Human Multisensory Perception: putting the puzzle together

Marc O. Ernst

GDR Robotique Paris - 2010

Multisensory Perception and Action Group Max Planck Institute for Biological Cybernetics

The world in our head to interact!

Multisensory Learning

Perception for Action

Multisensory Learning

Multisensory Integration

Rock & Victor (Science, 1964)

Irv Rock

Looking at an object through a distortion lens while touching the object.

Discrepancy between visual and haptic form. Which form is perceived? ► Visual Capture

Multisensory Learning

Mittwoch, 10. November 2010

Visual-haptic Setup

Multisensory Integration

 C_1 C_2 C₁₂

"ideal observer" approach

visual-haptic cues to size

weights $w_i = \frac{r_i}{\sum r_j}$

weighted sum

 $C_{12} = w_1 C_1 + w_2 C_2$

combined reliability

$$r_{12} = r_1 + r_2$$

Ernst & Banks, Nature 2002

Multisensory Learning

Mittwoch, 10. November 2010

Multisensory Learning

Marc O. Ernst

Multisensory Learning

Multisensory Learning

Multisensory Learning

Marc O. Ernst

Multisensory Learning

Visual-Haptic Integration: Conclusion

Humans integrate visual and haptic information in a statistically optimal fashion

Marc O. Ernst* & Martin S. Banks (2002)

Vision Science Program/School of Optometry, University of California, Berkeley 94720-2020, USA

Nature 415, 429-433 (2002)

Signals are weighted according to their reliabilities

- Integration reduces variance (increases reliability)
- Online representation of signal and its reliability

Multisensory Integration

Assumptions:

- signal correspondence (redundancy)
- unbiased

Mittwoch, 10. November 2010

Multisensory Learning

Likelihood

Ernst, Journal of Vision 2007

Multisensory Learning Mittwoch, 10. November 2010 Marc O. Ernst

GDR Robotique, Paris - 2010

Likelihood

Ernst, Journal of Vision 2007

Multisensory Learning

Mittwoch, 10. November 2010

Likelihood

Ernst, Journal of Vision 2007

Multisensory Learning

Marc O. Ernst

Mittwoch, 10. November 2010

Likelihood

Ernst, Journal of Vision 2007

Multisensory Learning Mittwoch, 10. November 2010

Marc O. Ernst

GDR Robotique, Paris - 2010

Mittwoch, 10. November 2010

Exp. Procedure Outline

- Use two arbitrary sensory cues that are usually uncorrelated in the world (luminance and stiffness) and train subjects in an environment where these two cues are artificially correlated.
- Does training with correlated cues affect discrimination performance?
- Two factor design: Compare pre- vs. post-test performance for the congruent and incongruent directions (relative to training).

Ernst, Journal of Vision 2007

Discrimination Task

three interval oddity task

discrimination space

Ernst, Journal of Vision 2007

Multisensory Learning

Mittwoch, 10. November 2010

Mittwoch, 10. November 2010

ndependence Partial Fusion

Fusion

Ernst, Journal of Vision 2007

Multisensory Learning

Independence Partial Fusion

Fusion

Ernst, Journal of Vision 2007

Multisensory Learning

Mittwoch, 10. November 2010

Multisensory Learning Mittwoch, 10. November 2010

Multisensory Learning Mittwoch, 10. November 2010

Multiscrisory Learning

Mittwoch, 10. November 2010

Multisensory Learning

Mittwoch, 10. November 2010

Multisensory Learning

Mittwoch, 10. November 2010

Pre- & Post-Test Discrimination

Ernst, Journal of Vision 2007

Multisensory Learning

Mittwoch, 10. November 2010

Co-occurrence Statistics

Multisensory Learning

Marc O. Ernst

Mittwoch, 10. November 2010

Visuomotor Adaptation

Hermann von Helmholtz (1821-1894)

Herbert Pick Jr.

Seeing the hand through a distortion lens

Visual and proprioceptive representation in conflict!
How to adapt this systematic error?

Pointing to Target

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

GDR Robotique, Paris - 2010

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Visuomotor Adaptation

adaptation profile

Problem!

wrong prediction or model

(systematic bias / accuracy)

what is its cause?

Burge, Ernst & Banks, J. of Vision 2008

Multisensory Learning

Kalman Filter

optimal estimate of current bias!

Burge, Ernst & Banks, J. of Vision 2008

Marc O. Ernst

Weighting Example

nr. of trials

nr. of trials

measurement uncertainty (σ^2_z) => large adaptation => slow

Burge, Ernst & Banks, J. of Vision 2008

Multisensory Learning

Marc O. Ernst

GDR Robotique, Paris - 2010

Adaptation Profile

- Reliability of the feedback signal determines adaptation rate!
- The reliability of the signals has to be known to the perceptual system!

Burge, Ernst & Banks, J. of Vision 2008

Weighting Example

nr. of trials

nr. of trials

measurement uncertainty (σ^2_z) => large adaptation => slow

$$K = \frac{1}{1 + \sigma_z^2 / \sigma_x^2}$$

process uncertainty $(\sigma^2_x) =>$ large adaptation => fast

Burge, Ernst & Banks, J. of Vision 2008

Multisensory Learning

Stable World

Burge, Ernst & Banks, J. of Vision 2008

Unstable World

Burge, Ernst & Banks, J. of Vision 2008

Summary: Recalibration

- Adaptation rate depends on reliability of visual feedback.
 - unreliable = slow adaptation
- Adaptation rate depends on uncertainty in predicting the wold state.
 - uncertain = fast adaptation
- In first approximation the Kalman-Filter as an "ideal observer" is a good predictor for human adaptation performance.

