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Abstract

In this thesis, we solve several optimal control problems constrained by linear as well as nonlinear stochastic
partial differential equations by a stochastic maximum principle. We provide some basic concepts from
functional analysis and a stochastic calculus to obtain existence and uniqueness results of mild solutions to
these equations. For the linear case, we consider two specific examples, where we involve nonhomogeneous
boundary conditions using the theory of fractional powers of closed operators. First, we treat the stochastic
heat equation with nonhomogeneous Neumann boundary conditions, where controls and additive noise
terms appear inside the domain as well as on the boundary. Here, the control problem is described by
tracking a desired state at the terminal point of time leading to a convex optimization problem. Using a
stochastic maximum principle, we state necessary and sufficient optimality conditions, which we utilize
to design explicit formulas for the optimal controls. By a reformulation of these formulas, we finally
obtain a feedback law of the optimal controls. Next, we consider the stochastic Stokes equations with
nonhomogeneous Dirichlet boundary conditions, where we include a linear multiplicative noise term. Here,
controls appear inside the domain as well as on the boundary. The control problem is defined by tracking
a desired state through the whole time interval leading to a convex optimization problem. Again, we
state necessary and sufficient optimality conditions the optimal controls have to satisfy. The design of
these optimal controls is mainly based on a duality principle giving relations between the mild solutions of
forward equations and a backward equation. Here, the forward equations are given by the partial Gâteaux
derivatives of the stochastic Stokes equations with respect to the controls and the backward equation is
characterized by the adjoint equation. To derive this duality principle, an approximation of the mild
solutions by strong solutions is required, which we obtain using the resolvent operator. This provides
formulas for the optimal controls based on the adjoint equation. As a consequence, it remains to solve a
system of coupled forward and backward stochastic partial differential equations. For the nonlinear case, we
study the stochastic Navier-Stokes equations with homogeneous Dirichlet boundary conditions, where we
include a linear multiplicative noise term. Here, the theory of fractional powers of closed operators gives a
treatment of the convection term arising in these equations. In general, it is not possible to define a solution
over an arbitrary time interval. We overcome this problem using a local mild solution well defined upto
a certain stopping time. Hence, the cost functional related to the control problem has to incorporate this
stopping time leading to a nonconvex optimization problem. Thus, a stochastic maximum principle provides
only a necessary optimality condition. However, we still design the optimal control based on the adjoint
equation using a duality principle. Again, it remains to solve a system of coupled forward and backward
stochastic partial differential equations. Furthermore, we show that the optimal control satisfies a sufficient
optimality condition based on the second order Fréchet derivative of the cost functional.
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Zusammenfassung

In der vorliegenden Arbeit werden verschiedene Optimalsteuerprobleme sowohl für lineare als auch nicht-
lineare stochastische partielle Differentialgleichungen mittels eines stochastischen Maximumprinzips gelöst.
Wir führen einige Grundlagen aus der Funktionalanalysis und ein stochastisches Kalkül ein, um Existenz-
und Eindeutigkeitsresultate von milden Lösungen dieser Gleichungen zu erhalten. Im linearen Fall betrach-
ten wir zwei konkrete Beispiele, wobei wir inhomogene Randbedingungen, unter Verwendung der Theorie
der abgeschlossenen Operatoren mit gebrochen Exponenten, einbeziehen. Zunächst behandeln wir die sto-
chastische Wärmeleitungsgleichung mit inhomogenen Neumann-Randbedingungen, wobei Steuerungen und
additive Rauschterme sowohl im Gebiet als auch auf dem Rand auftreten. Hier wird das Steuerproblem
durch die Verfolgung eines gewünschten Zustandes zum Endzeitpunkt beschrieben, was zu einem konvexen
Optimierungsproblem führt. Mittels eines stochastischen Maximumprinzips geben wir notwendige und hin-
reichende Optimalitätsbedingungen an, welche wir verwenden, um explizite Formeln für die optimalen Steue-
rungen zu konstruieren. Durch eine Umformulierung erhalten wir letztendlich, dass die optimalen Steue-
rungen als Rückkoppelungssteuerung dargestellt werden kann. Danach betrachten wir die stochastischen
Stokes Gleichungen mit inhomogenen Dirichlet-Randbedingungen, wobei wir einen linear-multiplikativen
Rauschterm einbeziehen. Hier treten Steuerungen sowohl im Gebiet als auch auf dem Rand auf. Das Steu-
erproblem besteht aus einer Verfolgung eines gewünschten Zustandes über einem bestimmten Zeitinter-
vall, was zu einem konvexen Optimierungsproblem führt. Wieder geben wir notwendige und hinreichende
Optimalitätsbedingungen an, welche die optimalen Steuerungen erfüllen. Die Konstruktion der optimalen
Steuerungen basiert vorwiegend auf einem Dualitätsprinzip, welches Zusammenhänge zwischen den milden
Lösungen von Vorwärtsgleichungen und einer Rückwärtsgleichung angibt. Die Vorwärstgleichungen sind
durch die partiellen Gâteaux-Ableitungen der Lösungen der stochastischen Stokes Gleichungen bezüglich
der Steuerungen gegeben und die Rückwartsgleichung ist charakterisiert durch die adjungierte Gleichung.
Um dieses Dualitätsprinzip herzuleiten, ist eine Approximation der milden Lösungen durch starke Lösungen
erforderlich, welche wir mittels der Resolvente erlangen. Wir erhalten somit Formeln für die optimalen Steue-
rungen basierend auf der adjungierten Gleichung. Somit bleibt ein System von gekoppelten stochastischen
partiellen Vorwärts- und Rückwärtsgleichungen zu lösen. Im nichtlinearen Fall analysieren wir die sto-
chastischen Navier-Stokes Gleichungen mit homogenen Dirichlet-Randbedingungen, wobei wir einen linear-
multiplikativen Rauschterm einbeziehen. Hier gibt uns die Theorie der abgeschlossenen Operatoren mit
gebrochen Exponenten eine Möglichkeit den Konvektionsterm in diesen Gleichungen handhabbar zu ma-
chen. Im Allgemeinen ist es nicht möglich eine Lösung über einem beliebigen Zeitintervall zu definieren.
Wir bewältigen dieses Problem, indem wir eine lokale milde Lösung verwenden, welche bis zu einer gewis-
sen Stoppzeit wohldefiniert ist. Demzufolge muss das zum Steuerproblem gehörige Kostenfunktional diese
Stoppzeit einbeziehen, was uns zu einem nicht-konvexen Optimierungsproblem führt. Dadurch gibt uns
ein stochastisches Maximumprinzip lediglich notwendige Optimalitätsbedingungen. Nichtsdestotrotz kon-
struieren wir die optimalen Steuerungen basierend auf der adjungierten Gleichung unter Verwendung eines
Dualitätsprinzips. Ferner zeigen wir, dass die optimale Steuerung eine hinreichende Optimalitätsbedingung,
unter Verwendung der Fréchet Ableitung zweiter Ordnung des Kostenfunktionals, erfüllt.
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Notation

General

N natural numbers {1, 2, ...}
Z, Z+ integers, nonnegative integers
R, R+, R+

0 real numbers, nonnegative real numbers, positive real numbers
Rn×m real matrices with n rows and m columns
C complex numbers
B(X ) Borel σ-field of a Banach space X
D bounded domain in Rn, i.e. an open and bounded subset of Rn
∂D boundary of D
Im z imaginary part of z ∈ C
M closure of a set M
M1 ∩M2 intersection of sets M1 and M2

M1 ∪M2 union of sets M1 and M2⋃∞
n=1Mn union of a sequence of sets (Mn)n∈N

M1\M2 relative complement of a set M2 in a set M1

Re z real part of z ∈ C
s ∧ t, s ∨ t min{s, t}, max{s, t} with s, t ∈ R
[t0, t1] closed interval from t0 ∈ R+ to t1 ∈ R+ with t0 ≤ t1
(t0, t1], [t0, t1) half-closed interval from t0 ∈ R+ to t1 ∈ R+ with t0 < t1
Xn n-dimensional vector space of a Banach space X
∅ empty set

Operators and Functions

A∗ adjoint of an operator A
Aα fractional power of an operator A with α ∈ R
D(A) domain of an operator A
det(A) determinant of a matrix A
div divergence of a vector field
R(λ;A) resolvent operator of an operator A with λ ∈ ρ(A)
R(λ) λR(λ;A)
(S(t))t≥0, (eAt)t≥0 C0 semigroup generated by an operator A
Tr(A) trace of an operator A
ρ(A) resolvent set of an operator A
‖ · ‖X norm on a Banach space X
〈·, ·〉X inner product on a Hilbert space X
∇,∆ Nabla operator, Laplace operator
1M1

indicator function of a subset M1 of a set M2
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Probability Theory

(Ω,F ,P) complete probability space
E[X] expected value of a random variable X
E[X|G] conditional expectation of a random variable X given a σ-field G
P(A) probability of an event A ∈ F
(∆L(t))t≥0 jump process of a Lévy process (L(t))t≥0

σ(M) smallest σ-field containing a set M
σ(X(s) : 0 ≤ s ≤ t) smallest σ-field generated by a stochastic process (X(s))s∈I upto a point

of time t ∈ I, where I = [0, T ] or I = R+

Spaces

C([t0, t1];X ) continuous functions mapping [t0, t1] into a Banach space X
C(D), C(∂D) continuous real functions on D or ∂D
C∞(D) infinite differentiable functions in C(D) or C(∂D) with continuous

derivatives
C∞0 (D) functions in C∞(D) with compact support
Hs(D), Hs(∂D) Sobolev space of square integrable real functions on D or ∂D in the sense

of Bessel potential spaces with s ≥ 0
Hs

0(D) functions in Hs(D) with compact support and s > 1
2

Lp([t0, t1];X ) p-integrable functions for 1 ≤ p < ∞ mapping [t0, t1] into a Banach
space X

L∞([t0, t1];X ) measurable functions mapping [t0, t1] into a Banach space X such that
the essential supremum is finite

Lp([t0, t1]) Lp([t0, t1];R)
Lp(D), Lp(∂D) p-integrable real functions on D or ∂D
Lp(Ω;X ) functions mapping Ω into a Banach space X , which are p-integrable with

respect to a measure for 1 ≤ p <∞
LpF (Ω;Lq([t0, t1];X )) stochastic processes in Lp(Ω;Lq([t0, t1];X )) adapted to a filtration

(Ft)t≥0

L(X ;Y) linear and bounded operators mapping a Banach space X into another
Banach space Y

L(X ) L(X ;X )
L1(X ;Y) nuclear operators mapping X into Y
L1(X ) L1(X ;X )
L+

1 (X ;Y) self-adjoint and nonnegative operators in L1(X ;Y)
L+

1 (X ) L+
1 (X ;X )

L(HS)(X ;Y) Hilbert-Schmidt operators mapping a Banach space X into another Ba-
nach space Y

L(HS)(X ) L(HS)(X ;X )
Q1/2(X ) subspace of a Hilbert space X generated by a self-adjoint nonnegative

operator Q1/2 ∈ L(X )
X × Y product space of Banach spaces X and Y
X ′ dual space of a Banach space X
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Chapter 1

Introduction

1.1. Stochastic Systems

Unsteady deterministic ordinary differential equations and unsteady deterministic partial differential equa-
tions arise as models for many systems in engineering, chemistry, biology and physics. To cover random
environmental phenomena affecting theses systems, it is often required to involve noise terms as stochastic
processes leading to stochastic systems. Consequently, stochastic systems can always be motivated from
the deterministic approach. Furthermore, the state described by such a system is not differentiable with
respect to the time variable in general. A possibility to overcome this difficulty is given by reformulating the
differential equations as integral equations. This leads us immediately to stochastic differential equations
(SDEs) and stochastic partial differential equations (SPDEs), which are symbolic notions describing these
integral equations. Basically, one can consider SDEs driven by a Wiener noise, see [54, 55, 69, 66] and the
references therein. SPDEs with respect to Wiener noise can be considered as a generalization of SDEs in the
sense that these equations are formulated as evolution equations on infinite dimensional spaces. Here, we
will focus on infinite dimensional spaces given by separable Hilbert spaces. Thus, the solutions of SPDEs are
defined in a generalized sense in various ways. As a direct ansatz, one can formulate a strong solution, see
[23, 28, 42, 45]. This often requires too strong regularity properties of the solution to the SPDE and thus,
one introduces weaker concepts to obtain an equation well defined on a larger space. In [23, 28, 42, 73],
weak solutions are introduced, where the construction is mainly based on the inner product defined on
a suitable Hilbert space. Using Gelfand triples, a similar approach is given by variational solutions, see
[73, 80]. Mild solutions are often used for problems containing a linear (and possibly unbounded) operator
as the generator of a semigroup, see [23, 28, 42]. All of these concepts are based on a given probability
space and therefore, they are called (probabilistic) strong solutions. Solutions constructing the probability
space are called (probabilistic) weak solutions or martingale solutions, see [23, 28]. For various reasons, a
Wiener noise cannot cover all random environmental phenomena. Thus, it is often required to use more
general noise terms. One may consider systems including jumps leading to Lévy noise. For SDEs, we refer
to [2, 20, 82]. An approach for SPDEs is presented in [3, 18, 71]. In a different direction one can consider a
noise term, where the increments are not necessarily independent. Such a noise term can be modeled using
a fractional Brownian motion. SDEs driven by fractional Brownian motions are studied in [64]. For SPDEs,
an approach is given in [29, 62].

In this thesis, we will mainly concentrate on systems described by SPDEs with Lévy noise. Here, we
analyze the following classes in more detail:

(i) linear SPDEs with additive Lévy noise,

(ii) linear SPDEs with multiplicative Lévy noise,

(iii) nonlinear SPDEs with multiplicative Lévy noise.

Based on [71], we prove existence and uniqueness results of these equations, where we incorporate some ad-
ditional difficulties. On the one hand, we treat a possibility to involve nonhomogeneous boundary conditions

1



Chapter 1. Introduction

appearing in linear SPDEs. As examples, the stochastic heat equation with Neumann boundary condition
as well as the stochastic Stokes equations with Dirichlet boundary condition will be analyzed. On the other
hand, we consider a nonlinear SPDE, where the nonlinearity does not satisfy the usual assumptions given
by a growth condition and a Lipschitz condition. Here, the stochastic Navier-Stokes equations with homo-
geneous Dirichlet boundary condition will be treated as an example. These systems have in common that
they contain a linear and closed operator generating an analytic semigroup such that fractional powers of
these operators (possibly with a suitable perturbation) are well defined. We will figure out that the theory
of fractional powers of closed operators is useful to overcome the difficulties mentioned above, where the
solutions of the SPDEs are defined in a mild sense.

1.2. Stochastic Control

Due to the presence of a noise term, it might be the case that the state of the system reveals an undesired
behavior. Thus, it it reasonable to control a system in a certain desired way, where we always assume that
the state is completely observable. This immediately leads us to a stochastic control problem (in infinite
dimensions), which we consider as an optimization problem for a given cost functional constrained by a
SPDE. The minimizer of the cost functional is then called an optimal control. To solve this problem, there
exist mainly two approaches:

(i) stochastic maximum principle;

(ii) dynamic programming.

Based on existence and uniqueness results for the solution to a SPDE, one can often reformulate the control
problem as a minimization problem on a set of admissible controls given by a suitable Hilbert space or a
suitable subset of this Hilbert space. For that reason, the main idea of the stochastic maximum principle
is to state necessary and sufficient optimality conditions the optimal control has to satisfy. In general,
the necessary optimality condition can be derived using the Gâteaux derivative of the cost functional.
Using this necessary optimality condition, one can derive an explicit formula of the optimal control based
on the adjoint equation, which is given by a backward stochastic partial differential equation (BSPDE).
Sufficient optimality conditions are often stated based on the second order Fréchet derivative of the cost
functional. If the control problem is additionally convex, then the necessary optimality condition is also
sufficient. For general concepts of optimization problems on Hilbert spaces, we refer to [57, 93]. Closely
related is Pontryagin’s maximum principle, where one minimizes the Hamiltonian instead of the original
control problem. However, one still obtains an explicit formula of the optimal control based on the adjoint
equation. As a consequence, it remains to solve the so called Hamiltonian system. For applications, we
refer to [14, 36, 47, 67]. In this context, we may also note the general theory for finite dimensional control
problems presented in [91]. In contrast to these methods, the dynamic programming principle considers the
control problem at different initial times and initial states through the so called value function. This value
function is the solution of a nonlinear partial differential equation given by the Hamilton-Jacobi-Bellman
equation. If the equation is solvable, then one can obtain a feedback law of the optimal control, see [33].
For applications, we refer to [22, 26, 32, 61, 83, 92]. We also note the finite dimensional approach presented
in [35, 91].

The scope of this thesis is to provide a theory for solutions to specific stochastic control problems such that
they can be treated numerically. Since sufficient optimality conditions are useful to obtain the convergence to
an optimal control, we use a stochastic maximum principle here. This fact is already known for deterministic
problems, see [51]. As mentioned above, the design of the optimal controls is based on the adjoint equation
given by a BSPDE. To obtain the existence and uniqueness of a solution to the adjoint equation, it is often
required to apply a martingale representation theorem. Since a martingale representation theorem is not
available for Hilbert space valued Lévy processes in general, we are forced to restrict ourself to the case of

2



Chapter 1. Introduction

Q-Wiener processes. However, we will state some possibilities to expand the theory to systems governed by
SPDE with Lévy noise.

1.3. Outline of the Thesis

This thesis is divided into two main parts. In the first part, we provide foundations from functional analysis
and a stochastic calculus in infinite dimensional spaces required for the second part, where we solve certain
stochastic control problems via a stochastic maximum principle.

In Chapter 2, we introduce the class of linear (not necessary bounded) operators A : D(A) ⊂ H → H
generating a C0 semigroup (S(t))t≥0 on an arbitrary Hilbert spaceH. We state some basic properties and we
introduce the resolvent operator R(λ;A) = (λI −A)−1 for appropriate λ ∈ C, where the operator I denotes
the identity operator on H. Here, we will use the resolvent operator to approximate mild solutions of SPDEs
and BSPDEs by strong solutions, which is required to obtain a so called duality principle. Furthermore, we
introduce fractional powers of the operator A denoted by Aα with α ∈ R. If the C0 semigroup (S(t))t≥0

is analytic and the operator A is invertible, then we get some additional properties, which enable us to
incorporate nonhomogeneous boundary data to SPDEs. Moreover, we get a possible treatment of the
convection term arising in the stochastic Navier-Stokes equations. Especially, we will use the following
inequality frequently:

‖AαS(t)‖L(H) ≤Mαt
−αe−δt

for all α > 0 and all t > 0, where Mα, δ > 0 are constants. Thus, this inequality is the main result of
this chapter. Finally, we consider the Laplace operator and the Stokes operator as typical examples for
generators of analytic semigroups with their fractional powers (with a possible modification) being well
defined.

Chapter 3 is devoted to the stochastic calculus used in the following chapters. We start with some basic
definitions and we introduce Lévy processes (L(t))t≥0 with values in an arbitrary Hilbert space U . In
general, a Lévy process has the following decomposition for all t ≥ 0 and P-almost surely:

L(t) = at+W (t) + J(t),

where a ∈ U represents the drift, (W (t))t≥0 is the continuous part given by an U-valued Q-Wiener process
and (J(t))t≥0 illustrates the pure jump part characterized by a series of U-valued compound Poisson process.
When studying stochastic equations, it is necessary to define a stochastic integral of the form

t∫
0

Ψ(s) dL(s)

for all t ∈ [0, T ] with T > 0 and P-almost surely, where (Ψ(t))t∈[0,T ] is a stochastic process taking values in
a suitable space of Hilbert-Schmidt operators. Here, we assume that the Lévy process (L(t))t≥0 is square
integrable and a martingale with respect to a certain filtration. We will state basic properties of such a
stochastic integral, which enables us to prove existence and uniqueness results of mild solutions to SPDEs
driven by Lévy processes. For the existence and uniqueness of mild solutions to BSPDEs, a martingale
representation theorem is often required. Since such a theorem is not available for Hilbert space valued
Lévy processes in general, we will study BSPDEs for the special of Q-Wiener processes. The SPDEs and
BSPDEs introduced here are motivated by systems arising in the following chapters. Moreover, we give a
comparison of strong, weak and mild solutions to these equations.

In Chapter 4, we consider a control problem constrained by the stochastic heat equation with nonhomo-
geneous Neumann boundary conditions on a bounded domain D ⊂ Rn with sufficiently smooth boundary

3



Chapter 1. Introduction

∂D. Namely, we will treat the following SPDE in L2(D):{
dy(t) = [Ay(t) +Bu(t) + (λ−A)Nv(t)] dt+G(t) dW (t) + (λ−A)N dWb(t),

y(0) = ξ

for t ∈ [0, T ]. Here, the operator A : D(A) ⊂ L2(D) → L2(D) is the Neumann realization of the Laplace
operator generating an analytic semigroup of contractions

(
eAt
)
t≥0

. The process (u(t))t∈[0,T ] represents a

distributed control with values in L2(D) and B is a linear and bounded operator on L2(D). The process
(v(t))t∈[0,T ] describes a boundary control with values in L2(∂D) and N : L2(∂D) → L2(D) denotes the
Neumann operator. The real number λ is chosen such that fractional powers of the operator λ − A are
well defined. The noise terms (W (t))t≥0 and (Wb(t))t≥0 are given by Q-Wiener processes with values in
L2(D) and L2(∂D), respectively. We denote by Q ∈ L+

1 (L2(D)) and Qb ∈ L+
1 (L2(∂D)) the covariance

operators of the processes (W (t))t≥0 or (Wb(t))t≥0, respectively. The process (G(t))t∈[0,T ] takes values in

L(HS)(Q
1/2(L2(D));L2(D)). As a consequence, controls and noise terms are defined inside the domain as

well as on the boundary. The cost functional related to the control problem is formulated as follows:

J(u, v) =
1

2
E‖y(T )− yd‖2L2(D) +

κ1

2
E

T∫
0

‖u(t)‖2L2(D)dt+
κ2

2
E

T∫
0

‖v(t)‖2L2(∂D)dt,

where yd ∈ L2(D) is a given desired state and κ1, κ2 > 0 are weights. The task is to find optimal controls
u and v minimizing this cost functional. The corresponding optimal state is denoted by (y(t))t∈[0,T ].
Employing a stochastic maximum principle, we will show that the optimal controls satisfy the following
feedback law for all α ∈ ( 1

2 ,
3
4 ), almost all t ∈ [0, T ] and P-almost surely:

u(t) = − 1

κ1
B∗[P(t)y(t) + a(t)],

v(t) = − 1

κ2
G∗(λ−A)1−α[P(t)y(t) + a(t)],

where B∗ and G∗ denote the adjoint operators of B and G = (λ − A)αN , respectively. The function
P : [0, T ]→ L(L2(D)) is the mild solution of the Riccati equation

d

dt
P(t) = AP(t) + P(t)A− 1

κ1
P(t)BB∗P(t)− 1

κ2
H∗(t)GG∗H(t),

P(T ) = I,

where H(t) = (λ − A)1−αP(t) and I is the identity operator on L2(D). The function a : [0, T ] → D((λ −
A)1−α) is the unique solution of the deterministic backward integral equation

a(t) =

T∫
t

eA(s−t)
(
− 1

κ1
P(s)BB∗ − 1

κ2
H∗(s)GG∗(λ−A)1−α

)
a(s) ds− eA(T−t)yd.

In Chapter 5, we study a control problem constrained by the stochastic Stokes equation with nonhomoge-
neous Dirichlet boundary conditions on a bounded domain D ⊂ Rn with sufficiently smooth boundary ∂D.
In fact, we will deal with the following SPDE in H =

{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
:{

dy(t) = [−Ay(t) +Bu(t) +ADv(t)] dt+G(y(t)) dW (t),

y(0) = ξ.
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Chapter 1. Introduction

Above, the operator A : D(A) ⊂ H → H is the Stokes operator. Fractional powers of A are well defined and
denoted by Aα with α ∈ R. The process (u(t))t∈[0,T ] represents a distributed control with values in H and B
is a linear and bounded operator on H. The process (v(t))t∈[0,T ] describes a boundary control with values

in V 0(∂D) =
{
y ∈

(
L2(∂D)

)n
: y · η = 0 on ∂D

}
and D : V 0(∂D)) → H denotes the Dirichlet operator.

The noise term (W (t))t≥0 is a Q-Wiener process with values in H and covariance operator Q ∈ L+
1 (H).

The operator G : H → L(HS)(Q
1/2(H);H) is linear and bounded. Here, we will consider the following cost

functional:

J(u, v) =
1

2
E

T∫
0

‖y(t;u, v)− yd(t)‖2Hdt+
κ1

2
E

T∫
0

‖u(t)‖2H dt+
κ2

2
E

T∫
0

‖v(t)‖2V 0(∂D) dt,

where yd ∈ L2([0, T ];H) is a given desired velocity field and κ1, κ2 > 0 are weights. The task is to find
optimal controls u and v as minimizers of this cost functional. Using a stochastic maximum principle, we
will obtain that the optimal controls satisfy for all α ∈ (0, 1

4 ), almost all t ∈ [0, T ] and P-a.s.

u(t) = − 1

κ1
B∗z∗(t),

v(t) = − 1

κ2
K∗A1−αz∗(t),

where B∗ and K∗ are the adjoint operators of B and K = AαD, respectively. The process (z∗(t))t∈[0,T ] is
characterized by the adjoint equation given by the following BSPDE in H:{

dz∗(t) = −[−Az∗(t) +G∗(Φ(t)) + y(t)− yd(t)]dt+ Φ(t) dW (t),

z∗(T ) = 0,

where the operator G∗ is the adjoint operator of G and the process (Φ(t))t∈[0,T ] takes values in the space

L(HS)(Q
1/2(H);H). As a consequence, it remains to solve a system of coupled forward and backward

SPDEs.
In Chapter 6, we treat a control problem governed by the stochastic Navier-Stokes equations with homo-

geneous Dirichlet boundary conditions on a bounded domain D ⊂ Rn with sufficiently smooth boundary
∂D. Indeed, we will study the following SPDE in D(Aα) for suitable α > 0:{

dy(t) = −[Ay(t) +B(y(t))− Fu(t)]dt+G(y(t)) dW (t),

y(0) = ξ.

Again, the operator A : D(A) ⊂ H → H is the Stokes operator and B is a bilinear operator related
to the convection term arising in the Navier-Stokes equations. The operator A−δB is well defined as a
mapping from D(Aα) into H for certain δ ≥ 0. The process (u(t))t∈[0,T ] represents a distributed control

with values in D(Aβ) with β ∈ [0, α] and F is a linear and bounded operator on D(Aβ). The noise term
(W (t))t≥0 is a Q-Wiener process with values in H and covariance operator Q ∈ L+

1 (H). The operator
G : H → L(HS)(Q

1/2(H);D(Aα)) is linear and bounded. Due to the presence of the bilinear operator B,
we cannot ensure the existence and uniqueness of a mild solution over an arbitrary time interval [0, T ].
However, we will show that there exists a unique mild solution upto a stopping time τm for fixed m ∈ N.
Thus, the cost functional related to the control problem has to incorporate this stopping time. In fact, the
cost functional is given by

Jm(u) =
1

2
E
τm∫
0

‖Aγ(y(t)− yd(t))‖2H dt+
1

2
E

T∫
0

‖Aβu(t)‖2Hdt

5



Chapter 1. Introduction

for fixed m ∈ N, where yd ∈ L2([0, T ];D(Aγ)) with γ ∈ [0, α] is a given desired state. The task is to find a
optimal control um minimizing this cost functional. By a stochastic maximum principle, we will prove that
the optimal control satisfies for almost all t ∈ [0, T ] and P-a.s.

um(t) = −PU
(
F ∗A−2βz∗m(t)

)
,

where PU is a projection onto the set of admissible controls U and F ∗ is the adjoint operator of F . The
process (z∗m(t))t∈[0,T ] is described by the BSPDE in D(Aδ):

dz∗m(t) = −1[0,τm)(t)[−Az∗m(t)−A2αB∗δ
(
y(t), Aδz∗m(t)

)
+G∗(A−2αΦm(t))

+A2γ(y(t)− yd(t))]dt+ Φm(t) dW (t),

z∗m(T ) = 0,

where the operator B∗δ (y(t), ·) is the adjoint operator of A−δB(·, y(t)) for t ∈ [0, τm). Similarly, the operator
G∗ is the adjoint operator ofG and the process (Φm(t))t∈[0,T ] takes values in L(HS)(Q

1/2(H);D(Aα)). Again,
we can conclude that it remains to solve a system of coupled forward and backward SPDEs.

In the appendix, we provide some useful Gronwall-type inequalities. Moreover, we introduce Bochner
integrals as well as nuclear and Hilbert-Schmidt operators. These are the basic foundations to define
solutions to SPDEs. Finally, we treat optimization problems in infinite dimensional spaces, which enables
us to solve control problems constrained by SPDEs. The results stated in this part are well known. However,
we give a brief overview for the convenience of the reader.
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Chapter 2

Infinitesimal Generators of Analytic Semigroups

In this chapter, we give some basic properties of strongly continuous semigroups and their infinitesimal
generators, see [31, 70, 89]. We mainly focus on infinitesimal generators as closed operators such that
their fractional powers can be defined. If the strongly continuous semigroup is analytic, then further
regularity results and estimates can be obtained, which we use frequently in the following chapters. Finally,
we consider the Laplace operator and the Stokes operator defined on bounded domains with sufficiently
smooth boundary. Here, we treat domains as open subsets and the characterization of the boundary as
introduced in [48]. We will ascertain that fractional powers of the Laplace operator as well as the Stokes
operator are well defined. The results shown here are mainly based on [30, 48, 85, 89].

Throughout this chapter, let H be a Hilbert space and let I be the identity operator on H. We note that
most of the following results remain still true for Banach spaces.

2.1. Strongly Continuous Semigroups and the Resolvent Operator

In this section, we give basic definitions and basic properties of strongly continuous semigroups and their
infinitesimal generators. We introduce the resolvent set and resolvent operator of a closed operator. An
integral representation of the resolvent operator is provided and we state necessary and sufficient conditions
such that the closed operator is the infinitesimal generator of a strongly continuous semigroup of contractions
well known as the Hille-Yosida theorem. We start with a formal definition.

Definition 2.1. A family of linear and bounded operators (S(t))t≥0 mapping H into itself is called a
semigroup if

(i) S(0) = I;

(ii) S(t+ s) = S(t)S(s) for all s, t ≥ 0.

The semigroup (S(t))t≥0 mapping H into itself is called a strongly continuous semigroup or a C0

semigroup if for every x ∈ H
lim
t↓0
‖S(t)x− x‖H = 0.

Theorem 2.2 (Chapter 1, Theorem 2.2, [70]). Let (S(t))t≥0 be a C0 semigroup. There exist constants
θ ∈ R and M ≥ 1 such that for all t ≥ 0

‖S(t)‖L(H) ≤Meθt. (2.1)

Remark 2.3. If θ = 0 in inequality (2.1), then (S(t))t≥0 is called a uniformly bounded C0 semigroup. We
call (S(t))t≥0 a C0 semigroup of contractions if additionally M = 1.

Corollary 2.4 (Chapter 1, Corollary 2.3, [70]). If (S(t))t≥0 is a C0 semigroup, then for every x ∈ H, the
mapping t 7→ S(t)x is a continuous function from R+ into H.

7



Chapter 2. Infinitesimal Generators of Analytic Semigroups

Definition 2.5. An operator A : D(A) ⊂ H → H is called the infinitesimal generator or simply gener-
ator of a C0 semigroup (S(t))t≥0 if

Ax = lim
t↓0

S(t)x− x
t

for every x ∈ D(A) with

D(A) =

{
x ∈ H : lim

t↓0

S(t)x− x
t

exists

}
.

The set D(A) is called the domain of the operator A.

The generator of a C0 semigroup is a linear and closed operator but not necessarily bounded. The domain
is a dense subset of the underlying Hilbert space.

Theorem 2.6 ([31, 70, 89]). Let A : D(A) ⊂ H → H be the generator of a C0 semigroup (S(t))t≥0. Then
the following properties hold:

• if x ∈ D(A), then S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax

for all t ≥ 0;

• for all t ≥ 0 and every x ∈ H, we have

t∫
0

S(s)x ds ∈ D(A) and S(t)x− x = A

t∫
0

S(s)x ds;

• for all t ≥ 0 and every x ∈ D(A), we have

S(t)x− S(s)x =

t∫
s

AS(r)x dr =

t∫
s

S(r)Axdr.

Using these properties and the closed graph theorem, we get a characterization of uniformly continuous
semigroups. Let L(H) contain all linear and bounded operators on H.

Definition 2.7. A semigroup (S(t))t≥0 is called uniformly continuous if

lim
t↓0
‖S(t)− I‖L(H) = 0

Corollary 2.8 (Chapter 2, Corollary 1.5, [31]). Let A : D(A) ⊂ H → H be the generator of a C0 semigroup
(S(t))t≥0. The following assertions are equivalent:

(a) The operator A is bounded.

(b) The domain of A satisfies D(A) = H.

(c) The domain D(A) is closed in H.

(d) The semigroup (S(t))t≥0 is uniformly continuous.

8



Chapter 2. Infinitesimal Generators of Analytic Semigroups

In each case, the semigroup is given by

S(t) =

∞∑
n=0

tnAn

n!

for all t ≥ 0.

Let A : D(A) ⊂ H → H be a linear (not necessarily bounded) operator. We introduce the resolvent set
ρ(A) containing all complex numbers λ for which λI −A is invertible, i.e.

ρ(A) = {λ ∈ C : (λI −A)−1 exists and belongs to L(H)}.

We write λ−A instead of λI−A to simplify the notation. For all λ ∈ ρ(A), we define the resolvent operator
R(λ;A) ∈ L(H) by

R(λ;A) = (λ−A)−1.

We have the following characterization of elements of the resolvent set and an integral representation of the
resolvent operator.

Theorem 2.9 (Chapter 2, Theorem 1.10, [31]). Let A : D(A) ⊂ H → H be the generator of a C0 semigroup
(S(t))t≥0 and take constants θ ∈ R and M ≥ 1 such that for all t ≥ 0

‖S(t)‖L(H) ≤Meθt.

Then we have the following properties:

(i) If λ ∈ C such that
∫∞

0
e−λtS(t) dt exists for every x ∈ H, then λ ∈ ρ(A).

(ii) If Reλ > θ, then λ ∈ ρ(A) and ‖R(λ;A)‖L(H) ≤ M
Reλ−θ .

In each case, the resolvent operator is given by

R(λ;A) =

∞∫
0

e−λtS(t) dt.

Corollary 2.10 (Chapter 2, Corollary 1.11, [31]). Let A : D(A) ⊂ H → H be the generator of a C0

semigroup (S(t))t≥0 and take constants θ ∈ R and M ≥ 1 such that for all t ≥ 0

‖S(t)‖L(H) ≤Meθt.

For all λ ∈ C with Reλ > θ and each n ∈ N, we have

R(λ;A)n =
(−1)n−1

(n− 1)!

dn−1

dλn−1
R(λ;A)

=
1

(n− 1)!

∞∫
0

tn−1e−λtS(t) dt

and ‖R(λ;A)n‖L(H) ≤ M
(Reλ−θ)n .

Next, we state necessary and sufficient conditions such that the operator A is the generator of a C0

semigroup of contractions well known as the Hille-Yosida theorem.

Theorem 2.11 (Chapter 1, Theorem 3.1, [70]). An operator A : D(A) ⊂ H → H is the generator of a C0

semigroup of contractions (S(t))t≥0 if and only if

9



Chapter 2. Infinitesimal Generators of Analytic Semigroups

(i) A is closed and D(A) is dense in H;

(ii) the resolvent set ρ(A) contains R+
0 and for all λ > 0

‖R(λ;A)‖L(H) ≤
1

λ
.

The previous theorem and its proof have some simple consequences on convergence results of the so called
Yosida approximation.

