurate gradients are used, we employ the following two lemmas.

Lemma 1. If Γ ≥ Lmax, F (xt−1)− F (xt) ≥ Ŵkt(g
t
kt
, xt−1

kt
,Γ,Ψkt)− 1

Γ · (gtkt − g̃tkt)
2.

Lemma 2. If Γ ≥ Lmax, F (xt−1)− F (xt) ≥ 1
4Γ
(
∆xtkt

)2 − 1
Γ · (gtkt − g̃tkt)

2.

Proving these results for smooth functions is straightfoward. The version for non-smooth func-
tions is less simple. It follows from Lemma 9 in Appendix A.

Combining Lemmas 1 and 2 yields

F (xt−1)− F (xt) ≥ 1

2
· Ŵkt(g

t
kt , x

t−1
kt

,Γ,Ψkt) +
Γ

8
·
(
∆xtkt

)2 − 1

Γ
· (gtkt − g̃tkt)

2. (4)

6Necessarily, Γ ≥ µF .

6

The first term on the RHS of the above inequality, after taking the expectation, is more or less
what is needed in order to demonstrate progress. To complete the analysis we need to show that

T∑

t=1

Γ

8

(
∆xtkt

)2
(1− α

2n
)T−t ≥

T∑

t=1

1

Γ
(gtkt − g̃tkt)

2 (5)

for then we can conclude that E
[
F (xT)

]
≤ (1− α

2n)
T · F (x◦).

4 A Truly Simple Analysis with the Common Value Assumption

Suppose there are a total of T updates. We view the whole stochastic process as a branching tree
of height T . Each node in the tree corresponds to the moment when some core randomly picks a
coordinate to update, and each edge corresponds to a possible choice of coordinate. We use π to
denote a path from the root down to some leaf of this tree. A superscript of π on a variable will
denote the instance of the variable on path π. A double superscript of (π, t) will denote the instance
of the variable at time t on path π, i.e. following the t-th update. Finally π(k, t) will denote the
path with the time t coordinate on path π replaced by coordinate k. Note that π(kt, t) = π.

In this section, we give a simple proof which shows that the error term when reading out-of-date

values, Ek[(g
π(k,t),t
k − g̃

π(k,t),t
k)2], can be bounded by 2qL2

res

n

∑
s∈[t−q,t+q]\{q}(∆xπ,sks

)2, where ∆xπ,sks
denotes the update on path π at time s, and ks is the index of the coordinate chosen at time s.

(Note that by the Common Value assumption, the values ∆x
π(k,s),s
ks

are the same for all n paths
π(k, s).)

Lemma 3. With the Common Value assumption,

Ek[(g
π(k,t),t
k − g̃

π(k,t),t
k)2] ≤ 2qL2

res

n

∑

s∈[t−q,t+q]\{q}
(∆xπ,sks

)2.

Proof. By definition, g
π(k,t),t
k = ∇kf(x

π(k,t),t), the gradient of up-to-date point xπ(k,t),t, and g
π(k,t),t
k =

∇kf(x̃
π(k,t),t), the gradient of the point actually read from memory, out-of-date point x̃π(k,t),t. By

the definition of q, we see that the difference between xπ(k,t),t and x̃π(k,t),t is a subset of the updates
in the time interval [t− q, t+ q] \ {t}. 7 We denote this subset by U :

U = {t1, t2, ..., t|U |}.

Viewing ∆x
π(k,t),t
kti

as an n-vector with a non-zero entry for coordinate ti and no other, we have:

x
π(k,t),t
kti

= x̃
π(k,t),t
kti

+

|U |∑

i=1

{
∆x

π(k,t),t
kti

if ti < t;

−∆x
π(k,t),t
kti

if ti > t.

For simplicity, we define

xπ(k,t),t[j] = x̃π,t +

j∑

i=1

{
∆x

π(k,t),t
kti

if ti < t;

−∆x
π(k,t),t
kti

if ti > t.

7Assumption 1 states that the updates before time t− q have been written into memory before the update at time
t starts.

7

Then, xπ(k,t),t[0] = x̃π(k,t),t and xπ(k,t),t[|U |] = xπ(k,t),t. By the definition of Lres and the triangle
inequality, we obtain:

‖∇f(x̃π(k,t),t)−∇f(xπ(k,t),t)‖2 ≤

|U |−1∑

j=0

∥∥∥∇f(xπ(k,t),t[j + 1])−∇f(xπ(k,t),t[j])
∥∥∥

2

≤

|U |∑

i=1

Lres|∆x
π(k,t),t
kti

|

2

≤ 2q
∑

s∈{t−q,t+q}\{t}
L2
res

(
∆x

π(k,t),t
ks

)2
.

(6)

The last inequality followed from applying the Cauchy-Schwarz inequality to the RHS, relaxing U to
[t−q, t+q]\{t}. Note that, for any k and k′, ‖∇k′f(x̃

π(k′,t),t)−∇k′f(x
π(k′,t),t)‖2 = ‖∇k′f(x̃

π(k,t),t)−
∇k′f(x

π(k,t),t)‖2 as x̃π(k
′,t),t = x̃π(k,t),t and xπ(k

′,t),t = xπ(k,t),t by the Common Value assumption.
So,

Ek[(g
π(k,t),t
k − g̃

π(k,t),t
k)2] =

1

n
Ek

[
‖∇f(x̃π(k,t),t)−∇f(xπ(k,t),t)‖2

]
.

The result follows on applying (6).

To demonstrate the bound in (5), it suffices that 2q2L2
res

n (1− α
2n)

q ≤ Γ2

8 . The bound in Theorem 1
then follows readily.

5 Comments on Achieving the Full Result

The SACD analysis Although the analyis in the previous section is simple, it is not obvious
how to obtain a similar bound without the Common Value assumption. We want to have a similar
relationship between Ekt [(g

π,t
kt
− g̃π,tkt

)2] and
∑

s∈[t−q,t+q]\{q}(∆xπ,sks
)2. We mention several of the

challenges we face when we drop the Common Value assumption.

1. Without the Common Value assumption, x̃π,t may depend on the coordinate being updated at
time t. The reason is that the updates to two different coordinates may read different subsets
of coordinates and as a result their reads of a common coordinate may occur at different
times, and as a result may be reads of different updates of this common coordinate. We write
x̃t,kt for the value of x read by the update when coordinate kt is chosen. Now we need to

bound
∑

kt

[
∇f(x̃t,kt)−∇f(xt)

]2
, and the first inequality in (6) may no longer apply.

2. In addition, xt may also depend on the coordinate being updated at time t. Suppose the
updates to coordinates i and j at time t have different read schedules and this affects the
timing of an earlier update to coordinate k (because the update has to be atomic and so may
be slightly delayed if there is a read). Then a read of coordinate k by an update to coordinate
l may occur before k’s update in the scenario with the time t update to coordinate i and
after in the scenario with the time t update to coordinate j. If the update to coordinate l
occurs before time t then xt will depend on the coordinate chosen at time t. While this may
seem esoteric, to rule it out imposes unclear limitations on the asynchronous schedules. So

actually, we need to bound
∑

kt

[
∇f(x̃t,kt)−∇f(xt,kt)

]2
.

8

3. Without the assumption, a simple bound is that (gπkt−g̃πkt)2 ≤ 2q
∑

s∈[t−q,t+q]\{q} L
2
ks,kt

(∆xπks)
2

≤ 2qL2
max

∑
s∈[t−q,t+q]\{q}(∆xπks)

2. This is essentially the bound in Sun et al. [26] (except that
they use L rather than Lmax). But this bound does not enable any parallel speedup because
of the q term.

4. Without the assumption, the RHS of (5) becomes Ekt

[
Ŵkt(g

t
kt
, xt−1

kt
,Γ,Ψkt)

]
= Ek

[
Ŵk(g

k,t
k , xk,t−1

k ,Γ,Ψk)
]
.

[24, Lemmas 4,6] does not apply to this expression. Instead, we need Ej

[
Ek

[
Ŵk(g

j,t
k , xj,t−1

k ,Γ,Ψk)
]]
,

where gj,tk indicates the value of gk at time t had coordinate j rather than coordinate k been

selected, and similarly for xj,t−1
k . The two expectations would be the same if the Common

Value assumption held. Our remedy is to devise new shifting lemmas to bound the cost of
changing the arguments in Ŵk.

To handle the first three issues, roughly speaking, for each path π, we bound the difference
between the maximum and minimum possible updates over all possible asynchronous schedules. By
considering the directed acyclic graph induced by the read dependencies, we show these differences
are equal for many paths given some constraints on the asynchronous schedules. With this, we can

average over these paths, and by amortizing with these values, we can achieve an O(
qL2

res

n) bound.
We emphasize that our analysis considers all possible asynchronous schedules, but the averaging is
done over subsets of these schedules.

The lower bound Our construction applies to the functions
∑n

i=1 x
2
i + ǫ

∑
i 6=j xixj, where

ǫ = Θ(1/
√
cn lnn). The idea is that w.h.p., for each time step, after the first Θ(

√
cn lnn) up-

dates, among the most recent q = Θ(
√
cn lnn) updates, a constant fraction will have had a Θ(1)

increment and a constant fraction will have had a Θ(1) decrement. Then, for the next update,
the asynchronous scheduling allows us to designate whether positive or negative updates are read
and hence to maintain the property. The reason this can last for only Θ(nc) steps, is that each
coordinate needs to alternate the direction of its update, and so eventually too large a fraction of
the q most recent updates may be in one direction or the other. We organize this as a novel ball in
urns problem.

Problems with large Lres and Lres . Both Lres and Lres can be as large as
√
n. For problem

instances of this type, the bound on q becomes O(1); i.e. they do not demonstrate any parallel
speedup. We conjecture that this is inherent. Even if the conjecture holds, it is still conceivable
that parallel speedup will occur in practice, but to provide a confirming analysis would require new
assumptions on the asynchronous behavior, and we leave the devising of such assumptions as on
open problem.

Acknowledgment

We thank several anonymous reviewers for their helpful and thoughtful suggestions regarding earlier
versions of this paper.

9

Index for the Appendices

For the reader’s convenience, we provide an index for the sections in the appendix and also brief
descriptions of the topics.

1. Appendix A: Basic Lemmas and Handling No Common Write. Page: 11

We show some basic lemmas needed to measure progress and to bound the gradient error;
these will be used later in the convergence analysis. Also, Appendix A.5 provides the lemmas
that bound the costs for shifting Ŵ ’s arguments; they are needed to handle the No Common
Write setting (and elsewhere for that matter).

2. Appendix B: Full SACD Analysis. Page: 20

Here, we give the complete analysis of SACD. Beyond the analysis given in the main part, we
show how to deal with Ψ when bounding the difference (g− g̃)2 (to do this we need to create
a new ordering that lies between the start and commit time orderings); we then show how to
perform the amortization.

3. Appendix C: Lower bound on SACD. Page: 37

We show a family of functions that yields the lower bound for SACD, demonstrating that our
analysis of SACD is tight.

4. Appendix D: Further Related Work. Page: 43

5. Appendix E: Common Value Assumption. Page: 44

We explain how the Common Value assumption is violated due to different retrieval schedules
for different choices of coordinates, and due to varying iteration length.

6. Appendix F: Comments on Locking. Page: 45

7. References Page: 46

10

A Some Basic Lemmas and Facts

We now consider the general form of the function, i.e. F (x) = f(x) +
∑

k Ψk(xk). Recall that the
update rule is

xtj ← xt−1
j +argmin

d
{gj ·d+ Γd2/2−Ψj(xj)+Ψj(xj+d)} ≡ xt−1

j +d̂(g, x,Γ,Ψj) and ∀k 6= j, xtk ← xt−1
k .

We define W (d, g, x,Γj ,Ψj) = −[gj ·d + Γd2/2−Ψj(xj)+Ψj(xj+d)], and we set Ŵ (g, x,Γj ,Ψj) =

argmaxd W (d, g, x,Γj ,Ψj) =− [gj · d̂ + Γd̂2/2 −Ψj(xj) + Ψj(xj + d̂)].
Recall we assume that at each time, there is exactly one coordinate value being updated. For

any time τ , let kτ denote the coordinate which is updated at time τ , and let ∆xkτ ,τ := xτkτ −xτ−1
kτ

.
Since, for each coordinate j, the parameter Γj and the function Ψj remain unchanged throughout

the ACD process, to avoid clutter, we use the shorthand

Ŵj(g, x) := Ŵ (g, x,Γj ,Ψj) and d̂j(g, x) := d̂(g, x,Γj ,Ψj).

Note that Wj(0, g, x) = 0; thus Ŵj(g, x) ≥ 0.
Let [n] denote the set of coordinates {1, 2, · · · , n}. In this proof, Ψ will always denote a function

R→ R which is univariate, proper, convex and lower semi-continuous. Recall the definition of Lkk

in Definition 1. As is conventional, we write Lk ≡ Lkk.
It is well-known that for any k ∈ [n], x ∈ R

n and r ∈ R,

f(x+ r~ek) ≤ f(x) +∇kf(x) · r +
Lk

2
· r2. (7)

A.1 Some Lemmas about the Functions Ŵ and d̂

We state a number of technical lemmas concerning the functions Ŵ and d̂. The following fact,
which follows directly from the definition of Ŵ , will be used multiple times:

If 0 < Γ < Γ′, then ∀g, x ∈ R, Ŵ (g, x,Γ,Ψ) ≥ Ŵ (g, x,Γ′,Ψ). (8)

Lemma 4 (Three-Point Property, [7, Lemma 3.2]). For any proper, convex and lower semi-
continuous function Y : R→ R and for any d− ∈ R, let d+ := argmaxd∈R

{
−Y (d)− Γ(d− d−)2

}
.

Then for any d′ ∈ R,

Y (d′) + Γ(d′ − d−)2 ≥ Y (d+) + Γ(d+ − d−)2 + Γ(d′ − d+)2.

Lemma 5. For any g, x ∈ R and Γ ∈ R
+, Ŵ (g, x,Γ,Ψ) ≥ Γ

2

(
d̂(g, x,Γ,Ψ)

)2
.