Burge, Ernst & Banks, J. of Vision 2008

From Integration to Remapping

Mittwoch, 10. November 2010

"Do people really walk in circles if they lose their way in the desert, and, if so, why?"

Souman, Frissen, Sreenivasa & Ernst, Current Biology (2009)

Common belief

John Tolkien, The Two Towers Mark Twain, Roughing it Leo Tolstoy, Master and Man

The Flight of the Phoenix

Laurel & Hardy, Beau Hunks

Blair Witch Project

Mittwoch, 10. November 2010

THE

JAMES STEWART . RICHARD ATTENBOROUGH

OFTHE

Anecdotes

Guldberg (1897)

Sahara (Tunesia)

Desert Walks

Task: keep walking in the direction indicated at the beginning of the walk **Condition:** •~3.5 hours •45°C no navigational instruments **Measurements:** GPS data (1Hz; accuracy ~3m)

Jan Souman, Ilja Frissen, Manish Sreenivasa, Marc Ernst, Current Biology (2009)

Bienwald (Germany)

12

Tübingen

Mittwoch, 10. November 2010

Google

Forrest Walks

Task:

keep walking in the direction indicated at the beginning of the walk

Conditions: •sunny / cloudy •4 hours •no navigational instruments

Measurements: GPS data (1Hz; accuracy ~3m)

Jan Souman, Ilja Frissen, Manish Sreenivasa, Marc Ernst, Current Biology (2009)

1 km

©2007Google

Image © 2008 GeoContent © 2008 European Space Agency © 2008 Tele Atlas 49°03'36" N 8°14'27" E •

1 km

12.2

KS

RF

PS

-

Mittwoch, 10. November 2010

©2007Google

Image © 2008 GeoContent © 2008 European Space Agency © 2008 Tele Atlas **i**

AY

AY

1 km

© 2007 Google Image © 2008 GeoContent © 2008 European Space Agency © 2008 Tele Atlas

KS

PS

-

© 2007 Google Image © 2008 GeoContent © 2008 European Space Agency © 2008 Tele Atlas

KS

RF

PS

-

MJ

49°03'36" N 8°14'27" E •

1 km

SM

AY

Vlieland (Netherlands)

Mittwoch, 10. November 2010

MILITAIR OEFENTERREIN LEVENSGEVAARLIJK

DIT TERREIN IS GEVAARLIJK WANNEER OP DIT BORD OF OP DE TOREN EEN RODE VLAG IS GEPLAATST

PAS OP

ONONTPLOFTE AMMUNITIE HET RAPEN VAN HULZEN EN PROJECTIELEN IS GEVAARLIJK EN VERBODEN PERSONEN WELKE WORDEN AANGETROFFE IN HET BEZIT VAN AMMUNITIE ZULLEN STRAFRECHTELIJK WORDEN VERVOL

WARNUNG

SIE BETRETEN EIN SCHIESZGEBIET FÜR FLUGZEUGEN WENN GESCHOSSEN WIRD IST DAS GEBIET MARKIERT MIT ROTEN FAHNEN BETRETEN IST LEBENSGEFÄHRLICH UND VERBOTEN

WARNING

YOU ARE APPROACHING AN AIRCRAFT GUNNERY RANGE WHEN IN USE THE DANGER AREA IS MARKED WITH RED FLAGS ENTRANCE IS THEN VERY DANGEROUS AND FORBIDDEN

Multisensory Learning Mittwoch, 10. November 2010

Walking blindfolded ...

.... as straight as possible!!!

Walk blindfolded ...

Souman, Frissen, Sreenivasa & Ernst, Current Biology (2009)

Mittwoch, 10. November 2010

Walking blindfolded ...

Souman, Frissen, Sreenivasa & Ernst, *Current Biology* (2009)

Accumulation of Noise

 The vestibular system accumulates noise when integrating acceleration into a direction estimate

Souman, Frissen, Sreenivasa & Ernst, Current Biology (2009)

Multisensory Learning

а

Marc O. Ernst

Recalibration

Pause

Souman, Frissen, Sreenivasa & Ernst, *Current Biology* (2009)

¢.

Recalibration

the higher the curvature before the break the more it is corrected after the break -> recalibration

Souman, Frissen, Sreenivasa & Ernst, Current Biology (2009)

Accumulation of Noise

40

50

Nagamori, Wakabayashi, & Ito (2005)

DRIVE A: TURNTABLE DRIVE B: TRANSMISSION BELT Ernst, Bülthoff, & Götz (2003)

Mittwoch, 10. November 2010

Martin Schwaiger, TU München

Marc O. Ernst

Conclusions

 The brain integrates multisensory information in a statistically optimal fashion, taking the variance of the signals into account.

Acknowledgments

Collaborators

Massimiliano **Di Luca**

Manish Sreenivasa

llja **Frissen**

Johannes

Burge

Marty Banks

Jäkel

Martin **Schwaiger**

Werner Reichardt Centre for Integrative Neuroscience - CIN

HapSy

Wendy Adams

Grants

CyberW

University of Tübingen

IMMERSENCE

Erich

Graf

Frank

Thank you !!!

www.kyb.tuebingen.mpg.de/ernstgroup

Multisensory Learning

Mittwoch, 10. November 2010

Marc O. Ernst

Integration Model