Corollary 2.12 (Section 1.3, [70]). Let A : D(A) ⊂ H → H be the generator of a C0 semigroup of contrac-
tions (S(t))t≥0 and let Aλ be the Yosida approximation of A given by

Aλ = λAR(λ;A).

Then Aλ is the generator of an uniformly continuous semigroup of contractions (eAλt)t≥0 and we have

(i) limλ→∞ λR(λ;A)x = x for every x ∈ H;

(ii) limλ→∞Aλx = Ax for every x ∈ D(A);

(iii) limλ→∞ eAλtx = S(t)x for every x ∈ H and all t ≥ 0.

Remark 2.13. For general versions of Theorem 2.11 and Corollary 2.12 concerning arbitrary C0 semi-
groups, we refer to [31, 70].

The following dilation theorem gives an important property of C0 semigroups of contractions.

Theorem 2.14. Let (S(t))t≥0 be a C0 semigroup of contractions and set S(−t) = S(t)∗ for all t > 0. Then

there exists a Hilbert space Ĥ containing H and a group (Ŝ(t))t∈R on Ĥ such that S(t) = PHŜ(t) for all

t ∈ R, where PH is the orthogonal projection from Ĥ onto H.

Proof. The claim follows from Theorem 9.22 and Theorem 9.23 in [71].

2.2. Analytic Semigroups

In this section, we introduce analytic semigroups and we state conditions such that an operator is the
generator of an analytic semigroup. We start with a formal definition. The main idea is to extend the
domain of the semigroup operator to regions in the complex plane containing R+. For θ ∈ (0, π], we define
the sector

Σθ = {z ∈ C : | arg z| < θ}.

Definition 2.15. A C0 semigroup (S(t))t≥0 is called analytic if there exists θ ∈ (0, π] and a mapping

S̃ : Σθ → L(H) such that

• S(t) = S̃(t) for all t ≥ 0;

• S̃(z1 + z2) = S̃(z1)S̃(z2) for every z1, z2 ∈ Σθ;

• the mapping z 7→ S̃(z) is analytic in Σθ;

• limz→0,z∈Σθ
S(z)x = x for every x ∈ H.

To state conditions on an operator to be the generator of an analytic semigroup, we need the concept of
differentiable semigroups.

10
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Definition 2.16. A C0 semigroup (S(t))t≥0 is called differentiable for t > t0 if for every x ∈ H, the
mapping t 7→ S(t)x is differentiable for t > t0. The derivative of order n ∈ N is denoted by S(n)(t) for
t > t0.

The following lemma provides an useful presentation of the derivatives to a differentiable semigroup.

Lemma 2.17 (Chapter 2, Lemma 4.2, [70]). Let (S(t))t≥0 be a differentiable C0 semigroup for t > t0 and
let A : D(A) ⊂ H → H be its generator. Then

• for n ∈ N and t > nt0, we have S(t) : H → D(An) and S(n)(t) = AnS(t) is a bounded linear operator;

• for n ∈ N and t > nt0, the operator S(n−1)(t) is continuous in the uniform operator topology.

We are now able to state basic properties of analytic semigroups.

Theorem 2.18 ([70, 89]). Let A : D(A) ⊂ H → H be the generator of a C0 semigroup (S(t))t≥0. If
0 ∈ ρ(A), then the following statements are equivalent:

(a) The C0 semigroup (S(t))t≥0 is uniformly bounded and analytic.

(b) For all λ ∈ C with Reλ > 0 and Imλ 6= 0, there exists a constant C > 0 such that

‖R(λ;A)‖L(H) ≤
C

| Imλ|
.

(c) There exist θ ∈ (0, π2 ) and a constant M > 0 such that Σπ
2 +θ ∪ {0} ⊂ ρ(A) and

‖R(λ;A)‖L(H) ≤
M

|λ|

for λ ∈ Σπ
2 +θ.

(d) The semigroup (S(t))t≥0 is differentiable for t > 0 and there exists a constant C > 0 such that for all
t > 0

‖AS(t)‖L(H) ≤
C

t
.

Under additional assumptions, we can state a further generation theorem of analytic semigroups resulting
from the previous theorem. First, we define the adjoint operator of a linear operator. This requires the
following preliminary result.

Lemma 2.19 (Lemma 4.1.4, [85]). Let A : D(A) ⊂ H → H be linear and densely defined. Then for every
y ∈ H, there exists at most one element z ∈ H such that for every x ∈ D(A)

〈Ax, y〉H = 〈x, z〉H.

Definition 2.20. Let A : D(A) ⊂ H → H be linear and densely defined. We set

D(A∗) = {y ∈ H : there exists z ∈ H such that 〈Ax, y〉H = 〈x, z〉H for every x ∈ D(A)}.

The adjoint operator A∗ : D(A∗) ⊂ H → H is defined by A∗y = z for every y ∈ D(A∗).

By Lemma 2.19, the element z ∈ H in the above definition is unique. This justifies the notation A∗y = z.

11
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Definition 2.21. A linear and densely defined operator A : D(A) ⊂ H → H is called symmetric if for
every x, y ∈ D(A)

〈Ax, y〉H = 〈x,Ay〉H.

The operator A is called self-adjoint if A = A∗ and D(A) = D(A∗).

Remark 2.22. Obviously, a self-adjoint operator is symmetric. The converse is generally not true.

The following corollary gives some simple requirements on a C0 semigroup to be analytic.

Corollary 2.23 (Corollary 7.1.1, [89]). If the operator A : D(A) ⊂ H → H is self-adjoint and the generator
of a C0 semigroup of contractions (S(t))t≥0, then (S(t))t≥0 analytic.

We will often use this corollary to obtain that a C0 semigroup is analytic.

2.3. Fractional Powers of Closed Operators

In this section, we define fractional powers of closed operators. We give conditions such that these operators
are well defined. Moreover, we state some basic properties, which are used frequently in the following
chapters. First, we introduce the gamma function given by

Γ(α) =

∞∫
0

sα−1e−s ds

for all α > 0. A change of variables with s = ct for c > 0 gives us

c−α =
1

Γ(α)

∞∫
0

tα−1e−ct dt. (2.2)

Let A : D(A) ⊂ H → H be a linear (not necessarily bounded) operator such that −A is the generator of
a C0 semigroup (S(t))t≥0. It is quite natural to consider equation (2.2) by substituting c with A and e−ct

with S(t). Note that we can write at least formally S(t) = e−At. We then have the following definition.

Definition 2.24. For α > 0, the operator A−α : D(A−α) ⊂ H → H given by

A−αx =
1

Γ(α)

∞∫
0

tα−1S(t)x dt

for every x ∈ D(A−α) is called the fractional power of the operator A with exponent −α. The domain of
A−α is given by

D(A−α) =

x ∈ H :

∞∫
0

tα−1S(t)x dt is convergent

 .

For α = 0, we set A0 = I and D(A0) = H.

The space D(A−α) is a linear subspace of H and A−α is a linear and closed operator for α ≥ 0. Moreover,
we have for 0 ≤ α ≤ β

D(A−β) ⊂ D(A−α).

12
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Remark 2.25. If −A is the generator of a C0 semigroup (S(t))t≥0 satisfying for all t ≥ 0

‖S(t)‖L(H) ≤Me−θt

with θ > 0 and M ≥ 1, then D(A−α) = H and A−α is a linear and bounded operator. Indeed, one can easily
obtain

∞∫
0

tα−1‖S(t)‖L(H)dt <∞.

The fact that A−α is linear and bounded follows immediately from the closed graph theorem.

In the remaining part of this section, we assume that −A satisfies the assumptions of Remark 2.25.

Remark 2.26. By definition of the resolvent operator and Corollary 2.10, we have for λ = 0 and each
n ∈ N (

A−1
)n

= R(0;−A)n =
1

(n− 1)!

∞∫
0

tn−1S(t) dt.

Recall that Γ(n) = (n−1)! for each n ∈ N. Hence, the operator A−n given by Definition 2.24 coincides with
the classical representation of the operator

(
A−1

)n
for each n ∈ N.

In the following lemma, we state some basic properties.

Lemma 2.27 (Section 7.6, [89]). We have

(i) A−(α+β) = A−αA−β for all α, β ≥ 0;

(ii) for all α ∈ (0, 1)

A−α =
sinπα

π

∞∫
0

λ−α(λ+A)−1dλ;

(iii) limα↓0A
−αx = x for every x ∈ H;

(iv) the operator A−α is injective for all α ≥ 0.

The fact that the operator A−α is injective for all α ≥ 0 allows us to define fractional powers of the
operator A for any positive real number.

Definition 2.28. Let A−α be the fractional power of the operator A with α > 0. We define

Aα =
(
A−α

)−1
.

We get the following basic properties.

Theorem 2.29 (Chapter 2, Theorem 6.8, [70]). We have

(i) Aα : D(Aα) ⊂ H → H is a closed operator with D(Aα) = R(A−α) for all α > 0, where R(A−α)
denotes the range of the operator A−α;

(ii) D(Aβ) ⊂ D(Aα) for all 0 ≤ α ≤ β;

(iii) for all α > 0, the domain D(Aα) is dense in H;

(iv) Aα+βx = AαAβx for all α, β ∈ R and every x ∈ D(Aγ) with γ = max{α, β, α+ β}.

13



Chapter 2. Infinitesimal Generators of Analytic Semigroups

In general, one can not give an explicit formula for the operator Aα with α > 0. Nevertheless, we get the
following representation, which is an immediate consequence of Lemma 2.27.

Theorem 2.30 (Theorem 7.6.2, [89]). If α ∈ (0, 1) and x ∈ D(A), then

Aαx =
sinπα

π

∞∫
0

λα−1(λ+A)−1Axdλ.

Next, we state some useful estimates.

Theorem 2.31 (Theorem 7.6.3, [89]). If α ∈ (0, 1), then there exists a constant C > 0 such that for every
x ∈ D(A) and all ρ > 0

‖Aαx‖H ≤ C(ρα‖x‖H + ρα−1‖Ax‖H)

and
‖Aαx‖X ≤ 2C‖x‖1−αH ‖Ax‖αH.

Corollary 2.32. Let α ∈ (0, 1] and let B : D(B) ⊂ H → H be a closed operator with D(Aα) ⊂ D(B).
There exists a constant C > 0 such that for every x ∈ D(Aα)

‖Bx‖H ≤ C‖Aαx‖H (2.3)

and in particular
‖Aβx‖H ≤ C‖Aαx‖H (2.4)

for 0 ≤ β < α ≤ 1. Moreover, there exists a constant C1 > 0 such that for every x ∈ D(A) and all ρ > 0

‖Bx‖H ≤ C1(ρα‖x‖H + ρα−1‖Ax‖H). (2.5)

Proof. A proof of inequalities (2.3) and (2.5) can be found in [89, Corollary 7.6.2]. Inequality (2.4) follows
from inequality (2.3) and Theorem 2.29 (ii).

Theorem 2.33. For α ≥ 0, the space D(Aα) equipped with the inner product

〈x, y〉D(Aα) = 〈Aαx,Aαy〉H

for every x, y ∈ D(Aα) becomes a Hilbert space.

Proof. The norm on D(Aα) is given by

‖x‖D(Aα) =
√
〈x, x〉D(Aα)

for every x ∈ D(Aα). Let (xn)n∈N be a Cauchy sequence in D(Aα). Then (Aαxn)n∈N is a Cauchy sequence
in H. Since H is a Hilbert space, there exists y ∈ H such that limn→∞ ‖y −Aαxn‖H = 0. Using inequality
(2.4) with β = 0, we have for each n,m ∈ N

‖xn − xm‖H ≤ C‖Aαxn −Aαxm‖H.

We conclude that the sequence (xn)n∈N is a Cauchy sequence in H and there exists x ∈ H such that
limn→∞ ‖x − xn‖H = 0. Since Aα is closed, we have x ∈ D(Aα) and Aαx = y. Therefore, we obtain
limn→∞ ‖Aαxn −Aαx‖H = 0. Therefore, the sequence (xn)n∈N converges in D(Aα).

Lemma 2.34. If the operator −A is self-adjoint, then Aα is self-adjoint for all α ∈ R.

14



Chapter 2. Infinitesimal Generators of Analytic Semigroups

Proof. First, we show the claim for negative exponents. Recall that the operator −A is the generator of
a C0 semigroup (S(t))t≥0. Since the operator −A is self-adjoint, the semigroup (S(t))t≥0 is self-adjoint as
well. By Definition 2.24, we get for every x1, x2 ∈ H and all α > 0

〈
A−αx1, x2

〉
H =

〈
1

Γ(α)

∞∫
0

tα−1S(t)x1 dt, x2

〉
H

=
1

Γ(α)

∞∫
0

tα−1 〈S(t)x1, x2〉H dt

=

〈
x1,

1

Γ(α)

∞∫
0

tα−1S(t)x2 dt

〉
H

=
〈
x1, A

−αx2

〉
H . (2.6)

Next, we show the claim for positive exponents. Using Theorem 2.29 (iv) and equation (2.6), we obtain for
every x1, x2 ∈ D(Aα) and all α > 0

〈Aαx1, x2〉H =
〈
Aαx1, A

−αAαx2

〉
H =

〈
A−αAαx1, A

αx2

〉
H = 〈x1, A

αx2〉H .

For α = 0, the claim is obvious.

Under additionally requirements, we get the following regularity results and useful estimates.

Theorem 2.35. Let −A be the generator of an analytic semigroup (S(t))t≥0 satisfying the assumptions of
Remark 2.25. If 0 ∈ ρ(A), then

(i) S(t) : H → D(Aα) for all t > 0 and all α ∈ R;

(ii) for every x ∈ D(Aα) and all α ∈ R, we have AαS(t)x = S(t)Aαx;

(iii) the operator AαS(t) is linear and bounded for all t > 0 and all α ∈ R. In addition, there exist constants
Mα, δ > 0 such that for all t > 0 and all α > 0

‖AαS(t)‖L(H) ≤Mαt
−αe−δt;

(iv) for all α ∈ (0, 1], there exists a constant Cα > 0 such that for every x ∈ D(Aα)

‖S(t)x− x‖H ≤ Cαtα‖Aαx‖H.

Proof. The proof can be found in [70, Chapter 2, Theorem 6.13] and [89, Theorem 7.7.2].

Remark 2.36. The previous theorem is the main result of this chapter and used frequently in the following
chapters. Hence, we will often require that an analytic semigroup satisfying Remark 2.25. Moreover, the
number 0 has to be an element of the resolvent set.

Corollary 2.37. Let R(λ;−A) be the resolvent operator of −A with a real number λ ∈ ρ(−A) such that
λ > 0. If the assumptions of Theorem 2.35 hold, then we have for every y ∈ D(Aα) with α < 1

AαR(λ;−A)y = R(λ;−A)Aαy.

Proof. Using Theorem 2.9, we get for every y ∈ H

R(λ;−A)y =

∞∫
0

e−λtS(t)y dt.

15
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First, we show the claim for α ≤ 0. By Remark 2.25, the operator Aα is linear and bounded. Using Theorem
2.35, we obtain

AαR(λ;−A)y = Aα
∞∫

0

e−λtS(t)y dt =

∞∫
0

e−λtS(t)Aαy dt = R(λ;−A)Aαy.

Next, let α ∈ (0, 1). By Theorem 2.29 (i), the operator Aα is linear and closed. Due to Theorem 2.35 (iii),
we have

∞∫
0

e−λt‖AαS(t)y‖Hdt ≤Mα

∞∫
0

e−λtt−αdt‖y‖H = Mαλ
α−1Γ(1− α)‖y‖H <∞.

Hence, the assumptions of Proposition B.9 are fulfilled. Using additionally Theorem 2.35, we get for every
y ∈ D(Aα)

AαR(λ;−A)y = Aα
∞∫

0

e−λtS(t)y dt =

∞∫
0

e−λtS(t)Aαy dt = R(λ;−A)Aαy.

2.4. Friedrichs Extension

To obtain that an operator is the generator of an analytic semigroup, we will frequently use Corollary 2.23.
This requires a self-adjoint operator, which is not always given. However, one can often show that a self-
adjoint extension exists, which is given by the so called Friedrichs extension. First, we introduce the energy
space of a linear (not necessarily bounded) operator A : D(A) ⊂ H → H. We start with the definition of
semi-bounded operators.

Definition 2.38. A linear and densely defined operator A : D(A) ⊂ H → H is called semi-bounded if
there exists a constant c ∈ R such that for every x ∈ D(A)

〈Ax, x〉H ≥ c‖x‖
2
H.

Theorem 2.39. A semi-bounded operator A : D(A) ⊂ H → H is symmetric.

Proof. By definition, the domain D(A) is dense in H and 〈Ax, x〉H is real. The claim follows immediately
from [85, Theorem 4.1.5 (d)].

Let the operator A : D(A) ⊂ H → H be semi-bounded with 〈Ax, x〉H ≥ c‖x‖2H for every x ∈ D(A) and
let λ ∈ R such that λ+ c > 0. We set for every x, y ∈ D(A)

[x, y]λ = 〈Ax, y〉H + λ〈x, y〉H. (2.7)

One can easily verify that [·, ·]λ is an inner product on D(A). Then the norm is defined by ‖x‖λ =
√

[x, x]λ
for every x ∈ D(A). Since the space D(A) is not complete with this norm, we need the following construction
of the so called energy space.

Definition 2.40. Let the operator A : D(A) ⊂ H → H be semi-bounded with 〈Ax, x〉H ≥ c‖x‖2H for every
x ∈ D(A) and let λ ∈ R such that λ+ c > 0. The energy space Hλ is defined by

Hλ =
{
x ∈ H : there exists a sequence (xn)n∈N ⊂ D(A) such that lim

n→∞
‖x− xn‖H = 0

and lim
n,m→∞

‖xn − xm‖λ = 0

}
.

The sequence (xn)n∈N is called an approximating sequence.
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Lemma 2.41 (Lemma 4.1.8,[85]). Let x, y ∈ Hλ with approximating sequences (xn)n∈N and (yn)n∈N,
respectively. Then the limit

lim
n→∞

[xn, yn]λ = [x, y]λ

exists and is independent of the choice of the approximating sequences.

Due to the previous lemma, we can define the inner product [·, ·]λ on the energy space Hλ. Moreover, we
get the following properties.

Theorem 2.42 (Theorem 4.1.8,[85]). Let the operator A : D(A) ⊂ H → H be semi-bounded satisfying
〈Ax, x〉H ≥ c‖x‖2H for every x ∈ D(A) and let λ ∈ R such that λ+ c > 0. The space Hλ equipped with the
inner product [x, y]λ for every x, y ∈ Hλ in the sense of Lemma 2.41 becomes a Hilbert space. The domain
D(A) is a dense subset of Hλ. If µ ∈ R satisfies µ + c > 0, then Hλ = Hµ and the corresponding norms
‖ · ‖λ and ‖ · ‖µ are equivalent.

Due to the previous theorem, we can conclude that the energy space Hλ depends only on the operator
A : D(A) ⊂ H → H and not on λ ∈ R. Hence, we shall write HA instead of Hλ. We are now able to state
Friedrichs extension theorem.

Theorem 2.43 (Theorem 4.1.9, [85]). Let the operator A : D(A) ⊂ H → H be semi-bounded satisfy-
ing 〈Ax, x〉H ≥ c‖x‖2H for every x ∈ D(A). If HA is the corresponding energy space, then the operator
AF : D(AF ) ⊂ H → H given by

D(AF ) = HA ∩D(A∗), AFx = A∗x for every x ∈ D(AF )

is a self-adjoint extension of the operator A. Moreover, we have for every x ∈ D(AF )

〈AFx, x〉H ≥ c‖x‖
2
H.

Remark 2.44. Let A : D(A) ⊂ H → H be a semi-bounded operator. By Theorem 2.39, we get that A
is symmetric and hence, we obtain D(A) ⊂ D(A∗) and Ax = A∗x for every x ∈ D(A). Also note that
D(A) ⊂ HA since for every x ∈ D(A) the sequence (xn)n∈N given by xn = x for each n ∈ N is an
approximating sequence. Therefore, we can conclude that the operator AF : D(AF ) ⊂ H → H constructed
in the previous theorem is an extension of the operator A.

2.5. Examples

In this section, we consider some important examples of closed operators generating analytic semigroups
such that their fractional powers are well defined. Here, we introduce the Laplace operator as well as the
Stokes operator defined on L2-spaces.

2.5.1. The Laplace Operator

Here, we study the Dirichlet realization as well as the Neumann realization of the Laplace operator. Let
x = (x1, ..., xn) ∈ Rn. For functions y : Rn → R, we introduce the nabla operator ∇ given by

∇y(x) =

(
∂y(x)

∂x1
, ...,

∂y(x)

∂xn

)
and we introduce the Laplace operator ∆ defined by

∆y(x) =

n∑
i=1

∂2y(x)

∂x2
i

.

17
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Often, we will omit the dependence on x for the sake of simplicity. Here, we analyze the Laplace operator as
a closed operator on the Hilbert space H = L2(D), where D is a bounded domain with sufficiently smooth
boundary ∂D.

The Dirichlet Realization of the Laplace Operator

We assume that D ⊂ Rn is a bounded domain with C2 boundary ∂D. We set D(A0) = C∞0 (D) and we
define the operator A0 : D(A0) ⊂ L2(D)→ L2(D) by

A0y = −∆y (2.8)

for every y ∈ D(A0).

Lemma 2.45. The operator A0 : D(A0) ⊂ L2(D)→ L2(D) defined by equation (2.8) is semi-bounded with
〈A0y, y〉L2(D) ≥ c‖y‖2L2(D) for every y ∈ D(A0), where c > 0 is a constant.

Proof. It is well known that D(A0) is dense in the space L2(D), see [85, Theorem 1.3.6/2]. Obviously, the
operator A0 is linear. By partial integration and the Poincaré inequality, there exists a constant c > 0 such
that for every y ∈ D(A0)

〈A0y, y〉L2(D) = −
∫
D

∆y(x)y(x) dx =

∫
D
∇y(x)∇y(x) dx = ‖∇y‖2L2(D) ≥ c‖y‖

2
L2(D).

Thus, the operator A0 is semi-bounded.

Let A∗0 : D(A∗0) ⊂ L2(D) → L2(D) be the adjoint operator of A0. By the previous lemma, we can
apply Theorem 2.43 with the result that the Friedrichs extension of the operator A0 exists. We denote the
Friedrichs extension of the operator A0 by A : D(A) ⊂ L2(D) → L2(D). Moreover, we get the following
properties.

Lemma 2.46. The operator A : D(A) ⊂ L2(D)→ L2(D) is self-adjoint and we have for every y ∈ D(A)

〈Ay, y〉L2(D) ≥ c‖y‖2L2(D), (2.9)

where the constant c > 0 arises from Lemma 2.45. Furthermore, we have

D(A) = H1
0 (D) ∩H2(D), Ay = −∆y

for every y ∈ D(A).

Proof. By Theorem 2.43, we have

D(A) = HA0 ∩D(A∗0), Ay = A∗0y

for every y ∈ D(A), where HA0
is the energy space of the operator A0. The operator A is the self-adjoint

extension of A0 and we have for every y ∈ D(A)

〈Ay, y〉L2(D) ≥ c‖y‖2L2(D),

where the constant c > 0 arises from Lemma 2.45.
Next, we determine the domain D(A) explicitly. We start with the space HA0 . For every y, z ∈ D(A0),

let [y, z]1 be given by equation (2.7) with λ = 1 and ‖y‖1 =
√

[y, y]1. By partial integration, we obtain for
every y ∈ D(A0)

‖y‖21 = 〈A0y, y〉L2(D) + ‖y‖2L2(D) = ‖∇y‖2L2(D) + ‖y‖2L2(D).
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Hence, the norm ‖ · ‖1 is equal to the norm on H1(D). It is well known that D(A0) is dense in the space
H1

0 (D), see [85, Theorem 1.5.5/1]. By definition of the energy space, we get HA0
= H1

0 (D). To determine the
set D(A∗0), we first calculate the operator A∗0. In the sense of distributions, we obtain for every y ∈ D(A0)
and z ∈ D(A∗0)

〈A∗0z, y〉L2(D) = 〈z,A0y〉L2(D) = −
∫
D
z(x)∆y(x) dx = −

∫
D

∆z(x)y(x) dx = 〈−∆z, y〉L2(D) . (2.10)

Hence, we get for every z ∈ D(A∗0)
A∗0z = −∆z

in the sense of distributions. Moreover, we have

D(A∗0) ⊂
{
z ∈ L2(D) : −∆z ∈ L2(D)

}
.

Conversely, if z ∈ L2(D) such that −∆z ∈ L2(D) in the sense of distributions, then by equation (2.10), we
get z ∈ D(A∗0). Therefore, we obtain

D(A∗0) =
{
z ∈ L2(D) : −∆z ∈ L2(D)

}
.

By definition of the domain of the operator A, we can conclude

D(A) = HA0
∩D(A∗0) =

{
z ∈ H1

0 (D) : −∆z ∈ L2(D)
}
.

It is well known that we can write equivalently D(A) = H1
0 (D) ∩H2(D), see [85, Remark 6.2.2/3] and the

references therein.

Remark 2.47. There exists another approach to introduce the Laplace operator with Dirichlet boundary
condition. For more details, we refer to [30, Chapter 2, Section 3.3.A]. Let D ⊂ Rn be a bounded domain
with C∞ boundary ∂D. We consider the following Dirichlet boundary value problem:{

−∆y(x) = z(x) x ∈ D,
y(x) = 0 x ∈ ∂D.

(2.11)

Here, the definition of a solution (often called weak solution) is in a generalized sense as follows: First, we
assume that y ∈ C∞0 (D). Multiplying both sides of the equation −∆y = z by a function φ ∈ C∞0 (D) and
using partial integration, we get ∫

D
∇y(x) · ∇φ(x) dx =

∫
D
z(x)φ(x) dx. (2.12)

Obviously, the above equation remains valid for y, φ ∈ H1
0 (D) and z ∈ L2(D), which can be achieved using

density results. We call y ∈ H1
0 (D) a weak solution of (2.11) if equation (2.12) holds for every φ ∈ H1

0 (D).
If z ∈ L2(D), then there exists a unique weak solution y ∈ H1

0 (D) of (2.11). Moreover, we get y ∈ H2(D),
see [15, Theorem 9.25]. Hence, we can introduce an operator A : D(A) ⊂ L2(D)→ L2(D) given by

D(A) = H1
0 (D) ∩H2(D), Ay = −∆y

for every y ∈ D(A). The operator A is self-adjoint and there exists a constant c > 0 such that the inequality
〈Ay, y〉L2(D) ≥ c‖y‖2L2(D) holds for every y ∈ D(A), see [89, Section 4.1].

We proceed with the Friedrichs extension A : D(A) ⊂ L2(D)→ L2(D).

Corollary 2.48. The operator A : D(A) ⊂ L2(D)→ L2(D) is closed and densely defined.
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Proof. Recall that the operator A is self-adjoint. Hence, we can conclude that the operator A is closed, see
[85, Theorem 4.1.5. (c)]. Since D(A0) ⊂ D(A) and D(A0) is dense in L2(D), the set D(A) is also dense in
L2(D).

Next, we show the existence of the resolvent operator.

Lemma 2.49. If λ > 0, then the resolvent operator R(λ;−A) = (λ+A)−1 exists and we have

‖R(λ;−A)‖L(L2(D)) ≤
1

λ
. (2.13)

Proof. For the operator λ+A, we define the range by

R(λ+A) = {z ∈ L2(D) : there exists y ∈ D(A) such that (λ+A)y = z}

and the null space by
N (λ+A) = {y ∈ D(A) : (λ+A)y = 0}.

Since the operator A is self-adjoint, we have

L2(D) = R(λ+A)⊕N (λ+A),

where ⊕ denotes the direct sum, see [85, Lemma 4.1.6]. First, we determine the set N (λ + A). Using
inequality (2.9), we get for every y ∈ D(A)

‖(λ+A)y‖2L2(D) = λ2‖y‖2L2(D) + 2λ〈Ay, y〉L2(D) + ‖Ay‖2L2(D) ≥ λ
2‖y‖2L2(D). (2.14)

Hence, we have for every y ∈ N (λ+A)

0 = ‖(λ+A)y‖2L2(D) ≥ λ
2‖y‖2L2(D).

As a consequence, the null space N (λ+A) contains only 0 ∈ D(A). Thus, we have L2(D) = R(λ+A).
Next, we show that L2(D) = R(λ+A). If z ∈ L2(D), then there exists a sequence (zm)m∈N ⊂ R(λ+A)

such that limm→∞ zm = z in L2(D). Moreover, there exists ym ∈ D(A) such that (λ+A)ym = zm for each
m ∈ N. By inequality (2.14), we have for each m1,m2 ∈ N

‖ym1 − ym2‖L2(D) ≤
1

λ
‖(λ+A)(ym1

− ym2
)‖L2(D) =

1

λ
‖zm1

− zm2
‖L2(D).

We obtain that the sequence (ym)m∈N is a Cauchy sequence in L2(D) and hence, there exists y ∈ L2(D)
such that limm→∞ ym = y in L2(D). Moreover, we get

lim
m→∞

Aym = lim
m→∞

[(λ+A)ym − λym] = lim
m→∞

[zm − λym] = z − λy,

where the convergence is in L2(D). Since the operator A is closed, we can conclude that y ∈ D(A) and
(λ+A)y = z. Therefore, we have L2(D) = R(λ+A).

Next, we consider the operator λ + A : D(A) → L2(D). Let y1, y2 ∈ D(A) satisfy (λ + A)y1 = z and
(λ+A)y2 = z for z ∈ L2(D). We obtain y1−y2 ∈ N (λ+A) and hence, we get y1 = y2. Therefore, the operator
λ+ A is injective. Since L2(D) = R(λ+ A), we infer that the inverse operator (λ+ A)−1 : L2(D)→ D(A)
exists. Due to inequality (2.14), we get for every y ∈ L2(D)

‖R(λ;−A)y‖L2(D) ≤
1

λ
‖(λ+A)(λ+A)−1y‖L2(D) =

1

λ
‖y‖L2(D)

and hence, inequality (2.13) holds.
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We are now able to show the main result.

Theorem 2.50. The operator −A : D(A) ⊂ L2(D) → L2(D) is the generator of an analytic semigroup of
contractions (e−At)t≥0.

Proof. Due to Corollary 2.48, the operator −A : D(A) ⊂ L2(D)→ L2(D) is closed and densely defined. By
Lemma 2.49, the resolvent set ρ(−A) contains R+

0 and for λ > 0

‖R(λ;−A)‖L(L2(D)) ≤
1

λ
.

Thus, we can apply Theorem 2.11 with the result that the operator −A is the generator of a C0 semigroup
of contractions (e−At)t≥0. Due to Lemma 2.46, the operator −A is self-adjoint and thus, the C0 semigroup
(e−At)t≥0 is analytic due to Corollary 2.23.

As a consequence of the previous theorem and the fact that the operator −A is self-adjoint, there exists
a constant θ > 0 such that

‖e−At‖L(L2(D)) ≤ e−θt

for all t ≥ 0, see [89, Theorem 7.2.8]. Hence, the assumptions of Remark 2.25 are satisfied with M = 1.
Therefore, we can define fractional powers of the operator A denoted by Aα with α ∈ R according to
Section 2.3. Furthermore, if ∂D is a C∞ boundary, then we can determine the domain D(Aα) for α ∈ (0, 1)
explicitly.

Theorem 2.51 (Theorem 1, [38]). The domain of fractional powers of the operator A is given by

(i) D(Aα) = H2α(D) for α ∈
(
0, 1

4

)
,

(ii) D(A1/4) ⊂ H1/2(D),

(iii) D(Aα) = H2α
0 (D) for α ∈

(
1
4 ,

3
4

)
,

(ii) D(A3/4) ⊂ H3/2
0 (D),

(v) D(Aα) = H2α
0 (D) for α ∈

(
3
4 , 1
)
.

Remark 2.52. For general results on the Dirichlet realization of the Laplace operator defined on Lp-spaces,
we refer to [89].

The Neumann Realization of the Laplace Operator

Let D ⊂ Rn be a bounded domain with C∞ boundary ∂D. We set

D(A0) =

{
y ∈ C∞(D) :

∂y

∂η
= 0 on ∂D

}
,

where η is the C∞ outward normal to ∂D, i.e. the vector field η = (η1, ..., ηn) is the outward normal to ∂D
with η1, ..., ηn ∈ C∞(∂D). We define the operator A0 : D(A0) ⊂ L2(D)→ L2(D) by

A0y = ∆y (2.15)

for every y ∈ D(A0).

Lemma 2.53. The operator A0 : D(A0) ⊂ L2(D) → L2(D) defined by equation (2.15) is linear, densely
defined and 〈A0y, y〉L2(D) ≤ 0 for every y ∈ D(A0).
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Proof. Since C(D) is dense in L2(D) and C(D) ⊂ D(A0), we have that D(A0) is dense in L2(D). Obviously,
the operator A0 is linear. By Green’s identity, we get for every y ∈ D(A0)

〈A0y, y〉L2(D) =

∫
D

∆y(x)y(x) dx = −
∫
D
∇y(x) · ∇y(x) dx = −‖∇y‖2L2(D) ≤ 0.

As a consequence, we get that the operator −A0 is semi-bounded with 〈−A0y, y〉L2(D) ≥ 0 for every
y ∈ D(A0). Let A∗0 : D(A∗0) ⊂ L2(D)→ L2(D) be the adjoint operator of A0. Then we can apply Theorem
2.43 with the result that the Friedrichs extension of the operator A0 exists. In the remaining part, we
denote the Friedrichs extension of the operator A0 by A : D(A) ⊂ L2(D) → L2(D). We get the following
properties, which can be derived similarly to Lemma 2.46.

Lemma 2.54 (Theorem 5.31 (ii), [48]). The operator A : D(A) ⊂ L2(D) → L2(D) is self-adjoint and
〈Ay, y〉L2(D) ≤ 0 for every y ∈ D(A). Furthermore, we have

D(A) =

{
y ∈ H2(D) :

∂y

∂η
= 0 on ∂D

}
, Ay = ∆y for every y ∈ D(A).

Remark 2.55. For the Neumann realization of the Laplace operator, the number 0 is an eigenvalue with
constant functions as the related eigenfunctions, while 0 is an element of the resolvent set of the Dirichlet
realization of the Laplace operator, see [48, Theorem 5.31]. This is the main difference of these operators.

Remark 2.56. Similarly to Remark 2.47, there exists another approach to introduce the Laplace operator
with Neumann boundary conditions. For more details, we refer to [30, Chapter 2, Section 3.3.C]. Let
D ⊂ Rn be a bounded domain with C∞ boundary ∂D. We consider the following Neumann boundary value
problem: 

∆y(x) = z(x) x ∈ D,
∂y(x)

∂η
= 0 x ∈ ∂D,

(2.16)

where η is the outward normal to ∂D. Here, the definition of a solution (often called weak solution) is in
a generalized sense as follows: First, we assume that y ∈ C∞(D). Multiplying both sides of the equation
∆y = z by a function φ ∈ C∞(D) and using Green’s identity, we get∫

D
∇y(x) · ∇φ(x) dx =

∫
D
z(x)φ(x) dx. (2.17)

Obviously, the above equation remains still valid for y, φ ∈ H1(D) and z ∈ L2(D), which can be achieved
using density results. We call y ∈ H1(D) a weak solution of (2.16) if equation (2.17) holds for every
φ ∈ H1(D). A weak solution y ∈ H1(D) of (2.16) exists and is unique up to a constant if and only if
z ∈ L2(D) satisfies ∫

D
z(x) dx = 0.