Proof: We apply Lemma 4 with d− = d′ = 0 and Y (d) = gd − Ψ(x) + Ψ(x + d). Then
W (d, g, x,Γ,Ψ) = −Y (d) − Γd2/2, and hence d+, as defined in Lemma 4, equals d̂(g, x,Γ,Ψ).
These yield

Y (0) ≥ Y (d̂(g, x,Γ,Ψ)) + Γ ·
(
d̂(g, x,Γ,Ψ)

)2
.

Since Y (0) = 0 and −Y (d̂(g, x,Γ,Ψ)) = Ŵ (g, x,Γ,Ψ) + Γ
2

(
d̂(g, x,Γ,Ψ)

)2
, we are done.

Lemma 6 (Ŵ Shifting on x parameter). Let Ŵ (g, x1,Γ,Ψ)= W (d̆1, g, x1,Γ,Ψ) and Ŵ (g, x2,Γ,Ψ)
= W (d̆2, g, x2,Γ,Ψ). Then

Ŵ (g, x1) + Ψ(x2)−Ψ(x1) ≥ Ŵ (g, x2)− g(x2 − x1)− Γd̆2(x2 − x1)−
Γ

2
· (x2 − x1)

2.

11

Proof: RJC: I think we should remove the Γ from the Ŵ or include the Ψ. RJC: Right.

We use Lemma 4 with d− = 0, and Y (d) = gd−Ψ(x1) + Ψ(x1 + d). Then we have

Y (d′) +
Γ

2
· (d′)2 ≥ − Ŵ (g, x1) +

Γ

2
· (d′ − d̆1)

2.

The above inequality holds for any d′. In particular, we pick d′ = x2 − x1 + d̆2, yielding

Ŵ (g, x1) ≥ −g(x2−x1+ d̆2) + Ψ(x1) − Ψ(x2+ d̆2) −
Γ

2
·(x2−x1+ d̆2)

2 +
Γ

2
·(x2−x1+ d̆2− d̆1)2.

By adding Ψ(x2)−Ψ(x1) to both sides, we have

Ŵ (g, x1) + Ψ(x2)−Ψ(x1)

≥ − g(x2 − x1 + d̆2) + Ψ(x2)−Ψ(x2 + d̆2)−
Γ

2
· (x2 − x1 + d̆2)

2 +
Γ

2
· (x2 − x1 + d̆2 − d̆1)

2

= Ŵ (g, x2)− g(x2 − x1)− Γd̆2(x2 − x1)−
Γ

2
· (x2 − x1)

2 +
Γ

2
· (x2 − x1 + d̆2 − d̆1)

2

≥ Ŵ (g, x2)− g(x2 − x1)− Γd̆2(x2 − x1)−
Γ

2
· (x2 − x1)

2.

Lemma 7 (Ψ Shifting). Let Ŵ (g1, x1) =W (d̂1, g1, x1) and Ŵ (g2, x2) =W (d̂2, g2, x2). Then

Ψ(x2 + d̂2)−Ψ(x1 + d̂1) ≤ g2(x1 − x2 + d̂1 − d̂2) +
Γ

2
· (x1 − x2 + d̂1)

2.

Proof: By the definition of d̂2, we have the following inequality, which directly implies the one
stated in the lemma.

−g2d̂2 −
Γ

2
· (d̂2)2 −Ψ(x2 + d̂2) ≥ − g2(x1 − x2 + d̂1)−

Γ

2
· (x1 − x2 + d̂1)

2 −Ψ(x1 + d̂1).

Lemma 8 (Ŵ Shifting on g parameter). For any gj , g
′
j , Ŵj(gj , xj) ≥ 2

3 ·Ŵj(g
′
j , xj) − 4

3Γ ·(gj−g′j)2.

Proof: To avoid clutter, we use the shorthand d̂(gi) := d̂(gi, x,Γ,Ψ) for i = 1, 2.

Ŵ (g1, x,Γ,Ψ)

= max
d∈R

W (d, g1, x,Γ,Ψ)

≥ W (d̂(g2), g1, x,Γ,Ψ)

= − g1 · d̂(g2)− Γ · d̂(g2)2/2 + Ψ(x)−Ψ(x+ d̂(g2))

= − g2 · d̂(g2)− Γ · d̂(g2)2/2 + Ψ(x)−Ψ(x+ d̂(g2)) + (g2 − g1) ·
[
d̂(g1) + (d̂(g2)− d̂(g1))

]

≥ Ŵ (g2, x,Γ,Ψ)− |g1 − g2| ·
∣∣∣d̂(g1)

∣∣∣− |g1 − g2| ·
∣∣∣d̂(g2)− d̂(g1)

∣∣∣

≥ Ŵ (g2, x,Γ,Ψ)− |g1 − g2| ·
∣∣∣d̂(g1)

∣∣∣− 1

Γ
(g1 − g2)

2 (By Lemma 11)

≥ Ŵ (g2, x,Γ,Ψ)− 1

Γ
(g1 − g2)

2 − Γ

4
(d̂(g1))

2 − 1

Γ
(g1 − g2)

2 (AM-GM ineq.)

≥ Ŵ (g2, x,Γ,Ψ)− 2

Γ
(g1 − g2)

2 − 1

2
Ŵ (g1, x,Γ,Ψ). (By Lemma 5)

12

A.2 Proofs of Lemmas 1 and 2

Lemmas 1 and 2 follow directly from the lemma below.

Lemma 9. Suppose there is an update to coordinate j at time t according to rule (1), and suppose
that Γ ≥ Lmax. Let gj = ∇jf(x

t−1) and g̃j = ∇jf(x̃). Then

F (xt−1)− F (xt) ≥ Γ

4
(d̂j(g̃j , x

t−1
j))2 − 1

Γ
· (gj − g̃j)

2

and F (xt−1)− F (xt) ≥ Ŵj(gj , x
t−1
j)− 1

Γ
· (gj − g̃j)

2.

Proof: To avoid clutter, we use the shorthand dj := d̂j(gj , x
t−1
j) and d̃j := d̂j(g̃j , x

t−1
j). By

update rule (1), d̃j = ∆xj,t.

F (xt) = f(xt) + Ψj(x
t
j) +

∑

k 6=j

Ψk(x
t
k)

≤ f(xt−1) + gj d̃j +
Γ

2
(d̃j)

2 +Ψj(x
t−1
j + d̃j) +

∑

k 6=j

Ψk(x
t−1
k)

(By (7), (1), and the assumption Γ ≥ Lmax ≥ Lj)

= F (xt−1) + g̃j d̃j +
Γ

2
(d̃j)

2 −Ψj(x
t−1
j) + Ψj(x

t−1
j + d̃j) + (gj − g̃j)d̃j

= F (xt−1)− Ŵj(g̃j , x
t−1
j) + (gj − g̃j)d̃j .

Hence,
F (xt−1)− F (xt) ≥ Ŵj(g̃j , x

t−1
j)− (gj − g̃j)d̃j .

Then we can apply Lemma 5 to prove the first inequality in Lemma 9:

F (xt−1)− F (xt) ≥ Ŵj(g̃j , x
t−1
j) − (gj − g̃j)d̃j

≥ Γ

2
(d̃j)

2 − |gj − g̃j | · |d̃j |

≥ Γ

2
(d̃j)

2 − 1

2

[
2

Γ
· (gj − g̃j)

2 +
Γ

2
(d̃j)

2

]
(by the AM-GM ineq.)

=
Γ

4
(d̃j)

2 − 1

Γ
· (gj − g̃j)

2.

We prove the second inequality in Lemma 9 as follows:

F (xt−1)− F (xt) ≥ Ŵj(g̃j , x
t−1
j)− (gj − g̃j)d̃j

≥ Wj(dj , g̃j , x
t−1
j)− (gj − g̃j)d̃j

= Wj(dj , gj , x
t−1
j) + (gj − g̃j)dj − (gj − g̃j)d̃j

= Ŵj(gj , x
t−1
j) + (gj − g̃j)(dj − d̃j)

≥ Ŵj(gj , x
t−1
j)− |gj − g̃j | · |dj − d̃j |

≥ Ŵj(gj , x
t−1
j)− 1

Γ
(gj − g̃j)

2. (By Lemma 11)

Combining Lemmas 1 and 2 yields

F (xt−1)− F (xt) ≥ 1

2
Ŵkt(g

t
kt , x

t−1
kt

,Γ,Ψkt) +
1

8
Γ
(
∆xtkt

)2 − 1

Γ
(gtkt − g̃tkt)

2 (9)

or F (xt−1)− F (xt) ≥ 1

2
Ŵkt(g

t
kt , x

t−1
kt

,Γ,Ψkt) +
1

4
Γ
(
∆xtkt

)2
if gtkt = g̃tkt . (10)

13

A.3 Proof of Lemma 10

Lemma 10. For any g1, g2, x ∈ R and Γ ∈ R
+, |d̂(g1, x1,Γ,Ψ) − d̂(g2, x2,Γ,Ψ)| ≤ |x1 − x2| + 1

Γ ·
|g1 − g2|, and hence

(
d̂(g1, x1,Γ,Ψ)− d̂(g2, x2,Γ,Ψ)

)2
≤ 2(x1 − x2)

2 +
2

Γ2
· (g1 − g2)

2 .

If Ψ is the zero function, the upper bound on |d̂(g1, x1,Γ,Ψ) − d̂(g2, x2,Γ,Ψ)| can be improved to
1
Γ · |g1 − g2|.

Lemma 10 is a simple corollary of the following two lemmas.

Lemma 11 ([28, Lemma 4]). For any g1, g2, x ∈ R and Γ ∈ R
+,
∣∣∣d̂(g1, x,Γ,Ψ) − d̂(g2, x,Γ,Ψ)

∣∣∣ ≤
1
Γ · |g1 − g2| .

Lemma 12. For any g, x1, x2 ∈ R and Γ ∈ R
+,
∣∣∣d̂(g, x1,Γ,Ψ)− d̂(g, x2,Γ,Ψ)

∣∣∣ ≤ |x1 − x2| .

Proof: For i = 1, 2, let di := d̂(g, xi,Γ,Ψ). By the definition of d̂, for i = 1, 2, there exists a
subgradient Ψ′(xi + di) such that

g + Γ · di +Ψ′(xi + di) = 0.

If d1 = d2, we are done. If d1 > d2, then Ψ′(x1 + d1) < Ψ′(x2 + d2). Since Ψ is convex,
x1 + d1 ≤ x2 + d2 and hence 0 < d1 − d2 ≤ x2 − x1.

If d2 > d1, by the same argument as above we have 0 < d2 − d1 ≤ x1 − x2.

A.4 The Progress Lemma

The following lemma is key to the demonstration of progress in both the strongly convex and convex
cases.

For any t ≥ 1, we define the following:

PRG(t− 1) :=

n∑

k=1

Ŵk(∇kf(x
t−1), xt−1

k ,Γ,Ψk).

We will use the following lemma from [24, Lemmas 4,6]. We provide a proof here for complete-
ness.

Lemma 13 ([24, Lemmas 4,6]).
(a) Suppose that f, F are strongly convex with parameters µf , µF > 0 respectively, and suppose that
Γ ≥ µf . Then

PRG(t− 1) ≥ µF

µF + Γ− µf
· F (xt−1).

(b) Suppose that f, F are convex functions. Suppose that R := minx∗∈X∗ ‖xt−1 − x∗‖ <∞. Then

PRG(t− 1) ≥ min

{
1

2
,
F (xt−1)

2ΓR2

}
· F (xt−1).

14

Proof: First of all, we show a lower bound for PRG(t− 1), which will be used to prove both (a)
and (b).

PRG(t− 1) =

n∑

k=1

max
dk∈R

{
−∇kf(x

t−1) · dk − Γ · (dk)2/2 + Ψk(x
t−1
k)−Ψk(x

t−1
k + dk)

}

≥ max
d∈Rn

{
n∑

k=1

[
−∇kf(x

t−1) · dk − Γ · (dk)2/2 + Ψk(x
t−1
k)−Ψk(x

t−1
k + dk)

]
}
.

When f is strongly convex with parameter µf , for any d ∈ R
n,

f(xt−1 + d) ≥ f(xt−1) +

n∑

k=1

∇kf(x
t−1) · dk +

µf

2

n∑

k=1

(dk)
2.

Thus

PRG(t− 1) ≥ max
d∈Rn

{
f(xt−1)− f(xt−1 + d)− Γ− µf

2

n∑

k=1

(dk)
2 +

n∑

k=1

[
Ψk(x

t−1
k)−Ψk(x

t−1
k + dk)

]
}

= max
d∈Rn

{
F (xt−1)− F (xt−1 + d)− Γ− µf

2

n∑

k=1

(dk)
2

}

≥ max
0≤β≤1

{
F (xt−1)− F

(
βx∗ + (1− β)xt−1

)
− (Γ− µf)β

2

2

n∑

k=1

(xt−1
k − x∗k)

2

}
. (11)

To prove (a), we apply the following characterization of strong convexity of F : for any 0 ≤ β ≤ 1,

F
(
βx∗ + (1− β)xt−1

)
≤ β · F (x∗) + (1− β) · F (xt−1) − µFβ(1− β)

2

n∑

k=1

(xt−1
k − x∗k)

2.

Note that F (x∗) = F ∗ = 0. By (11),

PRG(t− 1) ≥ max
0≤β≤1

{
β · F (xt−1) +

µFβ(1− β)− (Γ− µf)β
2

2

n∑

k=1

(xt−1
k − x∗k)

2

}

≥
(
β · F (xt−1) +

µFβ(1− β)− (Γ− µf)β
2

2

n∑

k=1

(xt−1
k − x∗k)

2

)∣∣∣∣∣
β=µF /(µF+Γ−µf)

=
µF

µF + Γ− µf
· F (xt−1).

Note that the constraint β ≤ 1 forces Γ ≥ µf .
To prove (b), let x∗ denote a point in X∗ such that ‖xt−1 − x∗‖ ≤ R, where X∗ is the set

of minimum points for F . By the convexity of F , when 0 ≤ β ≤ 1, F (βx∗ + (1 − β)xt−1) ≤
(1− β) · F (xt−1). Since f is convex, µf ≥ 0 always. From (11),

PRG(t− 1) ≥ max
0≤β≤1

{
β · F (xt−1)− Γβ2

2
R2

}
.

The R.H.S. of the above inequality is a maximization of a quadratic function of β, which can be
easily solved to yield the lower bound in (b).

15

The basis form of all our convergence results is given by the following meta-theorem (or the
same result in expectation for the stochastic case).

Theorem 4. Let Γ be a sufficiently large step size for the update rule, and let r, q be two fixed
integer parameters. Let A(t), B(t) be non-negative functions with A(0) = 0, B(0) = 0, and let
H(t) := F (xt) +A(t)−B(t). Suppose that

• for all t ≥ 1, H(t) ≤ H(t− 1), i.e., H(t) is a decreasing function of t;

• there exists constants α, β > 0 such that for any t ≥ 2r,

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

[
α

n

n∑

k=1

Ŵk(∇kf(x
i−1), xi−1

k ,Γ,Ψk) +
β

q
·A(i− 1)

]
.

(i) Then, if F is strongly convex with parameter µF ,
8 and f has strongly convex parameter µf ,

H(t) ≤
[
1−min

{
α

2n
· µF

µF + Γ− µf
,

β

2q

}]t−2r+1

· F (x◦).

(ii) Now suppose that F is convex. Let R be the radius of the level set for x◦. Formally, let
X = {x |F (x) ≤ F (x◦)}; then R = supx∈X minx∗∈X∗ ||x− x∗||. Then, for t ≥ r,

H(t) ≤ F (x◦)

1 + min
{

β
4q F (x◦) , α

8n F (x◦) , 1
8ΓR2

}
·H(2r − 1) · (t− 2r + 1)

.

This result also holds in expectation.

For t = T , we will ensure B(T) = 0, and then F (T) ≤ H(T).

Proof: We begin by showing (i). By the second assumption and Lemma 13,

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

[
α

n
PRG(i− 1) +

β

q
· A(i− 1)

]

≥
t−r∑

i=t−2r+1

[
α

n
· µF

µF + Γ− µf
F (xi−1) +

β

q
·A(i− 1)

]

≥
t−r∑

i=t−2r+1

δ ·H(i− 1),

where δ := min
{

α
n ·

µF
µF+Γ−µf

, β
q

}
.

By the assumption that H is decreasing,

t−r∑

i=t−2r+1

δ ·H(i− 1) ≥ δ

2
·

t∑

i=t−2r+1

H(i− 1).

Combining all the above yields

t∑

i=t−2r+1

H(i) ≤
(
1− δ

2

)
·

t∑

i=t−2r+1

H(i− 1) =

(
1− δ

2

)
·

t−1∑

i=t−2r

H(i).

8i.e., for all x, y ∈ R
n and F ′(x) which is any subgradient of F at x, F (y) ≥ F (x)+ 〈F ′(x), y− x〉+ 1

2
µF ||y− x||2.

16

For any t ≥ 2r, iterating the above inequality (t− 2r + 1) times yields

t∑

i=t−2r+1

H(i) ≤
(
1− δ

2

)t−2r+1 2r−1∑

i=0

H(i).

Since H is decreasing, the summation in LHS is at least 2r ·H(t), while the summation in RHS is
at most 2r ·H(0). Thus,

H(t) ≤
(
1− δ

2

)t−2r+1

·H(0).

To finish the proof note that since A(0) = 0, H(0) = F (x◦).
Now we show (ii). By the second assumption and Lemma 13,

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

[
α

n
PRG(i− 1) +

β

q
·A(i − 1)

]

≥
t−r∑

i=t−2r+1

[
α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
·A(i− 1)

]
.

For each i, there are two possible cases:

• If F (xi−1) ≤ A(i − 1), then A(i− 1) ≥ H(i−1)
2 , thus

α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
· A(i− 1) ≥ β

2q
·H(i− 1).

• If F (xi−1) > A(i − 1), then F (xi−1) > H(i−1)
2 , thus

α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
·A(i− 1) >

α

2n
·min

{
1

2
,
H(i− 1)

4Γ R2

}
·H(i− 1).

Since H is a decreasing function, H(i− 1) ≤ H(0) = F (x◦). Thus, unconditionally, we have

α

n
·min

{
1

2
,
F (xi−1)

2Γ R2

}
· F (xi−1) +

β

q
· A(i− 1) ≥ min

{
β

2q
,

α

4n
,
H(i− 1)

4Γ R2

}
·H(i− 1)

≥ min

{
β

2q F (x◦)
,

α

4n F (x◦)
,

1

4Γ R2

}
·H(i− 1)2.

Note that the term min
{

β
2q F (x◦) , α

4nF (x◦) , 1
4Γ R2

}
is independent of i. We let ε denote it.

Now, we have

t∑

i=t−2r+1

[H(i− 1)−H(i)] ≥
t−r∑

i=t−2r+1

ε H(i− 1)2

≥ ε

r

(
t−r∑

i=t−2r+1

H(i− 1)

)2

(by the Power Mean Inequality)

≥ ε

r

(
1

2

t∑

i=t−2r+1

H(i− 1)

)2

(as H is a decreasing function)

=
ε

4r

(
t∑

i=t−2r+1

H(i− 1)

)2

.

17

For brevity, let Sτ :=
∑τ

i=τ−2r+1H(i). Then the above inequality translates to

St−1 − St ≥
ε

4r
(St−1)

2 .

Note that St−1 ≥ St ≥ 0. Dividing both sides by St−1 · St yields

1

St
− 1

St−1
≥ ε

4r

St−1

St
≥ ε

4r
.

Iterating the above inequality t− 2r + 1 times yields

1

St
− 1

S2r−1
≥ ε

4r
(t− 2r + 1)

and hence

St ≤
1

1
S2r−1

+ ε
4r (t− 2r + 1)

=
S2r−1

1 + ε
4 ·

S2r−1

r · (t− 2r + 1)
.

Since H is a decreasing function, St ≥ 2r ·H(t), while 2r ·H(2r−1) ≤ S2r−1 ≤ 2r ·H(0) = 2r ·
F (x◦). Thus,

H(t) ≤ F (x◦)

1 + ε
4 ·

2r·H(2r−1)
r · (t− 2r + 1)

=
F (x◦)

1 + ε
2 ·H(2r − 1) · (t− 2r + 1)

.

It is straightforward to check that taking expectations leaves the proof unchanged.

A.5 Handling No Common Write

Recall that at the beginning of the t-th update, x◦j := xt−q−1
j is already fixed when a core chooses

kt. However, if there are some updates to coordinate j over the time interval [t− q, t− 1], the value
of xj will be modified during this time interval. A subtle observation is that how xj is modified
might depend on the choice of kt (and also of kt+1, kt+2, · · · , kt+q−1). More concretely, depending
on the choices of the coordinates in times [t, t + q − 1], and depending on various unpredictable
asynchronous effects, the value of xt−1 might not be the same. This is in contrast to the classical
stochastic and synchronous case, where xt−1 is already fixed by the history when bounding the
relevant conditional expectation.

Let xπ(j,t),t−1 denote the value of xt−1 when j is chosen to be coordinate kt. To avoid algebraic
clutter, we write xπ(j),t−1 ≡ xπ(j,t),t−1 in this subsection.

To remedy the situation, for each fixed k ∈ [n], and for all j ∈ [n], we “shift” the progress made

when j is chosen to be kt, which is of the form Ŵj(g̃, x
π(j),t−1
j), to a progress term of the form

Ŵj(∇jf(x
π(k),t−1), x

π(k),t−1
j). We accomplish this by using Lemmas 6 and 7.

Suppose there are ℓ ≥ 1 updates to coordinate j over the time interval [t− q, t− 1], and suppose
the latest update to coordinate j occurred at time t̆. Suppose that

• the changes to xj from x◦j to x
π(j),t−1
j are d11, d12, · · · , d1ℓ;

• the changes to xj from x◦j to x
π(k),t−1
j are d21, d22, · · · , d2ℓ; furthermore, let

gaj := ∇jf(x
π(k),t−1) and d̆ := argmax

d
W (d, gaj , x

π(k),t−1
j ,Γ).

18

In other words, x
π(j),t−1
j = x◦j +

∑ℓ
r=1 d1r and x

π(k),t−1
j = x◦j +

∑ℓ
r=1 d2r.

By Lemma 6, we have

Ŵ (gaj , x
π(j),t−1
j) + Ψ(x

π(k),t−1
j)−Ψ(x

π(j),t−1
j)

≥ Ŵ (gaj , x
π(k),t−1
j) − gaj · (xπ(k),t−1

j − x
π(j),t−1
j)

− Γd̆ · (xπ(k),t−1
j − x

π(j),t−1
j) − Γ

2
· (xπ(k),t−1

j − x
π(j),t−1
j)2.

On the other hand, let gbj be the gradient used to compute the update d2ℓ. By Lemma 7, on

setting x2 = x
π(k),t−1
j − d2ℓ and x1 = x

π(j),t−1
j − d1ℓ, we have

Ψ(x
π(k),t−1
j)−Ψ(x

π(j),t−1
j) ≤ gbj(x

π(j),t−1
j − x

π(k),t−1
j) +

Γ

2
(x

π(j),t−1
j − x

π(k),t−1
j + d2ℓ)

2.

Combining the above two inequalities, and letting δ := x
π(k),t−1
j − x

π(j),t−1
j , yields

Ŵ (gaj , x
π(j),t−1
j)

≥ Ŵ (gaj , x
π(k),t−1
j) + (gbj − gaj) · δ − Γd̆ · δ − Γ

2
· δ2 − Γ

2
· (d2ℓ − δ)2

≥ Ŵ (gaj , x
π(k),t−1
j) − 1

2Γ
· (gbj − gaj)

2 − 3

2
· Γδ2 − Γ

2
· (d2ℓ)2 − Γ|d̆− d2ℓ| · |δ|

≥ Ŵ (gaj , x
π(k),t−1
j) − 1

2Γ
· (gbj − gaj)

2 − 2Γδ2 − Γ

2
· (d2ℓ)2 −

Γ

2
· (d̆− d2ℓ)

2.

By Lemma 10,
Γ

2
· (d̆− d2ℓ)

2 ≤ Γ · (d2ℓ)2 +
1

Γ
· (gaj − gbj)

2.

Thus, we have

Ŵ (gaj , x
π(j),t−1
j) ≥ Ŵ (gaj , x

π(k),t−1
j) − 3

2Γ
· (gbj − gaj)

2 − 2Γδ2 − 3Γ

2
· (d2ℓ)2. (12)

The key message from the above inequality is: Ŵ (gaj , x
π(j),t−1
j) is as large as Ŵ (gaj , x

π(k),t−1
j),

modulo a few “error terms”. We might hope to balance these error terms by part of the Γ(∆xτ)2

terms. First, we can bound δ2 as follows:

δ2 ≤

 ∑

1≤i≤ℓ

(
∆t

maxx
π(k),ti
j −∆t

minx
π(k),ti
j

)
+
(
∆t

maxx
π(j),ti
j −∆t

minx
π(j),ti
j

)

2

≤ 2q
∑

1≤i≤ℓ

(
∆t

maxx
π(k),ti
j −∆t

minx
π(k),ti
j

)2
+
(
∆t

maxx
π(j),ti
j −∆t

minx
π(j),ti
j

)2
, (13)

where t1 < t2 < . . . < tℓ are the times of the updates to xj in time interval [t− q, t− 1]. Note that
the terms in the summation on the RHS above are similar to the terms on the LHS of (14).

The final step is to use Lemma 8 to “shift” the gradient in the Ŵ term that we actually have,

namely Ŵ (g̃, x
π(j),t−1
j), to Ŵ (gaj , x

π(j),t−1
j). This will be done within the analyses of SACD.

19

B Full SACD Analysis

We use the starting time of updates as reference points, and thus future updates in this ordering
might interfere with the current update. However, in any standard stochastic analysis, the progress
is analyzed conditioning on the current information. Our high-level approach to achieve this is:
with the current information in hand, give a worst-case estimate on how, in expectation, the future
updates can interfere with the current update. While the above high-level approach seems natural,
its implementation is quite non-trivial. We think it is plausible that our approach may also be
effective in analyzing other asynchronous stochastic iterative systems.

Suppose there are a total of T updates. We view the whole stochastic process as a branching
tree of height T . Each node in the tree corresponds to the moment when some core randomly picks
a coordinate to update, and each edge corresponds to a possible choice of coordinate. We use π to
denote a path from the root down to some node of the tree.

At this point, it is helpful to clarify the concept of a history. Suppose π is a path of length t, and
let N be π’s final node. What had really happened before N , or in other words, what is the history
before N ? Our timing scheme and Assumption 1 ensure that all updates starting strictly before
time t− q have committed before N , and thus all information about such updates belongs to the
history. Also, the coordinates ks for s ∈ [t− q, t− 1] were already chosen, so their identities belong
to the history; however, some or all of their updated values might not yet belong to the history.

The main novelty in our analysis is to achieve a bound on the difference between the computed
gradient and the “up-to-date” gradient. The resulting bound is given in Equation (14) below. To
fully understand this bound, new notation is needed, as defined below. We then use this bound
to obtain the desired amortized progress, but as this is more standard, albeit non-trivial, we defer
this part of the analysis to Appendix B.

Gradient Error Bounds To analyze the update to xtkt , we begin by fixing a path π from the root

to a leaf; to indicate its dependence of π, we write the coordinate as xπ,tkt
; likewise, we write gπ,tkt

for

the gradient component. We will seek to bound the range of values for the update to xπ,tkt
. This

range is maximized if xπ,tkt
is the last coordinate to commit among those updates that start in the

time range [t− q, t+ q]. This is reflected in the following notation.

∆t
maxx

π,s,R
ks

=

the maximum value that ∆xπ,s,Rks
can assume when the first (t− q − 1) updates

on path π have been fixed, the update does not read any of the updates
at times in R, nor any of the variable values updated at times v > t+ q.
In our proof, R is either a singleton set or the empty set ∅.

Let ∆t
minx

π,s,R
ks

denote the analogous minimum value.