Moreover, one can conclude that y ∈ H2(D), see [15, Theorem 9.26]. Hence, we can introduce an operator
A : D(A) ⊂ L2(D)→ L2(D) given by

D(A) =

{
y ∈ H2(D) :

∂y

∂η
= 0 on ∂D

}
, Ay = ∆y

for every y ∈ D(A). The operator A is self-adjoint and 〈Ay, y〉L2(D) ≤ 0 for every y ∈ D(A), see [89,
Section 4.2 and Lemma 1.6.1].
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Similarly to the Dirichlet realization of the Laplace operator, we can show that the operator A is closed
and densely defined. Moreover, if λ > 0, then the resolvent operator R(λ;A) exists and we have

‖R(λ;A)‖L(L2(D)) ≤
1

λ
.

Therefore, we get the following generation theorem, which can be obtained similarly to Theorem 2.50.

Theorem 2.57. The operator A : D(A) ⊂ L2(D) → L2(D) is the generator of an analytic semigroup of
contractions (eAt)t≥0.

By Remark 2.55, the number 0 is an eigenvalue of the operator A and hence, we have 0 /∈ ρ(A). As a
consequence, we can not apply Theorem 2.35 directly. Here, we can easily overcome this problem as follows:
Let λ > 0. Due to the previous theorem, the operator A− λ is still the generator of an analytic semigroup
given by (e−λteAt)t≥0, see [70, Chapter 3, Corollary 2.2]. Hence, the operator A−λ satisfies the assumptions
of Remark 2.25 with M = 1 and θ = λ. Therefore, we can define fractional powers of the operator λ − A
denoted by (λ−A)α with α ∈ R according to Section 2.3. Also note that we can apply Theorem 2.35 since
0 ∈ ρ(A− λ). Furthermore, we can determine the domain D((λ−A)α) for α ∈ (0, 1) explicitly.

Theorem 2.58 (Theorem 2, [38]). The domain of fractional powers of the operator λ−A is given by

(i) D((λ−A)α) = H2α(D) for α ∈
(
0, 3

4

)
,

(ii) D((λ−A)3/4) ⊂ H3/2(D),

(iii) D((λ−A)α) =
{
y ∈ H2α(D) : ∂y

∂η = 0 on ∂D
}

for α ∈
(

3
4 , 1
)
.

2.5.2. The Stokes Operator

Let D ⊂ Rn be a bounded domain with C2 boundary ∂D and let

C∞0,σ = {y ∈ (C∞0 (D))n : div y = 0 in D}.

We introduce the following common spaces:

H = Completion of C∞0,σ in (L2(D))n

=
{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
,

V = Completion of C∞0,σ in
(
H1(D)

)n
=
{
y ∈

(
H1

0 (D)
)n

: div y = 0 in D
}
,

where η denotes the unit outward normal to ∂D. The space H equipped with the inner product

〈y, z〉H = 〈y, z〉(L2(D))n =

∫
D

n∑
i=1

yi(x)zi(x) dx

for every y = (y1, ..., yn), z = (z1, ..., zn) ∈ H becomes a Hilbert space. For all x = (x1, ..., xn) ∈ D,

we denote Dj = ∂|j|

∂x
j1
1 ···∂x

jn
n

with |j| =
∑n
i=1 ji. We set Djy = (Djy1, ..., D

jyn) with |j| ≤ 1 for every

y = (y1, ..., yn) ∈ V . Then the space V equipped with the inner product

〈y, z〉V =
∑
|j|≤1

〈Djy,Djz〉(L2(D))n
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for every y, z ∈ V becomes a Hilbert space. The norms in H and V are denoted by ‖ · ‖H and ‖ · ‖V ,
respectively. Moreover, we get the orthogonal Helmholtz decomposition

(L2(D))n = H ⊕ {∇y : y ∈ H1(D)},

where ⊕ denotes the direct sum. Then there exists an orthogonal projection Π: (L2(D))n → H, see [39].
We set D(A0) = C∞0,σ and we define the operator A0 : D(A0) ⊂ H → H by

A0y = −Π∆y (2.18)

for every y ∈ D(A0), where ∆ is the Laplace operator defined for vector functions in the sense that
∆y = (∆y1, ...,∆yn).

Lemma 2.59. The operator A0 : D(A0) ⊂ H → H given by (2.18) is semi-bounded with 〈A0y, y〉H ≥ c‖y‖2H
for every y ∈ D(A0), where c > 0 is a constant.

Proof. By definition of the space H, we get that D(A0) is dense in H. Since the operator Π: (L2(D))n → H
is an orthogonal projection, the operator Π is linear, self-adjoint and we have Πy = y for every y ∈ H.
Hence, the operator A0 is linear and we get for every y ∈ D(A0)

〈A0y, y〉H = −〈Π∆y, y〉H = −〈∆y, y〉H .

The remaining part of the proof can be obtained similarly to Lemma 2.45.

Let A∗0 : D(A∗0) ⊂ H → H be the adjoint operator of A0. As a consequence of the previous lemma, we
can apply Theorem 2.43 with the result that the Friedrichs extension of the operator A0 exists. In the
remaining part, we denote the Friedrichs extension of the operator A0 by A : D(A) ⊂ H → H. We get the
following properties, which can be derived similarly to Lemma 2.46.

Lemma 2.60. The operator A : D(A) ⊂ H → H is self-adjoint and we have for every y ∈ D(A)

〈Ay, y〉H ≥ c‖y‖2H ,

where the constant c > 0 arises from Lemma 2.59. Furthermore, we have

D(A) = (H2(D))n ∩ V, Ay = −Π∆y for every y ∈ D(A).

Similarly to the Dirichlet realization of the Laplace operator, we can show that the operator A is closed
and densely defined. Moreover, if λ > 0, then the resolvent operator R(λ;−A) exists and we have

‖R(λ;−A)‖L(H) ≤
1

λ
.

Therefore, we get the following generation theorem, which can be obtained similarly to Theorem 2.50.

Theorem 2.61. The operator −A : D(A) ⊂ H → H is the generator of an analytic semigroup of contrac-
tions (e−At)t≥0.

Due to the previous Theorem and the fact that the operator −A is self-adjoint, there exists a constant
θ > 0 such that

‖e−At‖L(H) ≤ e−θt

for all t ≥ 0, see [89, Remark 7.2.1]. Hence, the assumptions of Remark 2.25 are satisfied with M = 1.
Therefore, we can define fractional powers of the operator A denoted by Aα with α ∈ R according to Section
2.3. Furthermore, if the boundary ∂D is a C∞ boundary, then we can determine the domain D(Aα) for
α ∈ (0, 1) explicitly. Let the operator AD : D(AD) ⊂ (L2(D))n → (L2(D))n be the Dirichlet realization
of the Laplace operator, which we can introduce similarly to Section 2.5.1. Then, we get the following
presentation.
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Theorem 2.62 ([37, 88]). For all α ∈ (0, 1), we have

D(Aα) = D(AαD) ∩H.

As a consequence of the previous theorem and Theorem 2.51, we can determine the domain D(Aα) for
α ∈ (0, 1) explicitly.

Corollary 2.63. The domain of fractional powers of the operator A is given by

(i) D(Aα) =
(
H2α(D)

)n ∩H for 0 < α < 1
4 ,

(ii) D(A1/4) ⊂
(
H1/2(D)

)n ∩H,

(iii) D(Aα) =
(
H2α

0 (D)
)n ∩H for 1

4 < α < 3
4 ,

(ii) D(A3/4) ⊂
(
H

3/2
0 (D)

)n
∩H,

(v) D(Aα) =
(
H2α

0 (D)
)n ∩H for 3

4 < α < 1.

Remark 2.64. For general results on the Stokes operator defined on Lp-spaces, we refer to [43].
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Chapter 3

Stochastic Calculus

This chapter is devoted to SPDEs both of forward and of backward type. Forward SPDEs driven by Lévy
noise are often stated as stochastic evolution equations on infinite dimensional spaces, see [71]. The theory
presented here extends results well known for the case of Wiener noise, see [23, 42, 73]. For stochastic
ordinary differential equations with Lévy noise, we refer to [20, 74]. Similarly, backward SPDEs can also
be stated as stochastic evolution equations, see [1, 52]. Existence and uniqueness results of these backward
equations are mainly based on a martingale representation theorem. Since these representation formulas are
not available for infinite dimensional Lévy processes, we have to restrict to the case of to backward SPDEs
driven by Wiener noise.

We start with basic notions and definitions concerning random variables and stochastic processes on
separable Hilbert spaces. Afterwards, we give an overview on properties of infinite dimensional Lévy pro-
cesses. For a certain class of Lévy processes, we introduce the stochastic integral and we state basic results,
which we use in the following chapters. This allows us to define solutions to SPDEs both of forward and
of backward type. The equations considered here are mainly motivated by control problems we discuss in
the following chapters. For forward SPDEs, we will figure out that the mild solution is useful to involve
nonhomogeneous boundary conditions. In control theory, backward SPDEs characterizes the dynamics of
the adjoint equation, which is closely related to the corresponding forward equation. For that reason, we
will also consider mild solutions of backward SPDEs. Finally, we state different concepts of solutions and
we will give a relationship between these solutions, where we mainly use results shown in [1, 23, 53, 71].

Throughout this chapter, let (Ω,F ,P) be a given probability space. We always assume that (Ω,F ,P) is
complete, i.e. A ∈ F , B ⊂ A and P(A) = 0 imply B ∈ F .

3.1. Preliminaries

Let U be a separable Hilbert space and let B(U) denote its Borel σ-field. An U-valued random variable or
a random variable with values in U is any measurable mapping X : Ω→ U , i.e. X maps Ω into U such that
{X ∈ A} = {ω ∈ Ω: X(ω) ∈ A} ∈ F for arbitrary A ∈ B(U). We denote the law or the distribution of X by
L (X)(A) = P(ω ∈ Ω: X(ω) ∈ A) for all A ∈ B(U). For an U-valued random variable X, one can introduce
its expected value

E[X] =

∫
Ω

X(ω)P(dω)

in the sense of a Bochner integral as introduced in Section B. The expected value is well defined if

E ‖X‖U =

∫
Ω

‖X(ω)‖U P(dω) <∞. (3.1)

A random variable satisfying condition (3.1) is integrable. If E ‖X‖pU < ∞ with 1 ≤ p < ∞, then X is
p-integrable. The space of p-integrable random variables with values in U is denoted by Lp(Ω;U).

Let I be a time interval given by all nonnegative real numbers R+ or a finite interval [0, T ] with T > 0.
A family (X(t))t∈I of U-valued random variables is called U-valued stochastic process or stochastic process
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with values in U . The stochastic process (X(t))t∈I is p-integrable if for all t ∈ I, the random variable X(t)
is p-integrable. We set X(t)(ω) = X(t, ω) for all t ∈ I and ω ∈ Ω. The function X(·, ω) : I → U is called
trajectory of (X(t))t∈I .

Definition 3.1. Let (X(t))t∈I be a stochastic process with values in U . An U-valued stochastic process
(Y (t))t∈I is a modification of (X(t))t∈I if for all t ∈ I

P(X(t) = Y (t)) = 1.

Next, we introduce different continuity properties of stochastic processes.

Definition 3.2. An U-valued stochastic process (X(t))t∈I is

• stochastically continuous if for all t ∈ I and ε > 0

lim
s→t

P(‖X(t)−X(s)‖U > ε) = 0;

• continuous (with probability 1) if its trajectories X(·, ω) are continuous P-almost surely.

Under additional requirements, we can define the mean square continuity.

Definition 3.3. An U-valued square integrable stochastic process (X(t))t∈I is mean square continuous
or continuous in mean square if for all t ∈ I

lim
s→t

E‖X(t)−X(s)‖2U = 0.

We have the following relationships between these various types of continuity, which are well known for
real valued stochastic processes, see [55, 66]. One can easily adapt these results to Hilbert space valued
stochastic processes.

Proposition 3.4. We have the following implications:

(i) Every continuous stochastic process is stochastically continuous.

(ii) Every mean square continuous stochastic process is stochastically continuous.

In general, there is no relation between the continuity with probability 1 and the continuity in mean
square. Furthermore, we obtain that the stochastically continuity is the weakest notion among the continuity
properties introduced above. However, to require the stochastically continuity is often sufficient. Obviously,
stochastic processes with jumps occurring in the trajectories are not continuous. Therefore, we introduce
the concept of càdlàg trajectories.

Definition 3.5. A stochastic process (X(t))t∈I taking values in U is càdlàg (continu à droite et limites à
gauche) if P-a.s.

• (X(t))t∈I is right-continuous, i.e. X(t+) = lims↓tX(s) = X(t) for all t ∈ I and

• (X(t))t∈I has left limits, i.e. X(t−) = lims↑tX(s) exists for all t ∈ I.

Next, we introduce different properties of measurability for stochastic processes. Let the probability space
(Ω,F ,P) be equipped with a filtration (Ft)t∈I , i.e. (Ft)t∈I is a family of increasing σ-fields.

Definition 3.6. The filtration (Ft)t∈I is said to be normal if F0 contains all A ∈ F such that P(A) = 0
and we have Ft =

⋂
s>t Fs for all t ∈ I.
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Definition 3.7. An U-valued stochastic process (X(t))t∈I is Ft-adapted if for all t ∈ I, the random
variable X(t) is Ft-measurable.

Let PI denote the smallest σ-field of subsets of I × Ω containing all sets of the form

(s, t]×A with s, t ∈ I, s < t,A ∈ Fs and {0} ×A with A ∈ F0.

We have the following definition.

Definition 3.8. An U-valued stochastic process (X(t))t∈I is called predictable if it is a measurable mapping
from (I × Ω,PI) into (U ,B(U)).

Every predictable stochastic process is Ft-adapted. The converse is in general not true. However, the
following result is useful to conclude that a stochastic process has a predictable modification.

Proposition 3.9 (Proposition 3.7 (ii),[23]). Assume that the stochastic process (X(t))t∈[0,T ] is Ft-adapted
and stochastically continuous. Then the process (X(t))t∈[0,T ] has a predictable modification.

Next, we define stopping times, which are necessary for the definition of local solutions to SPDEs.

Definition 3.10. A random variable τ : Ω → [0,∞] is a stopping time (with respect to the filtration
(Ft)t∈I) if for all t ∈ I

{τ ≤ t} = {ω ∈ Ω: τ(ω) ≤ t} ∈ Ft.

We have the following basic properties, which follow immediately from the previous definition.

Lemma 3.11 (Lemma 9, [82]). Let τ and ρ be stopping times and let (τm)m∈N be a sequence of stopping
times. Then

(i) τ ∧ ρ = min{τ, ρ} and τ ∨ ρ = max{τ, ρ} are stopping times;

(ii) the limit τ = limm→∞ τm is a stopping time if (τm)m∈N is increasing or decreasing.

Lemma 3.12 ([74, 78, 82]). Let the Filtration (Ft)t∈I be normal and let (X(t))t∈I be an Ft-adapted càdlàg
process with values in Rn, n ∈ N. If Γ ∈ B(Rn) is open, then

τ = inf{t > 0: t ∈ I, X(t) ∈ Γ}

is a stopping time. We employ the standard convention that inf{∅} = +∞.

Theorem 3.13. Let the Filtration (Ft)t∈I be normal and let (X(t))t∈I be an Ft-adapted càdlàg process
with values in U . If c ≥ 0, then

τ = inf{t > 0: t ∈ I, ‖X(t)‖U > c}

is a stopping time. We employ the standard convention that inf{∅} = +∞.

Proof. Obviously, the stochastic process (‖X(t)‖U )t∈I is Ft-adapted, càdlàg and takes values in R. By
Lemma 3.12 with n = 1, the claim follows immediately.

Remark 3.14. If I = [0, T ], then by Lemma 3.11 (i) and Theorem 3.13, the random variable

τ = inf{t ∈ (0, T ) : ‖X(t)‖U > c} ∧ T

is a stopping time.

Finally, we introduce martingales on Hilbert spaces. Therefor, we need the concept of the conditional
expectation. The existence and uniqueness is provided by the following result.
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Proposition 3.15 (Proposition 3.13, [71]). Let G be a sub-σ-field of F and let X be an U-valued integrable
random variable. Then, up to a set of P-measure 0, there is a unique integrable G-measurable random
variable E[X|G] with values in U such that for all A ∈ G∫

A

X(ω)P(dω) =

∫
A

E[X|G](ω)P(dω).

In the previous proposition, we call E[X|G] the conditional expectation of X given G. We have the
following basic properties, which are well known for real-valued random variables, see [12].

Proposition 3.16 (Proposition 3.15, [71]). Let X,Y be U-valued integrable random variable and let a, b ∈ R.
Assume that G is a sub-σ-field of F . Then the following properties hold P-almost surely:

(i) E[aX + b Y |G] = aE[X|G] + bE[Y |G];

(ii) if K ∈ L(U ;H) where H is another separable Hilbert space, then E[KX|G] = K E[X|G];

(iii) if X is G-measurable and ξ is a real-valued integrable random variables such that ξ X is integrable,
then E[ξ X|G] = X E[ξ|G];

(iii) if V is a sub-σ-field of G, then E[E[X|G] |V] = E[X|V];

(iv) if X is independent of G, then E[X|G] = E[X];

(v) if f : R → R is a convex function such that the random variable f(‖X‖U ) is integrable, then we get
f(‖E[X|G]‖U ) ≤ E[f(‖X‖U )|G];

(vi) if the σ-fields (Gm)m∈N is an increasing sequence satisfying G = σ(Gm : m ∈ N), then we obtain
E[X|G] = limm→∞ E[X|Gm].

We proceed with the definition of Hilbert space valued martingales.

Definition 3.17. An Ft-adapted integrable stochastic process (M(t))t∈I with values in U is a martingale
(with respect to the filtration (Ft)t∈I) if for all s, t ∈ I with s ≤ t and P-a.s.

E[M(t)|Fs] = M(s).

Proposition 3.18 (Proposition 3.25, [71]). Let (X(t))t∈I be an Ft-adapted integrable stochastic process
with values in U . Assume that X(t)−X(s) is independent of Fs for all s, t ∈ I with t > s. Then the process
(M(t))t∈I given by M(t) = X(t)− E[X(t)] for all t ∈ I and P-almost surely is a martingale.

Theorem 3.19 (Theorem 3.41, [71]). Let (M(t))t≥0 be a stochastically continuous square integrable mar-
tingale with values in U . Then (M(t))t≥0 has a càdlàg modification (still denoted by (M(t))t≥0) satisfying
for all T ≥ 0 and all r > 0

P

(
sup
t∈[0,T ]

‖M(t)‖U ≥ r

)
≤ 1

r2
E‖M(T )‖2U .

Moreover, we have for all T > 0 and all k ∈ (0, 2)

E sup
t∈[0,T ]

‖M(t)‖kU ≤
2

2− k
(
E‖M(T )‖2U

)k/2
.

Let M2(U) contain all stochastically continuous square integrable martingales (M(t))t≥0 with values in
U . By Theorem 3.19, we can always assume that the elements ofM2(U) are càdlàg. Moreover, we have the
following result.
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Theorem 3.20. If M ∈ M2(U), then there exists a unique increasing predictable process (〈M〉t)t≥0 such
that 〈M〉0 = 0 and (‖M(t)‖2U − 〈M〉t)t≥0 is a real-valued martingale.

Proof. The claim follows by applying the Doob-Meyer decomposition theorem to the real valued process
(‖M(t)‖2U )t≥0, see [71].

In the previous theorem, the process (〈M〉t)t≥0 is called angle bracket or predictable variation process.

Theorem 3.21. Let M ∈M2(U) such that M(0) = 0. Then we have for all T ≥ 0

E sup
t∈[0,T ]

‖M(t)‖2U ≤ 4E〈M〉T = 4E‖M(T )‖2U .

Proof. One can deduce the assertion from [63, Theorem 20.6].

Finally, for M ∈ M2(U), we introduce the operator angle bracket process denoted by (〈〈M〉〉t)t≥0. Let
L1(U) be the space of all nuclear operators on U equipped with the nuclear norm and let L+

1 (U) denote the
subspace of L1(U) containing all self-adjoint nonnegative nuclear operators. For more details, see Appendix
C. For x, y ∈ U , we define the operator x ⊗ y : U → U by x ⊗ y(z) = 〈x, z〉Uy for every z ∈ U . Then, we
have x⊗ y ∈ L1(U) with ‖x⊗ y‖L1(U) = ‖x‖U‖y‖U . If M ∈ M2(U), then the process (M(t)⊗M(t))t≥0 is
an L1(U)-valued right-continuous process such that for all t ≥ 0

E‖M(t)⊗M(t)‖L1(U) = E‖M(t)‖2U .

We have the following result.

Theorem 3.22 (Theorem 8.2, [71]). Let M ∈M2(U). Then there exists a unique right-continuous increas-
ing predictable process (〈〈M〉〉t)t≥0 with values in L+

1 (U) such that 〈〈M〉〉0 = 0 and (M(t)⊗M(t)−〈〈M〉〉t)t≥0

is an L1(U)-valued martingale. Moreover, there exists a predictable process (Q(t))t≥0 with values in L+
1 (U)

such that for all t ≥ 0 and P-a.s.

〈〈M〉〉t =

t∫
0

Q(s) d〈M〉s.

3.2. Lévy Processes

In this section, we give an introduction to Lévy processes with values in a separable Hilbert space U . For
a comparison with finite dimensional Lévy processes, we refer to [2]. We assume that the probability space
(Ω,F ,P) is equipped with a normal filtration (Ft)t∈I . Let us start with a formal definition.

Definition 3.23. A stochastic process (L(t))t≥0 taking values in U is called a Lévy process if

• P-a.s. L(0) = 0;

• (L(t))t≥0 has independent and time-homogeneous increments, i.e. for 0 ≤ t0 < t1 < ... < tm, the
random variables L(t1)−L(t0), L(t2)−L(t1), ..., L(tm)−L(tm−1) are independent and for any s, t ≥ 0
with s < t, the law L (L(t)− L(s)) depends only on the difference t− s;

• (L(t))t≥0 is stochastically continuous.

For an U-valued Lévy process (L(t))t≥0, let µt be the law of the random variable L(t) for t ≥ 0. Then

(i) µ0 = δ0 and µt+s = µt ∗ µs for all s, t ≥ 0;
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(ii) limt↓0 µt({x ∈ U : ‖x‖U < r}) = 1 for every r > 0.

Here, the measure δ0 is the unit measure concentrated at {0} and µt ∗ µs denotes the convolution of the
measures µt and µs. The family of measures (µt)t≥0 is called the convolution semigroup of measures. For
more details, see [71].

Theorem 3.24 (Theorem 4.3, [71]). Every Lévy process (L(t))t≥0 has a càdlàg modification.

Given a càdlàg process (L(t))t≥0, the process of jumps (∆L(t))t≥0 is defined by ∆L(t) = L(t) − L(t−)
for all t ≥ 0 and P-almost surely.

Theorem 3.25 (Theorem 4.4, [71]). Assume that (L(t))t≥0 is an U-valued càdlàg Lévy process with bounded
jumps, i.e. there exists c > 0 such that ‖∆L(t)‖U ≤ c for all t ≥ 0 and P-almost surely. Then we have for
all β > 0 and all t ≥ 0

Eeβ‖L(t)‖U <∞.

For every U-valued càdlàg Lévy process (L(t))t≥0 with bounded jumps, we have E‖L(t)‖nU <∞ for each
n ∈ N and all t ≥ 0 resulting from the previous theorem.

3.2.1. Examples

Compound Poisson Processes

We start with a definition of a Poisson process, which is an increasing Lévy process taking values in Z+

with jumps of size 1.

Definition 3.26. A Poisson process (N(t))t≥0 with intensity a ∈ (0,∞) is a Lévy process with values in
Z+ such that the random variable N(t) has a Poisson distribution with parameter at for all t ≥ 0, i.e. for
all t ≥ 0 and each k ∈ Z+

P(N(t) = k) =
(at)k

k!
e−at.

Recall that a random variable Z with values in R+ is exponentially distributed with parameter a ∈ (0,∞)
if P(Z > t) = e−at for all t ≥ 0. The following proposition provides the construction of a Poisson process
based on a sequence of independent exponentially distributed random variables.

Proposition 3.27 (Proposition 4.9 (i) and (ii), [42]). The process (N(t))t≥0 is a Poisson process with
intensity a if and only if there exists a sequence (Zm)m∈N of independent exponentially distributed random
variables with parameter a such that for all t ≥ 0 and P-a.s.

N(t) =

{
0 if t < Z1

k if t ∈ [Z1 + ...+ Zk, Z1 + ...+ Zk+1).

As a consequence, a Poisson process takes values in Z+ with a finite number of jumps on a finite time
interval. Due to the following proposition, we get that each jump is of size 1.

Proposition 3.28 (Proposition 4.9 (iv), [42]). An Z+-valued Lévy process (N(t))t≥0 is a Poisson process
if and only if for all t ≥ 0

P(∆N(t) = N(t)−N(t−) ∈ {0, 1}) = 1.

Next, we use Poisson processes for the construction of compound Poisson processes with values in the
separable Hilbert space U . Let ν be a finite measure on U such that ν({0}) = 0. Moreover, let ν∗k denote
the k-th convolution of the measure ν and let ν0 = δ0, i.e. ν0 is the unit measure concentrated at {0}. Then
we have the following definition.
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Definition 3.29. A càdlàg Lévy process (L(t))t≥0 with values in U is a compound Poisson process with
Lévy measure or jump intensity measure ν if for all t ≥ 0 and all Γ ∈ B(U)

P(L(t) ∈ Γ) = e−ν(U)t
∞∑
k=0

tk

k!
ν∗k(Γ).

We get the following construction of a compound Poisson process given a Lévy measure ν.

Proposition 3.30 (Theorem 4.15 (i) and (ii), [42]). Let ν be a finite measure supported on U\{0} and let
a = ν(U). An U-valued stochastic process (L(t))t≥0 is a compound Poisson process with Lévy measure ν if
and only if there exists a sequence (Zm)m∈N of independent U-valued random variables with identical laws
equal to a−1ν and a Poisson process (N(t))t≥0 with intensity a and independent of (Zm)m∈N such that for
all t ≥ 0 and P-a.s.

L(t) =

N(t)∑
k=1

Zk.

Next, we state important properties of compound Poisson processes. We start with a condition for
integrability.

Proposition 3.31 (Proposition 4.18 (i), [42]). An U-valued compound Poisson process (L(t))t≥0 with Lévy
measure ν is integrable if and only if ∫

U
‖y‖U ν(dy) <∞. (3.2)

If the condition (3.2) holds, then we have for all t ≥ 0

E[L(t)] = t

∫
U
y ν(dy).

If (L(t))t≥0 is an integrable compound Poisson process with values in U , then one can introduce the

compensated compound Poisson process (L̂(t))t≥0 given by L̂(t) = L(t)−E[L(t)] for all t ≥ 0 and P-almost
surely. We get the following result.

Proposition 3.32. Let (Ft)t≥0 be a normal filtration. If (L(t))t≥0 is an integrable Ft-adapted compound

Poisson process, then the compensated compound Poisson process (L̂(t))t≥0 is a martingale.

Proof. Due to the fact that (L(t))t≥0 is an Ft-adapted Lévy process, the increment L̂(t)−L̂(s) is independent
of Fs for all t ≥ s ≥ 0. By Proposition 3.16 (i) and (iv), we get for all t ≥ s ≥ 0 and P-a.s.

E
[
L̂(t)

∣∣∣Fs] = E
[
L̂(t)− L̂(s)

∣∣∣Fs]+ E
[
L̂(s)

∣∣∣Fs] = E
[
L̂(t)− L̂(s)

]
+ E

[
L̂(s)

∣∣∣Fs] .
Obviously, the process (L̂(t))t≥0 is Ft-adapted and E

[
L̂(t)

]
= 0 for all t ≥ 0. Since the filtration (Ft)t≥0 is

normal, we can conclude that the process (L̂(t))t≥0 is a martingale.

We proceed with a condition on (compensated) compound Poisson process to be square integrable.

Proposition 3.33 (Proposition 4.18 (iii), [42]). An U-valued compound Poisson process (L(t))t≥0 with Lévy
measure ν is square integrable if and only if∫

U
‖y‖2U ν(dy) <∞. (3.3)
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If the condition (3.3) holds, then we have for all t ≥ 0

E‖L(t)‖2U = t

∫
U
‖y‖2U ν(dy) + t2

∥∥∥∥∫
U
y ν(dy)

∥∥∥∥2

U
and E

∥∥∥L̂(t)
∥∥∥2

U
= t

∫
U
‖y‖2U ν(dy).

Moreover, we get for all t ≥ 0 and every x, x̃ ∈ U

E
[〈
L̂(t), x

〉
U

〈
L̂(t), x̃

〉
U

]
= t

∫
U
〈x, y〉U 〈x̃, y〉U ν(dy).

Finally, we state the characteristic function of a (compensated) compound Poisson process.

Proposition 3.34 ([71]). Let (L(t))t≥0 be an U-valued compound Poisson process with Lévy measure ν.
We have for every x ∈ U , all z ∈ C and all t ≥ 0

E exp {z〈x, L(t)〉U} = exp

{
−t
∫
U

(
1− ez〈x,y〉U

)
ν(dy)

}
.

For the compensated process (L̂(t))t≥0, we have for every x ∈ U , all z ∈ C and all t ≥ 0

E exp
{
z
〈
x, L̂(t)

〉
U

}
= exp

{
−t
∫
U

(
1− ez〈x,y〉U + z〈x, y〉U

)
ν(dy)

}
.

Q-Wiener Processes

A Q-Wiener process is a typical example of a continuous Lévy process. The definition of a Q-Wiener
process requires to introduce Gaussian measures on (U ,B(U)). First, we recall some basic properties of
Gaussian measures on finite dimensional spaces. A Gaussian measure µ on (Rn,B(Rn)) with n ∈ N is either
concentrated at one point µ = δm with m ∈ Rn or has the density f : Rn → R given by

f(x) =
1√

(2π)n det(Q)
e−

1
2 〈Q

−1(x−m),x−m〉Rn

for all x ∈ Rn, where m = (m1, ...mn) ∈ Rn and Q = (qj,k)j,k=1,..,n ∈ Rn×n is a positive symmetric matrix.
The characteristic functional µ̂ : Rn → R of a Gaussian measure µ is given by

µ̂(λ) =

∫
Rn
ei〈λ,x〉Rnµ(dx) = ei〈λ,m〉Rn−

1
2 〈Qλ,λ〉Rn

for all λ ∈ Rn. As a consequence, a Gaussian measure on (Rn,B(Rn)) is uniquely determined by the values
of m and Q and hence, we denoted this measure by N (m,Q). Moreover, we have for each j, k = 1, ..., n∫

Rn
xj N (m,Q)(dx) = mj and

∫
Rn

(xj −mj)(xk −mk) N (m,Q)(dx) = qj,k.

Thus, we call m the mean and Q is the covariance matrix. Based on the finite dimensional setting, we can
introduce Gaussian measures on Hilbert spaces.

Definition 3.35. A measure µ on the space (U ,B(U)) is called Gaussian if for every h ∈ U , there exist
m = m(h) ∈ R and q = q(h) ≥ 0 such that for all A ∈ B(R)

µ({x ∈ U : 〈h, x〉U ∈ A}) = N (m, q)(A).
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Proposition 3.36 (Theorem 2.1.2, [73]). A measure µ on (U ,B(U)) is Gaussian if and only if

µ̂(λ) =

∫
U
ei〈λ,x〉Uµ(dx) = ei〈λ,m〉U−

1
2 〈Qλ,λ〉U

for every λ ∈ U , where m ∈ U and Q ∈ L+
1 (U). Moreover, we have for every g, h ∈ U∫
U
〈x, h〉U µ(dx) = 〈m,h〉U ,∫

U
〈x−m,h〉U 〈x−m, g〉U µ(dx) = 〈Qh, g〉U ,∫

U
‖x−m‖2U µ(dx) = Tr(Q).

In the previous proposition, the element m ∈ U is called the mean and Q ∈ L+
1 (U) is called the covariance

operator, which uniquely determine the Gaussian measure on (U ,B(U)). Hence, we denote the Gaussian
measure on (U ,B(U)) by N (m,Q).

Definition 3.37. A random variable X with values in U is Gaussian if there exist m ∈ U and Q ∈ L+
1 (U)

such that L (X) = N (m,Q). A stochastic process (X(t))t≥0 with values in U is Gaussian if for each n ∈ N
and arbitrary t1, ..., tn ≥ 0, the Un-valued random variable (X(t1), ..., X(tn)) is Gaussian.

Proposition 3.38 (Proposition 2.1.4, [73]). Let X be an U-valued Gaussian random variable. Then 〈X,h〉U
is a real valued Gaussian random variable for every h ∈ U and the following statements holds:

• E〈X,h〉U = 〈m,h〉U for every h ∈ U ;

• E〈X −m,h〉U 〈X −m, g〉U = 〈Qh, g〉U for every g, h ∈ U ;

• E‖X −m‖2U = Tr(Q).

We proceed with the definition and basic properties of a Q-Wiener process.

Definition 3.39. An U-valued continuous Lévy process (W (t))t≥0 with mean 0 is called a Q-Wiener
process.

Proposition 3.40 (Theorem 4.20, [42]). Let (W (t))t≥0 be a Q-Wiener process with values in U . Then
(W (t))t≥0 is a Gaussian process such that E‖W (t)‖2U <∞ for all t ≥ 0.

Remark 3.41. In [23, 73], it is assumed that a Q-Wiener process (W (t))t≥0 has Gaussian increments, i.e.
L (W (t) −W (s)) = N (0, (t − s)Q) for all t ≥ s ≥ 0. Here, one can obtain this property as follows: By
Proposition 3.40, the process (W (t))t≥0 is a Gaussian process. Hence, the distribution L (W (t)) is Gaussian
with mean 0 for all t ≥ 0. Moreover, we have for every g, h ∈ U and all s, t ≥ 0

E〈W (t), h〉U 〈W (s), g〉U = t ∧ sE〈W (1), h〉U 〈W (1), g〉U = t ∧ s 〈Qh, g〉U ,

where Q ∈ L+
1 (U) is the covariance operator of the Gaussian measure L (W (1)) arising from Proposition

3.38. This implies for every h ∈ U and all t ≥ s ≥ 0

E〈W (t)−W (s), h〉2U = (t− s)〈Qh, h〉U .

Thus, we get L (W (t)−W (s)) = N (0, (t− s)Q) for all t ≥ s ≥ 0.
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As a consequence of the previous remark, the covariance operator Q ∈ L+
1 (U) completely characterizes

the distribution of a Q-Wiener process. By Proposition C.5, there exist an orthonormal basis (un)n∈N of U
and a sequence (λn)n∈N of nonnegative real numbers such that Qun = λnun for each n ∈ N. In the following
proposition, we provide a series presentation of a Q-Wiener process in term of mutually independent real
valued Brownian motions.

Proposition 3.42 (Proposition 4.3, [23]). Assume that (W (t))t≥0 is a Q-Wiener process with values in
U and covariance operator Q ∈ L+

1 (U). Let (un)n∈N be an orthonormal basis of U and let (λn)n∈N be a
sequence of nonnegative real numbers such that Qun = λnun for each n ∈ N. Then for all t ≥ 0 and P-a.s.

W (t) =

∞∑
n=1

√
λnwn(t)un, (3.4)

where for each n ∈ N, the processes (wn(t))t≥0 are mutually independent real valued Brownian motions
given by

wn(t) =
1√
λn
〈W (t), un〉U

for all t ≥ 0 and P-almost surely. The series in (3.4) converges in L2(Ω;U).

Finally, we state the characteristic function of a Q-Wiener process.

Proposition 3.43. Let (W (t))t≥0 be an U-valued Q-Wiener process with covariance operator Q ∈ L+
1 (U).

We have for every x ∈ U and all t ≥ 0

E ei〈x,W (t)〉U = e−
t
2 〈Qx,x〉U .

Proof. Due to Remark 3.41, we have that the distribution L (W (t)) is Gaussian with mean 0 and covariance
operator tQ. Using Proposition 3.36, the claim follows.