Note that for u > t, ∆u
maxx

π,t,R
kt

≤ ∆t
maxx

π,t,R
kt

and ∆u
minx

π,t,R
kt

≥ ∆t
minx

π,t,R
kt

,

since the update does not read any of the variable values updated at times v > t + q. Also,
∆u

maxx
π,t,R
kt

≤ ∆u
maxx

π,t,∅
kt

and ∆u
minx

π,t,R
kt

≥ ∆u
minx

π,t,∅
kt

, for all R. Let

∆maxx
π,t
kt

:= max
t−q≤u≤t

∆u
maxx

π,t,∅
kt

and ∆minx
π,t
kt

:= min
t−q≤u≤t

∆u
minx

π,t,∅
kt

.

20

Let gπ,t∆max,kt
(resp. gπ,t∆min,kt

) denote the value of gπ,tkt
used to evaluate ∆maxx

π,t
kt

(resp. ∆minx
π,t
kt

).

Let gπ,u,tmax,kt
(resp. gπ,u,tmin,kt

) denote the maximum (resp. minimum) value of gπ,tkt
when the update

for xπ,uku
is the last to commit among updates with start time in [u− q, u+ q] (resp. ∆u

minx
π,t
kt

).

Let gπ,tmax,kt
= max

t−q≤u≤t
gπ,u,tmax,kt

, gπ,tmin,kt
= min

t−q≤u≤t
gπ,u,tmin,kt

.

For simplicity, we first give an analysis for smooth functions. The key recursive bound on the
gradient error follows.

Lemma 14. For smooth functions,

E

[(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2]
,E

[
2

Γ2

(
gπ,tmax,kt

− gπ,tmin,kt

)2]

≤ 12qL2
res

nΓ2

∑

s∈[t−2q,t+q]\{t}

[(
∆maxx

π,s
ks
−∆minx

π,s
ks

)2
+
(
∆xπ,sks

)2]
. (14)

In Appendix B.4, we unwind recursive inequality (14) to bound Eπ

[
1
Γ(g

t
kt
− g̃tkt)

2
]
in terms of

Eπ

[(
∆xπ,sks

)2]
. Following this, the remaining task is to design a potential function to demonstrate

progress.

Proof: First, we review which updates can create differences in the values of gπ,tmax,kt
and gπ,tmin,kt

.

The computation of these gradients may differ due to reading different values for xπ,sks
, or reading

an older value of the coordinate, for some or all of t− 2q ≤ s ≤ t+ q, and only for this range of s;
for all relevant u, the first (u−q−1) updates are already fixed, so the first (t−q)−q−1 = t−2q−1
updates are fixed; also, an update to xπ,tkt

will only consider updates up to time t+ q. Further, for
each s, the change to the previous value of the variable due to the update yielding xπ,sks

will lie in

the range [∆u
minx

π,s,{t}
ks

,∆u
maxx

π,s,{t}
ks

] for a suitable span of u values, specified next. First, we are

concerned only with u ∈ [t− q, t] because this is the range of u for ∆maxx
π,t
kt

and ∆minx
π,t
kt

. Second,

as for s < u, ∆u
maxx

π,s,{t}
ks

≤ ∆s
maxx

π,s,{t}
ks

, and similarly ∆u
minx

π,s,{t}
ks

≥ ∆s
maxx

π,s,{t}
ks

, we can safely
assume that u ≤ s. Finally, as no variables updated at times v > u+ q are read here, we have that
s ≤ u+ q, or s− q ≤ u. So the range for u is Ts,t := [max{s− q, t− q},min{s, t}].

Then by Lemma 10 in Appendix A (to show the first inequality), and by a use of the Cauchy-
Schwarz inequality (for the fourth inequality),

(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2
≤ 2

Γ2

(
gπ,t∆max,kt

− gπ,t∆min,kt

)2
≤ 2

Γ2

(
gπ,tmax,kt

− gπ,tmin,kt

)2
(15)

≤ 2

Γ2

 ∑

s∈[t−2q,t+q]\{t}
Lks,kt ·max

{∣∣∣∣max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

− min
u∈Ts,t

∆u
minx

π,s,{t}
ks

∣∣∣∣ ,

∣∣∣∣max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

∣∣∣∣ ,
∣∣∣∣ min
u∈Ts,t

∆u
minx

π,s,{t}
ks

∣∣∣∣
}]2

≤ 6q

Γ2

∑

s∈[t−2q,t+q]\{t}
L2
ks,kt ·max

{(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

− min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2

,

(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

)2

,

(
min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2
}
. (16)

21

Now, we average over all n choices of kt. Using the definition of Lres yields

E

[(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2]

≤ 6q

nΓ2

∑

s∈[t−2q,t+q]\{t}
L2
res ·max

{(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

− min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2

,

(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

)2

,

(
min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2
}
. (17)

This averaging is legitimate because on the RHS the paths π being considered in the averaging

all have the same values for ∆u
maxx

π,s,{t}
ks

and for ∆u
minx

π,s,{t}
ks

as their computation does not involve
the update to xtkt , and because at most the first (t− q− 1) updates have been fixed in any of these
terms, none of the updates that could affect the update to xtkt have been fixed.

The summation in the RHS of (17) is bounded by

6qL2
res

nΓ2

∑

s∈[t−2q,t+q]\{t}
max

{(
∆maxx

π,s
ks
−∆minx

π,s
ks

)2
,
(
∆maxx

π,s
ks

)2
,
(
∆minx

π,s
ks

)2}
.

∆xπ,sks
∈
[
∆minx

π,s
ks

, ∆maxx
π,s
ks

]
; thus

∣∣∆minx
π,s
ks

∣∣ ,
∣∣∆maxx

π,s
ks

∣∣ ≤
∣∣∆xπ,sks

∣∣+
(
∆maxx

π,s
ks
−∆minx

π,s
ks

)
.

It follows that
(
∆minx

π,s
ks

)2
,
(
∆maxx

π,s
ks

)2 ≤ 2
(
∆xπ,sks

)2
+ 2

(
∆maxx

π,s
ks
−∆minx

π,s
ks

)2
. The result

follows.

22

B.1 Analyzing Non-Smooth Functions

We need to rederive the bound in Lemma 14 to take account of non-trivial Ψ terms. This creates
difficulties if there are updates to the same coordinate whose start and commit time orderings differ.
However, to fix this, for each path π, we simply rearrange the update ordering for each coordinate
separately, so that they are in commit order, while collectively occupying the same places in the
start ordering. e.g. if coordinate x1 has updates x21, x

8
1, x

11
1 that start at times 2, 8, and 11, resp.,

but they finish at times 9, 18 and 12, in the new ordering x21 will be in position 2, x111 will be in
position 8, and x81 will be in position 11. We call this the Single Coordinate Consistent Ordering,
the SCC ordering for short. It maintains the property that each coordinate has an equal probability
of occurring at each time.

This does affect the range of coordinates that might be read by an update at time t; it is now
[t − 2q, t + q] — the upside does not increase, for if a coordinate has moved earlier to time t, it
must commit before the coordinate that had moved later from time t, and by assumption the latter
coordinate was no later than the t+ q-th coordinate to commit.

By Lemma 10, we have

(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2

≤ 2

 ∑

s∈[t−3q,t−1]\{t},ks=kt

∆t
maxx

π,s,{t}
ks

−∆t
minx

π,s,{t}
ks

2

+
2

Γ2

(
gπ,t∆max,kt

− gπ,t∆min,kt

)2
(18)

≤ 6q
∑

s∈[t−3q,t−1]\{t},ks=kt

(
∆maxx

π,s,{t}
ks

−∆t
minx

π,s,{t}
ks

)2
+

2

Γ2

(
gπ,tmax,kt

− gπ,tmin,kt

)2

≤ 6q
∑

s∈[t−3q,t−1]\{t},ks=kt

(
∆t

maxx
π,s,{t}
ks

−∆t
minx

π,s,{t}
ks

)2

+
2

Γ2

 ∑

s∈[t−3q,t+q]\{t}
Lks,kt ·max

{∣∣∣∣max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

− min
u∈Ts,t

∆u
minx

π,s,{t}
ks

∣∣∣∣ ,

∣∣∣∣max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

∣∣∣∣ ,
∣∣∣∣ min
u∈Ts,t

∆u
minx

π,s,{t}
ks

∣∣∣∣
}]2

(19)

≤ 6q
∑

s∈[t−3q,t−1]\{t},ks=kt

(
∆t

maxx
π,s,{t}
ks

−∆t
minx

π,s,{t}
ks

)2

+
8q

Γ2

∑

s∈[t−3q,t+q]\{t}
L2
ks,kt ·max

{(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

− min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2

,

(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

)2

,

(
min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2
}
.

Now we average over all n choices of kt. We obtain

23

E

[(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2]

≤ 6q

n

∑

s∈[t−3q,t−1]\{t}

(
∆t

maxx
π,s,{t}
ks

−∆t
minx

π,s,{t}
ks

)2

+
8q

nΓ2

∑

s∈[t−3q,t+q]\{t}
L2
res ·max

{(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

− min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2

,

(
max
u∈Ts,t

∆u
maxx

π,s,{t}
ks

)2

,

(
min
u∈Ts,t

∆u
minx

π,s,{t}
ks

)2
}
. (20)

Following the previous argument, we obtain

E

[(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2]
≤ 6q

n

∑

s∈[t−3q,t−1]\{t}

(
∆maxx

π,s
ks
−∆minx

π,s
ks

)2

+
16qL2

res

nΓ2

∑

s∈[t−3q,t+q]\{t}

[(
∆maxx

π,s
ks
−∆minx

π,s
ks

)2
+
(
∆xπ,sks

)2]
. (21)

Now, we extend the expectation to all paths π. We let
(
∆FE

t

)2
:= Eπ

[(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2]

denote the resulting expectation for level t. Also, we let (Ex
s)

2 := Eπ

[(
∆xπ,sks

)2]
.

Let ν1 :=
6q2

n and ν2 =
16q2L2

res

nΓ2 . We have

Γ ·
(
∆FE

t

)2 ≤
(
ν1
q

+
ν2
q

) ∑

s∈[t−3q,t+q]\{t}
Γ ·
(
∆FE

s

)2
+

ν2
q

∑

s∈[t−3q,t+q]\{t}
Γ · (Ex

s)
2 (22)

We have also shown:

2

Γ

(
gπ,tmax,kt

− gπ,tmin,kt

)2
≤ ν2

q

∑

s∈[t−3q,t+q]\{t}
Γ ·
[(
∆FE

s

)2
+ (Ex

s)
2
]

(23)

24

B.2 Gradient Bounds

We will need to bound
(
gπ,tkt
− g̃π,tkt

)2
. Unfortunately, gπ,tkt

might not be in [gπ,tmin,kt
, gπ,tmax,kt

]. To

handle this difficulty we introduce gS,π,tkt
, the gradient of the point if the updates from time t − q

to t were synchronous. Clearly,

(
gtkt − g̃tkt

)2 ≤ 2
(
gtkt − gS,π,tkt

)2
+ 2

(
gS,π,tkt

− g̃tkt

)2
. (24)

Also, it is clear that
(
gS,π,tkt

− g̃tkt

)2
is smaller than

(
gπ,tmin,kt

, gπ,tmax,kt

)2
.

We upper bound
(
gtkt − gS,π,tkt

)2
by
(∑

l0∈[t−2q,t−1] L
2
kl0 ,kt

(
∆t

maxx
π,l0
kl0
−∆t

minx
π,l0
kl0

))2
. In order

to bound this term, we first show the following bound.

Lemma 15.

E

[∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm−1∈[t−2q,t+q]
which are distinct and not equal to{t,l};

let Rm−1={l1,l2,··· ,lm−1};
let Sm−1={ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

(
∆t

maxx
π,lm−1,Rm−1\{lm−1} −∆t

minx
π,lm−1,Rm−1\{lm−1}
klm−1

)2
)]

≤ E

[
4 · 2q

∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm∈[t−2q,t+q]
are distinct and not equal to{t,l}

let Rm−1={l1,l2,··· ,lm−1};
for any Sm−1={ls|kls=kls−1

}.
klm=klm−1

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

(
∆t

maxx
π,lm,Rm

klm
−∆t

minx
π,lm,Rm

klm

)2
)]

+ E

[
4 · 2q

∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm∈[t−2q,t+q]
are distinct and not equal to{t,l}

let Rm−1={l1,l2,··· ,lm−1};
for any Sm−1={ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

L2
klm ,klm−1

Γ2

(
∆t

maxx
π,lm,Rm

klm
−∆t

minx
π,lm,Rm

klm

)2
)]

+ E

∑

s∈[t−4q,t+q]\{t}
4(3q)2Γ2

max
{

L2

res
Γ2 , 1

}m+1
(3q)m−1(2q)

nm+1

(
∆t

maxx
π,s,Rm−1

ks
−∆t

minx
π,s,Rm−1

ks

)2

+ E

112L2

max

max
{

L2

res
Γ2 , 1

}m
(3q)m−1(2q)

nm

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

+ E

64L2

max

max
{

L2

res
Γ2 , 1

}m
(3q)m−1(2q)

nm

(
∆txπ,tkt

)2

 .

25

Proof. Let’s first expand the term
(
∆t

maxx
π,lm−1,Rm−1\{lm−1}
klm−1

−∆t
minx

π,lm−1,Rm−1\{lm−1}
klm−1

)2
for lm ∈

[t− 2q, t+ q]. Similarly to the previous analysis,
(
∆t

maxx
π,lm−1,Rm−1\{lm−1}
klm−1

−∆t
minx

π,lm−1,Rm−1\{lm−1}
klm−1

)2

≤ 2

[∑

lm∈[max{lm−1−2q,t−2q},lm−1−1]
and klm=klm−1

(
∆t

maxx
π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

)]2

+
2

Γ2

(∑

lm∈[lm−1−2q,min{lm−1+q,t+q}]\{lm−1}
Lklm ,klm−1

max

{∣∣∣∆t
maxx

π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

∣∣∣ ,

∣∣∣∆t
maxx

π,lm,Rm−1

klm

∣∣∣ ,
∣∣∣∆t

minx
π,lm,Rm−1

klm

∣∣∣
})2

.