3.2.2. Lévy-Khinchin Decomposition

Let (L(t))t≥0 be a càdlàg Lévy process with values in U . The Lévy-Khinchin decomposition provides an
representation of the process (L(t))t≥0 as the sum of its continuous part and its pure jump part. First,
we consider the pure jump part. Let A ∈ B(U) be separated from 0, i.e. the set A ∈ B(U) satisfies
A ∩ {y ∈ U : ‖y‖U ≤ r} = ∅ for sufficiently small r > 0. Then the process (LA(t))t≥0 given by

LA(t) =
∑

0≤s≤t

1A(∆L(s))∆L(s),

for all t ≥ 0 and P-almost surely, is a well defined Lévy process with values in U . We get the following
results.

Lemma 3.44. Let A ∈ B(U) be separated from 0. Then the processes (LA(t))t≥0 and (L(t)−LA(t))t≥0 are
independent Lévy processes.

Proof. A proof can be found in [71, Appendix F].

Corollary 3.45. Let A,B ∈ B(U) be disjoint sets that are separated from 0. Then the processes (LA(t))t≥0

and (LB(t))t≥0 are independent Lévy processes.

Proof. Obviously, the set A ∪ B ∈ B(U) is separated from 0. Thus, the process (LA∪B(t))t≥0 is a well
defined Lévy process with values in U . Since A and B are disjoint, we get for all t ≥ 0 and P-a.s.

LA∪B(t) = LA(t) + LB(t).

The claim follows by Lemma 3.44.
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Lemma 3.46 (Lemma 4.25, [71]). For all A ∈ B(U) separated from 0 and all x ∈ U , we have

E exp {i〈x, LA(t)〉U} = exp

{
−t
∫
A

(
1− ei〈x,y〉U

)
ν(dy)

}
.

By Proposition 3.34, we can conclude that (LA(t))t≥0 is an U-valued compound Poisson process with
Lévy measure 1A(y)ν(dy). This process is fundamental by constructing the pure jump part of (L(t))t≥0.
Let (rn)n∈Z+ be a strictly decreasing null sequence. Then the Lévy process (L(t))t≥0 has finite many jumps
on the set A0 = {y ∈ U : ‖y‖U ≥ r0} on a finite time interval. The process (LA0

(t))t≥0 given by

LA0(t) =
∑

0≤s≤t

1A0(∆L(t))∆L(t),

for all t ≥ 0 and P-almost surely, is a well defined U-valued Lévy process containing all jumps larger or
equal to r0 with respect to the norm in U . Due to Lemma 3.46, the process (LA0

(t))t≥0 is a compound
Poisson process with Lévy measure 1{‖y‖U≥r0}(y)ν(dy). To cover the remaining jumps we introduce the
sets An = {y ∈ U : rn ≤ ‖y‖U < rn−1} for each n ∈ N. Note that these sets are still separated from 0.
Hence, for each n ∈ N, the processes (LAn(t))t≥0 given by

LAn(t) =
∑

0≤s≤t

1An(∆L(t))∆L(t),

for all t ≥ 0 and P-almost surely, are well defined U-valued Lévy process. By Lemma 3.46, the processes
(LAn(t))t≥0, n ∈ N, are compound Poisson processes with Lévy measure 1{rn≤‖y‖U<rn−1}(y)ν(dy). In
general, we can not ensure that the series of small jumps

∑∞
n=1 LAn(t) converges on a bounded time

interval [0, T ]. Therefore, for each n ∈ N, we have to consider the compensated processes of (LAn(t))t≥0.
Note that the jumps of (LAn(t))t≥0 are bounded by rn−1 for each n ∈ N. Hence, we can apply Theorem
3.25 with the result that the processes (LAn(t))t≥0 are integrable for each n ∈ N. Using Proposition 3.31,
we have for each n ∈ N and all t ≥ 0

E[LAn(t)] = t

∫
An

y ν(dy).

Thus, we can introduce the compensated compound Poisson processes (Ln(t))t≥0, n ∈ N, given by

Ln(t) = LAn(t)− E[LAn(t)] = LAn(t)− t
∫
An

y ν(dy)

for all t ≥ 0 and P-almost surely. To get a convergence result of the series
∑∞
n=1 Ln(t) on a bounded interval

[0, T ], we need the following preliminary result.

Proposition 3.47 (Theorem 4.23 (i), [71]). If ν is a jump intensity measure corresponding to an U-valued
Lévy process (L(t))t≥0, then ∫

U

(
‖y‖2U ∧ 1

)
ν(dy) <∞. (3.5)

Lemma 3.48 (Lemma 4.26, [71]). If assumption (3.5) is satisfied, then the series
∑∞
n=1 Ln(t) converges

P-a.s. uniformly on each bounded interval [0, T ].

Now, we are able to state the Lévy-Khinchin decomposition, where we also characterize the continuous
part of a Lévy process.
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Theorem 3.49 (Theorem 4.23 (ii), [71]). Let (L(t))t≥0 be an U-valued Lévy process with Lévy measure ν.
Then we have the following representation for all t ≥ 0 and P-almost surely:

L(t) = at+W (t) +

∞∑
n=1

(
LAn(t)− t

∫
An

y ν(dy)

)
+ LA0

(t), (3.6)

where a ∈ U , (W (t))t≥0 is an U-valued Q-Wiener process, (LA0(t))t≥0 is an U-valued compound Poisson
process with Lévy measure 1{‖y‖U≥r0}(y)ν(dy) and (LAn(t))t≥0 is an U-valued compound Poisson processes
with Lévy measure 1{rn≤‖y‖U<rn−1}(y)ν(dy) for each n ∈ N. Moreover, all members of the representation
are independent processes and the series converges P-a.s. uniformly on each bounded subinterval of [0,∞).

As a consequence of the previous theorem, we get the following Lévy-Khinchin formula.

Theorem 3.50 (Theorem 4.27, [42]). Let (L(t))t≥0 be an U-valued Lévy process with Lévy measure ν and
let µt be the distribution of L(t) for all t ≥ 0. We have for every x ∈ U and all t ≥ 0

E ei〈x,L(t)〉U =

∫
U
ei〈x,y〉Uµt(dy) = e−tψ(x),

where

ψ(x) = −i〈a, x〉U +
1

2
〈Qx, x〉U +

∫
U

(
1− ei〈x,y〉U + 1{‖y‖U<1}(y) i〈x, y〉U

)
ν(dy).

Here, the value a ∈ U and the covariance operator Q ∈ L+
1 (U) corresponding to the Q-Wiener process

(W (t))t≥0 arise from Theorem 3.49.

In the previous theorem, the triple (a,Q, ν) is called the characteristics of the Lévy process (L(t))t≥0,
which describes the distribution µt for all t ≥ 0 completely.

3.2.3. Square Integrable Lévy Processes

Let (L(t))t≥0 be a square integrable Lévy process with values in U . We assume that (L(t))t≥0 is Ft-adapted
such that L(t)− L(s) is independent of Fs for all t > s ≥ 0.

Proposition 3.51 (Theorem 4.44, [71]). There exist m ∈ U and Q ∈ L+
1 (U) such that

E〈L(t), x〉U = t 〈m,x〉U ,
E〈L(t)−mt, x〉U 〈L(s)−ms, y〉U = t ∧ s 〈Qx, y〉U ,
E‖L(t)−mt‖2U = t T r(Q)

for all t, s ≥ 0 and every x, y ∈ U .

In the previous proposition, the element m ∈ U is called the mean and the operator Q ∈ L+
1 (U) is

called the covariance operator of (L(t))t≥0. Next, we consider the Lévy-Khinchin decomposition for square
integrable Lévy processes. We need the following preliminary result, which is an immediate consequence of
Proposition 3.33 and Theorem 3.49.

Corollary 3.52 (Theorem 4.47 (i), [71]). An U-valued Lévy process with Lévy measure ν is square integrable
if and only if ∫

U
‖y‖2U ν(dy).
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Using Theorem 3.49, the process (L(t))t≥0 has the representation (3.6). Recall that (LA0(t))t≥0 is an
U-valued compound Poisson process with Lévy measure 1{‖y‖U≥r0}(y)ν(dy). By Proposition 3.33 and
Corollary 3.52, the process (LA0

(t))t≥0 is square integrable. Hence, the mean exists and due to Proposition
3.31, we get for all t ≥ 0

E[LA0
(t)] = t

∫
{‖y‖U≥r0}

y ν(dy) = t

∫
A0

y ν(dy).

We get the following result.

Theorem 3.53. A square integrable Lévy process (L(t))t≥0 with values in U has the following decomposition
for all t ≥ 0 and P-almost surely:

L(t) = tb+W (t) +MJ(t), (3.7)

where b ∈ U , (W (t))t≥0 is an U-valued Q-Wiener process and (MJ(t))t≥0 is an U-valued square integrable
Lévy process containing all jumps of (L(t))t≥0. Moreover, the processes (W (t))t≥0 and (MJ(t))t≥0 are
independent martingales with mean 0.

Proof. Using Theorem 3.49, we have for all t ≥ 0 and P-almost surely

L(t) = ta+ t

∫
A0

y ν(dy) +W (t) +

∞∑
n=1

(
LAn(t)− t

∫
An

y ν(dy)

)
+ LA0

(t)− t
∫
A0

y ν(dy).

We set b = a+
∫
A0
y ν(dy) and

MJ(t) =

∞∑
n=1

(
LAn(t)− t

∫
An

y ν(dy)

)
+ LA0

(t)− t
∫
A0

y ν(dy)

for all t ≥ 0 and P-almost surely. By Theorem 3.49, the processes (W (t))t≥0 and (MJ(t))t≥0 are independent.
Since (L(t))t≥0 is Ft-adapted such that L(t)− L(s) is independent of Fs for all t > s > 0, we can conclude
that this property holds for (W (t))t≥0 as well as for (MJ(t))t≥0. Hence, the processes (W (t))t≥0 and
(MJ(t))t≥0 are martingales. By definition, the Q-Wiener process (W (t))t≥0 has mean 0. Since (MJ(t))t≥0

is a series of compensated compound Poisson processes, it has mean 0 as well.

Remark 3.54. It follows from the proof of the previous theorem that for all t ≥ 0

E[L(t)] = tb = ta+ t

∫
A0

y ν(dy),

where a ∈ U arises from Theorem 3.49 and ν is the Lévy measure corresponding to (L(t))t≥0.

Assume that (L(t))t≥0 has the representation (3.7). Let Q0 ∈ L+
1 (U) be the covariance operator of

(W (t))t≥0 and let Q1 ∈ L+
1 (U) be the covariance operator of (MJ(t))t≥0. Since (W (t))t≥0 and (MJ(t))t≥0

are independent, the process (L(t))t≥0 has the covariance operator Q = Q0 + Q1. The following theorem
provides a characterization of Q1.

Theorem 3.55 (Theorem 4.47 (ii), [71]). Assume that the process (L(t))t≥0 has the representation (3.7).
Let Q1 ∈ L+

1 (U) be the covariance operator of (MJ(t))t≥0. Then we have for every x, z ∈ U

〈Q1x, z〉U =

∫
U
〈x, y〉U 〈z, y〉U ν(dy).

Another important representation of a Lévy process is the expansion as a series of real-valued Lévy
processes. For the remaining part of this section, we assume that the U-valued square integrable Lévy
process (L(t))t≥0 has mean 0 and covariance operator Q ∈ L+

1 (U). By Proposition C.5, there exist an
orthonormal basis (un)n∈N of U and a sequence (λn)n∈N of nonnegative real numbers such that Qun = λnun
for each n ∈ N. We get the following convergence results, which generalizes Proposition 3.42.
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Theorem 3.56. We have for all t ≥ 0 and P-a.s.

L(t) =

∞∑
n=1

Ln(t)un, (3.8)

where for each n ∈ N, the processes (Ln(t))t≥0 are uncorrelated square integrable Lévy processes with values
in R and mean 0 given by

Ln(t) = 〈L(t), un〉U
for all t ≥ 0 and P-almost surely. The series in (3.8) converges in probability uniformly in t on any compact
interval [0, T ] and in L2(Ω;U) for all t ≥ 0.

Proof. Since Q ∈ L+
1 (U), we have

∞∑
n=1

λn = Tr(Q) <∞.

Obviously, the processes (Ln(t))t≥0 are real valued Lévy processes for each n ∈ N. By Proposition 3.51, we
get for each n ∈ N and all t ≥ 0

E[Ln(t)] = E〈L(t), un〉U = 0

and
E
[
Ln(t)2

]
= E〈L(t), un〉2U = t〈Qun, un〉U = λnt.

Similarly, we obtain for each n,m ∈ N and all t, s ≥ 0

E[Ln(t)Lm(s)] = E〈L(t), un〉U 〈L(s), um〉U = t ∧ s〈Qun, um〉U = (t ∧ s)λnδn,m,

where δn,m denotes the Kronecker delta. Hence, the processes (Ln(t))t≥0 are square integrable and uncor-
related with mean 0 for each n ∈ N.

Next, we show the convergence of the series (3.8) in L2(Ω;U) for all t ≥ 0. We set for each k ∈ N, all
t ≥ 0 and P-a.s.

Sk(t) =

k∑
n=1

Ln(t)un.

Then it follows that for all t ≥ 0 and each j, k ∈ N with j < k

E ‖Sk(t)− Sj(t)‖2U = E

∥∥∥∥∥∥
k∑

n=j+1

Ln(t)un

∥∥∥∥∥∥
2

U

=

k∑
n,m=j+1

E [Ln(t)Lm(t)] 〈un, um〉U = t

k∑
n=j+1

λn.

Since
∑∞
n=1 λn <∞, we can conclude that (Sk(t))k∈N is a Cauchy sequence in L2(Ω;U) for all t ≥ 0. Hence,

the series (3.8) converges in L2(Ω;U) for all t ≥ 0.
Finally, we prove the convergence of the series (3.8) in probability uniformly in t on any compact interval

[0, T ]. Recall that (L(t))t≥0 is a square integrable Lévy process with mean 0 such that L(t) − L(s) is
independent of Fs for all t > s ≥ 0. Due to Proposition 3.18, the process (L(t))t≥0 is a martingale. Hence,
we can conclude that the process (Sk(t))t≥0 is a stochastically continuous square integrable martingale with
values in U . Applying Theorem 3.19, we get for all r > 0 and each j, k ∈ N

P

(
sup
t∈[0,T ]

‖Sk(t)− Sj(t)‖U ≥ r

)
≤ 1

r2
E‖Sk(T )− Sj(T )‖2U

and the claim follows.
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Remark 3.57. (i) The series (3.8) converges for all t ≥ 0 and P-a.s. if and only if

∞∑
n=1

|Ln(t)|2 <∞

for all t ≥ 0 and P-almost surely.
(ii) For a general Lévy process, the series (3.8) converges in probability, uniformly on any compact interval
[0, T ], see [71, Theorem 4.39].

By Proposition 3.18, we can conclude that the Lévy process (L(t))t≥0 is a martingale. Moreover, we get
the following martingale properties.

Proposition 3.58 (Theorem 4.49 (ii),[71]). The processes (‖L(t)‖2U− t T r(Q))t≥0 and (L(t)⊗L(t)− tQ)t≥0

are martingales with values in R and L1(U), respectively. Moreover, the process (〈L(t), x〉U )t≥0 is a square
integrable real valued martingale for every x ∈ U and the process (〈L(t), x〉U 〈L(t), y〉U − t〈Qx, y〉U )t≥0 is a
real valued martingale for every x, y ∈ U .

It follows from the previous proposition that the angle bracket (〈L〉t)t≥0 is given by 〈L〉t = t T r(Q) for all
t ≥ 0 due to Theorem 3.20. Moreover, the operator angle bracket process (〈〈L〉〉t)t≥0 satisfies 〈〈L〉〉t = tQ
for all t ≥ 0 resulting from Theorem 3.22.

3.3. A Stochastic Integral

In this section, we introduce infinite dimensional stochastic integrals with respect to a square integrable
Lévy martingale. The construction is similar to the case of a stochastic integral with respect to a Q-Wiener
process, see [23, 42, 73]. Let the complete probability space (Ω,F ,P) be equipped with a normal filtration
(Ft)t≥0. We start with a formal definition of elementary processes. Let T > 0 be a fixed terminal point of
time and let U and H be separable Hilbert spaces.

Definition 3.59. An L(U ;H)-valued stochastic process (Ψ(t))t∈[0,T ] is called elementary if there exists
m ∈ N such that for all t ∈ [0, T ] and P-a.s.

Ψ(t) =

m−1∑
j=0

Ψj1(tj ,tj+1](t) (3.9)

where 0 = t0 < t1 < ... < tm = T and Ψj are Ftj -measurable L(U ;H)-valued random variables for
j = 0, 1, ...,m− 1.

The space of all L(U ;H)-valued elementary processes is denoted by ET . Moreover, let (L(t))t≥0 be a
square integrable Lévy martingale with values in U , i.e. (L(t))t≥0 is an U-valued square integrable Lévy
process and a martingale with respect to (Ft)t≥0. For Ψ ∈ ET with representation (3.9), we define the
stochastic integral by

ILt (Ψ) =

t∫
0

Ψ(s) dL(s) =

m−1∑
j=0

Ψj (L(tj+1 ∧ t)− L(tj ∧ t)) (3.10)

for all t ∈ [0, T ] and P-almost surely. Obviously, the operator ILt is linear on ET for all t ∈ [0, T ] and P-almost
surely. Next, we extend the definition of the stochastic integral to a larger class of stochastic processes. As
a consequence of Theorem 3.53, the process (L(t))t≥0 is a square integrable Lévy martingale if and only if
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E[L(t)] = 0 for all t ≥ 0. By Proposition 3.51, there exists an covariance operator Q ∈ L+
1 (U) of (L(t))t≥0

such that
E〈L(t), x〉U 〈L(s), y〉U = t ∧ s 〈Qx, y〉U

for all s, t ≥ 0 and every x, y ∈ U . Let us denote by L(HS)(U ;H) the space of Hilbert-Schmidt operators
from U to H as introduced in Appendix C. Using Proposition C.9 and Remark C.10, there exists an
operator Q1/2 ∈ L+

1 (U) such that Q1/2Q1/2 = Q and we get L(U ;H) ⊂ L(HS)(Q
1/2(U);H). Therefore, we

can conclude that elementary processes takes values in L(HS)(Q
1/2(U);H). For the remaining part of this

section, we assume that every Ψ ∈ ET satisfies

E
T∫

0

‖Ψ(t)‖2L(HS)(Q1/2(U);H) dt <∞.

We equip the space ET with the inner product

〈Ψ,Φ〉ET = E
T∫

0

〈Ψ(t),Φ(t)〉L(HS)(Q1/2(U);H)dt

for every Ψ,Φ ∈ ET . We get the following result.

Theorem 3.60. Let (L(t))t≥0 be a square integrable Lévy martingale with values in a separable Hilbert
space U and covariance operator Q ∈ L+

1 (U). If Ψ ∈ ET , then we have for all t ∈ [0, T ]

E

∥∥∥∥∥∥
t∫

0

Ψ(s) dL(s)

∥∥∥∥∥∥
2

H

= E
t∫

0

‖Ψ(s)‖2L(HS)(Q1/2(U);H) ds.

Proof. The claim results from [71, Proposition 8.6] and Proposition 3.58.

As a consequence of the previous theorem, we get that the mapping ILt : ET → L2(Ω;H) is linear and
bounded for all t ∈ [0, T ] and especially, the mapping ILT : ET → L2(Ω;H) is an isometric transformation.
Hence, we can uniquely extend the definition of the stochastic integral to integrands taking values in the
completion of ET denoted by L2

T . We still denote the extension from L2
T into L2(Ω;H) by ILt and we write

formally

ILt (Ψ) =

t∫
0

Ψ(s) dL(s)

for all t ∈ [0, T ] and P-almost surely. Moreover, we set

t∫
r

Ψ(s) dL(s) =

t∫
0

Ψ(s) dL(s)−
r∫

0

Ψ(s) dL(s)

for all 0 ≤ r ≤ t ≤ T and P-almost surely. The following proposition characterizes the space of integrands
L2
T explicitly.

Proposition 3.61 (Proposition 4.22, [23]). The following statements hold:

(i) If (Ψ(t))t∈[0,T ] is an L(U ;H)-valued predictable process, then (Ψ(t))t∈[0,T ] is an L(HS)(Q
1/2(U);H)-

valued predictable process. In particular, elementary processes are L(HS)(Q
1/2(U);H)-valued pre-

dictable processes.
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(ii) If (Ψ(t))t∈[0,T ] is an L(HS)(Q
1/2(U);H)-valued predictable processes such that

E
T∫

0

‖Ψ(t)‖2L(HS)(Q1/2(U);H) dt <∞,

then there exists a sequence (Ψn)n∈N ⊂ ET such that

lim
n→∞

E
T∫

0

‖Ψ(t)−Ψn(t)‖2L(HS)(Q1/2(U);H) dt = 0.

Hence, the space L2
T contains all predictable processes (Ψ(t))t∈[0,T ] with values in L(HS)(Q

1/2(U);H)
such that

E
T∫

0

‖Ψ(t)‖2L(HS)(Q1/2(U);H) dt <∞.

The space L2
T equipped with the inner product of ET becomes a Hilbert space. Next, we provide some basic

properties of the stochastic integral.

Theorem 3.62. Let (L(t))t≥0 be a square integrable Lévy martingale with values in a separable Hilbert
space U and covariance operator Q ∈ L+

1 (U) and let Ψ ∈ L2
T . Then the following statements hold:

(i) If 0 ≤ r < t ≤ T , then 1(r,t]Ψ ∈ L2
T and we have P-a.s.

t∫
r

Ψ(s) dL(s) =

T∫
0

1(r,t](s)Ψ(s) dL(s). (3.11)

(ii) We get for all t ∈ [0, T ]

E

 t∫
0

Ψ(s) dL(s)

 = 0.

(iii) We have for all t ∈ [0, T ]

E

∥∥∥∥∥∥
t∫

0

Ψ(s) dL(s)

∥∥∥∥∥∥
2

H

= E
t∫

0

‖Ψ(s)‖2L(HS)(Q1/2(U);H) ds.

(iv) The process (ILt (Ψ))t∈[0,T ] given by

ILt (Ψ) =

t∫
0

Ψ(s) dL(s)

for all t ∈ [0, T ] and P-a.s. is a mean square continuous H-valued martingale.
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Proof. It suffices to show the assertions (i), (ii) and (iii) for elementary processes. The generalization for
elements in L2

T can be obtained using standard density arguments.
First, we show that (i) holds. If Ψ ∈ ET , then the process (1(r,t](s)Ψ(s))s∈[0,T ] is an elementary process

with values in L(U ;H) and

E
T∫

0

∥∥1(r,t](s)Ψ(s)
∥∥2

L(HS)(Q1/2(U);H)
ds ≤ E

T∫
0

‖Ψ(s)‖2L(HS)(Q1/2(U);H) ds <∞.

Hence, we get 1(r,t]Ψ ∈ ET . To obtain equation (3.11), we use the operator notation introduced by equation
(3.10). We show some useful preliminary identities. Let Φ ∈ ET have the following representation for all
s ∈ [0, T ] and P-almost surely:

Φ(s) =

m−1∑
j=0

Φj1(tj ,tj+1](s),

where 0 = t0 < t1 < ... < tm = T and Φj are Ftj -measurable L(U ;H)-valued random variables for
j = 0, 1, ...,m− 1. Let (un)n∈N be an orthonormal basis of U . Using Proposition B.7, we get

E
〈
ILT (Φ), ILt (Φ)

〉
H =

m−1∑
j,k=0

E〈Φj (L(tj+1)− L(tj)) ,Φk (L(tk+1 ∧ t)− L(tk ∧ t))〉H

=

m−1∑
j,k=0

∞∑
n=1

E [〈Φ∗kΦj (L(tj+1)− L(tj)) , un〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U ]

=

m−1∑
j,k=0

∞∑
n=1

∞∑
l=1

E
[
〈L(tj+1)− L(tj), ul〉U 〈ul,Φ∗jΦkun〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U

]
.

Note that there exists j0 ∈ {0, 1, ...,m − 1} such that t ∈ (tj0 , tj0+1]. Using Proposition 3.16 and the fact
that the process (L(t))t≥0 is Ft-adapted, we obtain for each k = 0, 1, ..., j0

E
[
〈L(tj0+1)− L(tj0), ul〉U 〈ul,Φ∗j0Φkun〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U

]
= E

[
E[〈L(tj0+1)− L(tj0), ul〉U |Ft]〈ul,Φ∗j0Φkun〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U

]
= E

[
〈L(t)− L(tj0), ul〉U 〈ul,Φ∗j0Φkun〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U

]
= E

[
〈L(tj0+1 ∧ t)− L(tj0 ∧ t), ul〉U 〈ul,Φ∗j0Φkun〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U

]
.

If j0 < m− 1, then L(tk+1 ∧ t)− L(tk ∧ t) = 0 for k > j0. We can conclude

E
〈
ILT (Φ), ILt (Φ)

〉
H

=

m−1∑
j,k=0

∞∑
n=1

∞∑
l=1

E
[
〈L(tj+1 ∧ t)− L(tj ∧ t), ul〉U 〈ul,Φ∗jΦkun〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U

]
=

m−1∑
j,k=0

∞∑
n=1

E [〈Φ∗kΦj (L(tj+1 ∧ t)− L(tj ∧ t)) , un〉U 〈un, L(tk+1 ∧ t)− L(tk ∧ t)〉U ]

=

m−1∑
j,k=0

E [〈Φj (L(tj+1 ∧ t)− L(tj ∧ t)) ,Φk (L(tk+1 ∧ t)− L(tk ∧ t))〉H]

= E
∥∥ILt (Φ)

∥∥2

H .

44



Chapter 3. Stochastic Calculus

Using additionally Theorem 3.60, we obtain

E
∥∥ILT (1[0,t]Ψ)− ILt (Ψ)

∥∥2

H

≤ 2E
∥∥ILT (1[0,t]Ψ)− ILt (1[0,t]Ψ)

∥∥2

H + 2E
∥∥ILt (1[0,t]Ψ)− ILt (Ψ)

∥∥2

H

≤ 2E
∥∥ILT (1[0,t]Ψ)

∥∥2

H − 4E
〈
ILT (1[0,t]Ψ), ILt (1[0,t]Ψ)

〉
H + 2E

∥∥ILt (1[0,t]Ψ)
∥∥2

H + 2E
∥∥ILt (1[0,t]Ψ−Ψ)

∥∥2

H

≤ 2E
∥∥ILT (1[0,t]Ψ)

∥∥2

H − 2E
∥∥ILt (1[0,t]Ψ)

∥∥2

H + 2E
∥∥ILt (1[0,t]Ψ−Ψ)

∥∥2

H

≤ 2E
T∫

0

∥∥1[0,t](s)Ψ(s)
∥∥2

L(HS)(Q1/2(U);H)
ds− 2E

t∫
0

∥∥1[0,t](s)Ψ(s)
∥∥2

L(HS)(Q1/2(U);H)
ds

+ 2E
t∫

0

∥∥1[0,t](s)Ψ(s)−Ψ(s)
∥∥2

L(HS)(Q1/2(U);H)
ds

= 0.

Thus, we obtain P-a.s.

t∫
r

Ψ(s) dL(s) =

t∫
0

Ψ(s) dL(s)−
r∫

0

Ψ(s) dL(s) = ILt (Ψ)− ILr (Ψ) = ILT (1(r,t]Ψ) =

T∫
0

1(r,t](s)Ψ(s) dL(s).

Next, we prove (ii). Due to (i), it suffices to show the result for t = T . We assume that Ψ ∈ ET has the
representation (3.9). By definition of the stochastic integral, we get

E

 T∫
0

Ψ(s) dL(s)

 =

m−1∑
j=0

E [Ψj (L(tj+1)− L(tj))] .

Let (hn)n∈N and (un)n∈N be orthonormal basis ofH and U , respectively. By Proposition B.7 and Proposition
3.16, we get for j = 0, 1, ...,m− 1

E [Ψj (L(tj+1)− L(tj))] = E

[ ∞∑
n=1

〈Ψj (L(tj+1)− L(tj)) , hn〉Hhn

]

=

∞∑
n=1

E
[
〈L(tj+1)− L(tj),Ψ

∗
jhn〉Uhn

]
=

∞∑
n=1

∞∑
k=1

E
[
〈Ψ∗jhn, uk〉U 〈L(tj+1)− L(tj), uk〉U

]
hn

=

∞∑
n=1

∞∑
k=1

E
[
〈Ψ∗jhn, uk〉UE

[
〈L(tj+1)− L(tj), uk〉U |Ftj

]]
hn.

Since the Lévy process (L(t))t∈[0,T ] in an U-valued martingale, we obtain for j = 0, 1, ...,m− 1

E
[
〈L(tj+1)− L(tj), uk〉U |Ftj

]
= 0

and thus, the claim (ii) holds. Note that (iii) is already stated in Theorem 3.60. A proof of (iv) can be
found in [71, Theorem 8.7 (iii)].
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The following proposition is useful when dealing with a closed operator A : D(A) ⊂ H → H.

Proposition 3.63. Let Ψ ∈ L2
T . If Ψ(t)y ∈ D(A) for every y ∈ U , all t ∈ [0, T ] and P-almost surely,

E
T∫

0

‖Ψ(t)‖2L(HS)(Q1/2(U);H) dt <∞ and E
T∫

0

‖AΨ(t)‖2L(HS)(Q1/2(U);H) dt <∞,

then we have P-a.s.
∫ T

0
Ψ(t)dL(t) ∈ D(A) and

A

T∫
0

Ψ(t) dL(t) =

T∫
0

AΨ(t) dL(t).

Proof. One obtains the result similarly to the case of Q-Wiener processes, see [23, Proposition 4.30].

Next, we state a stochastic Fubini theorem. Let λ be a finite measure on a measurable space (E, E).
Recall that PT denotes the smallest σ-field of subsets of ΩT = [0, T ]× Ω containing all sets of the form

(s, t]×A with 0 ≤ s < t ≤ T, s < t,A ∈ Fs and {0} ×A with A ∈ F0.

Then we get the following result.

Proposition 3.64 (Theorem 8.14, [71]). Assume that the mapping (t, ω, x) 7→ Ψ(t, ω, x) is measurable from
(ΩT × E,PT × B(E)) into (L(HS)(Q

1/2(U);H),B(L(HS)(Q
1/2(U);H))) and

∫
E

E
T∫

0

‖Ψ(t, ω, x)‖2L(HS)(Q1/2(U);H) dt dλ(x) <∞.

Then P-a.s. ∫
E

 T∫
0

Ψ(t, ω, x) dL(t)

 dλ(x) =

T∫
0

∫
E

Ψ(t, ω, x) dλ(x)

 dL(t).

Next, we introduce stochastic convolutions. Let (S(t))t≥0 be a C0-semigroup on H and let Ψ ∈ L2
T . Then

the stochastic convolution (I(t))t∈[0,T ] given by

I(t) =

t∫
0

S(t− s)Ψ(s) dL(s) (3.12)

is well defined for all t ∈ [0, T ] and P-almost surely. Under additional assumptions, we get the following
maximal inequality.

Proposition 3.65 (cf. Proposition 1.3, [49]). Let (S(t))t≥0 be a contraction semigroup on H and assume
that Ψ ∈ L2

T . Then the following statements hold:

(i) If k ∈ (0, 2], then

E sup
t∈[0,T ]

∥∥∥∥∥∥
t∫

0

S(t− s)Ψ(s) dL(s)

∥∥∥∥∥∥
k

H

≤ C̃k E

 T∫
0

‖Ψ(t)‖2L(HS)(Q1/2(U);H) dt

k/2

,

where C̃k > 0 is a constant.
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(ii) Assume that (L(t))t≥0 has continuous trajectories. If k ∈ (0,∞), then

E sup
t∈[0,T ]

∥∥∥∥∥∥
t∫

0

S(t− s)Ψ(s) dL(s)

∥∥∥∥∥∥
k

H

≤ ckk E

 T∫
0

‖Ψ(t)‖2L(HS)(Q1/2(U);H) dt

k/2

,

where ck > 0 is a constant.

In order to define local mild solutions to SPDEs, we need to introduce a stopped stochastic convolution.
Here, we can argue as in [16, Appendix]. Let τ be a stopping time with values in [0, T ]. We consider the
stopped process (I(t ∧ τ))t∈[0,T ]. Unfortunately, the formula

I(t ∧ τ) =

t∧τ∫
0

S(t ∧ τ − s)Ψ(s) dL(s)

is not well defined due to the fact that we integrate a process, which is not even Ft-adapted. To overcome
this problem, we introduce a process (Iτ (t))t∈[0,T ] given by

Iτ (t) =

t∫
0

1[0,τ)(s)S(t− s)Φ(s ∧ τ) dL(s) (3.13)

for all t ∈ [0, T ] and P-almost surely. We get the following result.

Lemma 3.66. Let (S(t))t≥0 be a C0-semigroup on H and let τ be a stopping time with values in [0, T ].
Assume that the processes (I(t))t∈[0,T ] and (Iτ (t))t∈[0,T ] are given by (3.12) and (3.13), respectively. Then,
we have for all t ∈ [0, T ] and P-almost surely

S(t− t ∧ τ)I(t ∧ τ) = Iτ (t)

and in particular
I(t ∧ τ) = Iτ (t ∧ τ).

Proof. The processes (I(t))t∈[0,T ] and (Iτ (t))t∈[0,T ] have càdlàg modifications by [71, Theorem 9.24]. The
remaining part of the proof can be obtained similarly to [16, Lemma A.1].

Finally, we state a product formula for infinite dimensional stochastic processes. Here, we assume that
the Lévy process (L(t))t≥0 is given by a Q-Wiener process. To be consistent with the notation introduced
in Section 3.2.1, we denote this process by (W (t))t≥0. We have the following Itô formula.

Proposition 3.67 (Theorem 4.32, [23]). Assume that X0 is an F0-measurable H-valued random variable,

(f(t))t∈[0,T ] is an H-valued Ft-adapted process such that E
∫ T

0
‖f(t)‖Hdt <∞ and Ψ ∈ L2

T . Let the process
(X(t))t∈[0,T ] be given by

X(t) = X0 +

t∫
0

f(s) ds+

t∫
0

Ψ(s) dW (s)

for all t ∈ [0, T ] and P-almost surely. Assume that the function J : [0, T ] × H → R is continuous and its
partial Fréchet derivatives denoted by Jt, Jx, Jxx are uniformly continuous on bounded subsets of [0, T ]×H.
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Then we have for all t ∈ [0, T ] and P-a.s.

J (t,X(t)) = J
(
0, X0

)
+

t∫
0

〈Jx (s,X(s)) ,Ψ(s) dW (s)〉H

+

t∫
0

[
Jt (s,X(s)) + 〈Jx (s,X(s)) , f(s)〉H +

1

2
Tr
(
Jxx (s,X(s)) (Ψ(s)Q1/2)(Ψ(s)Q1/2)∗

)]
ds.

Remark 3.68. For further versions of the Itô formula for infinite dimensional stochastic processes, we
refer to [45, Section 2.5].

Corollary 3.69. For i = 1, 2, assume that X0
i are F0-measurable H-valued random variables, (fi(t))t∈[0,T ]

are H-valued Ft-adapted process such that E
∫ T

0
‖fi(t)‖Hdt < ∞ and Ψi ∈ L2

T . For i = 1, 2, assume that
the processes (Xi(t))t∈[0,T ] satisfy for all t ∈ [0, T ] and P-a.s.

Xi(t) = X0
i +

t∫
0

fi(s) ds+

t∫
0

Ψi(s) dW (s).

Then we have for all t ∈ [0, T ] and P-a.s.

〈X1(t), X2(t)〉H =
〈
X0

1 , X
0
2

〉
H +

t∫
0

[
〈X1(s), f2(s)〉H + 〈X2(s), f1(s)〉H + 〈Ψ1(s),Ψ2(s)〉L(HS)(Q1/2(U);H)

]
ds

+

t∫
0

〈X1(s),Ψ2(s) dW (s)〉H +

t∫
0

〈X2(s),Ψ1(s) dW (s)〉H .

Proof. The claim follows from Proposition 3.67 with J : H×H → R given by J(x1, x2) = 〈x1, x2〉H.

3.4. Stochastic Partial Differential Equations

In this section, we prove existence and uniqueness results for SPDEs both of forward and backward type,
which we deal with in the following chapters. Here, we will mainly concentrate on mild solutions to SPDEs.
For forward equations, the proof of the existence and uniqueness of mild solutions is based on the Banach
fixed point theorem, see [23, 42, 71, 73]. Mild solutions of backward equations require a martingale represen-
tation theorem, see [52]. Furthermore, we will also show the relationship to different concepts of solutions.
Throughout this section, we assume that the complete probability space (Ω,F ,P) is equipped with a normal
filtration (Ft)t≥0.

3.4.1. Forward Stochastic Partial Differential Equations

Here, we prove existence and uniqueness results of forward SPDEs motivated by systems arising in stochastic
control problems. We study systems on bounded domain with sufficiently smooth boundary, where we also
involve nonhomogeneous boundary data. Therefore, we introduce two separable Hilbert spaces H and Hb,
where H refers to data defined inside the domain and Hb refers to data defined on the boundary. We start
with the following linear system in H:{

dy(t) = [Ay(t) +Bu(t) + (λ−A)N1v(t)] dt+G(t) dL(t) + (λ−A)N2 dLb(t),

y(0) = ξ.
(3.14)
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We assume that

• the operator A : D(A) ⊂ H → H is the generator of an analytic semigroup of contractions (eAt)t≥0

and λ > 0 is an element of the resolvent set ρ(A);

• the process (u(t))t∈[0,T ] is Ft-adapted and takes values in H such that

E
T∫

0

‖u(t)‖2H dt <∞;

• B ∈ L(H);

• (L(t))t≥0 is an H-valued square integrable Lévy martingale with covariance operator Q ∈ L+
1 (H);

• (G(t))t∈[0,T ] is a predictable process with values in L(HS)(Q
1/2(H);H) such that

E
T∫

0

‖G(t)‖2L(HS)(Q1/2(H);H)dt <∞;

• the process (v(t))t∈[0,T ] is Ft-adapted and takes values in Hb such that

E
T∫

0

‖v(t)‖2Hb dt <∞;

• (Lb(t))t≥0 is an Hb-valued square integrable Lévy martingale with covariance operator Qb ∈ L+
1 (Hb);

• N1, N2 ∈ L(Hb;D((λ−A)α)) for α ∈ (0, 3
4 );

• ξ is an F0-measurable random variable with values in H.

Note that the operator A − λ is still generator of an analytic semigroup given by (e−λteAt)t≥0, see [70,
Chapter 3, Corollary 2.2]. Hence, the operator A− λ satisfies the assumptions of Remark 2.25 with M = 1
and θ = λ. Therefore, we can define fractional powers of the operator λ − A denoted by (λ − A)α with
α ∈ R according to Section 2.3, respectively. Moreover, we have 0 ∈ ρ(A − λ). Thus, we get the following
properties.

Corollary 3.70. We have

• (λ−A)α+βy = (λ−A)α(λ−A)βy for all α, β ∈ R and every y ∈ D(Aγ) with γ = max{α, β, α+ β};

• eAt : H → D((λ−A)α) for all t > 0 and all α ∈ R;

• (λ−A)αeAty = eAt(λ−A)αy for every y ∈ D((λ−A)α) and all α ∈ R;

• the operator (λ − A)αeAt is linear and bounded for all t > 0 and all α ∈ R. In addition, there exist
constants Mα, δ > 0 such that for all t > 0 and all α > 0

‖(λ−A)αeAt‖H ≤Mαt
−αe−δt.

Proof. The assertions follow immediately from Theorem 2.29 (iv) and Theorem 2.35.
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Remark 3.71. In control theory, system (3.14) arises for the controlled stochastic heat equation with
nonhomogeneous Neumann boundary conditions. Then the operator A refers the Neumann realization of
the Laplace operator introduced in Section 2.5.1. Moreover, the term u(t) is a distributed control and L(t)
is a Lévy noise defined inside the domain. Similarly, the term v(t) is a boundary control and Lb(t) is a
Lévy noise defined on the boundary. The operators N1, N2 belong to the Neumann operator mapping the
boundary data inside the domain. Typically, we have N1 = N2.

Definition 3.72. A predictable process (y(t))t∈[0,T ] with values in H is called a mild solution of system
(3.14) if

sup
t∈[0,T ]

E‖y(t)‖2H <∞

and for all t ∈ [0, T ] and P-a.s.

y(t) = eAtξ +

t∫
0

eA(t−s)Bu(s) ds+

t∫
0

(λ−A)eA(t−s)N1v(s) ds+

t∫
0

eA(t−s)G(s) dL(s)

+

t∫
0

(λ−A)eA(t−s)N2 dLb(s).

Theorem 3.73. Let (u(t))t∈[0,T ] and (v(t))t∈[0,T ] be fixed. For any ξ ∈ L2(Ω;H), there exists a unique
mild solution (y(t))t∈[0,T ] of system (3.14). Moreover, the process (y(t))t∈[0,T ] is mean square continuous.

Proof. By definition, the mild solution of system (3.14) is unique. Next, we show that (y(t))t∈[0,T ] takes
values in H such that supt∈[0,T ] E‖y(t)‖2H <∞. We define for all t ∈ [0, T ] and P-a.s.

ψ1(t) = eAtξ +

t∫
0

eA(t−s)Bu(s) ds, ψ2(t) =

t∫
0

(λ−A)eA(t−s)N1v(s) ds+

t∫
0

(λ−A)eA(t−s)N2 dLb(s),

ψ3(t) =

t∫
0

eA(t−s)G(s) dL(s).

Recall that
∥∥e−At∥∥L(H)

≤ 1 for all t ≥ 0 and B ∈ L(H). Hence, the process (ψ1(t))t∈[0,T ] takes values in H
and there exists a constant C1 > 0 such that

sup
t∈[0,T ]

E ‖ψ1(t)‖2H ≤ 2 sup
t∈[0,T ]

E
∥∥eAtξ∥∥2

H + 2 sup
t∈[0,T ]

E
t∫

0

∥∥∥eA(t−s)Bu(s)
∥∥∥2

H
ds

≤ C1

E‖ξ‖2H + E
T∫

0

‖u(t)‖2H dt

 .
Since N1, N2 ∈ L(Hb;D((λ−A)α)) for α ∈ (0, 3

4 ), we get (λ−A)αN1, (λ−A)αN2 ∈ L(Hb;H) by the closed
graph theorem. By Theorem 3.62 (iii), Corollary 3.70 and the Cauchy-Schwarz inequality, the process
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(ψ2(t))t∈[0,T ] takes values in H and there exists a constant C2 > 0 such that for all α ∈ ( 1
2 ,

3
4 )

sup
t∈[0,T ]

E ‖ψ2(t)‖2H ≤ 2 sup
t∈[0,T ]

E

 t∫
0

∥∥∥(λ−A)1−αeA(t−s)(λ−A)αN1v(s)
∥∥∥
H
ds

2

+ 2 sup
t∈[0,T ]

E

∥∥∥∥∥∥
t∫

0

(λ−A)1−αeA(t−s)(λ−A)αN2 dLb(s)

∥∥∥∥∥∥
2

H

≤ 2M2
1−α sup

t∈[0,T ]

E

 t∫
0

(t− s)α−1 ‖(λ−A)αN1v(s)‖H ds

2

+ 2M2
1−α ‖(λ−A)αN2‖2L(HS)(Q

1/2
b (Hb);H)

sup
t∈[0,T ]

t∫
0

(t− s)2α−2ds

≤ C2

1 + E
T∫

0

‖v(t)‖2Hb dt

 .
Using Theorem 3.62 (iii) and Fubini’s theorem, the process (ψ3(t))t∈[0,T ] takes values in H such that

sup
t∈[0,T ]

E ‖ψ3(t)‖2H ≤ sup
t∈[0,T ]

E
t∫

0

∥∥∥eA(t−s)G(s)
∥∥∥2

L(HS)(Q1/2(H);H)
ds ≤ E

T∫
0

‖G(t)‖2L(HS)(Q1/2(H);H) dt.

Next, we prove that the process (y(t))t∈[0,T ] is mean square continuous. We assume w.l.o.g. 0 ≤ t0 ≤ t ≤ T .
Let I be the identity operator on H. By the Cauchy-Schwarz inequality, there exists a constant c1 > 0 such
that

E ‖ψ1(t)− ψ1(t0)‖2H ≤ 3E
∥∥∥(eA(t−t0) − I

)
eAt0ξ

∥∥∥2

H
+ 3E

∥∥∥∥∥∥
t0∫

0

(
eA(t−t0) − I

)
eA(t0−s)Bu(s) ds

∥∥∥∥∥∥
2

H

+ 3E

∥∥∥∥∥∥
t∫

t0

eA(t−s)Bu(s) ds

∥∥∥∥∥∥
2

H

≤ 3E
∥∥∥(eA(t−t0) − I

)
eAt0ξ

∥∥∥2

H
+ 3E

∥∥∥∥∥∥
(
eA(t−t0) − I

) t0∫
0

eA(t0−s)Bu(s) ds

∥∥∥∥∥∥
2

H

+ c1(t− t0) E
T∫

0

‖u(t)‖2H dt.

Due to Corollary 3.70, Theorem 3.62 (i) and (iii) and the Cauchy-Schwarz inequality, there exists a constant
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c2 > 0 such that

E ‖ψ2(t)− ψ2(t0)‖2H

≤ 4E

∥∥∥∥∥∥
t0∫

0

(
eA(t−t0) − I

)
(λ−A)eA(t0−s)N1v(s) ds

∥∥∥∥∥∥
2

H

+ 4E

 t∫
t0

∥∥∥(λ−A)eA(t−s)N1v(s)
∥∥∥
H
ds

2

+ 4E

∥∥∥∥∥∥
t0∫

0

(
eA(t−t0) − I

)
(λ−A)eA(t0−s)N2 dLb(s)

∥∥∥∥∥∥
2

H

+ 4E

∥∥∥∥∥∥
t∫

t0

(λ−A)eA(t−s)N2 dLb(s)

∥∥∥∥∥∥
2

H

≤ 4E

∥∥∥∥∥∥
(
eA(t−t0) − I

) t0∫
0

(λ−A)eA(t0−s)N1v(s) ds

∥∥∥∥∥∥
2

H

+ c2(t− t0)2α−1E
T∫

0

‖v(t)‖2Hb dt

+ 4E

∥∥∥∥∥∥
(
eA(t−t0) − I

) t0∫
0

(λ−A)eA(t0−s)N2 dLb(s)

∥∥∥∥∥∥
2

H

+ c2(t− t0)2α−1.

Let (hn)n∈N be an orthonormal basis in H. Using Theorem 3.62 (i) and (iii), we obtain

E ‖ψ3(ỹ)(t)− ψ3(ỹ)(t0)‖2H

≤ 2 E

∥∥∥∥∥∥
t0∫

0

(
eA(t−t0) − I

)
eA(t0−s)G(s) dL(s)

∥∥∥∥∥∥
2

H

+ 2 E

∥∥∥∥∥∥
t∫

t0

eA(t−s)G(s) dL(s)

∥∥∥∥∥∥
2

H

≤ 2 E

∥∥∥∥∥∥
(
eA(t−t0) − I

) t0∫
0

eA(t0−s)G(s) dL(s)

∥∥∥∥∥∥
2

H

+ 2 E
t∫

t0

‖G(s)‖2L(HS)(Q1/2(H);H) ds.

Note that limt→t0 ‖e−A(t−t0)h− h‖H = 0 holds for every h ∈ H. Using Corollary B.6 and Proposition B.7,
we can infer that the process (y(t))t∈[0,T ] is mean square continuous. Moreover, the process (y(t))t∈[0,T ]

is obviously Ft-adapted. Hence, the process (y(t))t∈[0,T ] has a predictable modification resulting from
Proposition 3.9.

Remark 3.74. Let the process (G(t))t∈[0,T ] be time independent, i.e. G(t) = G for all t ∈ [0, T ] and

P-almost surely, where G is a square integrable random variable with values in L(HS)(Q
1/2(H);H). If

α ∈ ( 1
2 ,

3
4 ), then the mild solution (y(t))t∈[0,T ] of system (3.14) takes values in D((λ−A)β) with β ∈ [0, 3

4−α)
such that

sup
t∈[0,T ]

E‖y(t)‖2D((λ−A)β) <∞.

Remark 3.75. The mild solution (y(t))t∈[0,T ] of system (3.14) has also a càdlàg modification. One can
argue as in [71, Theorem 9.24]. Since (eAt)t≥0 is a C0 semigroup of contractions, we can apply Theorem

2.14. Thus, there exists a Hilbert space Ĥ containing H and a group (Ŝ(t))t∈R on Ĥ such that eAt = PHŜ(t)

for all t ∈ R, where PH is the orthogonal projection from Ĥ onto H. Note that PHŜ(t) : H → D((λ−A)α)
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for all t > 0 and all α ∈ R due to Corollary 3.70. Using Proposition 3.63, we get for all t ∈ [0, T ] and P-a.s.

t∫
0

eA(t−s)G(s) dL(s) = PHŜ(t)

t∫
0

Ŝ(−s)G(s) dL(s),

t∫
0

(λ−A)eA(t−s)N2 dLb(s) = (λ−A)1−αPHŜ(t)

t∫
0

Ŝ(−s)(λ−A)αN2 dLb(s).

We set X(t) =
∫ t

0
Ŝ(−s)G(s) dL(s) and Xb(t) =

∫ t
0
Ŝ(−s)(λ−A)αN2 dLb(s) for all t ∈ [0, T ] and P-almost

surely. By Theorem 3.62 (iv), the processes (X(t))t∈[0,T ] and (Xb(t))t∈[0,T ] are mean square continuous

Ĥ-valued martingales. Therefore, the processes (X(t))t∈[0,T ] and (Xb(t))t∈[0,T ] have càdlàg modifications as

a consequence of Theorem 3.19. Since the mapping t 7→ Ŝ(t)x is continuous from R\{0} into Ĥ for every

x ∈ Ĥ, we can conclude that the processes (PHŜ(t)X(t))t∈[0,T ] and ((λ − A)1−αPHŜ(t)Xb(t))t∈[0,T ] have
càdlàg modifications.

Remark 3.76. Let (W (t))t≥0 be a Q-Wiener process and let Ψ ∈ L2
T . Then it is well known that the

process (X(t))t∈[0,T ] given by

X(t) =

t∫
0

Ψ(s) dW (s)

for all t ∈ [0, T ] and P-a.s. is continuous, see [23, Section 4.2]. Therefore, the mild solution (y(t))t∈[0,T ]

of system (3.14) has a continuous modification if (L(t))t≥0 and (Lb(t))t≥0 are Q-Wiener processes. The
assertion can be obtained similarly to the previous Remark.

Next, we consider the following linear system on D(Aα):{
dy(t) = [−Ay(t) +Bu(t) +ADv(t)] dt+G(y(t)) dL(t),

y(0) = ξ.
(3.15)

We assume that

• the operator A : D(A) ⊂ H → H is linear and closed such that −A is the generator of an analytic
semigroup of contractions (e−At)t≥0 and 0 is an element of the resolvent set ρ(A);

• the process (u(t))t∈[0,T ] is predictable and takes values in H such that

E
T∫

0

‖u(t)‖2H dt <∞;

• B ∈ L(H);

• (L(t))t≥0 is an H-valued square integrable Lévy martingale with covariance operator Q ∈ L+
1 (H);

• G : H → L(HS)(Q
1/2(H);H) is linear and bounded;

• the process (v(t))t∈[0,T ] is predictable and takes values in Hb such that

E
T∫

0

‖v(t)‖2Hb dt <∞;
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• D ∈ L(Hb;D(Aβ)) for β ∈ (0, 1
4 );

• ξ is an F0-measurable random variable with values in H.

Remark 3.77. In control theory, system (3.15) arises for the controlled stochastic Stokes equations with
nonhomogeneous Dirichlet boundary conditions. Then the operator A refers to the Stokes operator introduced
in Section 2.5.2. Moreover, the term u(t) is a distributed control and L(t) is a Lévy noise defined inside the
domain. The term v(t) is a boundary control and D denotes the Dirichlet operator mapping the boundary
data inside the domain.

Definition 3.78. A predictable process (y(t))t∈[0,T ] with values in D(Aα) is called a mild solution of
system (3.15) if

E
T∫

0

‖y(t)‖2D(Aα)dt <∞

and for t ∈ [0, T ] and P-a.s.

y(t) = e−Atξ +

t∫
0

e−A(t−s)Bu(s) ds+

t∫
0

Ae−A(t−s)Dv(s) ds+

t∫
0

e−A(t−s)G(y(s)) dL(s).

Theorem 3.79. Let (u(t))t∈[0,T ] and (v(t))t∈[0,T ] be fixed. If α ∈ [0, 1
4 ) and β ∈ (0, 1

4 − α), then for any
ξ ∈ L2(Ω;D(Aα)), there exists a unique mild solution (y(t))t∈[0,T ] of system (3.15).

Proof. For all t0, t1 ∈ [0, T ] with t0 < t1, let the space Z[t0,t1] contain all predictable processes (ỹ(t))t∈[t0,t1]

with values in D(Aα) such that E
∫ t1
t0
‖ỹ(t)‖2D(Aα)dt <∞. The space Z[t0,t1] equipped with the inner product

〈ỹ1, ỹ2〉Z[t0,t1]
= E

t1∫
t0

〈ỹ1(t), ỹ2(t)〉D(Aα)dt

for every ỹ1, ỹ2 ∈ Z[t0,t1] becomes a Hilbert space. We define for t ∈ [0, T ] and P-a.s.

J (ỹ)(t) = e−Atξ +

t∫
0

e−A(t−s)Bu(s) ds+

t∫
0

Ae−A(t−s)Dv(s) ds+

t∫
0

e−A(t−s)G(ỹ(s)) dL(s).

Let T1 ∈ (0, T ] and let us denote by ZT1
the space Z[0,T1]. First, we prove that J maps ZT1

into itself. We
define for t ∈ [0, T1] and P-a.s.

ψ1(t) = e−Atξ +

t∫
0

e−A(t−s)Bu(s) ds, ψ2(t) =

t∫
0

Ae−A(t−s)Dv(s) ds,

ψ3(ỹ)(t) =

t∫
0

e−A(t−s)G(ỹ(s)) dL(s).

Recall that
∥∥e−At∥∥L(H)

≤ 1 for all t ≥ 0 and B ∈ L(H). Using Theorem 2.35, Proposition B.9 and the

Cauchy-Schwarz inequality, the process (ψ1(t))t∈[0,T1] takes values in D(Aα) and there exists a constant
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C1 > 0 such that

E
T1∫
0

‖ψ1(t)‖2D(Aα) dt ≤ 2E
T1∫
0

∥∥e−AtAαξ∥∥2

H dt+ 2E
T1∫
0

 t∫
0

∥∥∥Aαe−A(t−s)Bu(s)
∥∥∥
H
ds

2

dt

≤ 2T1 E ‖ξ‖2D(Aα) + 2M2
α E

T1∫
0

 t∫
0

(t− s)−α ‖Bu(s)‖H ds

2

dt

≤ C1

E‖ξ‖2D(Aα) + E
T1∫
0

‖u(t)‖2H dt

 .
Since D ∈ L(Hb;D(Aα+β)) for α + β ∈ (0, 1

4 ), we get Aα+βD ∈ L(Hb;H) by the closed graph theorem.
By Theorem 2.29 (iv), Theorem 2.35, Proposition B.9 and Young’s inequality for convolutions, the process
(ψ2(t))t∈[0,T1] takes values in D(Aα) and there exists a constant C2 > 0 such that

E
T1∫
0

‖ψ2(t)‖2D(Aα) dt ≤ 2E
T1∫
0

 t∫
0

∥∥∥A1−βe−A(t−s)Aα+βDv(s)
∥∥∥
H
ds

2

dt

≤M2
1−βE

T1∫
0

 t∫
0

(t− s)β−1
∥∥Aα+βDv(s)

∥∥
H ds

2

dt

≤M2
1−β

 T1∫
0

tβ−1dt

2

E
T1∫
0

∥∥Aα+βDv(t)
∥∥2

H dt

≤ C2 E
T1∫
0

‖v(t)‖2Hb dt.

Due to Theorem 2.35 and since G : H → L(HS)(Q
1/2(H);H) is linear and bounded, one can verify the

assumptions of Proposition 3.63. Hence, the process (ψ3(ỹ)(t))t∈[0,T1] takes values in D(Aα). Using Fubini’s
theorem, Theorem 3.62 (iii), Theorem 2.35, Young’s inequality for convolutions and Corollary 2.32, there
exists a constant C3 > 0 such that

E
T1∫
0

‖ψ3(ỹ)(t)‖2D(Aα) dt =

T1∫
0

E

∥∥∥∥∥∥
t∫

0

Aαe−A(t−s)G(ỹ(s)) dL(s)

∥∥∥∥∥∥
2

H

dt

≤M2
α E

T1∫
0

t∫
0

(t− s)−2α ‖G(ỹ(s))‖2L(HS)(Q1/2(H);H) ds dt

≤ C3T
1−2α
1 E

T1∫
0

‖ỹ(t)‖2D(Aα)dt. (3.16)

Hence, we can conclude that for fixed ỹ ∈ ZT1
, the process (J (ỹ)(t))t∈[0,T1] takes values in D(Aα) such

that E
∫ T1

0
‖J (ỹ)(t)‖2D(Aα)dt < ∞. Obviously, the process (J (ỹ)(t))t∈[0,T1] is predictable. Therefore, we

can infer that J maps ZT1
into itself.
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Next, we show that J is a contraction on ZT1 . Recall that G : H → L(HS)(Q
1/2(H);H) is linear. Using

inequality (3.16), we get for every ỹ1, ỹ2 ∈ ZT1

E
T1∫
0

‖J (ỹ1)(t)− J (ỹ2)(t)‖2D(Aα) dt = E
T1∫
0

‖ψ3(ỹ1 − ỹ2)(t)‖2D(Aα) dt ≤ C3T
1−2α
1 E

T1∫
0

‖ỹ1(t)− ỹ2(t)‖2D(Aα)dt.

We choose T1 ∈ (0, T ] such that C3T
1−2α
1 < 1. Applying the Banach fixed point theorem, we get a unique

element y ∈ ZT1 such that for t ∈ [0, T1] and P-a.s. y(t) = J (y)(t).
Next, we consider for t ∈ [T1, T ] and P-a.s.

J (ỹ)(t) = e−A(t−T1)y(T1) +

t∫
T1

e−A(t−s)Bu(s) ds+

t∫
T1

Ae−A(t−s)Dv(s) ds+

t∫
T1

e−A(t−s)G(ỹ(s)) dL(s).

Again, for a certain T2 ∈ [T1, T ], there exists a unique fixed point of J on Z[T1,T2]. By continuing the
method, we get the existence and uniqueness of a predictable process (y(t))t∈[0,T ] satisfying for t ∈ [0, T ]
and P-a.s. y(t) = J (y)(t).

Next, we consider the following nonlinear system in D(Aα):{
dy(t) = − [Ay(t) +B(y(t))− Fu(t)] dt+G(y(t)) dL(t),

y(0) = ξ.
(3.17)

We assume that

• the operator A : D(A) ⊂ H → H is linear and closed such that −A is the generator of an analytic
semigroup of contractions (e−At)t≥0 and 0 is an element of the resolvent set ρ(A);

• there exists α, δ ∈ [0, 1) and a constant C > 0 such that for every y, z ∈ D(Aα)

‖A−δB(y)‖H ≤ C‖y‖D(Aα), (3.18)

‖A−δ(B(y)−B(z))‖H ≤ C‖y − z‖D(Aα); (3.19)

• the process (u(t))t∈[0,T ] is Ft-adapted and takes values in D(Aβ), β ∈ [0, α], such that

E
T∫

0

‖u(t)‖2D(Aβ) dt <∞;

• F ∈ L(D(Aβ));

• (L(t))t≥0 is a square integrable Lévy martingale with values in H and covariance operator Q ∈ L+
1 (H);

• G : H → L(HS)(Q
1/2(H);D(Aα)) satisfies for every y, z ∈ H

‖G(y)‖L(HS)(Q1/2(H);D(Aα)) ≤ Ĉ‖y‖H, (3.20)

‖G(y)−G(z)‖L(HS)(Q1/2(H);D(Aα)) ≤ Ĉ‖y − z‖H, (3.21)

where Ĉ > 0 is a constant;
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• ξ is an F0-measurable random variable with values in H.

Remark 3.80. In control theory, system (3.17) arises for the controlled stochastic Navier-Stokes equations
with homogeneous Dirichlet boundary conditions. Then the operator A refers to the Stokes operator intro-
duced in Section 2.5.2. The operator B is related to the convection term. Moreover, the term u(t) is a
distributed control and L(t) is a Lévy noise defined inside the domain.

Definition 3.81. A predictable process (y(t))t∈[0,T ] with values in D(Aα) is called a mild solution of
system (3.17) if

E sup
t∈[0,T ]

‖y(t)‖2D(Aα) <∞ (3.22)

and for all t ∈ [0, T ] and P-a.s.

y(t) = e−Atξ −
t∫

0

Aδe−A(t−s)A−δB(y(s)) ds+

t∫
0

e−A(t−s)Fu(s) ds+

t∫
0

e−A(t−s)G(y(s)) dL(s).

The main difficulty is the case α+δ > 1
2 . For that reason, the strong regularity property (3.22) is required.

Theorem 3.82. Let the parameters α, δ ∈ [0, 1) satisfy α + δ < 1. Moreover, let (u(t))t∈[0,T ] be fixed

with β ∈ [0, α) such that α − β < 1
2 . Then for any ξ ∈ L2(Ω;D(Aα)), there exists a unique mild solution

(y(t))t∈[0,T ] of system (3.17). Moreover, the process (y(t))t∈[0,T ] is mean square continuous.

Proof. For all t0, t1 ∈ [0, T ] with t0 < t1, let the space Z[t0,t1] contain all predictable processes (ỹ(t))t∈[t0,t1]

with values in D(Aα) such that E supt∈[t0,t1] ‖ỹ(t)‖2D(Aα) <∞. The space Z[t0,t1] equipped with the norm

‖ỹ‖2Z[t0,t1]
= E sup

t∈[t0,t1]

‖ỹ(t)‖2D(Aα)

for every ỹ ∈ Z[t0,t1] becomes a Banach space. We define for all t ∈ [0, T ] and P-a.s.

J (ỹ)(t) = e−Atξ −
t∫

0

Aδe−A(t−s)A−δB(ỹ(s)) ds+

t∫
0

e−A(t−s)Fu(s) ds+

t∫
0

e−A(t−s)G(ỹ(s)) dL(s).

Let T1 ∈ (0, T ] and let us denote by ZT1
the space Z[0,T1]. First, we prove that J maps ZT1

into itself. We
define for all t ∈ [0, T1] and P-a.s.

ψ1(t) = e−Atξ +

t∫
0

e−A(t−s)Fu(s) ds, ψ2(ỹ)(t) =

t∫
0

Aδe−A(t−s)A−δB(ỹ(s)) ds,

ψ3(ỹ)(t) =

t∫
0

e−A(t−s)G(ỹ(s)) dL(s).

Recall that
∥∥e−At∥∥L(H)

≤ 1 for all t ≥ 0 and F ∈ L(H). Using Theorem 2.35, Proposition B.9 and the

Cauchy-Schwarz inequality, we get that the process (ψ1(t))t∈[0,T1] takes values in D(Aα) and there exists a
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constant C1 > 0 such that

E sup
t∈[0,T1]

‖ψ1(t)‖2D(Aα) ≤ 2E sup
t∈[0,T1]

∥∥e−AtAαξ∥∥2

H + 2E sup
t∈[0,T1]

 t∫
0

∥∥∥Aα−βe−A(t−s)AβFu(s)
∥∥∥
H
ds

2

≤ 2E ‖ξ‖2D(Aα) + 2M2
α−β E sup

t∈[0,T1]

 t∫
0

(t− s)β−α ‖Fu(s)‖D(Aβ) ds

2

≤ C1

E‖ξ‖2D(Aα) + E
T1∫
0

‖u(t)‖2D(Aβ) dt

 .
By Theorem 2.29 (iv), Theorem 2.35, Proposition B.9 and inequality (3.18), the process (ψ2(ỹ)(t))t∈[0,T1]

takes values in D(Aα) and there exists a constant C2 > 0 such that

E sup
t∈[0,T1]

‖ψ2(ỹ)(t)‖2D(Aα) ≤ E sup
t∈[0,T1]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB(ỹ(s))
∥∥∥
H
ds

2

≤M2
α+δC

2 E sup
t∈[0,T1]

 t∫
0

(t− s)−α−δ ‖ỹ(s)‖D(Aα) ds

2

≤ C2 E sup
t∈[0,T1]

‖ỹ(t)‖2D(Aα) .

Due to Theorem 2.35, Corollary 2.32 inequality (3.20), one can verify the assumptions of Proposition 3.63
and hence, the process (ψ3(ỹ)(t))t∈[0,T1] takes values in D(Aα). Using additionally Proposition 3.65 (i) with
k = 2, there exists a constant C3 > 0 such that

E sup
t∈[0,T1]

‖ψ3(ỹ)(t)‖2D(Aα) = E sup
t∈[0,T1]

∥∥∥∥∥∥
t∫

0

e−A(t−s)AαG(ỹ(s)) dL(s)

∥∥∥∥∥∥
2

H

≤ C̃2 E
T1∫
0

‖G(ỹ(t))‖2L(HS)(Q1/2(H);D(Aα)) dt

≤ C3 E sup
t∈[0,T1]

‖ỹ(t)‖2D(Aα).

Hence, we can conclude that for fixed ỹ ∈ ZT1
, the processes (J (ỹ)(t))t∈[0,T ] takes values in D(Aα) such that

E supt∈[0,T ] ‖J (ỹ)(t)‖2D(Aα) <∞. To conclude that J maps ZT1
into itself, it remains to show that the pro-

cess (J (ỹ)(t))t∈[0,T1] is predictable. We first prove that the process (J (ỹ)(t))t∈[0,T1] is mean square continu-
ous. Note that similarly to Theorem 3.73, we obtain that the processes (ψ1(t))t∈[0,T1] and (ψ3(ỹ)(t))t∈[0,T1]

are mean square continuous for fixed ỹ ∈ ZT1
. We assume w.l.o.g. 0 ≤ t0 ≤ t ≤ T1. Let I be the identity

operator on H. From Theorem 2.29 (iv), Theorem 2.35 and inequality (3.18), there exists a constant c̃ > 0
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such that

E ‖ψ2(ỹ)(t)− ψ2(ỹ)(t0)‖2D(Aα) ≤ 2 E

∥∥∥∥∥∥
t0∫

0

(
e−A(t−t0) − I

)
Aα+δe−A(t0−s)A−δB(ỹ(s)) ds

∥∥∥∥∥∥
2

H

+ 2 E

 t∫
t0

∥∥∥Aα+δe−A(t−s)A−δB(ỹ(s))
∥∥∥
H
ds

2

≤ 2 E

∥∥∥∥∥∥
(
e−A(t−t0) − I

) t0∫
0

Aα+δe−A(t0−s)A−δB(ỹ(s)) ds

∥∥∥∥∥∥
2

H

+ c̃(t− t0)2−2α−2δ E sup
t∈[0,T1]

‖ỹ(t)‖2D(Aα) .

Since limt→t0 ‖e−A(t−t0)h − h‖H = 0 holds for every h ∈ H and using Proposition B.7, we can infer that
the process (ψ2(ỹ)(t))t∈[0,T1] is mean square continuous for fixed ỹ ∈ ZT1

. Thus, we can conclude that the
process (J (ỹ)(t))t∈[0,T1] is mean square continuous for fixed ỹ ∈ ZT1 . Since (J (ỹ)(t))t∈[0,T1] is Ft-adapted,
we can apply Proposition 3.9. Hence, the process (J (ỹ)(t))t∈[0,T1] has a predictable modification for fixed
ỹ ∈ ZT1

.
Next, we show that J is a contraction on ZT1

. Using Theorem 2.29 (iv), Theorem 2.35 and inequality
(3.19), there exists a constant c1 > 0 such that for every ỹ1, ỹ2 ∈ ZT1

E sup
t∈[0,T1]

‖ψ2(ỹ1)(t)− ψ2(ỹ2)(t)‖2D(Aα) ≤ E sup
t∈[0,T1]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δ [B(ỹ1(s))−B(ỹ2(s))]
∥∥∥
H
ds

2

≤ c1T 2−2α−2δ
1 E sup

t∈[0,T1]

‖ỹ1(t)− ỹ2(t)‖2D(Aα) .

By Theorem 2.35, Proposition 3.65 and inequality (3.21), there exists a constant c2 > 0 such that for every
ỹ1, ỹ2 ∈ ZT1

E sup
t∈[0,T1]

‖ψ3(ỹ1)(t)− ψ3(ỹ2)(t)‖2D(Aα) = E sup
t∈[0,T1]

∥∥∥∥∥∥
t∫

0

e−A(t−s)Aα [G(ỹ1(s))−G(ỹ2(s))] dL(s)

∥∥∥∥∥∥
2

H

≤ c2T1 E sup
t∈[0,T1]

‖ỹ1(t)− ỹ2(t)‖2D(Aα) .

Consequently, we obtain for every ỹ1, ỹ2 ∈ ZT1

E sup
t∈[0,T1]

‖J (ỹ1)(t)− J (ỹ2)(t)‖2D(Aα) ≤ K1 E sup
t∈[0,T1]

‖ỹ1(t)− ỹ2(t)‖2D(Aα) ,

where K1 = 2c1T
2−2α−2δ
1 + 2c2T1. We chose T1 ∈ [0, T ] such that K1 < 1. Applying the Banach fixed point

theorem, we get a unique element y ∈ ZT1
such that for all t ∈ [0, T1] and P-a.s. y(t) = J (y)(t).

Next, we consider for all t ∈ [T1, T ] and P-a.s.

J (ỹ)(t) = e−A(t−T1)y(T1)−
t∫

T1

Aδe−A(t−s)A−δB(ỹ(s)) ds+

t∫
T1

e−A(t−s)Fu(s) ds+

t∫
T1

e−A(t−s)G(ỹ(s)) dL(s).
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Again, for a certain T2 ∈ [T1, T ], there exists a unique fixed point of J on Z[T1,T2]. By continuing the
method, we get the existence and uniqueness of a predictable process (y(t))t∈[0,T ] satisfying for all t ∈ [0, T ]
and P-a.s. y(t) = J (y)(t).

Remark 3.83. Similarly to Remark 3.75, one can conclude that the mild solution of system 3.17 has a
càdlàg modification. If (L(t))t≥0 is a Q-Wiener process, then there exists a continuous modification, where
we can argue as in Remark 3.76.

3.4.2. Backward Stochastic Partial Differential Equations

Existence and uniqueness results of mild solutions to backward SPDEs are mainly based on a martingale
representation theorem. These theorems are not available for infinite dimensional Lévy processes in general.
Here, we will restrict to the case of Q-Wiener processes. LetH be a separable Hilbert space. Throughout this
section, we assume that (W (t))t≥0 is an H-valued Q-Wiener process with covariance operator Q ∈ L+

1 (H).
First, we provide a martingale representation theorem. A more general result is given in [42, Theorem 2.5].
By Proposition C.5, there exists an orthonormal basis (hn)n∈N of H and a sequence of nonnegative real
numbers (λn)n∈N such that Qhn = λnhn for each n ∈ N. Due to Proposition 3.42, we have the following
expansion for arbitrary t ≥ 0:

W (t) =

∞∑
n=1

√
λnwn(t)hn,

where (wn(t))t≥0, n ∈ N, are mutually independent real valued Brownian motions. For the remaining
part of this section, we assume that the complete probability space (Ω,F ,P) is endowed with the filtration
(F(t))t≥0 given by Ft = σ{

⋃∞
n=1 Fnt } for all t ≥ 0, where Fnt = σ{wn(s) : 0 ≤ s ≤ t}. We need the following

auxiliary results, where T > 0 is fixed.