By the Cauchy-Schwarz inequality,

2

(∑

lm∈[max{lm−1−2q,t−2q},lm−1−1]
and klm=klm−1

(
∆t

maxx
π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

))2

≤ 4 ·
(∑

lm∈[max{lm−1−2q,t−2q},lm−1−1]\{t}
and klm=klm−1

(
∆t

maxx
π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

))2

+ 4 · 1klm−1
=kt

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

≤ 4 · (2q)
∑

lm∈[max{lm−1−2q,t−2q},lm−1−1]\{t}
and klm=klm−1

(
∆t

maxx
π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

)2

+ 4 · 1klm−1
=kt

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

Also, by the Cauchy-Schwarz inequality,

2

Γ2

(∑

lm∈[lm−1−2q,min{lm−1+q,t+q}]\{lm−1}
Lklm ,klm−1

max

{∣∣∣∆t
maxx

π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

∣∣∣ ,

∣∣∣∆t
maxx

π,lm,Rm−1

klm

∣∣∣ ,
∣∣∣∆t

minx
π,lm,Rm−1

klm

∣∣∣
})2

≤ 4(3q)

Γ2

(∑

lm∈[lm−1−2q,min{lm−1+q,t+q}]\{lm−1,t}
L2
klm ,klm−1

max

{ ∣∣∣∆t
maxx

π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

∣∣∣

∣∣∣∆t
maxx

π,lm,Rm−1

klm

∣∣∣ ,
∣∣∣∆t

minx
π,lm,Rm−1

klm

∣∣∣
}2

+
4

Γ2
L2
kt,klm−1

max

{∣∣∣∆t
maxx

π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

∣∣∣
∣∣∣∆t

maxx
π,t,Rm−1

kt

∣∣∣ ,
∣∣∣∆t

minx
π,t,Rm−1

kt

∣∣∣
}2

.

26

We know that for any s ≤ t+ q,

max

{(
∆t

maxx
π,s,Rm−1

ks
−∆t

minx
π,s,Rm−1

ks

)
,
∣∣∣∆t

maxx
π,s,Rm−1

ks

∣∣∣ ,
∣∣∣∆t

minx
π,s,Rm−1

ks

∣∣∣
}2

≤ 2
(
∆t

maxx
π,s,Rm−1

ks
−∆t

minx
π,s,Rm−1

ks

)2
+ 2

(
∆t

maxx
π,s,Rm−1∪{t}
ks

)2
.

Additionally, for any s < t− 2q,

max

{(
∆t

maxx
π,s,Rm−1

ks
−∆t

minx
π,s,Rm−1

ks

)
,
∣∣∣∆t

maxx
π,s,Rm−1

ks

∣∣∣ ,
∣∣∣∆t

minx
π,s,Rm−1

ks

∣∣∣
}2

=
(
∆t

maxx
π,s,Rm−1∪{t}
ks

)2
.

So, in summary,

(
∆t

maxx
π,lm−1,Rm−1\{lm−1}
klm−1

−∆t
minx

π,lm−1,Rm−1\{lm−1}
klm−1

)2

≤ 4 · (2q)
∑

lm∈[t−2q,t+q]\{t}
and klm=klm−1

(
∆t

maxx
π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

)2

+ 4 · 1klm−1
=kt

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

+
4(3q)2

Γ2

(∑

lm∈[t−2q,t+q]\{lm−1,t}
L2
klm ,klm−1

(
∆t

maxx
π,lm,Rm−1

klm
−∆t

minx
π,lm,Rm−1

klm

)2
)

+
4(3q)2

Γ2

(∑

s∈[t−4q,t+q]\{t}
L2
ks,klm−1

(
∆t

maxx
π,s,Rm−1∪{t}
ks

)2
)

+
4

Γ2
L2
kt,klm−1

(
2
(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2
+ 2

(
∆t

maxx
π,t,Rm−1∪{t}
kt

)2)
.

Next we want to multiply this expression by a series of terms
L2

ka,kb
Γ2 on the both sides and sum

up over all choices of l1, l2, · · · , lm−1 ∈ [t− 2q, t+ q]. Note that

E

[∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm−1∈[t−2q,t+q]
are distinct and not equal to{t,l}

let Rm−1={l1,l2,··· ,lm−1};
for any Sm−1={ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

4 · 1klm−1
=kt

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

≤ E

4 · 4L2

max

max
{

L2

res
Γ2 , 1

}m−1
(3q)m−1(2q)

nm

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

as L2
kl0 ,kt

can be bounded by 4L2
max and we can then average, in turn, over kl0 , kl1 , . . ., klm−1

, each

of which provides a 1
n or

L2

res
nΓ2 term, depending on whether li is in Sm−1 or not.

27

Note that several other terms can be bounded similarly, as
(
∆t

maxx
π,s,Rm−1∪{t}
ks

)2
is fixed over

all paths π obtained by varying kt . We obtain

E

[∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm−1∈[t−2q,t+q]
are distinct and not equal to{t,l}

let Rm−1={l1,l2,··· ,lm−1};
for any Sm−1={ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

(
∆t

maxx
π,lm−1,Rm−1\{lm−1}
klm−1

−∆t
minx

π,lm−1,Rm−1\{lm−1}
klm−1

)2
)]

≤ E

[
4 · 2q

∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm∈[t−2q,t+q]
are distinct and not equal to{t,l}

let Rm−1={l1,l2,··· ,lm−1};
for any Sm−1={ls|kls=kls−1

}.
klm=klm−1

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

(
∆t

maxx
π,lm,Rm

klm
−∆t

minx
π,lm,Rm

klm

)2
)]

+ E

4 · 4L2

max

max
{

L2

res
Γ2 , 1

}m−1
(3q)m−1(2q)

nm

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

+ E

[
4(3q)2

∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm∈[t−2q,t+q]
are distinct and not equal to{t,l}

let Rm−1={l1,l2,··· ,lm−1};
for any Sm−1={ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

L2
klm ,klm−1

Γ2

(
∆t

maxx
π,lm,Rm

klm
−∆t

minx
π,lm,Rm

klm

)2
)]

+ E

∑

s∈[t−4q,t+q]\{t}
4(3q)2Γ2

max
{

L2

res
Γ2 , 1

}m+1
(3q)m−1(2q)

nm+1

(
∆t

maxx
π,s,Rm−1

ks
−∆t

minx
π,s,Rm−1

ks

)2

+ E

8 · 4L2

max

max
{

L2

res
Γ2 , 1

}m
(3q)m−1(2q)

nm

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

+ E

8 · 4L2

max

max
{

L2

res
Γ2 , 1

}m
(3q)m−1(2q)

nm

(
∆t

maxx
π,t,Rm−1

kt

)2

 .

Note that
(
∆t

maxx
π,t,Rm−1

kt

)2
≤ 2

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2
+ 2

(
∆txπ,tkt

)2
; the result

now follows.

Note that the first two terms on the RHS of Lemma 15 will be similar to the LHS of Lemma 15

28

when we increase m by 1. Let

Vm−1 = E

[∑

l0∈[t−2q,t−1]

(∑

for any l1,l2,··· ,lm−1∈[t−2q,t+q]
are distinct and not equal to{t,l}

let Rm−1={l1,l2,··· ,lm−1};
for any Sm−1={ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

L2
kls ,kls−1

Γ2

)
L2
kl0 ,kt

(
∆t

maxx
π,lm−1,Rm−1\{lm−1}
klm−1

−∆t
minx

π,lm−1,Rm−1\{lm−1}
klm−1

)2
)]

.

Note that V3q = 0 and V0 = E

[
∑

l0∈[t−2q,t−1] L
2
kl0 ,kt

(
∆t

maxx
π,l0
kl0
−∆t

minx
π,l0
kl0

)2
]
.

Thus, Lemma 15 proved that

Vm−1 ≤(4 · 2q)Vm

+ E

∑

s∈[t−4q,t+q]\{t}
4(3q)2Γ2

max
{

L2

res
Γ2 , 1

}m+1
(3q)m−1(2q)

nm+1

(
∆t

maxx
π,s,Rm−1

ks
−∆t

minx
π,s,Rm−1

ks

)2

+ E

112L2

max

max
{

L2

res
Γ2 , 1

}m
(3q)m−1(2q)

nm

(
∆t

maxx
π,t,Rm−1

kt
−∆t

minx
π,t,Rm−1

kt

)2

+ E

64L2

max

max
{

L2

res
Γ2 , 1

}m
(3q)m−1(2q)

nm

(
∆txπ,tkt

)2

 .

By recursively applying this bound, and since ∆t
maxx

π,s,Rm−1

ks
≤ ∆maxx

π,s
s and ∆t

minx
π,s,Rm−1

ks
≥

∆minx
π,s
s , we obtain

E

[
q

∑

l0∈[t−2q,t−1]

L2
kl0 ,kt

(
∆t

maxx
π,l0
kl0
−∆t

minx
π,l0
kl0

)2
]

= q · V0 ≤ E

[
(1 + r + r2 + · · ·)·

(∑

s∈[t−4q,t+q]\{t}

48q3Γ2max
{

L2

res
Γ2 , 1

}2

n2

((
∆maxx

π,s
ks
−∆minx

π,s
ks

)2
+ (∆xπ,sks

)2
)

+
224q2 max

{
L2

res
Γ2 , 1

}
L2
max

n

((
∆maxx

π,t
kt
−∆minx

π,t
kt

)2
+ (∆xπ,tkt

)2
))]

. (25)

where r =
8q(3q)max

{

L2
res
Γ2

,1

}

n =
24q2 max

{

L2
res
Γ2

,1

}

n .

So long as q2 ≤ nΓ2

48L2

res
and q2 ≤ n

48 , and since Γ ≥ Lmax,

29

E

[
2q

∑

l0∈[t−2q,t−1]

L2
kl0 ,kt

(
∆t

maxx
π,l0
kl0
−∆t

minx
π,l0
kl0

)2
]

≤ Γ2

1− r
· E
[
2

(
1

q

∑

s∈[t−4q,t+q]\{t}

r2

12

((
∆maxx

π,s
ks
−∆minx

π,s
ks

)2
+ (∆xπ,sks

)2
)

+ 10r

((
∆maxx

π,t
kt
−∆minx

π,t
kt

)2
+ (∆xπ,tkt

)2
))]

≤ r2Γ2

6(1 − r)q

∑

s∈[t−4q,t+q]\{t}

[(
∆FE

s

)2
+ (Ex

s)
2
]
+

20rΓ2

1− r

[(
∆FE

t

)2
+ (Ex

t)
2
]
.

Thus, by (24) and (23),

(
gπ,tkt
− g̃π,tkt

)2
≤ν2Γ

2

q

∑

s∈[t−3q,t+q]\{t}

[(
∆FE

s

)2
+ (Ex

s)
2
]
+

ν3Γ
2

q

∑

s∈[t−4q,t+q]\{t}

[(
∆FE

s

)2
+ (Ex

s)
2
]

+ ν4 · Γ2

(
ν1
q

+
ν2
q

) ∑

s∈[t−3q,t+q]\{t}

[(
∆FE

s

)2
+ (Ex

s)
2
]
+ ν4 · Γ2 (Ex

t)
2 ,

(26)

where ν3 =
2r2

6(1−r) and ν4 =
40r
1−r .

30

B.3 Amortization for the Stochastic Analyses

Our amortized analyses take the following general form. We suppose that on each path π the
update at time t causes a charge Cπ(t, s) to the update at time s, for t − d1 ≤ s ≤ t + d2 (s 6= t
of course). Thus, the update at time t will receive Rπ(t) charge, and will send out charge Sπ(t),
where

Rπ(t) =
t−1∑

s=t−d1

Cπ(t, s) and Sπ(t) =

t+d2∑

v=t+1

Cπ(t, v).

In order to account for these charges, and in order to be able to show progress from one round to
the next by a factor of (1− 1

2n), we will incur a payment P π(t) at time t, where

P π(t) =

t+d1∑

v=t+1

1
(
1− 1

2n

)v−tC
π(v, t) +

t−1∑

s=t−d2

Cπ(s, t). (27)

We will also use the potential functions Aπ
+(t) and Aπ

−(t), given by

Aπ
+(t) =

t∑

s=t−d1+1

s+d1∑

v=t+1

1
(
1− 1

2n

)v−tC
π(v, s), Aπ

−(t) =
t∑

s=t−d2+1

s+d2∑

v=t+1

Cπ(s, v).

Lemma 16.

[
Aπ

+(t− 1)−Aπ
+(t)

]
−
[
Aπ

−(t− 1)−Aπ
−(t)

]
= −P π(t) +Rπ(t) + Sπ(t) +

1

2n
Aπ

+(t− 1).

Proof: This is a straightforward calculation.

Aπ
+(t− 1)−Aπ

+(t) =

t−1∑

s=t−d1

1(
1− 1

2n

)Cπ(t, s) +

t−1∑

s=t−d1+1

s+d1∑

v=t+1

1

2n

1
(
1− 1

2n

)v−t+1C
π(v, s)

−
t+d1∑

v=t+1

1
(
1− 1

2n

)v−tC
π(v, t)

=
1

2n
Aπ

+(t− 1) +

t−1∑

s=t−d1

Cπ(t, s)−
t+d1∑

v=t+1

1
(
1− 1

2n

)v−tC
π(v, t)

=
1

2n
Aπ

+(t− 1) +Rπ(t)−
t+d1∑

v=t+1

1
(
1− 1

2n

)v−tC
π(v, t).

Aπ
−(t)−Aπ

−(t− 1) =

t+d2∑

v=t+1

Cπ(t, v) −
t−1∑

s=t−d2

Cπ(s, t)

= Sπ(t)−
t−1∑

s=t−d2

Cπ(s, t).

Thus

[
Aπ

+(t− 1)−Aπ
+(t− 1)

]
−
[
Aπ

−(t− 1)−Aπ
−(t)

]
= − P π(t) +Rπ(t) + Sπ(t) +

1

2n
Aπ

+(t− 1).

31

B.4 SACD Amortized Analysis

We use the potential function

H(t) = Eπ

[
F (xt) +Aπ

+(t)−Aπ
−(t)

]
, (28)

where Cπ(t, s) =

(
4ν1
9q

+
ν3
2n

+
10ν2
3q

+
10ν3
3q

+
5r(ν1 + ν2)

q
+ γ1

(
ν1
q

+
ν2
q

))
Γ
(
∆FE

s

)2

+

(
1

2n
+

ν3
2n

+
10ν2
3q

+
10ν3
3q

+
5r(ν1 + ν2)

q
+ γ1

ν2
q

)
· Γ (Ex

s)
2 ,

and γ1 > 0 is a suitable constant. The rationale for this choice of C will emerge in the proof of the
next lemma.