Lemma 3.84. For each n ∈ N, the linear span of the random variablesexp


T∫

0

h(t) dwn(t)− 1

2

T∫
0

(h(t))2 dt

 : h ∈ L2([0, T ]) deterministic


is dense in L2(Ω,FnT ,P).

Proof. The claim follows immediately from [66, Lemma 4.3.2].

Lemma 3.85. Let the process (m(t))t≥0 be a continuous real valued Ft-martingale such that E|m(t)|2 <∞
for all t ≥ 0. Then there exists a unique sequence of predictable real valued processes (φn(t))t∈[0,T ], n ∈ N,
such that for all t ∈ [0, T ] and P-a.s.

m(t) = E[m(0)] +

∞∑
n=1

t∫
0

√
λnφn(s) dwn(s),

where
∑∞
n=1 λn E

∫ T
0
|φn(t)|2dt <∞.

Proof. By definition, we get

L2(Ω,FT ,P) =

∞⊕
n=1

L2(Ω,FnT ,P).
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As a consequence of Lemma 3.84, the linear span of the random variablesexp


T∫

0

h(t) dwn(t)− 1

2

T∫
0

(h(t))2 dt

 : h ∈ L2([0, T ]) deterministic, n ∈ N


is dense in L2(Ω,FT ,P). For the remaining part, we can adopt the proof of [66, Theorem 4.3.4].

We have the following martingale representation theorem in (Ω,FT ,P). A proof can be found in [42]. For
the convenience of the reader, we will adopt this proof here.

Theorem 3.86. Let the process (M(t))t≥0 be a continuous Ft-martingale with values in H such that
E‖M(t)‖2H < ∞ for all t ≥ 0. Then there exists a unique predictable process (Φ(t))t∈[0,T ] with values

in L(HS)(Q
1/2(H);H) such that E

∫ T
0
‖Φ(t)‖2L(HS)(Q1/2(H);H)

dt <∞ and we have for all t ∈ [0, T ] and P-a.s.

M(t) = E[M(0)] +

t∫
0

Φ(s) dW (s).

Proof. Recall that (hm)m∈N is an orthonormal basis of H. Using Lemma 3.85 for each m ∈ N, there exists
a unique sequence of predictable real valued processes (φmn (t))t∈[0,T ], n ∈ N, such that for all t ∈ [0, T ] and
P-a.s.

〈M(t), hm〉H = E[〈M(0), hm〉H] +

∞∑
n=1

t∫
0

√
λnφ

m
n (s) dwn(s),

where
∑∞
n=1 λn E

∫ T
0
|φmn (t)|2dt <∞. Note that for all t ∈ [0, T ]

E
∞∑
m=1

〈M(t), hm〉2H = E‖M(t)‖2H <∞.

Hence, we have for all t ∈ [0, T ] and P-a.s.

M(t) =

∞∑
m=1

〈M(t), hm〉Hhm

and using Proposition B.7, we obtain

∞∑
m=1

E[〈M(0), hm〉Hhm] = E

[ ∞∑
m=1

〈M(0), hm〉Hhm

]
= E[M(0)].

Therefore, we get for all t ∈ [0, T ] and P-a.s.

M(t) =

∞∑
m=1

E[〈M(0), hm〉Hhm] +

∞∑
m=1

∞∑
n=1

t∫
0

√
λnφ

m
n (s)hm dwn(s)

= E[M(0)] +

∞∑
m=1

∞∑
n=1

t∫
0

√
λnφ

m
n (s)hm dwn(s).
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This representation and the assumptions on the process (M(t))t≥0 justifies the interchanging of summations
with the result that

M(t) = E[M(0)] +

∞∑
n=1

√
λn

∞∑
m=1

t∫
0

φmn (s)hm dwn(s).

Next, let the process (Φ(t))t∈[0,T ] be defined for every x ∈ Q1/2(H), every y ∈ H, all t ∈ [0, T ] and P-a.s.

〈Φ(t)x, y〉H =

∞∑
n=1

∞∑
m=1

λn〈y, hm〉H〈x, hn〉Q1/2(H)φ
m
n (t),

where the inner product in Q1/2(H) is defined in Remark C.10. Then the process (Φ(t))t∈[0,T ] is predictable

with values in L(HS)(Q
1/2(H);H) such that E

∫ T
0
‖Φ(t)‖2L(HS)(Q1/2(H);H)

dt <∞ and we have for all t ∈ [0, T ]

and P-a.s.
t∫

0

Φ(s) dW (s) =

∞∑
n=1

√
λn

∞∑
m=1

t∫
0

φmn (s)hm dwn(s),

which completes the proof.

Remark 3.87. Here, we recall a martingale representation theorem, where the filtration is generated by a
real-valued Lévy process. For more details, we refer to [65]. Let (Ω,F ,P) be a complete probability space
and let (L(t))t≥0 be a real-valued Lévy process, where we assume that we are using the càdlàg modification.
We endow the probability space (Ω,F ,P) with the filtration (Ft)t≥0 given by Ft = σ{Gt ∪ N} for all t ≥ 0,
where Gt = σ{L(s) : 0 ≤ s ≤ t} and N contains all sets A ∈ F with P(A) = 0. The characteristic function
of (L(t))t≥0 is given by

E eiθL(t) = e−tψ(θ)

for every θ ∈ R and all t ≥ 0, where

ψ(θ) = −iaθ +
σ2

2
θ2 +

∫
R

(
1− eiθx + 1{|x|<1}(x) iθx

)
ν(dx)

with a ∈ R, σ2 ≥ 0 and ν is a measure on R\{0} with
∫
R(1∧x2)ν(dx) <∞. This formula is the well known

Lévy-Khinchin formula, which is also stated in Theorem 3.50 for an infinite dimensional Lévy process. We
assume that for some ε > 0 and λ > 0 ∫

(−ε,ε)c
eλ|x| ν(dx) <∞,

which implies especially that E|L(t)|n < ∞ for each n ∈ N and all t ≥ 0. Let (∆L(t))t≥0 be the process of
jumps given by ∆L(t) = L(t)− L(t−) for all t ≥ 0 and P-almost surely. We also introduce the power jump
processes (Xk(t))t≥0 with k ∈ N defined by

Xk(t) =

L(t) if k = 1∑
0<s≤t

(∆L(s))k if k ≥ 2

for all t ≥ 0 and P-almost surely. Then the processes (Xk(t))t≥0 with k ∈ N are again Lévy processes and
we get for each k ∈ N and all t ≥ 0

E[Xk(t)] = tmk
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with m1 = E[L(1)] and mk =
∫
R x

kν(dx) for k ≥ 2. We denote by (Y k(t))t≥0 with k ∈ N the compensated

power jump processes given by Y k(t) = Xk(t) − tmk for each k ∈ N, all t ≥ 0 and P-almost surely.
The processes (Y k(t))t≥0 with k ∈ N are martingales. We introduce the stochastic processes (Hk(t))t≥0

with k ∈ N as linear combinations of the stochastic processes (Y j(t))t≥0 for j = 1, ..., k with the leading
coefficient equal to 1, i.e. we have for each k ∈ N, all t ≥ 0 and P-a.s.

Hk(t) = Y k(t) + ak,k−1Y
k−1(t) + ...+ ak,1Y

1(t),

where ak,j ∈ R for all j = 1, ..., k − 1. The processes (Hk(t))t≥0 with k ∈ N are again martingales.
Furthermore, the coefficients ak,j ∈ R with k ∈ N and j = 1, ..., k − 1 are chosen such that the processes
(Hk(t))t≥0 with k ∈ N are pairwise strongly orthogonal, i.e. we have for each k, l ∈ N

lim
n→∞

sup
t≥0

∫
{|Hk(t)Hl(t)|≥n}

|Hk(t)H l(t)|P(dω) = 0.

We get the following martingale representation theorem, see [65, Remark 2]: If (m(t))t≥0 is a square in-
tegrable real-valued Ft-martingale satisfying supt≥0 E|m(t)|2 < ∞, then there exist predictable processes

(φk(t))t≥0 with k ∈ N such that E
∫∞

0
|φk(t)|2dt <∞ for each k ∈ N and we have for all t ≥ 0 and P-a.s.

m(t) = E[m(0)] +

∞∑
k=1

t∫
0

φk(s) dHk(s).

We also note that further martingale representation theorems for filtration generated by real-valued square
integrable Lévy processes can be found in [2, 77].

Remark 3.88. The previous remark enables us to state a martingale representation theorem for an in-
finite dimensional martingale as follows: Again, we assume that the complete probability space (Ω,F ,P)
is endowed with the filtration (Ft)t≥0 as introduced in the previous remark. Let (M(t))t≥0 be a square
integrable Ft-martingale with values in H satisfying supt≥0 E‖M(t)‖2H < ∞. Let (hn)n∈N be an orthonor-

mal basis in H. The processes (〈M(t), hn〉H)t≥0 are square integrable real-valued Ft-martingale such that
supt≥0 E|〈M(t), hn〉H|2 < ∞ for each n ∈ N. Hence, for each n ∈ N, there exist predictable processes

(φkn(t))t≥0 with k ∈ N such that for all t ≥ 0 and P-a.s.

〈M(t), hn〉H = E[〈M(0), hn〉H] +

∞∑
k=1

t∫
0

φkn(s) dHk(s).

Since supt≥0 E
∑∞
n=1〈M(t), hn〉2H = supt≥0 E‖M(t)‖2H <∞, we obtain for all t ≥ 0 and P-a.s.

M(t) =

∞∑
n=1

〈M(t), hn〉Hhn =

∞∑
n=1

E[〈M(0), hn〉Hhn] +

∞∑
n=1

∞∑
k=1

t∫
0

φkn(s)hn dH
k(s).

Using Proposition B.7, we get for all t ≥ 0 and P-a.s.

M(t) = E[M(0)] +

∞∑
n=1

∞∑
k=1

t∫
0

φkn(s)hn dH
k(s).

Remark 3.89. Note that the martingale representation theorem derived in the previous remark is based on
the filtration (Ft)t≥0 generated by the real-valued Lévy process (L(t))t≥0. Following the proof of Theorem
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3.86, a general martingale representation theorem with a filtration generated by an infinite dimensional
Lévy process requires a series expansion with mutually independent real-valued Lévy processes. According to
Theorem 3.56 such a series expansion is only available with uncorrelated Lévy processes. For that reason,
we are forced to restrict the martingale representation theorem stated in the previous remark to the case of
a filtration generated by a real-valued Lévy process.

Next, we introduce the following system in H:{
dz(t) = −[−Az(t) +G(z(t),Φ(t)) + g(t)]dt+ Φ(t) dW (t),

z(T ) = Z.
(3.23)

We assume that

• the operator A : D(A) ⊂ H → H is linear and closed such that −A is the generator of a C0 semigroup
(e−At)t≥0;

• G : H×L(HS)(Q
1/2(H);H)→ H satisfies for every y, z ∈ H and every Φ,Ψ ∈ L(HS)(Q

1/2(H);H)

‖G(y,Φ)‖H ≤ Ĉ
[
‖y‖H + ‖Φ‖L(HS)(Q1/2(H);H)

]
, (3.24)

‖G(y,Φ)−G(z,Ψ)‖H ≤ Ĉ
[
‖y − z‖H + ‖Φ−Ψ‖L(HS)(Q1/2(H);H)

]
, (3.25)

where Ĉ > 0 is a constant;

• (g(t))t∈[0,T ] is a predictable process with values in H such that

E
T∫

0

‖g(t)‖2H dt <∞;

• Z is an FT -measurable random variable with values in H.

Remark 3.90. In control theory, system (3.23) arises for the adjoint equation of the controlled stochastic
Stokes equations.

Definition 3.91. A pair of predictable processes (z(t),Φ(t))t∈[0,T ] with values in H × L(HS)(Q
1/2(H);H)

is called a mild solution of system (3.23) if

sup
t∈[0,T ]

E ‖z(t)‖2H <∞, E
T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z(t) = e−A(T−t)Z +

T∫
t

e−A(s−t)[G(z(s),Φ(s)) + g(s)] ds−
T∫
t

e−A(s−t)Φ(s) dW (s). (3.26)

An existence and uniqueness result is mainly based on the following lemma.
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Lemma 3.92 (Lemma 2.1,[52]). Let ζ ∈ L2(Ω;H) be FT -measurable and let (f(t))t∈[0,T ] be a predictable

process with values in H such that E
∫ T

0
‖f(t)‖2Hdt < ∞. Then there exists a unique pair of predictable

processes (ϕ(t), φ(t))t∈[0,T ] with values in H×L(HS)(Q
1/2(H);H) such that for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)ζ +

T∫
t

e−A(s−t)f(s) ds−
T∫
t

e−A(s−t)φ(s) dW (s).

Moreover, there exists a constant c > 0 such that for all t ∈ [0, T ]

E ‖ϕ(t)‖2H ≤ c

E ‖ζ‖2H + (T − t)E
T∫
t

‖f(s)‖2Hds

 , (3.27)

E
T∫
t

‖φ(s)‖2L(HS)(Q1/2(H);H)ds ≤ c

E ‖ζ‖2H + (T − t)E
T∫
t

‖f(s)‖2Hds

 . (3.28)

Existence and uniqueness results of mild solutions to backward SPDEs with cylindrical Wiener processes
can be found in [52]. Similarly, we get the existence of a unique mild solution to system (3.23).

Theorem 3.93. Let (g(t))t∈[0,T ] be fixed. For any Z ∈ L2(Ω;H), there exists a unique mild solution
(z(t),Φ(t))t∈[0,T ] of system (3.23).

Proof. Let Z1
T contain all H-valued predictable processes (z̃(t))t∈[0,T ] such that supt∈[0,T ] E‖z̃(t)‖2H < ∞.

The space Z1
T equipped with the norm

‖z̃‖2Z1
T

= sup
t∈[0,T ]

E‖z̃(t)‖2H

for every z̃ ∈ Z1
T becomes a Banach space. Similarly, let Z2

T denote the space of all predictable processes

(Φ̃(t))t∈[0,T ] with values in L(HS)(Q
1/2(H);H) such that E

∫ T
0
‖Φ̃(t)‖2L(HS)(Q1/2(H);H)

dt <∞. The space Z2
T

equipped with the inner product

〈
Φ̃1, Φ̃2

〉
Z2
T

= E
T∫

0

〈
Φ̃1(t), Φ̃2(t)

〉
L(HS)(Q1/2(H);H)

dt

for every Φ̃1, Φ̃2 ∈ Z2
T becomes a Hilbert space.

Next, we define a sequence (zn,Φn)n∈N ⊂ Z1
T ×Z2

T satisfying for each n ∈ N, all t ∈ [0, T ] and P-a.s.

zn(t) = e−A(T−t)Z +

T∫
t

e−A(s−t)[G(zn−1(s),Φn−1(s)) + g(s)]ds−
T∫
t

e−A(s−t)Φn(s) dW (s), (3.29)

where z0(t) = 0 and Φ0(t) = 0 for all t ∈ [0, T ]. Note that by Lemma 3.92 and inequality (3.24), one can
easily verify that (zn,Φn)n∈N ⊂ Z1

T ×Z2
T . Furthermore, we obtain for each n ∈ N, all t ∈ [0, T ] and P-a.s.

zn+1(t)− zn(t) =

T∫
t

e−A(s−t)[G(zn(s),Φn(s))−G(zn−1(s),Φn−1(s))]ds

−
T∫
t

e−A(s−t) [Φn+1(s)− Φn(s)] dW (s). (3.30)
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Using inequality (3.25) and Fubini’s theorem, there exists a constant C > 0 such that for each n ∈ N

E
T∫

0

‖G(zn(t),Φn(t))−G(zn−1(t),Φn−1(t))‖2H dt

≤ C

 sup
t∈[0,T ]

E‖zn(t)− zn−1(t)‖2H + E
T∫

0

‖Φn(t)− Φn−1(t)‖2L(HS)(Q1/2(H);H) dt

 . (3.31)

Hence, equation (3.30) satisfies the assumptions of Lemma 3.92. Let T1 ∈ [0, T ). Due to the inequalities
(3.27), (3.28) and (3.31), there exists a constant C∗ > 0 such that for each n ∈ N

sup
t∈[T1,T ]

E‖zn+1(t)− zn(t)‖2H + E
T∫

T1

‖Φn+1(t)− Φn(t)‖2L(HS)(Q1/2(H);H) dt

≤ C∗(T − T1)

 sup
t∈[T1,T ]

E‖zn(t)− zn−1(t)‖2H + E
T∫

T1

‖Φn(t)− Φn−1(t)‖2L(HS)(Q1/2(H);H) dt

 .
Therefore, we find for each n ∈ N

sup
t∈[T1,T ]

E‖zn+1(t)− zn(t)‖2H + E
T∫

T1

‖Φn+1(t)− Φn(t)‖2L(HS)(Q1/2(H);H) dt

≤ (C∗(T − T1))
n

 sup
t∈[T1,T ]

E‖z1(t)‖2H + E
T∫

T1

‖Φ1(t)‖2L(HS)(Q1/2(H);H) dt

 .
We choose T1 ∈ [0, T ) such that C∗(T − T1) < 1. Thus, we can conclude that (zn,Φn)n∈N ⊂ Z1

T × Z2
T is a

Cauchy sequence on the interval [T1, T ]. Using equation (3.30), we have for each n ∈ N, all t ∈ [0, T1] and
P-a.s.

zn+1(t)− zn(t) = e−A(T1−t)[zn+1(T1)− zn(T1)] +

T1∫
t

e−A(s−t)[G(zn(s),Φn(s))−G(zn−1(s),Φn−1(s))]ds

−
T1∫
t

e−A(s−t) [Φn+1(s)− Φn(s)] dW (s).

Again, we find T2 ∈ [0, T1] such that the sequence (zn,Φn)n∈N ⊂ Z1
T × Z2

T is a Cauchy sequence on the
interval [T2, T1]. By continuing this method, we can infer that (zn,Φn)n∈N ⊂ Z1

T ×Z2
T is a Cauchy sequence

on the interval [0, T ]. Hence, there exist z ∈ Z1
T and Φ ∈ Z2

T such that

z = lim
n→∞

zn, Φ = lim
n→∞

Φn.

Using equation (3.29), one can easily verify that the pair of stochastic processes (z(t),Φ(t))t∈[0,T ] satisfy
equation (3.26).
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We introduce the following system in D(Aδ):{
dz(t) = −[−Az(t) +AαB(z(t)) +AβG(Φ(t)) +Aγg(t)]dt+ Φ(t) dW (t),

z(T ) = Z.
(3.32)

We assume that

• the operator A : D(A) ⊂ H → H is linear and closed such that −A is the generator of an analytic
semigroup of contractions (e−At)t≥0 and 0 is an element of the resolvent set ρ(A);

• B : D(Aδ)→ H satisfies for every y, z ∈ H

‖B(y)‖H ≤ C̃‖y‖D(Aδ), (3.33)

‖B(y)−B(z)‖H ≤ C̃‖y − z‖D(Aδ), (3.34)

where C∗ > 0 is a constant;

• G : L(HS)(Q
1/2(H);H)→ H satisfies for every Φ,Ψ ∈ L(HS)(Q

1/2(H);H)

‖G(Φ)‖H ≤ Ĉ‖Φ‖L(HS)(Q1/2(H);H), (3.35)

‖G(Φ)−G(Ψ)‖H ≤ Ĉ‖Φ−Ψ‖L(HS)(Q1/2(H);H), (3.36)

where Ĉ > 0 is a constant;

• (g(t))t∈[0,T ] is a predictable process with values in H such that

E
T∫

0

‖g(t)‖2H dt <∞;

• Z is an FT -measurable random variable with values in H.

Remark 3.94. In control theory, system (3.32) arises for the adjoint equation of the controlled stochastic
Navier-Stokes equations.

Definition 3.95. A pair of predictable processes (z(t),Φ(t))t∈[0,T ] with values in D(Aδ)×L(HS)(Q
1/2(H);H)

is called a mild solution of system (3.32) if

E sup
t∈[0,T ]

‖z(t)‖2D(Aδ) <∞, E
T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z(t) = e−A(T−t)Z +

T∫
t

Aαe−A(s−t)B(z(s)) ds+

T∫
t

Aβe−A(s−t)G(Φ(s)) ds+

T∫
t

Aγe−A(s−t)g(s) ds

−
T∫
t

e−A(s−t)Φ(s) dW (s). (3.37)
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An existence and uniqueness result requires a generalization of Lemma 3.92 as follows.

Lemma 3.96. Let δ, ε ∈ [0, 1
2 ) satisfy δ+ ε < 1

2 . Furthermore, let ζ ∈ L2(Ω;D(Aδ)) be FT -measurable and

let (f(t))t∈[0,T ] be a predictable process with values in H such that E
∫ T

0
‖f(t)‖2Hdt <∞. Then there exists

a unique pair of predictable processes (ϕ(t), φ(t))t∈[0,T ] with values in D(Aδ)×L(HS)(Q
1/2(H);D(Aε)) such

that for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)ζ +

T∫
t

Aεe−A(s−t)f(s) ds−
T∫
t

e−A(s−t)Aεφ(s) dW (s). (3.38)

Moreover, there exists a constant c > 0 such that for all t ∈ [0, T ]

E sup
s∈[t,T ]

‖ϕ(s)‖2D(Aδ) ≤ c

E ‖ζ‖2D(Aδ) + (T − t)1−2δ−2ε E
T∫
t

‖f(s)‖2Hds

 , (3.39)

E
T∫
t

‖φ(s)‖2L(HS)(Q1/2(H);D(Aε))ds ≤ c

E ‖ζ‖2D(Aδ) + (T − t)1−2ε E
T∫
t

‖f(s)‖2Hds

 . (3.40)

Proof. Let the process (ϕ(t))t∈[0,T ] satisfy for all t ∈ [0, T ] and P-a.s.

ϕ(t) = E

e−A(T−t)ζ +

T∫
t

Aεe−A(s−t)f(s) ds

∣∣∣∣∣∣Ft
 .

Due to Proposition 3.16, we have for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)E [ζ|Ft] +

T∫
t

Aεe−A(s−t)E [f(s)|Ft] ds. (3.41)

Using Theorem 2.35 and the Cauchy-Schwarz inequality, we can conclude that the process (ϕ(t))t∈[0,T ] takes

values in D(Aδ) such that E supt∈[0,T ] ‖ϕ(t)‖2D(Aδ) <∞. Moreover, the process (ϕ(t))t∈[0,T ] is predictable,

which can be obtained similarly to Theorem 3.73. By Proposition 3.86, there exists a unique predictable

process (J(r))r∈[0,T ] with values in L(HS)(Q
1/2(H);H) such that E

∫ T
0
‖J(r)‖2L(HS)(Q1/2(H);H)

dr < ∞ and

we get for all t ∈ [0, T ] and P-a.s.

E [ζ|Ft] = E [ζ] +

t∫
0

J(r) dW (r).

Thus, we get for all t ∈ [0, T ] and P-a.s.

E [ζ|Ft] = ζ −
T∫
t

J(r) dW (r). (3.42)

We first assume that (f(s))s∈[0,T ] is predictable and continuous such that sups∈[0,T ] E‖f(s)‖2H <∞. Using
Proposition 3.86, for all s ∈ [0, T ], there exist a unique predictable process (K(s, r))r∈[0,T ] with values in
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L(HS)(Q
1/2(H);H) such that E

∫ T
0
‖K(s, r)‖2L(HS)(Q1/2(H);H)

dr <∞ and we get for all t ∈ [0, T ] and P-a.s.

E [f(s)|Ft] = E [f(s)] +

t∫
0

K(s, r) dW (r).

Since (f(s))s∈[0,T ] is predictable, one can conclude that K(s, r) = 0 for all s ∈ [0, T ] and almost all r ∈ [s, T ].
Moreover, we have for all s, t ∈ [0, T ] and P-a.s.

E [f(s)|Ft] = f(s)−
s∫
t

K(s, r) dW (r). (3.43)

Using equations (3.41) - (3.43), we obtain for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)

ζ − T∫
t

J(r) dW (r)

+

T∫
t

Aεe−A(s−t)

f(s)−
s∫
t

K(s, r) dW (r)

 ds.
Applying Proposition 3.64, we get for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)ζ +

T∫
t

Aεe−A(s−t)f(s) ds−
T∫
t

Aεe−A(r−t)φ(r) dW (r), (3.44)

where for almost all r ∈ [0, T ] and P-a.s.

φ(r) = A−εe−A(T−r)J(r) +

T∫
r

e−A(s−r)K(s, r) ds.

By Theorem 2.35 and the Cauchy-Schwarz inequality, we can conclude that the process (φ(t))t∈[0,T ] takes

values in L(HS)(Q
1/2(H);D(Aε)). Since the processes (J(r))r∈[0,T ] and (K(s, r))r∈[0,T ] are predictable for

all s ∈ [0, T ], the process (φ(r))r∈[0,T ] is predictable as well.
Next, we show that inequality (3.39) and inequality (3.40) hold. By equation (3.41), Proposition 3.16,

Theorem 2.35 and the Cauchy-Schwarz inequality, there exists a constant c > 0 such that for all t ∈ [0, T ]

E sup
s∈[t,T ]

‖ϕ(s)‖2D(Aδ) ≤ 2E sup
s∈[t,T ]

‖e−A(T−s)Aδζ‖2H + 2E sup
s∈[t,T ]

 T∫
s

∥∥∥Aδ+εe−A(r−s)f(r)
∥∥∥
H
dr

2

≤ c

E ‖ζ‖2D(Aδ) + (T − t)1−2δ−2ε E
T∫
t

‖f(s)‖2Hds

 .
Using equation (3.42) and Theorem 3.62 (i) and (iii), we get for all t ∈ [0, T ]

E
T∫
t

‖J(r)‖2L(HS)(Q1/2(H);H) dr ≤ 4E ‖ζ‖2H .
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Similarly, by equation (3.43) and Theorem 3.62 (i) and (iii), we get for all s, t ∈ [0, T ]

E
s∫
t

‖K(s, r)‖2L(HS)(Q1/2(H);H) dr ≤ 4E ‖f(s)‖2H .

Due to Theorem 2.35, the Cauchy-Schwarz inequality, Fubini’s theorem and Corollary 2.32, there exists a
constant c > 0 such that for all t ∈ [0, T ]

E
T∫
t

‖Aεφ(r)‖2L(HS)(Q1/2(H);H)dr

≤ 2E
T∫
t

‖e−A(T−r)J(r)‖2L(HS)(Q1/2(H);H)dr + 2E
T∫
t

 T∫
r

∥∥∥Aεe−A(s−r)K(s, r)
∥∥∥
L(HS)(Q1/2(H);H)

ds

2

dr

≤ 2E
T∫
t

‖J(r)‖2L(HS)(Q1/2(H);H)dr +
2M2

ε (T − t)1−2ε

1− 2ε
E

T∫
t

s∫
t

‖K(s, r)‖2L(HS)(Q1/2(H);H) dr ds

≤ c

E ‖ζ‖2D(Aδ) + (T − t)1−2ε E
T∫
t

‖f(s)‖2Hds

 .
Note that equation (3.44), inequality (3.39) and inequality (3.40) also hold for an H-valued predictable

process (f(t))t∈[0,T ] such that E
∫ T

0
‖f(t)‖2Hdt < ∞, which is an immediate consequence of the fact that

C([0, T ];L2(Ω;H)) is dense in L2([0, T ];L2(Ω,H)).
Finally, we prove that the pair of stochastic processes (ϕ(t), φ(t))t∈[0,T ] is unique. Let (ϕ1(t), φ1(t))t∈[0,T ]

and (ϕ2(t), φ2(t))t∈[0,T ] satisfy equation (3.38). Then we have for all t ∈ [0, T ] and P-a.s.

ϕ1(t)− ϕ2(t) = −
T∫
t

e−A(s−t)Aε(φ1(s)− φ2(s)) dW (s).

We obtain that the pair of processes (ϕ1(t)− ϕ2(t))t∈[0,T ] and (φ1(t)− φ2(t))t∈[0,T ] fulfills equation (3.38)
with ζ = 0 and f = 0. By inequality (3.39), we have ϕ1(t) = ϕ2(t) for all t ∈ [0, T ] and P-almost surely.
Using inequality (3.40), we get φ1(t) = φ2(t) for almost all t ∈ [0, T ] and P-almost surely.

Corollary 3.97. Let δ ∈ [0, 1) and ε ∈ [0, 1
2 ) satisfy δ + ε < 1. Furthermore, let ζ ∈ L2(Ω;D(Aδ)) be an

FT -measurable random variable and let (f(t))t∈[0,T ] be a predictable stochastic process with values in H such
that E supt∈[0,T ] ‖f(t)‖2H <∞. Then there exists a unique pair of predictable processes (ϕ(t), φ(t))t∈[0,T ] with

values in D(Aδ)× L(HS)(Q
1/2(H);D(Aε)) such that for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)ζ +

T∫
t

Aεe−A(s−t)f(s) ds−
T∫
t

e−A(s−t)Aεφ(s) dW (s).

Moreover, there exists a constant ĉ > 0 such that for all t ∈ [0, T ]

E sup
s∈[t,T ]

‖ϕ(s)‖2D(Aδ) ≤ ĉ

[
E ‖ζ‖2D(Aδ) + (T − t)2−2δ−2ε E sup

s∈[t,T ]

‖f(s)‖2H

]
, (3.45)
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E
T∫
t

‖φ(s)‖2L(HS)(Q1/2(H);D(Aε))ds ≤ ĉ

[
E ‖ζ‖2D(Aδ) + (T − t)2−2ε E sup

s∈[t,T ]

‖f(s)‖2H

]
. (3.46)

Proof. The proof can be obtained similarly to Lemma 3.96.

Based on the above results, we are able to prove the existence and uniqueness of the mild solution to
system (3.32).

Theorem 3.98. Let α, β, γ, δ ∈ [0, 1
2 ) satisfy β + δ < 1

2 and γ + δ < 1
2 . Moreover, let (g(t))t∈[0,T ] be fixed.

For any Z ∈ L2(Ω;D(Aδ)), there exists a unique mild solution (z(t),Φ(t))t∈[0,T ] of system (3.32).

Proof. Let Z1
T contain allD(Aδ)-valued predictable processes (z̃(t))t∈[0,T ] with E supt∈[0,T ] ‖z̃(t)‖2D(Aδ) <∞.

The space Z1
T equipped with the norm

‖z̃‖2Z1
T

= E sup
t∈[0,T ]

‖z̃(t)‖2D(Aδ)

for every z̃ ∈ Z1
T becomes a Banach space. Similarly, let Z2

T denote the space of all predictable processes

(Φ̃(t))t∈[0,T ] with values in L(HS)(Q
1/2(H);H) such that E

∫ T
0
‖Φ̃(t)‖2L(HS)(Q1/2(H);H)

dt <∞. The space Z2
T

equipped with the inner product

〈
Φ̃1, Φ̃2

〉
Z2
T

= E
T∫

0

〈
Φ̃1(t), Φ̃2(t)

〉
L(HS)(Q1/2(H);H)

dt

for every Φ̃1, Φ̃2 ∈ Z2
T becomes a Hilbert space.

Next, we define a sequence (zn,Φn)n∈N ⊂ Z1
T ×Z2

T satisfying for each n ∈ N, all t ∈ [0, T ] and P-a.s.

zn(t) = e−A(T−t)Z +

T∫
t

Aαe−A(s−t)B(zn−1(s)) ds+

T∫
t

Aβe−A(s−t)G(Φn−1(s)) ds+

T∫
t

Aγe−A(s−t)g(s) ds

−
T∫
t

e−A(s−t)Φn(s) dW (s), (3.47)

where z0(t) = 0 and Φ0(t) = 0 for all t ∈ [0, T ]. Note that by Lemma 3.96, Corollary 3.97, inequality (3.33)
and inequality (3.35), one can easily verify that (zn,Φn)n∈N ⊂ Z1

T × Z2
T . Furthermore, we obtain for each

n ∈ N, all t ∈ [0, T ] and P-a.s.

zn+1(t)− zn(t) =

T∫
t

Aαe−A(s−t)[B(zn(s))−B(zn−1(s))] ds+

T∫
t

Aβe−A(s−t)[G(Φn(s))−G(Φn−1(s))] ds

−
T∫
t

e−A(s−t)[Φn+1(s)− Φn(s)] dW (s). (3.48)

Using inequality (3.34) and inequality (3.36), we have for each n ∈ N

E sup
t∈[0,T ]

‖B(zn(t))−B(zn−1(t))‖2H ≤ C̃
2 E sup

t∈[0,T ]

‖zn(t)− zn−1(t)‖2D(Aδ) ,

E
T∫

0

‖G(Φn(t))−G(Φn−1(t))‖2H dt ≤ Ĉ
2 E

T∫
0

‖Φn(t)− Φn−1(t)‖2L(HS)(Q1/2(H);H) dt.

71



Chapter 3. Stochastic Calculus

Hence, equation (3.48) satisfies the assumptions of Lemma 3.96 and Corollary 3.97. Let T1 ∈ [0, T ). Due
to inequality (3.39) and inequality (3.45), there exist constants C1, C2 > 0 such that for each n ∈ N

E sup
t∈[T1,T ]

‖zn+1(t)− zn(t)‖2D(Aδ) ≤ ĉ(T − T1)2−2α−2δ E sup
t∈[T1,T ]

‖B(zn(t))−B(zn−1(t))‖2H

+ c(T − T1)1−2β−2δ E
T∫

T1

‖G(Φn(t))−G(Φn−1(t))‖2H dt

≤ C1(T − T1)2−2α−2δ E sup
t∈[T1,T ]

‖zn(t)− zn−1(t)‖2D(Aδ)

+ C2(T − T1)1−2β−2δ E
T∫

T1

‖Φn(t)− Φn−1(t)‖2L(HS)(Q1/2(H);H) dt.

Using inequality (3.40) and inequality (3.46), we get for each n ∈ N

E
T∫

T1

‖Φn+1(s)− Φn(s)‖2L(HS)(Q1/2(H);H) dt ≤ ĉ(T − T1)2−2α E sup
t∈[T1,T ]

‖B(zn(t))−B(zn−1(t))‖2H

+ c(T − T1)1−2β E
T∫

T1

‖G(Φn(t))−G(Φn−1(t))‖2H dt

≤ C1(T − T1)2−2α E sup
t∈[T1,T ]

‖zn(t)− zn−1(t)‖2D(Aδ)

+ C2(T − T1)1−2β E
T∫

T1

‖Φn(t)− Φn−1(t)‖2L(HS)(Q1/2(H);H) dt.

Hence, we obtain for each n ∈ N

E sup
t∈[T1,T ]

‖zn+1(t)− zn(t)‖2D(Aδ) + E
T∫

T1

‖Φn+1(s)− Φn(s)‖2L(HS)(Q1/2(H);H) dt

≤ C

E sup
t∈[T1,T ]

‖zn(t)− zn−1(t)‖2D(Aδ) + E
T∫

T1

‖Φn(t)− Φn−1(t)‖2L(HS)(Q1/2(H);H) dt

 ,
where C = max{C1((T − T1)2−2α−2δ + (T − T1)2−2α), C2((T − T1)1−2β−2δ + (T − T1)1−2β)}. Therefore, we
find for each n ∈ N

E sup
t∈[T1,T ]

‖zn+1(t)− zn(t)‖2D(Aδ) + E
T∫

T1

‖Φn+1(s)− Φn(s)‖2L(HS)(Q1/2(H);H) dt

≤ Cn
E sup

t∈[T1,T ]

‖z1(t)‖2D(Aδ) + E
T∫

T1

‖Φ1(t)‖2L(HS)(Q1/2(H);H) dt

 .