Lemma 17. If r ≤ 1
336 , Γ ≤ Lres, n ≥ 210, and q ≤ 1

10

√
n, then

H(t− 1)−H(t) ≥ 1

9
Eπ

[
1

n

n∑

k=1

Ŵk(g
π,t
k , xπ,t−1

k ,Γ,Ψk)

]
+

1

2n
Aπ

+(t− 1) ≥ 0,

and H(T) ≥ Eπ

[
F (xT)

]
.

Proof: Recall that kt denotes the index of the coordinate being updated on the t-th edge of π.
We write π(k, t) to denote the path in which coordinate kt at time t is replaced by coordinate k,
and to reduce clutter we abbreviate this as π(k). Note that π(kt) = π. We let prev(t, k) denote the
time of the most recent update to coordinate k, if any, in the time range [t− 2q, t− 1]; otherwise,
we set it to t. From (9),

Eπ

[
F (xt−1)− F (xt)

]
≥ 1

2n
Eπ

n∑

kt=1

Ŵkt(g
π(kt),t
kt

), x
π(kt),t−1
kt

,Γ,Ψkt)

+

Γ

8
(Ex

t)
2 − 1

Γ
Eπ

[(
gπ,tkt
− g̃π,tkt

)2]

=
1

2n
Eπ

[
n∑

k=1

Ŵk(g
π(k),t
k , x

π(k),t−1
k ,Γ,Ψk)

]
+

Γ

8
(Ex

t)
2 − 1

Γ
Eπ

[(
gπ,tkt
− g̃π,tkt

)2]

≥ 1

2n
Eπ

n∑

k=1

1

n

n∑

kt=1

2

3
Ŵk(g

π(kt),t
k , x

π(k),t−1
k ,Γ,Ψk)−

4

3Γ

(
g
π(k),t
k − g

π(kt),t
k

)2

+
Γ

8
(Ex

t)
2 − 1

Γ
Eπ

[(
gπ,tkt
− g̃π,tkt

)2]
(by Lemma 8)

≥ 1

3n2
Eπ

n∑

k=1

n∑

kt=1

Ŵk(g
π(kt),t
k , x

π(kt),t−1
k ,Γ,Ψk)

− 1

3n2
Eπ

[∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

3

2Γ

(
g
π(kt),s
ks

− g
π(kt),t
ks

)2

+ 2Γ
(
x
π(ks),t−1
ks

− x
π(kt),t−1
ks

)2
+

3Γ

2

(
∆x

π(kt),s
ks

)2
]

− Eπ

 1

n2

n∑

k=1

n∑

kt=1

2

3Γ

(
g
π(k),t
k − g

π(kt),t
k

)2

 +

Γ

8
(Ex

t)
2 − 1

Γ
Eπ

[(
gπ,tkt
− g̃π,tkt

)2]

(by (12)).

32

From (13), and noting that the range of ℓ values which can affect the update at time t has been
increased from [t− q, t+ q] to [t− 2q, t+ q], we obtain:

Eπ

2

3n2

∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

Γ ·
(
x
π(ks),t−1
ks

− x
π(kt),t−1
ks

)2

≤ Γ · 8q
3n2

· Eπ

 ∑

t−2q≤s≤t−1

n∑

kt=1

[(
∆t

maxx
π(kt),s
ks

−∆t
minx

π(kt),s
ks

)2
+
(
∆t

maxx
π(ks),s
ks

−∆t
minx

π(ks),s
ks

)2]

≤ 16q

3n

∑

s∈[t−2q,t−1]

Γ ·
(
∆FE

s

)2
=

8ν1
9q

∑

s∈[t−2q,t−1]

Γ ·
(
∆FE

s

)2

(see (22) and the definition of ν1 immediately above it).

Next, we bound Eπ

[∑
t−2q≤s<t

∑n
kt=1

1
2n2Γ

·
(
g
π(kt),prev(t,ks)
ks

− g
π(kt),t
ks

)2]
. But

|gπ(kt),prev(t,ks)ks
− g

π(kt),t
ks

| ≤ gπ,tmax,ks
− gπ,tmin,ks

,

where gπ,tmax,ks
and gπ,tmin,ks

are defined analogously to gπ,tmax,kt
and gπ,tmin,ks

, respectively. By an analysis
essentially identical to the one leading to (23), we obtain

Eπ

 1

2n2Γ

∑

t−2q≤s<t

n∑

kt=1

(
g
π(kt),prev(t,ks)
ks

− g
π(kt),t
ks

)2

 ≤ ν2

q

∑

s∈[t−3q,t+q]\{t}
Γ ·
[(
∆FE

s

)2
+ (Ex

s)
2
]
.

Next, we consider the term Eπ

[
2

3Γn2

∑n
k=1

∑n
kt=1 ·

(
g
π(k),t
k − g

π(kt),t
k

)2]
. We will use the term

g
S,π(k),t
k as an intermediary to allow us to compare values on two different paths, as follows.

(
g
π(k),t
k − g

π(kt),t
k

)2
≤ 2

(
g
π(k),t
k − g

S,π(kt),t
k

)2
+ 2

(
g
S,π(kt),t
k − g

π(kt),t
k

)2

≤ 2
(
g
π(k),t
k − g

S,π(k),t
k

)2
+ 2

(
g
S,π(kt),t
k − g

π(kt),t
k

)2
, (29)

as g
S,π(kt),t
k = g

S,π(k),t
k since the gradients evaluated in synchronous order do not depend on the

time t update. And the expression on the RHS of 29 is bounded in the exact same way as the
expression being bounded by (26). This yields

Eπ

 2

3Γn2

n∑

k=1

n∑

kt=1

·
(
g
π(k),t
k − g

π(kt),t
k

)2

≤ 2ν2Γ

3q

∑

s∈[t−3q,t+q]\{t}

[(
∆FE

s

)2
+ (Ex

s)
2
]
+

2ν3Γ

3q

∑

s∈[t−4q,t+q]\{t}

[(
∆FE

s

)2
+ (Ex

s)
2
]

+ ν4 · Γ
(
ν1
q

+
ν2
q

) ∑

s∈[t−3q,t+q]\{t}

[(
∆FE

s

)2
+ (Ex

s)
2
]
+ ν4 · Γ (Ex

t)
2 . (30)

33

Finally the term 1
Γ ·Eπ

[(
g
π(kt),t
kt

− g̃
π(kt),t
kt

)2]
, is bounded by (26), which 3

2 times the bound in (30).

Finally,

Eπ

Γ

2n2

∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

(
∆x

π(kt),s
ks

)2

 ≤

Γ

2n

∑

t−2q≤s≤t−1

(Ex
s)

2 .

Thus

Eπ

[
F (xt−1)− F (xt)

]

≥ 1

3n2
Eπ

n∑

k=1

n∑

kt=1

Ŵk(g
π(kt),t
k , x

π(kt),t−1
k ,Γ,Ψk)

+

Γ

8
(Ex

t)
2

−
[
max

{
8ν1
q

,
1

2n

}
+

ν2
q

+
5ν2
3q

+
5ν2
3q

+
ν4
2

(
ν1
q

+
ν2
q

)]
Γ

∑

s∈[t−4q≤s≤t+q]\{t}

(
∆FE

s

)2
+ Γ · (Ex

s)
2

−5ν4
2

Γ (Ex
t)

2 .

So as to obtain a single common constraint on q, we assume Γ ≤ Lres (note there is no good reason
to make Γ larger than necessary), and we set ν1 =

1
4r and ν2 =

2
3r. We will also choose constraints

on q and n so that 8ν1
q ≥

q
2n . Now the above bound simplifies to

Eπ

[
F (xt−1)− F (xt)

]
≥ 1

3n2
Eπ

n∑

k=1

n∑

kt=1

Ŵk(g
π(kt),t
k , x

π(kt),t−1
k ,Γ,Ψk)

 +

Γ

8
(Ex

t)
2

−1

q

[
31r

6
+

34r2

9(1 − r)

]
Γ

∑

s∈[t−4q≤s≤t+q]\{t}

[(
∆FE

s

)2
+ Γ · (Ex

s)
2
]
− 10r

1− r
Γ (Ex

t)
2 .

By Lemma 16,

H(t− 1)−H(t) ≥ 1

3n2
Eπ

n∑

k=1

n∑

kt=1

Ŵk(g
π(kt),t
k , x

π(kt),t−1
k ,Γ,Ψk)

 +

Γ

8
(Ex

t)
2

−1

q

[
31r

6
+

34r2

9(1 − r)

]
Γ

∑

s∈[t−4q≤s≤t+q]\{t}

[(
∆FE

s

)2
+ Γ · (Ex

s)
2
]
− 10r

1− r
Γ (Ex

t)
2

− P π(t) +Rπ(t) + Sπ(t)

≥ 1

3n2

n∑

k=1

n∑

kt=1

Ŵk(g
π(kt),t
k , x

π(kt),t−1
k ,Γ,Ψk) +

1

2n
Aπ

+(t− 1),

if Γ

(
1

8
− 10r

1− r

)
(Ex

t)
2 +Rπ(t) + Sπ(t)

≥ 1

q

[
31r

6
+

34r2

9(1 − r)

] ∑

s∈[t−4q,t+q]\{t}
Γ ·
[(
∆FE

s

)2
+ Γ · (Ex

s)
2
]

+ P π(t). (31)

34

Suppose that Eπ [P
π(t)] = Γ

[
γ1
(
∆FE

t

)2
+ γ2 (E

x
t)

2
]
. γ2 is set to 1

8− 10r
1−r so that the term

γ2 · Γ (Ex
t)

2 in Eπ [P
π(t)] is exactly covered by the term Γ

(
1
8− 10r

1−r

)
(Ex

t)
2 in (31). The charges

Rπ(t) and Sπ(t) are chosen so as to exactly cover the terms γ1 · Γ
(
∆FE

t

)2
in Eπ [P

π(t)] and the

remaining 1
q

[
31r
6 + 34r2

9(1−r)

]
· Γ ·

[(
∆FE

s

)2
+ (Ex

s)
2
]

on the RHS of (31), which by (22), implies that

Eπ [C
π(t, s)] =

(
31r

6q
+

34r2

9(1 − r)q
+ γ1

(
ν1
q

+
ν2
q

))
Γ
(
∆FE

s

)2

+

(
31r

6q
+

34r2

9(1− r)q
+ γ1

ν2
q

)
· Γ (Ex

s)
2

suffices.
(26) also implies that d1 = 4q and d2 = q. Substituting in (27), it suffices that

γ1 ≥
1

q

[
31r

6
+

34r2

9(1 − r)
+ γ1 (ν1 + ν2)

]
·
[
2n

(
1

(
1− 1

2n

)d1+1
− 1

1− 1
2n

)
+ d2

]

=
1

q

[
31r

6
+

34r2

9(1 − r)
+ γ1

11r

12

]
·
[
d2 + d1 +

(d1 + 1)(d1 + 2)− 1

2(2n)
+ . . .

]

and

γ2 ≥
[
31r

6
+

34r2

9(1 − r)
+ γ1

r

4

]
·
[
d2 + d1 +

(d1 + 1)(d1 + 2)− 1

2(2n)
+ . . .

]
.

If n ≥ 210 and q ≤ 1
10

√
n,

γ1 ≥
1

q

[
31r

6
+

34r2

9(1− r)
+ γ1

11r

12

]
(5q + 1)

and

γ2 ≥
1

q

[
31r

6
+

34r2

9(1 − r)
+ γ1

r

4

]
(5q + 1)

suffice.
Recall that γ2 =

1
8 − 10r

1−r . One choice of values that suffices is γ1 =
1
10 and r = 1

336 .
It is easy to verify that H(t) = F (xt), for Aπ

+(T) and Aπ
−(T) are equal to 0 because there is no

charge between the update at time T and updates at times v, for v > T .

We restate Theorem 2 to include the convex case.

Theorem 2 Suppose that given initial point x◦, Algorithm 1 is run for exactly T iterations by

multiple cores. Also suppose that Assumption 1 holds, Γ ≥ Lmax, n ≥ 210, and q ≤ min{
√
n

90 ,
Γ
√
n

90Lres
}.

(i) If F is strongly convex with parameter µF , and f has strongly convex parameter µf , then

E
[
F (xT)

]
≤
[
1− 1

3n
· µF

µF + Γ− µf

]T
· F (x◦). (32)

(ii) Now suppose that F is convex. Let R be the radius of the level set for x◦, Level(x◦) = {x | f(x) ≤
f(x◦)}. Then

E
[
F (xT)

]
≤
[
1 + min

{
1

12n
,

F (x◦)
12nΓR2

}
· T
]−1

· F (x◦). (33)

35

Proof: By Lemma 17, if r ≤ 1
336 and n ≥ 210, the conditions for applying Theorem 4 hold. We

apply it with r = 1, β
q = 1

n , α = 1, which yields the stated results. Recall that r =
24q2L2

res

nΓ2 . Thus,

to achieve r ≤ 1
336 it suffices to have q ≤ Γ

√
n

90Lres
.

Note that we have not sought to fully optimize the constants.

36

C Lower Bound on q

In this appendix, we show that if the degree of parallelism q is too high, for an appropriately
chosen function f (in this appendix, all Ψj ≡ 0) and a suitable starting point, then the effects of
asynchrony9 might force the ACD process to remain near the starting point for a long time with
high probability.

We first give a high-level description on our construction. Let Loff
max := maxk 6=j Lkj. We want

that whenever a coordinate is chosen to be updated, by taking the advantage of flexibility to choose
suitable asynchrony effects, the update can change the coordinate value by either of ±∆, for some
∆ = Θ(1) (∆ ≤ 1

3 in our construction). If we can keep doing so, then every coordinate j can be
kept in x◦j ±∆ forever.

To have the flexibility of choosing the change to be either of ±∆, we will need to make sure that
the value g̃j can take either gj = Γ∆ (the true gradient) or −gj = −Γ∆. One way to attain this
flexibility is to ensure that among the previous q updates, there are at least 2gj/(L

off
max∆) = 2Γ/Loff

max

of updates with change +∆, and the other 2Γ/Loff
max updates with change −∆.10 Intuitively, this is

plausible when q is sufficiently large.
In our construction, Loff

max = Θ(1/
√
n), Lres = Θ(1) and Γ = Θ(1). Thus, we need q ≥ 4Γ/Lmax =

Θ(
√
n); note that this is matching with the upper bound on the maximum degree of parallelism in

Theorem 2, up to a constant factor.
Our construction will be based on a balls in urns problem which we describe next.

C.1 A Balls in Urns Problem

Version 1. We suppose there are n balls in three urns, called the Minus (M), Zero (Z), and Plus
(P) urns. The reason for the names will become clear when we describe the asynchronous schedule.
Initially all the balls are in Urn Z. We repeat the following process for T steps. At each step a ball
is selected uniformly at random. If it is in Urn M or P, it is moved to Urn Z. If it is in Urn Z it is
moved with equal probability to one of Urns M or P.

Let U be the event that over T moves the number of balls in Urn Z is always at least n
2 −

2
√

6(2c + 1)n ln n, and the number of balls in Urns M and P differ by at most 2
√

12(2c + 1)n lnn.
We first present a lemma which a simple consequence of the Chernoff bound.

Lemma 18. Let I1, I2, · · · , IT be independent random variables, and for each 1 ≤ t ≤ T , let
St =

∑t
j=1 Ij. Suppose that for some 1/4 > ǫ > 0, at each time t ≥ 1, It has value +1 with

probability at most 1/2− ǫ, and it has value −1 otherwise. Then for any d > 0, with probability at
least 1− T · exp (−ǫd/6), all of S1, S2, · · · , ST are less than or equal to d.

Proof: For each t satisfying d < t ≤ T , by the Chernoff bound,

P [St > d] ≤ P

t∑

j=1

Ij + 1

2
>

t

2
+

d

2

 ≤ P

t∑

j=1

Ij + 1

2
>

(
t

2
− tǫ

)
·
(
1 + max

{
2ǫ,

d

t

})

≤ exp

(
−max

{
4ǫ2, d2/t2

}
· (t/2− tǫ)

3

)

≤ exp
(
−max

{
ǫ2t, d2/(4t)

}
/3
)
≤ exp (−ǫd/6) .

9It might be helpful to think of the asynchronous effects as an adversary, as is standard in online algorithm
analysis.

10For the purpose of exposition, view all Lkj ’s as being identical to Loff

max.

37

The claim follows from a simple union bound.

Lemma 19. With probability at least 1− 3T · n−c, U holds.

Proof: Let |Z| denote the number of balls in urn Z. Initially, |Z| = n. For some d > 0, we analyze
the probability that |Z| drops below n/2− 2d at some time on or before time T . Let t′ denote the
first time this occurs. Then at some earlier time, |Z| = ⌊n/2− d⌋; Let t′′ denote the latest time
this occurs. Note that for each time τ which is between times t′, t′′, the probability that a ball in
Z is selected at time τ is at most (n/2− d)/n = 1/2− d/n. Thus,

P
[
|Z| < n/2− 2d at time t′

]
≤

T−d∑

t′′=1

T∑

t′=t′′+d

exp
(
−d2/(6n)

)
. (By the Claim, with ǫ = d/n.)

≤ T 2 exp
(
−d2/(6n)

)
.

By picking d =
√

6(2c + 1)n lnn and T = nc, this probability is 1/n.
Next, for some d > 0, we analyze the probability that |P | − |M | exceeds 2d at some time on or

before time T . The analysis is almost identical to the above, except that ǫ = d/n is replaced by
ǫ = d/(2n), the probability bound becomes T 2 exp

(
−d2/(12n)

)
. By picking d =

√
12(2c + 1)n lnn

and T = nc, this probability is 1/n. After accounting the symmetric probability that |P | − |M |
drops below 2d, we are done.

Version 2. We suppose there are n balls in three urns, called the Minus (M), Zero (Z), and Plus
(P) urns. Initially all the balls are in Urn Z. We repeat the following process for T steps. At each
step a ball is selected uniformly at random. If it is in Urn M or P, it is moved to Urn Z. If the
selected ball is in Urn Z, if ||P | − |M || ≥ 1, the ball is moved to either of Urn M or P which has
fewer balls, and we call this ball a ZB ball; if there are equal number of balls in Urns M and P,
then the selected ball is moved to either of them randomly uniformly; then we call this ball a ZR

ball. (The subscripts B and R stand for “Balancing” and “Random”.)
First, we show that at time τ , with high probability, |Z| is at least 49n/100, and ||P | − |M || ≤ d.

Then in the next q steps, |Z| ≥ 12n/25 with certainty. By the Chernoff bound, in the next q steps,
at least 47q/100 selected balls are in Urn Z.

Next, we consider the following matching procedure. Step 1: for each ZB ballat time τ , suppose
that the deficit just before time τ is w ≥ 1, we match the ball which occurs at the latest time
t ≤ τ ′ < τ that brings the deficit from w − 1 to w. If such ball does not exist, then the ZB ball is
left unmatched. Step 2: Then for each remaining unmatched ZR ball at time τ , find the ball after
time τ which is improving. If it is not yet matched, match it with the ZR ball.

It is easy to observe that each pair of matched balls are moving in the opposite direction, and
the earlier one is worsening, when the latter one is improving.

We claim that the number of matched pairs is at least |Z|/2 − d. Let r count the number of
ZR balls, and b count the number of ZB balls. Note that r + b = |Z|. It is not hard to prove that
all matched pairs are disjoint; at most d of the ZB balls are left unmatched (due to the original
deficit). For each of the unmatched ZR balls in Step 2, it is either matched eventually, or when it
is left unmatched but then implies a matched ZB ball (except the last ZR ball).

Thus, the number of pairs is at least max{b− d, r− b− 1}. So we have the unconditional bound
of |Z|/3− d/3.

38

C.2 The Function and the Asynchronous Schedule

Function f and a Starting Point Let L be an n × n matrix, such that the value of every
diagonal entry is 1, and the value of every off-diagonal entry is ǫ := 1√

cn lnn
. Note that L can be

rewritten as ǫ ·Mn + (1− ǫ) In, where Mn is the n× n matrix with every entry being 1, and In is
the n× n identity matrix. Since Mn, In are both positive semi-definite, so is L. For simplicity, we
suppose that n is an even integer.

Let f : Rn → R
n be the convex quadratic function

f(x) =
1

2
· xTLx =

1

2
·

n∑

j=1

(xj)
2 +

∑

1≤j<k≤n

ǫxjxk.

Note that the parameters Ljk as defined in Definition 1 are identical to the corresponding entries
of the matrix L defined above. Thus, Lres = 1 + n−1

cn lnn . Also, note that the minimum value of f is
attained when x = (0, 0, · · · , 0). The gradient along coordinate j is given by the following formula:

∂F

∂xj
= xj + ǫ ·

∑

k 6=j

xk.

We will choose Γ ≥ 2.
We pick the starting point randomly as follows: uniformly at random, we choose exactly half

the coordinates j to have value x◦j = 1, and the other half to have value x◦j = −1. Let J+ denote
the set of coordinates j with x◦j = +1, and J− its complement.

Asynchrony Leads to Stalling Now we have a fixed f and a fixed starting point. Let q =
C
√
cn lnn, where C is a sufficiently large positive constant to be determined.
The first q updates are all computed using the initial data (thus they do not read any of the

updated values among these first q updates). We call the coordinates that are updated two or
more times during the initial q updates the special coordinates. The next lemma bounds the total
number of updates to the special coordinates during the first q updates.

Lemma 20. With probability at least 1−n−c there are at most q2

n + q√
n

√
3c ln n = (C2+C

√
3)c lnn

special coordinates, and with probability at least 1−n−c there are at most 2(C2+C
√
3)c lnn updates

to the special coordinates during the first q updates.

Proof: The probability that an update among the first q updates is a repeat update to a special

coordinate is at most q/n. Thus, the expected number of such updates is at most q2

n . By a Chernoff

bound, the probability that the number of updates is greater than or equal to q2

n (1 + δ) is at most

exp
(
− δ2q2

3n

)
. This probability is at most n−c if δ ≥ 1

q

√
3cn ln n.

Thus, with probability 1− n−c, there are at most q2

n + q√
n

√
3c ln n repeat updates and hence at

most twice this number of updates to the special coordinates.

Note that the coordinate jt updated at time t ≤ q satisfies
∣∣∣
∑

k 6=j x
◦
k

∣∣∣ = 1. Thus the computed

gradient, if xjt = 1, has value 1− ǫ and hence the updated xjt has value 1− 1
Γ(1− ǫ). Analogously,

if xjt = −1, the updated xjt has value −1 + 1
Γ(1− ǫ).

Next we explain how the coordinates are assigned to urns. We want the movement of the
coordinates to correspond exactly to the urn process described in the previous section. Initially,
the coordinates are all in Urn Z . Intuitively, when a coordinate in Urn Z is reduced in value it

39

is moved to Urn M and if increased in value it is moved to Urn P. Coordinates in Urns M or P,
when selected, are moved back to Urn Z. However, we need the property that if a coordinate in
Z is selected there be exactly a one half probability that it go to each of M or P, and this is only
approximately true for the first q updates. Accordingly, we modify the urn assignment as follows.

Suppose that at time t there are r coordinates with value +1 and s coordinates with value −1
that have not yet been updated. Updating a coordinate with value +1 would move it to Urn M
and updating a coordinate with value −1 would move it to Urn P . If r 6= s these are not equal
probability events, and we need them to be equal to mimic the urn process. So suppose s > r.
Then if we choose a non-updated coordinate with value −1, with probability s−r

2s we put it in Urn
M, and we call this a misallocated coordinate. We proceed analogously if r > s. This then makes
sure that the urn process is being followed, in that if a non-updated coordinate in Z is selected,
then it is equally likely that the choice goes to P or M (with the probability being over all possible
selections of non-updated coordinates).

Lemma 21. With probability 1 − 2n−c there are at most 8c misallocated coordinates, if n ≥
[C3/2c1/4 ln5/4 n]8.

Proof: We begin by bounding the difference in the number of non-updated coordinates with
values −1 and +1. By a Chernoff bound, with probability 1−n−c, this is at most

√
6cq lnn (recall

that the expected number of +1s selected is at most q/2, as is the number of selected −1s). For
the rest of the proof we condition on this event.

Then the probability that a single update results in a misallocated coordinate is at most
1
n

√
6cq lnn. Thus the probability that there are b misallocated coordinates is at most

(
q

b

)(√
6cq lnn

n

)b

≤
(
e
√
6c ln n · q3/2

bn

)b

≤
(
e
√
6 · c
b

· C
3/2c1/4 ln5/4 n

n1/4

)b

(recall that q = C
√
cn lnn)

≤ n−b/8 ≤ n−c if b = 8c.

Suppose that x◦j = 1. Then the computed gradient in direction j during the first q updates has
value xj − ǫ, and this is negative when xj < ǫ. As Γ ≥ 1, it follows that during these initial q
updates, xj ≥ ǫ always. Similarly, if x◦j = −1, during the initial q updates, xj ≤ ǫ always. Later
updates will also maintain this property.

We note that the motion of the coordinates for the first q updates corresponds exactly to the
urn process. We will ensure that this property continues to hold henceforth. For the remainder of
this section, we condition on event U holding, which it does with probability at least 1− 3Tn−c by
Lemma 19.

We proceed to show how to manage the updates at times t > q.
All non-special coordinates with initial value +1 are maintained so that they have values in one

of the following ranges: 1−∆±∆ · ǫ, 1±∆ · ǫ, 1 + ∆±∆ · ǫ, and analogously for the non-special
coordinates with initial value −1, where 0 < ∆ < 1 is a suitably small value. Furthermore, each
of these coordinate values will have been chosen from two values (specific to that update). For
example, in the middle case of values near to 1, the possible values are 1 − a and 1 + b, where
a, b ≥ 0 and a+ b ≤ ∆ · ǫ. We call the chosen value among a and b the deviation for that update.

40

We now consider an update to a non-special coordinate at time t > q.
Suppose WLOG that the coordinate currently has value v in the range 1±∆ǫ. If all the other

coordinates were non-special and non-misallocated, if they all had zero deviation, and if the number
of coordinates in Urns M and P were equal, then the gradient would have value v−∆ǫ, assuming the
most up-to-date coordinate values were read. We now bound the range of values for this gradient
with high probability.

Lemma 22. Conditioned on U , With probability 1 − 5n−c, the above gradient lies in the range
1±∆ǫ±(1+∆)(C2+C

√
3)c lnn·ǫ±8c(2∆+2∆ǫ)ǫ±(3+

√
2(c+ 1) ln n)

√
2n(∆+2∆ǫ)ǫ±n∆ǫ2

.
= 1±Λ.

Proof: The term 1±∆ǫ reflects the range of v.
By Lemma 20, with probability at least 1 − n−c there are at most (C2 + C

√
3)c lnn special

coordinates. Each special coordinate lies in the range [ǫ, 1] if its original value is +1, and in the
range [−1,−ǫ] if its original value is −1; thus its contribution to the gradient differs by at most
±(1 + ∆)ǫ from the contribution it would make if it were non-special.

By Lemma 21, with probability at least 1− 2n−c there are at most 8c misallocated coordinates.
These each have a contribution to the gradient that differs by at most ±2(∆ + ∆ǫ)ǫ from the
contribution it would make if it were not misallocated.

As U holds, the difference in the number of coordinates in Urns M and P is bounded by (3 +√
2(c+ 1) ln n)

√
2n. Each unit of difference changes the contribution to the gradient by at most

±(∆ + 2∆ǫ)ǫ from the contribution if there were no difference.
Finally, the deviations each change the contribution to the gradient by at most ∆ǫ2, and there

are at most n− 1 of these contributions.

We will want to move this coordinate to each of Urns P and M with probability 1
2 . To go to Urn

M we want the computed gradient to be −Γ∆(1± ǫ). To obtain this value we will ignore up to αq
of the most recent updates to non-special, non-misallocated coordinates that occurred during the
previous q updates, and for which the coordinates are currently in P , where α > 0 is a suitably
sized constant.