72



Chapter 3. Stochastic Calculus

We choose T1 ∈ [0, T ) such that C < 1. Thus, we can conclude that (zn,Φn)n∈N ⊂ Z1
T × Z2

T is a Cauchy
sequence on the interval [T1, T ]. Using equation (3.48), we have for each n ∈ N, all t ∈ [0, T1] and P-a.s.

zn+1(t)− zn(t) = e−A(T1−t)[zn+1(T1)− zn(T1)] +

T1∫
t

Aαe−A(s−t)[B(zn(s))−B(zn−1(s))] ds

+

T1∫
t

Aβe−A(s−t)[G(Φn(s))−G(Φn−1(s))] ds−
T1∫
t

e−A(s−t)[Φn+1(s)− Φn(s)] dW (s).

Again, we find T2 ∈ [0, T1] such that (zn,Φn)n∈N ⊂ Z1
T × Z2

T is a Cauchy sequence on the interval [T2, T1].
By continuing this method, we can conclude that (zn,Φn)n∈N ⊂ Z1

T × Z2
T is a Cauchy sequence on the

interval [0, T ]. Hence, there exist z ∈ Z1
T and Φ ∈ Z2

T such that

z = lim
n→∞

zn, Φ = lim
n→∞

Φn.

Using equation (3.47), one can easily verify that the pair of stochastic processes (z(t),Φ(t))t∈[0,T ] satisfy
equation (3.37).

Remark 3.99. Note that the proofs of Theorem 3.93 and Theorem 3.98 are mainly based on the martingale
representation theorem stated in Proposition 3.86. According to Remark 3.88, one can also consider backward
SPDEs driven by a real-valued Lévy process. However, we will focus on backward SPDEs driven by a Q-
Wiener process due to the fact that we can model noise terms dependent on a spatial variable, which is more
suitable for applications.

3.4.3. A Comparison of Strong, Weak and Mild Solutions

In this section, we give a comparison between different concepts of solution to SPDEs, where the noise term
(W (t))t≥0 is an H-valued Q-Wiener process with covariance operator Q ∈ L+

1 (H). We start with forward
SPDEs. Let us consider the following nonlinear system in H:{

dy(t) = [Ay(t) +B(y(t)) + f(t)] dt+G(y(t)) dW (t),

y(0) = ξ.
(3.49)

We assume that

• the operator A : D(A) ⊂ H → H is the generator of a C0 semigroup (eAt)t≥0;

• B : H → H satisfies for every y, z ∈ H

‖B(y)‖H ≤ C‖y‖H,
‖B(y)−B(z)‖H ≤ C‖y − z‖H,

where C > 0 is a constant;

• the process (f(t))t∈[0,T ] is Ft-adapted and takes values in H such that

E
T∫

0

‖f(t)‖2H dt <∞;
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• G : H → L(HS)(Q
1/2(H);H) satisfies for every y, z ∈ H

‖G(y)‖L(HS)(Q1/2(H);H) ≤ Ĉ‖y‖H,

‖G(y)−G(z)‖L(HS)(Q1/2(H);H) ≤ Ĉ‖y − z‖H,

where Ĉ > 0 is a constant;

• ξ is an F0-measurable random variable with values in H.

Next, we introduce several concepts of a solution to system (3.49).

Definition 3.100. A predictable process (y(t))t∈[0,T ] with values in H is called a strong solution of sys-

tem (3.49) if (y(t))t∈[0,T ] takes values in D(A) for almost all t ∈ [0, T ] such that P-a.s.
∫ T

0
‖Ay(t)‖Hdt <

∞,
sup
t∈[0,T ]

E‖y(t)‖2H <∞

and for all t ∈ [0, T ] and P-a.s.

y(t) = ξ +

t∫
0

[Ay(s) +B(y(s)) + f(s)] ds+

t∫
0

G(y(s)) dW (s).

Definition 3.101. A predictable process (y(t))t∈[0,T ] with values in H is called a weak solution of system
(3.49) if

sup
t∈[0,T ]

E‖y(t)‖2H <∞

and for every ψ ∈ D(A∗), all t ∈ [0, T ] and P-a.s.

〈y(t), ψ〉H = 〈ξ, ψ〉H +

t∫
0

[〈y(s), A∗ψ〉H + 〈B(y(s)), ψ〉H + 〈f(s), ψ〉H] ds+

t∫
0

〈G(y(s)) dW (s), ψ〉H.

Definition 3.102. A predictable process (y(t))t∈[0,T ] with values in H is a mild solution of system
(3.49) if

sup
t∈[0,T ]

E‖y(t)‖2H <∞

and for all t ∈ [0, T ] and P-a.s.

y(t) = eAtξ +

t∫
0

eA(t−s) [B(y(s)) + f(s)] ds+

t∫
0

eA(t−s)G(y(s)) dW (s).

Existence and uniqueness results of these types of solution can be found in [23, 42, 73]. The following
theorem gives relationships between these solutions.

Theorem 3.103. If (y(t))t∈[0,T ] is a strong solution of system (3.49), then it is a weak solution. The
process (y(t))t∈[0,T ] is a weak solution of system (3.49) if and only if it is a mild solution.

Proof. The fact that a strong solution is also a weak solution follows immediately from the definitions. A
proof of the equivalence of weak and mild solutions can be found in [71, Theorem 9.15].
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Remark 3.104. Alternatively, one can show that a strong solution of system (3.49) is a mild solution, see
[53, Proposition 2.1]. Furthermore, the previous theorem can be shown for SPDEs driven by Lévy noise, see
[71, Theorem 9.15].

To obtain the converse of the previous theorem, additional assumptions are required.

Theorem 3.105. Let (y(t))t∈[0,T ] be a weak solution of system (3.49). If (y(t))t∈[0,T ] takes values in D(A)

for almost all t ∈ [0, T ] such that P-a.s.
∫ T

0
‖Ay(t)‖Hdt <∞, then it is a strong solution.

Proof. The proof follows immediately from the definitions.

Alternatively, one can give conditions on a mild solution to be a strong solution.

Theorem 3.106 (Proposition 2.3,[53]). Let (y(t))t∈[0,T ] be a mild solution of system (3.49). Suppose that

• ξ is an D(A)-valued random variable and (f(t))t∈[0,T ] takes values in D(A) for almost all t ∈ [0, T ];

• for all t ∈ (0, T ] and every y ∈ H, we have eAtB(y) ∈ D(A) and

‖AeAtB(y)‖H ≤ g1(t)‖y‖H,

where g1 ∈ L1([0, T ]);

• for all t ∈ (0, T ] and every y ∈ H, we have eAtG(y) ∈ L(HS)(Q
1/2(H);D(A)) and

‖AeAtG(y)‖L(HS)(Q1/2(H);H) ≤ g2(t)‖y‖H,

where g2 ∈ L2([0, T ]).

Then (y(t))t∈[0,T ] is also a strong solution of system (3.49).

Next, we consider the following backward SPDE in H:{
dz(t) = −[Az(t) +G(z(t),Φ(t)) + g(t)]dt+ Φ(t) dW (t),

z(T ) = Z.
(3.50)

We assume that

• the operator A : D(A) ⊂ H → H is the generator of a C0 semigroup (eAt)t≥0;

• G : H×L(HS)(Q
1/2(H);H)→ H satisfies for every y, z ∈ H and every Φ,Ψ ∈ L(HS)(Q

1/2(H);H)

‖G(y,Φ)‖H ≤ Ĉ
[
‖y‖H + ‖Φ‖L(HS)(Q1/2(H);H)

]
,

‖G(y,Φ)−G(z,Ψ)‖H ≤ Ĉ
[
‖y − z‖H + ‖Φ−Ψ‖L(HS)(Q1/2(H);H)

]
,

where Ĉ > 0 is a constant;

• (g(t))t∈[0,T ] is a predictable process with values in H such that

E
T∫

0

‖g(t)‖2H dt <∞;
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• Z is an FT -measurable random variable with values in H.

Again, we introduce several concepts of a solution to system (3.50).

Definition 3.107. A pair of predictable processes (z(t),Φ(t))t∈[0,T ] with values in H×L(HS)(Q
1/2(H);H)

is called a strong solution of system (3.50) if (z(t))t∈[0,T ] takes values in D(A) for almost all t ∈ [0, T ]

such that P-a.s.
∫ T

0
‖Az(t)‖Hdt <∞,

sup
t∈[0,T ]

E ‖z(t)‖2H <∞, E
T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z(t) = Z +

T∫
t

[Az(s) +G(z(s),Φ(s)) + g(s)] ds−
T∫
t

Φ(s) dW (s).

Definition 3.108. A pair of predictable processes (z(t),Φ(t))t∈[0,T ] with values in H×L(HS)(Q
1/2(H);H)

is called a weak solution of system (3.50) if

sup
t∈[0,T ]

E ‖z(t)‖2H <∞, E
T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for every ψ ∈ D(A∗), all t ∈ [0, T ] and P-a.s.

〈z(t), ψ〉H = Z +

T∫
t

[〈z(s), A∗ψ〉H + 〈G(z(s),Φ(s)), ψ〉H + 〈g(s), ψ〉H] ds−
T∫
t

〈Φ(s) dW (s), ψ〉H.

Definition 3.109. A pair of predictable processes (z(t),Φ(t))t∈[0,T ] with values in H×L(HS)(Q
1/2(H);H)

is called a mild solution of system (3.50) if

sup
t∈[0,T ]

E ‖z(t)‖2H <∞, E
T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z(t) = eA(T−t)Z +

T∫
t

eA(s−t)[G(z(s),Φ(s)) + g(s)] ds−
T∫
t

eA(s−t)Φ(s) dW (s).

The following theorem gives relationships between these solutions.

Theorem 3.110 (Theorem 3.4,[1]). If (z(t),Φ(t))t∈[0,T ] is a strong solution of system (3.50), then it is a
weak solution. The pair of processes (z(t),Φ(t))t∈[0,T ] is a weak solution of system (3.50) if and only if it
is a mild solution.

To obtain the converse of the previous theorem, additional assumptions are required.
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Theorem 3.111 (Theorem 4.1,[1]). Let (z(t),Φ(t))t∈[0,T ] be a weak solution of system (3.50). If (z(t))t∈[0,T ]

takes values in D(A) for almost all t ∈ [0, T ] such that P-a.s.
∫ T

0
‖Az(t)‖Hdt < ∞, then it is a strong

solution.

Alternatively, one can give conditions on a mild solution to be a strong solution.

Theorem 3.112. Let (z(t),Φ(t))t∈[0,T ] be a mild solution of system (3.50). Suppose that

• Z is an D(A)-valued random variable and (g(t))t∈[0,T ] take values in D(A) for almost all t ∈ [0, T ];

• for all t ∈ (0, T ], every z ∈ H and every Φ ∈ L(HS)(Q
1/2(H);H), we have eAtG(y,Φ) ∈ D(A) and

‖AeAtG(z,Φ)‖H ≤ h(t)
[
‖z‖H + ‖Φ‖L(HS)(Q1/2(H);H)

]
,

where h ∈ L1([0, T ]).

Then (z(t),Φ(t))t∈[0,T ] is also a strong solution of system (3.50).

Proof. Since the process (z(t))t∈[0,T ] is predictable, we get for all t ∈ [0, T ] and P-a.s.

z(t) = E
[
eA(T−t)Z

∣∣∣Ft]+ E

 T∫
t

eA(s−t)[G(z(s),Φ(s)) + g(s)] ds

∣∣∣∣∣∣Ft
 .

Using the assumptions, one can easily verify that the terms on the right hand side takes values in D(A).
Thus, the process (z(t))t∈[0,T ] takes values in D(A) such that

E
T∫

0

‖Az(t)‖Hdt <∞.

Therefore, we can apply Theorem 3.111 and the claim follows.

Remark 3.113. Under stronger assumptions, the previous theorem was also proven in [1, Theorem 4.2].

Existence and uniqueness results of mild solution can be found in [52]. Theorem 3.110 and Theorem 3.112
gives requirements such that unique weak solutions as well as unique strong solutions exists.
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Chapter 4

Optimal Control of Uncertain Heat Distributions

In this chapter, we consider a control problem constrained by the stochastic heat equation with nonhomo-
geneous Neumann boundary conditions. Here, controls and noise terms are defined inside the domain as
well as on the boundary. We first recall some well known facts of the deterministic unsteady heat equation
with nonhomogeneous Neumann boundary conditions studied in [9]. The main idea is to reformulate this
equation as an evolution equation in a suitable Hilbert space using the theory of fractional powers to closed
operators provided in Section 2.3. This approach gives us a motivation how to involve noise terms inside the
domain as well as on the boundary. The existence and uniqueness of a mild solution to the stochastic heat
equation can be obtained using results shown in Section 3.4.1. Consequently, we are able to solve uniquely a
linear quadratic control problem through a stochastic maximum principle, which gives us explicit formulas
for the optimal controls. By a reformulation of these formulas, we finally obtain that the optimal controls
satisfy a certain feedback law. Here, we mainly use the results shown in [5].

Throughout this chapter, let (Ω,F ,P) be a given complete probability space endowed with a normal
filtration (Ft)t≥0.

4.1. Motivation

In this section, we introduce the deterministic unsteady heat equation with nonhomogeneous Neumann
boundary data. For more details, see [9, Part IV]. Through a reformulation as an evolution equation, we
get a motivation to involve noise terms in this equation. Let D ⊂ Rn, n ∈ N, be a bounded domain with
C∞ boundary ∂D and let T > 0. We introduce the following controlled partial differential equation with
nonhomogeneous Neumann boundary data:

∂

∂t
y(t, x) = ∆y(t, x) + b(x)u(t, x) in (0, T )×D,

y(0, x) = ξ(x) in D,
∂

∂η
y(t, x) = v(t, x) on (0, T )× ∂D,

(4.1)

where y(t, x) ∈ R is a heat distribution with initial value ξ(x) ∈ R, u(t, x) ∈ R represents a distributed
control and v(t, x) ∈ R denotes the boundary control. The operator ∆ is the Laplace operator in L2(D)
and η represents the outward normal to ∂D.

Remark 4.1. In application, we often have

b(x) =

{
1 if x ∈ S
0 if x ∈ D\S,

where S is a subset of D.
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Next, we state a solution to system (4.1). According to Section 2.5.1, we introduce the Neumann realiza-
tion of the Laplace operator A : D(A) ⊂ L2(D)→ L2(D) by

D(A) =

{
y ∈ H2(D) :

∂y

∂η
= 0 on ∂D

}
, Ay = ∆y

for every y ∈ D(A). By Theorem 2.57, the operator A : D(A) ⊂ L2(D) → L2(D) is the generator of an
analytic semigroup of contractions

(
eAt
)
t≥0

. As discussed in the previous chapters, Theorem 2.35 is the

main auxiliary result to involve nonhomogeneous boundary conditions. This theorem requires especially
that 0 is an element of the resolvent set of A, which does not hold due to Remark 2.55. However, the
operator A− λ with λ > 0 is still the generator of an analytic semigroup

(
e−λteAt

)
t≥0

such that fractional

powers denoted by (λ − A)α with α ∈ R are well defined. Moreover, we have 0 ∈ ρ(A − λ). For the
convenience of the reader, we will give an overview of main properties of the operator (λ − A)α, which
follows immediately from results stated in Section 2.3.

Corollary 4.2. We have

(i) for all α > 0, the domain D((λ−A)α) equipped with the inner product

〈y, z〉D((λ−A)α) = 〈(λ−A)αy, (λ−A)αz〉L2(D)

for every y, z ∈ D((λ−A)α) becomes a Hilbert space;

(ii) (λ−A)α+βy = (λ−A)α(λ−A)βy for all α, β ∈ R and every y ∈ D(Aγ) with γ = max{α, β, α+ β};

(iii) ‖y‖L2(D) ≤ C‖(λ−A)αy‖L2(D) for every y ∈ D((λ−A)α), where C > 0 is a constant;

(iv) eAt : L2(D)→ D((λ−A)α) for all t > 0 and all α ∈ R;

(v) (λ−A)αeAty = eAt(λ−A)αy for every y ∈ D((λ−A)α) and all α ∈ R;

(vi) the operator (λ − A)αeAt is linear and bounded for all t > 0 and all α ∈ R. In addition, there exist
constants Mα, δ > 0 such that for all t > 0 and all α > 0

‖(λ−A)αeAt‖L2(D) ≤Mαt
−αe−δt;

(vii) the operator (λ−A)α is self-adjoint for all α ∈ R.

Furthermore, we define the Neumann operator N : L2(∂D)→ L2(D) by g = Nh with

∆g(x) = λg(x) in D, ∂

∂η
g(x) = h(x) on ∂D,

where λ > 0 is introduced above. In [60, Chapter 2], the result N ∈ L
(
L2(∂D);H3/2(D)

)
was proven.

Due to Theorem 2.58, we can conclude N ∈ L(L2(∂D);D((λ−A)α)) if α ∈
(
0, 3

4

)
and by the closed graph

theorem, we have (λ − A)αN ∈ L(L2(∂D);L2(D)). As shown in [9], we can rewrite system (4.1) in the
following form: 

d

dt
y(t) = Ay(t) +Bu(t) + (λ−A)Nv(t),

y(0) = ξ,
(4.2)

where y(t)(x) = y(t, x), Bu(t)(x) = b(x)u(t, x) and v(t)(x) = v(t, x) are interpreted as abstract functions.
For more details on abstract functions, we refer to [86, Section 3.4.1]. We note that the operator B is linear
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and bounded on L2(D). One can show that system (4.2) has a unique solution y ∈ C([0, T ];L2(D)) given
by

y(t) = eAtξ +

t∫
0

eA(t−s)Bu(s) ds+

t∫
0

(λ−A)eA(t−s)Nv(s) ds.

Remark 4.3. In [9], the existence and uniqueness of the solution to system (4.2) is proved for the special
cases u = 0 as well as v = 0. Hence, the existence of a unique solution to system (4.2) in the general setting
follows immediately.

4.2. A Controlled Linear Stochastic Heat Equation

In this section, we introduce the stochastic heat equation and we show some basic properties. Motivated
by system (4.2), we consider the following SPDE in L2(D):{

dy(t) = [Ay(t) +Bu(t) + (λ−A)Nv(t)] dt+G(t) dW (t) + (λ−A)N dWb(t),

y(0) = ξ,
(4.3)

where the initial value ξ ∈ L2(Ω;L2(D)) is F0-measurable. The set of admissible distributed controls U
contains all Ft-adapted processes (u(t))t∈[0,T ] with values in L2(D) such that

E
T∫

0

‖u(t)‖2L2(D)dt <∞.

The space U equipped with the inner product of L2(Ω;L2([0, T ];L2(D))) becomes a Hilbert space. Similarly,
the set of admissible boundary controls V contains all Ft-adapted processes (v(t))t∈[0,T ] with values in
L2(∂D) such that

E
T∫

0

‖v(t)‖2L2(∂D)dt <∞.

The space V equipped with the inner product of L2(Ω;L2([0, T ];L2(∂D))) becomes a Hilbert space. The
stochastic processes (W (t))t≥0 and (Wb(t))t≥0 are Q-Wiener processes with values in L2(D) and L2(∂D),
respectively. We denote by Q ∈ L+

1 (L2(D)) and Qb ∈ L+
1 (L2(∂D)) the covariance operators of the processes

(W (t))t≥0 and (Wb(t))t≥0, respectively. The process (G(t))t∈[0,T ] is a predictable process with values in

L(HS)(Q
1/2(L2(D));L2(D)) such that

E
T∫

0

‖G(t)‖2L(HS)(Q1/2(L2(D));L2(D))dt <∞.

Motivated by Section 4.1, we use a mild solution to system (4.3) in the sense of Definition 3.72 with
H = L2(D) and Hb = L2(∂D). As a consequence of Theorem 3.73, there exists a unique mild solution
(y(t))t∈[0,T ] of system (4.3) for any ξ ∈ L2(Ω;L2(D)) and fixed controls u ∈ U and v ∈ V . Hence, the
process (y(t))t∈[0,T ] takes values in L2(D) such that

sup
t∈[0,T ]

E‖y(t)‖2L2(D) <∞
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and we have for all t ∈ [0, T ] and P-a.s.

y(t) = eAtξ +

t∫
0

eA(t−s)Bu(s) ds+

t∫
0

(λ−A)eA(t−s)Nv(s) ds+

t∫
0

eA(t−s)G(s) dW (s)

+

t∫
0

(λ−A)eA(t−s)N dWb(s). (4.4)

For the remaining part of this chapter, let the initial value ξ ∈ L2(Ω;L2(D)) be fixed. To illustrate the
dependence on the controls u ∈ U and v ∈ V , we denote by (y(t;u, v))t∈[0,T ] the mild solution of system
(4.3). We get the following properties.

Lemma 4.4. Let (y(t;u, v))t∈[0,T ] be the mild solution of system (4.3) corresponding to the controls u ∈ U
and v ∈ V . Then

(i) y(t;u, v) is affine linear in both u ∈ U and v ∈ V for all t ∈ [0, T ] and P-almost surely;

(ii) there exist constants c1, c2 > 0 such that for every u1, u2 ∈ U and every v1, v2 ∈ V

sup
t∈[0,T ]

E‖y(t;u1, v1)−y(t;u2, v2)‖2L2(D) ≤ c1 E
T∫

0

‖u1(t)−u2(t)‖2L2(D)dt+c2 E
T∫

0

‖v1(t)−v2(t)‖2L2(∂D)dt.

Proof. The claim (i) is an immediate consequence of equation (4.4). It remains to prove (ii). Let u1, u2 ∈ U
and v1, v2 ∈ V be arbitrary. Recall that B ∈ L(L2(D)) and N ∈ L(L2(∂D);D((λ−A)α)) if α ∈

(
0, 3

4

)
. By

definition, we get for all t ∈ [0, T ] and P-a.s.

y(t;u1, v1)− y(t;u2, v2) =

t∫
0

eA(t−s)B[u1(s)− u2(s)] ds+

t∫
0

(λ−A)eA(t−s)N [v1(s)− v2(s)] ds.

Using Corollary 4.2 and the Cauchy-Schwarz inequality, there exist constants c1, c2 > 0 such that for all
α ∈

(
1
2 ,

3
4

)
sup
t∈[0,T ]

E‖y(t;u1, v1)− y(t;u2, v2)‖2L2(D)

≤ 2 sup
t∈[0,T ]

E
t∫

0

‖eA(t−s)B[u1(s)− u2(s)]‖2L2(D)ds

+ 2 sup
t∈[0,T ]

E

 t∫
0

‖(λ−A)1−αeA(t−s)(λ−A)αN [v1(s)− v2(s)]‖L2(D)ds

2

≤ c1 E
T∫

0

‖u1(t)− u2(t)‖2L2(D)dt+M2
1−α sup

t∈[0,T ]

E

 t∫
0

(t− s)α−1‖(λ−A)αN [v1(s)− v2(s)]‖L2(D)ds

2

≤ c1 E
T∫

0

‖u1(t)− u2(t)‖2L2(D)dt+ c2 E
T∫

0

‖v1(t)− v2(t)‖2L2(∂D)dt,

which completes the proof.
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4.3. A Tracking Problem of the Terminal State

In this section, we introduce the control problem. We state necessary and sufficient optimality conditions,
which we use to derive explicit formulas for the optimal controls. Let us introduce the cost functional
J : U × V → R as follows:

J(u, v) =
1

2
E‖y(T ;u, v)− yd‖2L2(D) +

κ1

2
E

T∫
0

‖u(t)‖2L2(D)dt+
κ2

2
E

T∫
0

‖v(t)‖2L2(∂D)dt, (4.5)

where (y(t;u, v))t∈[0,T ] is the mild solution of system (4.3) corresponding to the controls u ∈ U and v ∈ V .
The function yd ∈ L2(D) is a given desired state and κ1, κ2 > 0 are weights. The task is to find controls
u ∈ U and v ∈ V such that

J(u, v) = inf
u∈U,v∈V

J(u, v). (4.6)

Then u ∈ U and v ∈ V are called optimal controls. The corresponding optimal state is denoted by
(y(t))t∈[0,T ]. Using Lemma 4.4, we can conclude that the cost functional J is coercive, strictly convex
and continuous in both u ∈ U and v ∈ V . Hence, the control problem (4.6) is formulated as a convex
optimization problem on the Hilbert space U × V . By Corollary D.13, we get the existence and uniqueness
of the optimal controls u ∈ U and v ∈ V .

Note that the cost functional J is partial Fréchet differentiable. Indeed, this results follows from the fact
that J is a sum of squared norms and Lemma 4.4. The partial Fréchet derivatives of J can be obtained
similarly to Remark D.6 and thus, we get

dFu J(u, v)[ũ] =E
T∫

0

〈
y(T ;u, v)− yd, eA(T−t)Bũ(t)

〉
L2(D)

dt+ κ1 E
T∫

0

〈u(t), ũ(t)〉L2(D) dt, (4.7)

dFv J(u, v)[ṽ] =E
T∫

0

〈
y(T ;u, v)− yd, (λ−A)eA(T−t)Nṽ(t)

〉
L2(D)

dt+ κ2 E
T∫

0

〈v(t), ṽ(t)〉L2(∂D) dt, (4.8)

where ũ ∈ U and ṽ ∈ V . Since the sets of admissible distributed controls U and boundary controls V are
Hilbert spaces, we can apply Proposition D.14. Therefore, the optimal controls u ∈ U and v ∈ V satisfy
the following necessary and sufficient optimality conditions:

dFu J(u, v)[ũ] = 0, (4.9)

dFv J(u, v)[ṽ] = 0 (4.10)

for every ũ ∈ U and every ṽ ∈ V . In the remaining part of this section, we use these necessary and sufficient
optimality conditions to derive explicit formulas for the optimal distributed control u ∈ U and the optimal
boundary control v ∈ V .

Theorem 4.5. Let the cost functional J : U×V → R be given by (4.5). Then the optimal distributed control
u ∈ U satisfies for almost all t ∈ [0, T ] and P-a.s.

u(t) = − 1

κ1
B∗eA(T−t) (E [y(T )|Ft]− yd) , (4.11)

where B∗ ∈ L(L2(D)) denotes the adjoint operator of B ∈ L(L2(D)).

83



Chapter 4. Optimal Control of Uncertain Heat Distributions

Proof. Since the operator A is self-adjoint, the semigroup (eAt)t≥0 is self-adjoint as well. Using Fubini’s
theorem and Proposition 3.16, we obtain for every ũ ∈ U

E
T∫

0

〈
y(T ;u, v)− yd, eA(T−t)Bũ(t)

〉
L2(D)

dt =

T∫
0

E
[
E
[〈
y(T ;u, v)− yd, eA(T−t)Bũ(t)

〉
L2(D)

∣∣∣Ft]] dt
= E

T∫
0

〈
E [y(T ;u, v)|Ft]− yd, eA(T−t)Bũ(t)

〉
L2(D)

dt

= E
T∫

0

〈
B∗eA(T−t) (E [y(T ;u, v)|Ft]− yd) , ũ(t)

〉
L2(D)

dt.

By equation (4.7), we get

dFu J(u, v)[ũ] = E
T∫

0

〈
B∗eA(T−t) (E [y(T ;u, v)

∣∣Ft]− yd)+ κ1u(t), ũ(t)
〉
L2(D)

dt.

Using condition (4.9), the optimal distributed control u ∈ U satisfies equation (4.11) for almost all t ∈ [0, T ]
and P-almost surely.

Theorem 4.6. Let the cost functional J : U ×V → R be given by (4.5). Then the optimal boundary control
satisfies for almost all t ∈ [0, T ] and P-a.s.

v(t) = − 1

κ2
G∗(λ−A)1−αeA(T−t) (E [y(T )|Ft]− yd) , (4.12)

where G∗ ∈ L(L2(D);L2(∂D)) denotes the adjoint operator of G = (λ − A)αN ∈ L(L2(∂D);L2(D)) with
α ∈ ( 1

2 ,
3
4 ).

Proof. First, we prove the existence of an approximating sequence (ỹi(T ;u, v))i∈N ⊂ L2(Ω;D(A)) of the
random variable y(T ;u, v)−yd ∈ L2(Ω;L2(D)) for fixed controls u ∈ U and v ∈ V . Let z be a L2(D)-valued
simple random variable, i.e. there exist functions fj ∈ L2(D) for j = 1, 2, ..., N such that P-a.s.

z =

N∑
j=1

fj1Aj ,

where 1Aj denotes the indicator function of Aj ∈ F . Since D(A) is dense in L2(D), there exists a sequence(
f ij
)
i∈N ⊂ D(A) for each j ∈ {1, 2, ..., N} such that

lim
i→∞

∥∥fj − f ij∥∥L2(D)
= 0.

We set P-a.s. zi =
N∑
j=1

f ij1Aj . Then we obtain

lim
i→∞

E ‖z − zi‖2L2(D) = 0.

Furthermore, it is well known that every random variable with values in L2(D) can be approximated by
a sequence of L2(D)-valued simple random variables. Therefore, for y(T ;u, v) − yd ∈ L2(Ω;L2(D)), there
exists a sequence (ỹi(T ;u, v))i∈N ⊂ L2(Ω;D(A)) such that for fixed controls u ∈ U and v ∈ V

lim
i→∞

E‖y(T ;u, v)− yd − ỹi(T ;u, v)‖2L2(D) = 0. (4.13)
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Recall that the semigroup (eAt)t≥0 is self-adjoint. Using Fubini’s theorem and Corollary 4.2, we have for
every ṽ ∈ V and each i ∈ N

E
T∫

0

〈
ỹi(T ;u, v), (λ−A)eA(T−t)Nṽ(t)

〉
L2(D)

dt

=

T∫
0

E
[〈
ỹi(T ;u, v), (λ−A)1−αeA(T−t)(λ−A)αNṽ(t)

〉
L2(D)

]
dt

=

T∫
0

E
[
E
[〈
ỹi(T ;u, v), (λ−A)1−αeA(T−t)Gṽ(t)

〉
L2(D)

∣∣∣Ft]] dt
= E

T∫
0

〈
E [ỹi(T ;u, v)|Ft] , (λ−A)1−αeA(T−t)Gṽ(t)

〉
L2(D)

dt

= E
T∫

0

〈
eA(T−t)(λ−A)1−αE [ỹi(T ;u, v)|Ft] ,Gṽ(t)

〉
L2(D)

dt

= E
T∫

0

〈
G∗(λ−A)1−αeA(T−t)E [ỹi(T ;u, v)|Ft] , ṽ(t)

〉
L2(∂D)

dt.

Next, let the operator M(t) : L2(D)→ L2(∂D) be defined by

M(t) = G∗(λ−A)1−αeA(T−t)

for all t ∈ (0, T ]. Since the operator G∗ : L2(D) → L2(∂D) is linear and bounded and using Corollary 4.2
(iv) and (vi), the operator M(t) is linear and there exists a constant C > 0 such that for all t ∈ (0, T ] and
every g ∈ L2(D)

‖M(t)g‖L2(∂D) ≤ CM1−α(T − t)α−1‖g‖L2(D). (4.14)

By inequality (4.14), Fubini’s theorem and Proposition 3.16, we obtain for every u ∈ U , every v ∈ V and
each i ∈ N

E
T∫

0

‖M(t) (E [y(T ;u, v)|Ft]− yd)−M(t)E [ỹi(T ;u, v)|Ft]‖2L2(∂D) dt

≤ C2M2
1−αE

T∫
0

(T − t)2α−2 ‖E [y(T ;u, v)|Ft]− yd − E [ỹi(T ;u, v)|Ft]‖2L2(D) dt

≤ C2M2
1−α

T∫
0

(T − t)2α−2E
[
E
[
‖y(T ;u, v)− yd − ỹi(T ;u, v)‖2L2(D)

∣∣∣Ft]] dt
=
C2M2

1−αT
2α−1

2α− 1
E ‖y(T ;u, v)− yd − ỹi(T ;u, v)‖2L2(D) .

Due to equation (4.13), we can conclude that for fixed controls u ∈ U and v ∈ V

lim
i→∞

E
T∫

0

‖M(t) (E [y(T ;u, v)|Ft]− yd)−M(t)E [ỹi(T ;u, v)|Ft] ‖L2(∂D)dt = 0.

85



Chapter 4. Optimal Control of Uncertain Heat Distributions

Therefore, we have for fixed controls u ∈ U , fixed v ∈ V and every ṽ ∈ V

E
T∫

0

〈
y(T ;u, v)− yd, (λ−A)eA(T−t)Nṽ(t)

〉
L2(D)

dt = lim
i→∞

E
T∫

0

〈
ỹi(T ;u, v), (λ−A)eA(T−t)Nṽ(t)

〉
L2(D)

dt

= lim
i→∞

E
T∫

0

〈M(t)E [ỹi(T ;u, v)|Ft] , ṽ(t)〉L2(∂D) dt

= E
T∫

0

〈M(t) (E [y(T ;u, v)|Ft]− yd) , ṽ(t)〉L2(∂D) dt.

Using equation (4.8), we find for every ṽ ∈ V

dvJ(u, v)[ṽ] = E
T∫

0

〈M(t) (E [y(T ;u, v)|Ft]− yd) + κ2v(t), ṽ(t)〉L2(∂D) dt.

Applying condition (4.10), we can infer that the optimal boundary control satisfies for almost all t ∈ [0, T ]
and P-a.s.

v(t) = − 1

κ2
M(t) (E[y(T )|Ft]− yd) .

This implies equation (4.12) and proves the theorem.

Due to the previous theorem, we will always assume that α ∈ ( 1
2 ,

3
4 ).

Remark 4.7. Note that the previous results can be easily obtained if system (4.3) is driven by a square
integrable Lévy martingales as introduced in Section 3.3.

4.4. Design of a Feedback Law

Based on Theorem 4.5 and Theorem 4.6, the optimal controls can be determined by calculating E [y(T )|Ft].
Since this leads to serious problems in applications, we avoid the calculation of the conditional expectation
by using the martingale representation theorem according to Theorem 3.86. Here, we assume that the
Q-Wiener processes (W (t))t≥0 and (Wb(t))t≥0 are independent. First, we apply Proposition 3.42 to obtain
series expansions of the Q-Wiener processes (W (t))t≥0 and (Wb(t))t≥0. Let (uk)k∈N be an orthonormal
basis in L2(D). For arbitrary t ≥ 0, we have the following expansions:

W (t) =

∞∑
k=1

√
λkwk(t)uk,

where (wk(t))t≥0, k ∈ N, are mutually independent real-valued Brownian motions and the sequence of
nonnegative real numbers (λk)k∈N satisfies Quk = λkuk for each k ∈ N. Similarly, let (ubk)k∈N be an
orthonormal basis in L2(∂D). For arbitrary t ≥ 0, we have the following expansions:

Wb(t) =

∞∑
k=1

√
λbkw

b
k(t)ubk,

where (wbk(t))t≥0, k ∈ N, are mutually independent real-valued Brownian motions and the sequence of
nonnegative real numbers (λbk)k∈N satisfies Qbu

b
k = λbku

b
k for each k ∈ N. On the probability space
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(Ω,F ,P), we assume that the filtration (Ft)t≥0 is given by Ft = σ
{
F1
t ∪ F2

t

}
for all t ≥ 0, where

F1
t = σ {

⋃∞
k=1 σ{wk(s) : 0 ≤ s ≤ t}} and F2

t = σ
{⋃∞

k=1 σ{wbk(s) : 0 ≤ s ≤ t}
}

for all t ≥ 0. Moreover,
we set F = FT . Obviously, the process (E [y(T )|Ft])t∈[0,T ] is a continuous square integrable Ft-martingale.
As a consequence of Theorem 3.86, there exist predictable processes (Φ(t))t∈[0,T ] and (Φb(t))t∈[0,T ] with

values in L(HS)

(
Q1/2(L2(D));L2(D)

)
and L(HS)

(
Q

1/2
b (L2(∂D));L2(D)

)
, respectively, such that

E
T∫

0

‖Φ(t)‖2L(HS)(Q1/2(L2(D));L2(D))dt <∞,

E
T∫

0

‖Φb(t)‖2L(HS)

(
Q

1/2
b (L2(∂D));L2(D)

)dt <∞
and we have for all t ∈ [0, T ] and P-a.s.