This will guarantee we can reduce the value of the gradient by an amount up to αq(1−∆−∆ǫ)ǫ.
It suffices to have

αq(1−∆−∆ǫ)ǫ = Cα(1−∆−∆ǫ) ≥ 1 + Λ + Γ∆(1 + ǫ). (34)

In addition, as each ignored update contributes are most (1+∆+∆ǫ)ǫ to the gradient, this means
that the error to the updated value is at most 1

Γ(1 + ∆+∆ǫ)ǫ. Thus we want

∆ǫ ≥ 1

Γ
(1 + ∆+∆ǫ)ǫ;

∆ = 1
Γ−1−ǫ suffices.

It remains to argue that with high probability there are indeed αq such coordinates. We will
choose α = 1

8 .

Lemma 23. Conditioned on event U , during the interval [t − q, t − 1], with probability at least
1− 4n−c, at least q

8 non-special, non-misallocated coordinates are updated exactly once and end up

in Urn M, if
√
n ≥ 4[3 +

√
(2c+ 1) ln n] + 4

√
2c(n lnn)1/4√

C
+ 16(C +

√
3)
√
c lnn+ 64

√
c

C
√
lnn

.

Proof: As U holds, at each of the q previous updates, there are at least n
2−(3+

√
(2c+ 1) ln n)

√
n

coordinates in Urn Z. By a Chernoff bound, during these q updates, with probability 1 − nc, at
least q

4 −
q
2n(3 +

√
(2c+ 1) ln n)

√
n− 1

2

√
2cq lnn updates end up in Urn M.

41

By Lemma 20, with probability at least 1 − n−c, no more than (C2 + C
√
3)c lnn are repeat

updates, and with probability at least 1−n−c, no more than (C2+C
√
3)c lnn are special coordinates.

by Lemma 21, with probability at least 1− 2n−c, no more that 8c are misallocated coordinates.
In total, with probability 1−4n−c, there are at least q

4−
q
2n(3+

√
(2c+ 1) ln n)

√
n− 1

2

√
2cq lnn−

2(C2+C
√
3)c lnn−8c coordinates that are non-special, non-misallocated, updated exactly once in

the interval of q updates, ending up in urn M. This is at least q
8 if the stated bound on n holds.

Every other type of update is handled analogously.
Next, we show how to satisfy (34).

Lemma 24. (34) will hold if Γ ≥ 2, ∆(Γ − 1 − ǫ) = 1, ∆ + 2∆ǫ ≤ 1
3 , n ≥ 100max{(C2 +

C
√
3)2c lnn, c}, c ≥ 2, and C ≥ 60.

Proof: Note that ǫ = 1/
√
cn lnn ≤ 1

30 and thus Γ∆(1 + ǫ) = (1 + ∆ + ∆ǫ)(1 + ǫ) ≤ 5
3 · 3130 ≤ 2.

As α(1 −∆ −∆ǫ) ≥ 1
12 and Γ∆(1 + ǫ) ≤ 2, it suffices that C

12 ≥ 3 + Λ. Recall the definition of Λ
in Lemma 22:

Λ = ∆ǫ+ (1 + ∆)(C2 + C
√
3)c ln n · ǫ+ 8c(2∆ + 2∆ǫ)ǫ+ (3 +

√
2(c+ 1) ln n)

√
2n(∆ + 2∆ǫ)ǫ+ n∆ǫ2

≤ 1√
cn lnn

+
4(C2 +C

√
3)
√
c ln n

3
√
n

+
16
√
c

3
√
n lnn

+

√
2√

c ln n
+

2
√
c+ 1

3
√
c

+
1

3c lnn

≤ 1

30
+

1

7
+

1

4
+

1

2
+

9

10
+

1

30
≤ 2.

Thus it suffices that C ≥ 60.

Finally, we note that non-special misallocated coordinates, at their first update, can be restored
to the correct value for Urn Z, and then can be treated as normal non-special coordinates. And
even for the special coordinates, we can show that it takes at most O(c) updates to the coordinate,
following those in the initial sequence of q updates, to restore them to a correct value (but this
needs additional omitted analysis).

We have shown:

Lemma 25. With probability at least 1 − n−c[12T + 4] the above process keeps all non-special,
non-misallocated coordinates at values close to their original values during the first T updates, and
there are at most (C2+C

√
3)c ln n+8c of these latter coordinates, assuming n ≥ [C3/2c1/4 ln5/4 n]8,

together with the conditions specified in Lemma 24.

Proof: By Lemma 19, with probability at least 1 − 3Tn−c event U holds. By Lemma 20, with
probability at least 1− 2n−c, there are at most (C2 + C

√
3)c ln n special coordinates and at most

2(C2 + C
√
3)c ln n updates to these coordinates during the first q updates. By Lemma 21, with

probability at least 1 − 2n−c there are at most 8c misallocated coordinates. By Lemma 22, with
probability at least 1 − 5Tn−c, each computed gradient lies in the range specified there. Finally,
by Lemma 23, with probability at least 1 − 4Tn−c, there are sufficiently many recently updated
coordinates in the right urn to enable the desired update to be made.

Lemma 25 yields Theorem 3 on noting that for all non-special, non-misallocated coordinates,
|xj − x◦j | ≤ ∆(1 + ǫ) = 1+ǫ

Γ−1−ǫ .

42

D Further Related Work

Related Work on Coordinate Descent Convex optimization is one of the most widely used
methodologies in applications across multiple disciplines. Unsurprisingly, there is a vast literature
studying convex optimization, with various assumptions and in various contexts. We refer read-
ers to Nesterov’s text [21] for an excellent overview of the development of optimization theory.
Distributed and asynchronous computation has a long history in optimization, starting with the
already mentioned work of Chazan and Miranker [6], with subsequent milestones in the work of
Baudet [2], and of Tsitsiklis, Bertsekas and Athans [30, 3]; more recent results include [5, 4]. See
Frommer and Szyld [13] for a fairly recent review, and Wright [31] for a recent survey on coordinate
descent.

Stochastic (synchronous) coordinate descent, in which coordinates are updated in random order,
has recently attracted attention. Relevant works include Nesterov [22], Richtárik and Takác [24]
and Lu and Xiao [18].

Other Related Work In statistical machine learning, the objective functions to be minimized
typically have the form

∑
i ℓ(x,Zi), where the Zi are samples; updates are sample-wise but not

coordinate-wise, so our model will not cover these update algorithms. It is an interesting problem
to investigate if there is an adaption of our model and amortized analysis for these algorithms. Many
of the assumptions made for asynchronous sample-wise updates share similarities with ours. For
instance, Tsianos and Rabbat [29] extended the analysis of Duchi, Agarwal and Wainwright [11]
to analyze distributed dual averaging (DDA) with communication delay; the same authors [23]
studied DDA with heterogeneous systems, i.e., distributed computing units with different query
and computing speeds. Langford, Smola and Zinkevich [15] also studied problems with bounded
communication delay.

In a similar spirit to our analysis, Cheung, Cole and Rastogi [8] analyzed asynchronous taton-
nement in certain Fisher markets. This earlier work employed a potential function which drops
continuously when there is no update and does not increase when an update is made.

43

E Common Value Assumption

Since the retrievals of coordinate values is performed after choosing the coordinate kt to update,
and since the schedule of retrievals depends on the choice of kt, in general it is possible that the
retrieved value x̃ in Step 2 of Algorithm 1 varies with kt.

Also, a later starting update (update A) can affect the updates by with earlier starts (updates
in B) if update A commits earlier than some of the updates in B. One likely scenario for this to
happen is due to varying iteration lengths. Suppose that at time τ a core B chooses coordinate
kτ to update, and this update will take 2d time units to commit (where d ≥ 3). Also, suppose it
schedules to read the value of coordinate j at some time after τ + d + 2. At time τ + 1, core A
chooses a random coordinate to update. If it chooses coordinate j, and if it takes d time units to
commit, then core B will read the updated value by core A. On the other hand, if coordinate j is
not chosen recently, then core B will surely read another value of coordinate j.

More subtly, even if update A commits after all updates in B, it can still affect the updates in
B due to differential delays coming from the operating environment (see Footnote 5 for examples
on how these delay occur).

In [16], Liu and Wright made the Common Value assumption.This is the reason they can use the
parameter Lres to bound gradient differences. To avoid the use of the Common Value assumption,
we introduce a new but similar parameter Lres.

44

F A Few Remarks about Locking in the SACD Algorithm

We make the following remarks about the SACD algorithm.
In many optimization problems, e.g., those involving sparse matrices, the number of coordinate

values needed for computing the gradient in Step 3 of Algorithm 1 is much smaller than n, i.e.,
in Step 2, the core needs to retrieve only a tiny portion of the full set of coordinate values. Also,
the set of coordinate values needed for computing the gradients along different coordinates can be
very different. Therefore, the random choice of coordinate (in Step 1) has to be made ahead of the
process of retrieving required information from the shared memory.

If the convex function F does not have the univariate non-smooth components, each update
simply adds a number, which depends only on the computed gradient, to the current value in
the memory. Then the update can be done atomically (e.g., by fetch-and-add11), and no lock is
required.

However, for general scenarios with univariate non-smooth components, the update to xj must
depend on the value of xj in memory right before the update (see Equation (1)). Then the update
cannot be done atomically, and a lock is necessary. We note that when the number of cores is far
fewer than n, say when it is ǫ

√
n for some ǫ < 1, delays due to locking can occur, but are unlikely

to be significant.12

11The fetch-and-add CPU instruction atomically increments the contents of a memory location by a specified value.
12The standard birthday paradox result states that if ǫ

√
n cores each chooses a random coordinate among [n]

uniformly, the probability for a collision to occur is Θ(ǫ2).

45

References

[1] Haim Avron, Alex Druinsky, and Anshul Gupta. Revisiting asynchronous linear solvers: Prov-
able convergence rate through randomization. J. ACM, 62(6):51:1–51:27, 2015.

[2] Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25(2):226–
244, 1978.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:Numerical
Methods. Prentice Hall, 1989.

[4] Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM J. Optimization, 10(3):627–642, 2000.

[5] Vivek S. Borkar. Asynchronous stochastic approximations. SIAM J. Control and Optimization,
36(3):662–663, 1998.

[6] D. Chazan and W. Miranker. Chaotic relaxation. Linear Agebra Appl., 2(2):199–222, 1969.

[7] Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm
using Bregman’s function. SIAM J. Optimization, 3(3):538–543, 1993.

[8] Yun Kuen Cheung, Richard Cole, and Ashish Rastogi. Tatonnement in ongoing markets of
complementary goods. In EC, pages 337–354, 2012.

[9] Richard Cole and Yixin Tao. An analysis of asynchronous stochastic accelerated coordinate
descent. 2018. submitted to SODA’19.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
September 1995.

[11] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Trans. Automat. Contr.,
57(3):592–606, 2012.

[12] Cong Fang, Yameng Huang, and Zhouchen Lin. Accelerating asynchronous algorithms for
convex optimization by momentum compensation. arXiv preprint arXiv:1802.09747, 2018.

[13] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal of Computational
and Applied Mathematics, 123(1-2):201–216, 2000. Numerical Analysis 2000. Vol. III: Linear
Algebra.

[14] Robert Hannah, Fei Feng, and Wotao Yin. A2bcd: An asynchronous accelerated block coor-
dinate descent algorithm with optimal complexity. 2018.

[15] John Langford, Alex J. Smola, and Martin Zinkevich. Slow learners are fast. In NIPS, pages
2331–2339, 2009.

[16] Ji Liu and Stephen J. Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

[17] Ji Liu, Stephen J. Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asyn-
chronous parallel stochastic coordinate descent algorithm. Journal of Machine Learning Re-
search, 16:285–322, 2015.

46

[18] Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate descent
methods. Mathematical Programming, 152(1-2):615–642, 2015.

[19] Horia Mania, Xinghao Pan, Dimitris S. Papailiopoulos, Benjamin Recht, Kannan Ramchan-
dran, and Michael I. Jordan. Perturbed iterate analysis for asynchronous stochastic optimiza-
tion. CoRR, abs/1507.06970, 2015.

[20] Lukas Meier, Sara Van De Geer, and Peter Bhlmann. The group lasso for logistic regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

[21] Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer US,
2004.

[22] Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM J. Optimization, 22(2):341–362, 2012.

[23] Michael G. Rabbat and Konstantinos I. Tsianos. Asynchronous decentralized optimization in
heterogeneous systems. In IEEE Conference on Decision and Control, CDC, pages 1125–1130,
2014.

[24] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate de-
scent methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–
38, 2014.

[25] Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regression learning algo-
rithm in dual variables. In Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, pages 515–521, San Francisco, CA, USA, 1998. Morgan Kaufmann Pub-
lishers Inc.

[26] Tao Sun, Robert Hannah, and Wotao Yin. Asynchronous coordinate descent under more
realistic assumptions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 6182–6190. Curran Associates, Inc., 2017.

[27] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1994.

[28] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth sepa-
rable minimization. Math. Program., 117(1-2):387–423, 2009.

[29] Konstantinos I. Tsianos and Michael G. Rabbat. Distributed dual averaging for convex opti-
mization under communication delays. In American Control Conference, ACC, pages 1067–
1072, 2012.

[30] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic
Control, 31(9):803–812, 1986.

[31] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34,
2015.

47

	1 Introduction
	2 Model and Main Results
	2.1 The SACD Algorithm
	2.2 Selected Results

	3 The Basic Framework
	4 A Truly Simple Analysis with the Common Value Assumption
	5 Comments on Achieving the Full Result
	A Some Basic Lemmas and Facts
	A.1 Some Lemmas about the Functions W"0362W and d"0362d
	A.2 Proofs of Lemmas ?? and ??
	A.3 Proof of Lemma ??
	A.4 The Progress Lemma
	A.5 Handling No Common Write

	B Full SACD Analysis
	B.1 Analyzing Non-Smooth Functions
	B.2 Gradient Bounds
	B.3 Amortization for the Stochastic Analyses
	B.4 SACD Amortized Analysis

	C Lower Bound on q
	C.1 A Balls in Urns Problem
	C.2 The Function and the Asynchronous Schedule

	D Further Related Work
	E Common Value Assumption
	F A Few Remarks about Locking in the SACD Algorithm