E [y(T )|Ft] = E[y(T )] +

t∫
0

Φ(s) dW (s) +

t∫
0

Φb(s) dWb(s). (4.15)

Remark 4.8. From the proof of Theorem 3.86, we can easily obtain that the representation (4.15) holds.
Especially, it is necessary to assume that the Q-Wiener processes (W (t))t≥0 and (Wb(t))t≥0 are independent.

Let the process (q(t))t∈[0,T ] satisfy for all t ∈ [0, T ] and P-a.s.

q(t) = eA(T−t)(E [y(T )|Ft]− yd). (4.16)

Next, we introduce the adjoint state (p(t))t∈[0,T ] satisfying for all t ∈ [0, T ] and P-a.s.

p(t) = eA(T−t)(y(T )− yd)−
T∫
t

eA(s−t)Φ(T )(s) dW (s)−
T∫
t

eA(s−t)Φ
(T )
b (s) dWb(s),

where Φ(T )(s) = eA(T−s)Φ(s) and Φ
(T )
b (s) = eA(T−s)Φb(s). Then we obtain for all t ∈ [0, T ] and P-a.s.

q(t) = E [p(t)|Ft] (4.17)

and by equation (4.11) and equation (4.12), the optimal controls u ∈ U and v ∈ V satisfy for almost all
t ∈ [0, T ] and P-a.s.

u(t) = − 1

κ1
B∗q(t), (4.18)

v(t) = − 1

κ2
G∗(λ−A)1−αq(t). (4.19)

In the remaining part of this section, we reformulate the process (q(t))t∈[0,T ] to obtain a feedback law of
the optimal controls. Therefor, we introduce the function P : [0, T ]→ L(L2(D)), which fulfills the following
Riccati equation: 

d

dt
P(t) = AP(t) + P(t)A− 1

κ1
P(t)BB∗P(t)− 1

κ2
H∗(t)GG∗H(t),

P(T ) = I,

(4.20)

where H(t) = (λ−A)1−αP(t) and I is the identity operator on L2(D).
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Definition 4.9. We call P : [0, T ] → L(L2(D)) a mild solution of system (4.20) if for all t ∈ [0, T ]
and every h ∈ L2(D)

P(t)h = eA(T−t)eA(T−t)h− 1

κ1

T∫
t

eA(s−t)P(s)BB∗P(s)eA(s−t)h ds

− 1

κ2

T∫
t

eA(s−t)H∗(s)GG∗H(s)eA(s−t)h ds. (4.21)

Remark 4.10. In [9, Part IV], the existence and uniqueness of mild solutions to the Riccati equations
d

dt
P(t) = AP(t) + P(t)A− P(t)BB∗P(t),

P(T ) = I

and 
d

dt
P(t) = AP(t) + P(t)A−H∗(t)GG∗H(t),

P(T ) = I

are proved. Since equation (4.20) is a generalization of these special cases, an existence and uniqueness
result can be easily obtained.

In the following remark, we state some important properties of the function P : [0, T ]→ L(L2(D)).

Remark 4.11. Recall that α ∈ ( 1
2 ,

3
4 ). According to [9, Part IV], we have

• P(t)h ∈ D((λ−A)1−α) for every h ∈ L2(D) and all t ∈ [0, T );

• t 7→ (λ−A)1−αP(t) is a continuous function from [0, T ) into L(L2(D));

• P(t) ∈ L(L2(D)) is self-adjoint for all t ∈ [0, T ].

Lemma 4.12. Let P : [0, T ]→ L(L2(D)) be the mild solution of system (4.20). If z ∈ D((λ−A)1−α), then
we have for all t ∈ [0, T ]

P(t)(λ−A)1−αz = (λ−A)1−αP(t)z.

Proof. The claim follows immediately from Corollary 4.2 (vii) and the fact that P(t) is self-adjoint for all
t ∈ [0, T ].

Next, we introduce the function a : [0, T ]→ D((λ−A)1−α) satisfying the following deterministic backward
integral equation for t ∈ [0, T ]:

a(t) =

T∫
t

eA(s−t)
(
− 1

κ1
P(s)BB∗ − 1

κ2
H∗(s)GG∗(λ−A)1−α

)
a(s) ds− eA(T−t)yd. (4.22)

We have the following existence and uniqueness result.

Theorem 4.13. There exists a unique solution a : [0, T ]→ (λ−A)1−α of equation (4.22) such that

T∫
0

‖a(t)‖2D((λ−A)1−α)dt <∞.
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Proof. For all t ∈ [0, T ], let us introduce the operator M(t) : D
(
(λ−A)1−α)→ L2(D) defined by

M(t) = − 1

κ1
P(t)BB∗ − 1

κ2
H∗(t)GG∗(λ−A)1−α.

Then clearly M(t) is linear and closed for all t ∈ [0, T ]. Recall that the operators P(t), B,H(t) and G are
linear and bounded on L2(D) for all t ∈ [0, T ). By Corollary 4.2 (iii), there exists a constant c > 0 such
that for all t ∈ [0, T ) and every y ∈ D((λ−A)1−α)

‖M(t)y‖L2(D) ≤
1

κ1
‖P(t)BB∗y‖L2(D) +

1

κ2
‖H∗(t)GG∗(λ−A)1−αy‖L2(D) ≤ c‖(λ−A)1−αy‖L2(D). (4.23)

Next, we define for t ∈ [0, T ]

J (ã)(t) =

T∫
t

eA(s−t)M(s)ã(s) ds− eA(T−t)yd.

Let T1 ∈ [0, T ). We have that J maps L2([T1, T ];D((λ − A)1−α)) into itself, which follows immediately
from Proposition B.9, Corollary 4.2, inequality (4.23) and Young’s inequality for convolutions. Indeed, we
obtain

T∫
T1

‖J (ã)(t)‖2D((λ−A)1−α)dt

≤ 2

T∫
T1

 T∫
t

∥∥∥(λ−A)1−αeA(s−t)M(s)ã(s)
∥∥∥
L2(D)

ds

2

dt+ 2

T∫
T1

‖(λ−A)1−αeA(T−t)yd‖2L2(D)dt

≤ 2M2
1−α

 T∫
T1

 T∫
t

(s− t)α−1 ‖M(s)ã(s)‖L2(D) ds

2

dt+

T∫
T1

(T − t)2α−2dt ‖yd‖2L2(D)


≤ 2M2

1−α

c2(T − T1)α

α

T∫
T1

‖ã(t)‖2D((λ−A)1−α)dt+
(T − T1)2α−1

2α− 1
‖yd‖2L2(D)

 .
Next, we show that J is a contraction on L2([T1, T ];D((λ−A)1−α)). Let ã1, ã2 ∈ L2([T1, T ];D((λ−A)1−α)).
Similar as above, we get

T∫
T1

‖J (ã1)(t)− J (ã2)(t)‖2D((λ−A)1−α)dt ≤
T∫

T1

 T∫
t

∥∥∥(λ−A)1−αeA(s−t)M(s)[ã1(s)− ã1(s)]
∥∥∥
L2(D)

ds

2

dt

≤
M2

1−αc
2(T − T1)α

α

T∫
T1

‖ã1(t)− ã2(t)‖2D((λ−A)1−α)dt.

We chose T1 ∈ [0, T ) such that
M2

1−αc
2(T−T1)α

α < 1. Applying the Banach fixed point theorem, we get a
unique element a ∈ L2([T1, T ];D((λ − A)1−α)) such that J (a)(t) = a(t) for t ∈ [T1, T ]. Next, we consider
for t ∈ [0, T1]

J (ã)(t) = eA(T1−t)a(T1) +

T1∫
t

eA(s−t)M(s)ã(s) ds.
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Again, we find T2 ∈ [0, T1] such that there exists a unique fixed point of J on L2([T2, T1];D((λ−A)1−α)). By
continuing the method, we get the existence and uniqueness of a function a : [0, T ]→ (λ−A)1−α satisfying
J (a)(t) = a(t) for t ∈ [0, T ].

This enables us to prove the following representation theorem, where we closely relate to the proof of [21,
Theorem 7.8].

Theorem 4.14. Let the process (q(t))t∈[0,T ] be given by (4.17). Then we have for all t ∈ [0, T ] and P-a.s.

q(t) = P(t)y(t) + a(t), (4.24)

where P : [0, T ] → L(L2(D)) is the mild solution of system (4.20) and a : [0, T ] → D((λ − A)1−α) is the
unique solution of equation (4.22).

Proof. Let t ∈ [0, T ] be arbitrary. Substituting equations (4.18) and (4.19) in equation (4.4), we find for all
s ∈ [t, T ] and P-a.s.

y(s) = eA(s−t)y(t)− 1

κ1

s∫
t

eA(s−r)BB∗q(r) dr − 1

κ2

s∫
t

(λ−A)1−αeA(s−r)GG∗(λ−A)1−αq(r) dr

+

s∫
t

eA(s−r)G(r) dW (r) +

s∫
t

(λ−A)eA(s−r)N dWb(r).

Next, we define for all r ∈ [t, T ] and P-a.s.

q̃(r) = E[p(r)|Ft]. (4.25)

Then by equation (4.17), we get P-a.s. q(t) = q̃(t) and

E[q(r)|Ft] = E
[
E[p(r)|Fr]

∣∣Ft] = E[p(r)|Ft] = q̃(r)

resulting from Proposition 3.16. Thus, we have for all s ∈ [t, T ] and P-a.s.

E[y(s)|Ft] = eA(s−t)y(t)− 1

κ1

s∫
t

eA(s−r)BB∗q(r) dr− 1

κ2

s∫
t

(λ−A)1−αeA(s−r)GG∗(λ−A)1−αq(r) dr. (4.26)

Using equation (4.16) and Corollary 4.2, we obtain P-a.s.

q(t) = eA(T−t)eA(T−t)y(t)− 1

κ1

T∫
t

eA(T−t)eA(T−s)BB∗q̃(s) ds

− 1

κ2

T∫
t

(λ−A)1−αeA(T−t)eA(T−s)GG∗(λ−A)1−αq̃(s) ds− eA(T−t)yd.

By equation (4.21) with h = y(t), we find P-a.s.

q(t) = P(t)y(t)− eA(T−t)yd +
1

κ1

T∫
t

[
eA(s−t)P(s)BB∗P(s)eA(s−t)y(t)− eA(T−t)eA(T−s)BB∗q̃(s)

]
ds

+
1

κ2

T∫
t

eA(s−t)H∗(s)GG∗H(s)eA(s−t)y(t) ds− 1

κ2

T∫
t

(λ−A)1−αeA(T−t)eA(T−s)GG∗(λ−A)1−αq̃(s) ds

= P(t)y(t)− eA(T−t)yd + I1(t) + I2(t), (4.27)
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where

I1(t) =
1

κ1

T∫
t

[
eA(s−t)P(s)BB∗P(s)eA(s−t)y(t)− eA(T−t)eA(T−s)BB∗q̃(s)

]
ds,

I2(t) =
1

κ2

T∫
t

eA(s−t)H∗(s)GG∗H(s)eA(s−t)y(t) ds

− 1

κ2

T∫
t

(λ−A)1−αeA(T−t)eA(T−s)GG∗(λ−A)1−αq̃(s) ds.

Using again equation (4.21) with h = BB∗q̃(s), we get P-a.s.

I1(t) =
1

κ1

T∫
t

eA(s−t)P(s)BB∗
[
P(s)eA(s−t)y(t)− q̃(s)

]
ds

− 1

κ2
1

T∫
t

T∫
s

eA(r−t)P(r)BB∗P(r)eA(r−s)BB∗q̃(s) dr ds

− 1

κ1κ2

T∫
t

T∫
s

eA(r−t)H∗(r)GG∗H(r)eA(r−s)BB∗q̃(s) dr ds.

By Fubini’s theorem, we have P-a.s.

I1(t) =
1

κ1

T∫
t

eA(s−t)P(s)BB∗
[
P(s)eA(s−t)y(t)− q̃(s)

]
ds

− 1

κ2
1

T∫
t

eA(r−t)P(r)BB∗P(r)

r∫
t

eA(r−s)BB∗q̃(s) ds dr

− 1

κ1κ2

T∫
t

eA(r−t)H∗(r)GG∗H(r)

r∫
t

eA(r−s)BB∗q̃(s) ds dr.

Through interchanging the integration variables in the last two integrals, we find P-a.s.

I1(t) =
1

κ1

T∫
t

eA(s−t)P(s)BB∗

P(s)eA(s−t)y(t)− q̃(s)− 1

κ1
P(s)

s∫
t

eA(s−r)BB∗q̃(r) dr

 ds
− 1

κ1κ2

T∫
t

eA(s−t)H∗(s)GG∗H(s)

s∫
t

eA(s−r)BB∗q̃(r) dr ds. (4.28)

Next, we reformulate I2(t). Corollary 4.2, Proposition B.9 and equation (4.21) with h = z̃ for an arbitrary
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z̃ ∈ D((λ−A)1−α) yields for all s ∈ [t, T ]

(λ−A)1−αeA(T−s)eA(T−s)z̃ = (λ−A)1−αP(s)z̃ +
1

κ1

T∫
s

(λ−A)1−αeA(r−s)P(r)BB∗P(r)eA(r−s)z̃ dr

+
1

κ2

T∫
s

(λ−A)1−αeA(r−s)H∗(r)GG∗H(r)eA(r−s)z̃ dr.

Similarly, by using additionally Lemma 4.12, we obtain for all s ∈ [t, T ]

eA(T−s)eA(T−s)(λ−A)1−αz̃ = (λ−A)1−αP(s)z̃ +
1

κ1

T∫
s

eA(r−s)P(r)BB∗P(r)(λ−A)1−αeA(r−s)z̃ dr

+
1

κ2

T∫
s

eA(r−s)H∗(r)GG∗H(r)(λ−A)1−αeA(r−s)z̃ dr.

By Corollary 4.2, we get

(λ−A)1−αeA(T−s)eA(T−s)z̃ = eA(T−s)eA(T−s)(λ−A)1−αz̃.

Hence, we can conclude for all s ∈ [t, T ]

1

κ1

T∫
s

(λ−A)1−αeA(r−s)P(r)BB∗P(r)eA(r−s)z̃ dr +
1

κ2

T∫
s

(λ−A)1−αeA(r−s)H∗(r)GG∗H(r)eA(r−s)z̃ dr

=
1

κ1

T∫
s

eA(r−s)P(r)BB∗P(r)(λ−A)1−αeA(r−s)z̃ dr

+
1

κ2

T∫
s

eA(r−s)H∗(r)GG∗H(r)(λ−A)1−αeA(r−s)z̃ dr. (4.29)

Due to the fact that D((λ − A)1−α) is dense in L2(D), the previous equation holds for every z̃ ∈ L2(D).
Applying equation (4.21) with h = GG∗(λ−A)1−αq̃(s), we get P-a.s.

I2(t) =
1

κ2

T∫
t

eA(s−t)
[
H∗(s)GG∗H(s)eA(s−t)y(t)−H(s)GG∗(λ−A)1−αq̃(s)

]
ds

− 1

κ1κ2

T∫
t

T∫
s

(λ−A)1−αeA(r−t)P(r)BB∗P(r)eA(r−s)GG∗(λ−A)1−αq̃(s) dr ds

− 1

κ2
2

T∫
t

T∫
s

(λ−A)1−αeA(r−t)H∗(r)GG∗H(r)eA(r−s)GG∗(λ−A)1−αq̃(s) dr ds,
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where we also used Corollary 4.2. By equation (4.29) and Fubini’s theorem, we have P-a.s.

I2(t) =
1

κ2

T∫
t

eA(s−t)
[
H∗(s)GG∗H(s)eA(s−t)y(t)−H(s)GG∗(λ−A)1−αq̃(s)

]
ds

− 1

κ1κ2

T∫
t

eA(r−t)P(r)BB∗P(r)

r∫
t

(λ−A)1−αeA(r−s)GG∗(λ−A)1−αq̃(s) ds dr

− 1

κ2
2

T∫
t

eA(r−t)H∗(r)GG∗H(r)

r∫
t

(λ−A)1−αeA(r−s)GG∗(λ−A)1−αq̃(s) ds dr.

Through interchanging the integration variables in the last two integrals, we find P-a.s.

I2(t) =
1

κ2

T∫
t

eA(s−t)
[
H∗(s)GG∗H(s)eA(s−t)y(t)−H(s)GG∗(λ−A)1−αq̃(s)

]
ds

− 1

κ1κ2

T∫
t

eA(s−t)P(s)BB∗P(s)

s∫
t

(λ−A)1−αeA(s−r)GG∗(λ−A)1−αq̃(r) dr ds

− 1

κ2
2

T∫
t

eA(s−t)H∗(s)GG∗H(s)

s∫
t

(λ−A)1−αeA(s−r)GG∗(λ−A)1−αq̃(r) dr ds. (4.30)

Using equations (4.28) and (4.30), we obtain P-a.s.

I1(t) + I2(t) =
1

κ1

T∫
t

eA(s−t)P(s)BB∗

P(s)eA(s−t)y(t)− q̃(s)− 1

κ1
P(s)

s∫
t

eA(s−r)BB∗q̃(r) dr

− 1

κ2
P(s)

s∫
t

(λ−A)1−αeA(s−r)GG∗(λ−A)1−αq̃(r) dr

 ds
+

1

κ2

T∫
t

eA(s−t)H∗(s)GG∗(λ−A)1−αP(s)

eA(s−t)y(t)− 1

κ1

s∫
t

eA(s−r)BB∗q̃(r) dr

− 1

κ2

s∫
t

(λ−A)1−αeA(s−r)GG∗(λ−A)1−αq̃(r) dr

 ds
− 1

κ2

T∫
t

eA(s−t)H(s)GG∗(λ−A)1−αq̃(s) ds.
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By equation (4.26), we get P-a.s.

I1(t) + I2(t) =
1

κ1

T∫
t

eA(s−t)P(s)BB∗ [P(s)E[y(s)|Ft]− q̃(s)] ds

+
1

κ2

T∫
t

eA(s−t)H∗(s)GG∗(λ−A)1−α [P(s)E[y(s)|Ft]− q̃(s)] ds

+
1

κ2

T∫
t

eA(s−t) (H∗(s)−H(s))GG∗(λ−A)1−αq̃(s) ds.

Due to Corollary 4.2 and Lemma 4.12, we have for every z̃ ∈ L2(D) and P-a.s.〈 T∫
t

eA(s−t) (H∗(s)−H(s))GG∗(λ−A)1−αq̃(s)ds, z̃

〉
L2(D)

=

T∫
t

〈
GG∗(λ−A)1−αq̃(s), (λ−A)1−αP(s)eA(s−t)z̃

〉
L2(D)

ds

−
T∫
t

〈
GG∗(λ−A)1−αq̃(s),P(s)(λ−A)1−αeA(s−t)z̃

〉
L2(D)

ds = 0.

Hence, we can conclude that P-a.s.

T∫
t

eA(s−t) (H∗(s)−H(s))GG∗(λ−A)1−αq̃(s) ds = 0.

Therefore, we have P-a.s.

I1(t) + I2(t) =
1

κ1

T∫
t

eA(s−t)P(s)BB∗ [P(s)E[y(s)|Ft]− q̃(s)] ds

+
1

κ2

T∫
t

eA(s−t)H∗(s)GG∗(λ−A)1−α [P(s)E[y(s)|Ft]− q̃(s)] ds. (4.31)

Next, we set a(s) = q̃(s) − P(s)E[y(s)|Ft] for s ∈ [t, T ] and P-almost surely. Then for s = t, we get
a(t) = q(t) − P(t)y(t) resulting from equation (4.17) and equation (4.25). Therefore, we obtain equation
(4.24). Moreover, we get that a(t) satisfies the following deterministic backward integral equation:

a(t) =

T∫
t

eA(s−t)
(
− 1

κ1
P(s)BB∗ − 1

κ2
H∗(s)GG∗(λ−A)1−α

)
a(s) ds− eA(T−t)yd

as a consequence of equation (4.27) and equation (4.31).
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Remark 4.15. As a consequence of equation (4.18), equation (4.19) and the previous theorem, the optimal
controls u ∈ U and v ∈ V satisfy the following feedback laws for almost all t ∈ [0, T ] and P-almost surely:

u(t) = − 1

κ1
B∗[P(t)y(t) + a(t)],

v(t) = − 1

κ2
G∗(λ−A)1−α[P(t)y(t) + a(t)],

where the function P : [0, T ]→ L(L2(D)) is the mild solution of system (4.20) and a : [0, T ]→ D((λ−A)1−α)
is the unique solution of equation (4.22).

Remark 4.16. If system (4.3) is driven by Lévy processes, then one can obtain the optimal controls stated
in the previous remark as follows:
Note that the design of the feedback law presented in this section is based on a martingale representation
theorem. Similarly to Remark 3.88 such a martingale representation theorem can only be derived if the
filtration is generated by independent real-valued Lévy processes. Hence, a feedback law of the optimal
controls can be derived if system (4.3) is driven by real-valued Lévy processes.
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Chapter 5

Optimal Control of Uncertain Stokes Flows

In this chapter, we consider a control problem constrained by the unsteady stochastic Stokes equations with
nonhomogeneous Dirichlet boundary conditions. Here controls appear inside the domain as distributed
controls and on the boundary as tangential controls. Motivated by [76], we first analyze the deterministic
unsteady Stokes equations with nonhomogeneous Dirichlet boundary conditions. Similarly to the previous
chapter, we reformulate these equations as an evolution equation in a suitable Hilbert space such that the
existence and uniqueness of a solution can be obtained using fractional powers of closed operators introduced
in Section 2.3. Based on this approach, we extend the Stokes equations by an additional noise term. An
existence and uniqueness result of a mild solution to the stochastic Stokes equations is provided in Section
3.4.1. This enables us to solve uniquely a tracking problem using a stochastic maximum principle, which
gives us necessary and sufficient optimality conditions the optimal controls have to satisfy. Through a duality
principle, we can utilize these optimality conditions to calculate the optimal controls. As a consequence, it
remains to solve a coupled system of forward and backward SPDEs. The results presented here are mainly
based on [8].

Throughout this chapter, let (Ω,F ,P) be a given complete probability space endowed with a normal
filtration (Ft)t≥0.

5.1. Motivation

In this section, we consider the deterministic Stokes equations with nonhomogeneous Dirichlet boundary
conditions. Here, we restrict the problem to tangential boundary conditions. A general formulation can
be found in [76]. Let D ⊂ Rn, n ≥ 2, be a connected and bounded domain with C2 boundary ∂D and let
T > 0. We introduce the Stokes equations with nonhomogeneous Dirichlet boundary conditions:

∂

∂t
y(t, x)−∆y(t, x) +∇p(t, x) = f(t, x) in (0, T )×D,

div y(t, x) = 0 in (0, T )×D,
y(t, x) = g(t, x) on (0, T )× ∂D,
y(0, x) = ξ(x) in D,

(5.1)

where y(t, x) ∈ Rn denotes the velocity field with initial value ξ(x) ∈ Rn, p(t, x) ∈ R describes the pressure
of the fluid and f(t, x) ∈ Rn is the external force. The boundary condition g(t, x) ∈ Rn is assumed to be
tangential, i.e.

g(t, x) · η(x) = 0 on (0, T )× ∂D
in the sense of the inner product in Rn, where η denotes the unit outward normal to ∂D. Next, we
reformulate system (5.1) as an evolution equation. According to Section 2.5.2, let us introduce the following
Hilbert spaces:

H =
{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
,

V =
{
y ∈

(
H1

0 (D)
)n

: div y = 0 in D
}
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and let A : D(A) ⊂ H → H be the Stokes operator given by

D(A) = (H2(D))n ∩ V, Ay = −Π∆y

for every y ∈ D(A), where the operator Π: (L2(D))n → H is an orthogonal projection. By Theorem
2.61, the operator −A is the generator of an analytic semigroup of contractions (e−At)t≥0. Hence, we can
introduce fractional powers of A denoted by Aα with α ∈ R according to Section 2.3. Furthermore, let us
define the following spaces for s ≥ 0:

V s(D) = {y ∈ (Hs(D))
n

: div y = 0 in D, y · η = 0 on ∂D} ,
V s(∂D) = {y ∈ (Hs(∂D))

n
: y · η = 0 on ∂D} .

For s < 0, the space V s(∂D) is the dual space of V −s(∂D) with V 0(∂D) as pivot space. Moreover, let
Hs(D)/R with s ≥ 0 be the quotient space of Hs(D) by R, i.e. Hs(D)/R = {y+ c : y ∈ Hs(D), c ∈ R}. We
set ‖y‖Hs(D)/R = infc∈R ‖y + c‖Hs(D) for every y ∈ Hs(D)/R. The dual space is denoted by (Hs(D)/R)′

with H0(D)/R as pivot space.
Next, let us consider the system{

−∆w +∇π = 0 and div w = 0 in D,
w = g on ∂D.

(5.2)

We have the following existence and uniqueness results.

Proposition 5.1 (cf. Theorem IV.6.1 (a),[40]). If we assume that g ∈ V 3/2(∂D), then there exists a unique
solution (w, π) ∈ V 2(D)×H1(D)/R of system (5.2) and the following estimate holds:

‖w‖V 2(D) + ‖π‖H1(D)/R ≤ C∗‖g‖V 3/2(∂D),

where C∗ > 0 is a constant.

Proposition 5.2 (cf. [41, 76]). If we assume that g ∈ V −1/2(∂D), then there exists a unique solution

(w, π) ∈ V 0(D)×
(
H1(D)/R

)′
of system (5.2) and the following estimate holds:

‖w‖V 0(D) + ‖π‖(H1(D)/R)′ ≤ C∗‖g‖V −1/2(∂D),

where C∗ > 0 is a constant.

We introduce the Dirichlet operators D and Dp defined by

Dg = w and Dpg = π,

where (w, π) is the solution of system (5.2). We get the following properties of the Dirichlet operators,
which is an immediate consequence of Proposition 5.1 and Proposition 5.2.

Corollary 5.3 (Corollary A.1, [76]). The operator D is linear and continuous from V s(∂D) into V s+1/2(D)
for all − 1

2 ≤ s ≤ 3
2 . If − 1

2 ≤ s < 1
2 , then the operator Dp is linear and continuous from V s(∂D) into(

H1/2−s(D)/R
)′

and if 1
2 ≤ s ≤ 3

2 , then the operator Dp is linear and continuous from V s(∂D) into

Hs−1/2(D)/R.

As a consequence of Corollary 2.63 and Corollary 5.3, we get D ∈ L
(
V 0(∂D);D(Aβ)

)
for β ∈

(
0, 1

4

)
. By

the closed graph theorem, we have AβD ∈ L
(
V 0(∂D);V 0(D)

)
. We note that V 0(D) = H. Furthermore,

system (5.1) can be rewritten in the following form:
d

dt
y(t) = −Ay(t) +ADg(t) + Πf(t),

y(0) = Πξ.
(5.3)
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For the sake of simplicity, we assume f(t), ξ ∈ H for t ∈ [0, T ]. Hence, we obtain a linear evolution equation
and the solution is given by

y(t) = e−Atξ +

t∫
0

Ae−A(t−s)Dg(s) ds+

t∫
0

e−A(t−s)f(s) ds.

For more details about linear evolution equations, see [9]. The following existence and uniqueness result is
stated in [76] for more general boundary conditions and f = 0.

Theorem 5.4. Let g ∈ L2([0, T ];V 0(∂D)) and f ∈ L2([0, T ];H). If α ∈ [0, 1
4 ), then for any ξ ∈ D(Aα),

there exists a unique solution y ∈ L2([0, T ];D(Aα)) of system (5.3) and the following estimate holds:

‖y‖L2([0,T ];D(Aα)) ≤ C∗
(
‖ξ‖D(Aα) + ‖g‖L2([0,T ];V 0(∂D)) + ‖f‖L2([0,T ];H)

)
,

where C∗ > 0 is a constant.

5.2. The Controlled Stochastic Stokes Equations

In this section, we consider the controlled stochastic Stokes equations. Here, controls appear as distributed
controls inside the domain as well as tangential controls on the boundary. We assume that the external
force f(t) in equation (5.3) can be decomposed as the sum of a control term and a noise term dependent on
the velocity field y(t). Using the spaces and operators introduced in Section 5.1, we obtain the stochastic
Stokes equations in D(Aα):{

dy(t) = [−Ay(t) +Bu(t) +ADv(t)] dt+G(y(t)) dW (t),

y(0) = ξ,
(5.4)

where the initial value ξ ∈ L2(Ω;D(Aα)) is F0-measurable and the process (W (t))t≥0 is a Q-Wiener process
with values in H and covariance operator Q ∈ L+

1 (H). The set of admissible distributed controls U contains
all predictable processes (u(t))t∈[0,T ] with values in H such that

E
T∫

0

‖u(t)‖2H dt <∞.

The space U equipped with the inner product of L2(Ω;L2([0, T ];H)) becomes a Hilbert space. Similarly, the
set of admissible boundary controls V contains all predictable processes (v(t))t∈[0,T ] with values in V 0(∂D)
such that

E
T∫

0

‖v(t)‖2V 0(∂D) dt <∞.

The space V equipped with the inner product of L2(Ω;L2([0, T ];V 0(∂D))) becomes a Hilbert space. The
operators B : H → H and G : H → L(HS)(Q

1/2(H);H) are linear and bounded. Motivated by Section 5.1,
we use a mild solution to system (5.4) in the sense of Definition 3.78 with H = H and Hb = V 0(∂D).
As a consequence of Theorem 3.79, there exists a unique mild solution (y(t))t∈[0,T ] of system (5.4) for any
ξ ∈ L2(Ω;D(Aα)) and fixed controls u ∈ U and v ∈ V . Hence, the process (y(t))t∈[0,T ] takes values in

D(Aα) with α ∈ [0, 1
4 ) such that

E
T∫

0

‖y(t)‖2D(Aα)dt <∞ (5.5)
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and we have for all t ∈ [0, T ] and P-a.s.

y(t) = e−Atξ +

t∫
0

e−A(t−s)Bu(s) ds+

t∫
0

Ae−A(t−s)Dv(s) ds+

t∫
0

e−A(t−s)G(y(s)) dW (s).

In this chapter, it suffices to require that (y(t))t∈[0,T ] satisfies condition (5.5) with α = 0 and we assume
that the initial value ξ ∈ L2(Ω;H) is fixed. To illustrate the dependence on the controls u ∈ U and v ∈ V ,
let us denote by (y(t;u, v))t∈[0,T ] the mild solution of system (5.4). Whenever this process is considered for
fixed controls, we use the notation introduced above. We get the following properties.

Lemma 5.5. Let (y(t;u, v))t∈[0,T ] be the mild solution of system (5.4) corresponding to the controls u ∈ U
and v ∈ V . Then the process (y(t;u, v))t∈[0,T ] is affine linear with respect to u and v and we have for every
u1, u2 ∈ U and every v1, v2 ∈ V

E
T∫

0

‖y(t;u1, v1)− y(t;u2, v2)‖2Hdt ≤ Ĉ

E T∫
0

‖u1(t)− u2(t)‖2H dt+ E
T∫

0

‖v1(t)− v2(t)‖2V 0(∂D) dt

 , (5.6)

where Ĉ > 0 is a constant.

Proof. First, we show that (y(t;u, v))t∈[0,T ] is affine linear with respect to u ∈ U . We assume that ξ = 0

and v = 0. Moreover, let a, b ∈ R and u1, u2 ∈ U . Recall that B : H → H and G : H → L(HS)(Q
1/2(H);H)

are linear and bounded. Moreover, we have
∥∥e−At∥∥L(H)

≤ 1 for all t ≥ 0. Using Theorem 3.62 (iii) and

Fubini’s theorem, there exists a constant C∗ > 0 such that for t ∈ [0, T ]

E ‖y(t; a u1 + b u2, 0)− a y(t;u1, 0)− b y(t;u2, 0)‖2H

≤ E

∥∥∥∥∥∥
t∫

0

e−A(t−s)G(y(t; a u1 + b u2, 0)− a y(t;u1, 0)− b y(t;u2, 0)) dW (s)

∥∥∥∥∥∥
2

H

≤ C∗
t∫

0

E ‖y(s; a u1 + b u2, 0)− a y(s;u1, 0)− b y(s;u2, 0))‖2H ds.

By Proposition A.1, we have

E‖y(t; a u1 + b u2, 0)− a y(t;u1, 0)− b y(t;u2, 0)‖2H = 0

for t ∈ [0, T ] and thus, we get

E
T∫

0

‖y(t; a u1 + b u2, 0)− a y(t;u1, 0)− b y(t;u2, 0)‖2Hdt = 0

resulting from Fubini’s theorem. We obtain that (y(t;u, 0))t∈[0,T ] with initial value ξ = 0 is linear with
respect to u ∈ U . For arbitrary F0-measurable ξ ∈ L2(Ω;H) and arbitrary v ∈ V , we can conclude that
(y(t;u, v))t∈[0,T ] is affine linear with respect to u ∈ U . Similarly, we obtain that (y(t;u, v))t∈[0,T ] is affine
linear with respect to v ∈ V .

Next, we show that inequality (5.6) holds. Let u1, u2 ∈ U and v1, v2 ∈ V . Recall that AαD : V 0(∂D)→ H
is linear and bounded for all α ∈

(
0, 1

4

)
. Due to Theorem 2.29 (iv), Theorem 2.35, Theorem 3.62 (iii) and
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Fubini’s theorem, there exist constants C1, C2, C3 > 0 such that for t ∈ [0, T ]

E ‖y(t;u1, v1)− y(t;u2, v2)‖2H

≤ 3E
t∫

0

∥∥∥e−A(t−s)B[u1(s)− u2(s)]
∥∥∥2

H
ds+ 3E

 t∫
0

∥∥∥A1−αe−A(t−s)AαD[v1(s)− v2(s)]
∥∥∥
H
ds

2

+ 3E

∥∥∥∥∥∥
t∫

0

e−A(t−s)G(y(s;u1, v1)− y(s;u2, v2)) dW (s)

∥∥∥∥∥∥
2

H

≤ C1 E
t∫

0

‖u1(s)− u2(s)‖2H ds+ C2 E

 t∫
0

(t− s)α−1 ‖v1(s)− v2(s)‖V 0(∂D) ds

2

+ C3

t∫
0

E ‖y(s;u1, v1)− y(s;u2, v2)‖2Hds.

Using Corollary A.4, Fubini’s theorem and Young’s inequality for convolutions, we get for t ∈ [0, T ]

E ‖y(t;u1, v1)− y(t;u2, v2)‖2H

≤ C1 E
t∫

0

‖u1(s)− u2(s)‖2H ds+ C2 E

 t∫
0

(t− s)α−1 ‖v1(s)− v2(s)‖V 0(∂D) ds

2

+ C3

t∫
0

eC3(t−s)

C1 E
s∫

0

‖u1(r)− u2(r)‖2H dr + C2 E

 s∫
0

(s− r)α−1 ‖v1(r)− v2(r)‖V 0(∂D) dr

2
 ds

≤ C1

(
1 + C3e

C3tt
)
E

t∫
0

‖u1(s)− u2(s)‖2H ds+ C2 E

 t∫
0

(t− s)α−1 ‖v1(s)− v2(s)‖V 0(∂D) ds

2

+
C2C3e

C3tt2α

α2
E

t∫
0

‖v1(s)− v2(s)‖2V 0(∂D) ds.

By Fubini’s theorem and Young’s inequality for convolutions, there exists a constant Ĉ > 0 such that

E
T∫

0

‖y(t;u1, v1)− y(t;u2, v2)‖2Hdt ≤ Ĉ

E T∫
0

‖u1(t)− u2(t)‖2H dt+ E
T∫

0

‖v1(t)− v2(t)‖2V 0(∂D) dt

 .

5.3. A Tracking Problem

The control problem considered here is motivated by [4, 17, 56, 75, 79]. In this section, we state necessary
and sufficient optimality conditions the optimal controls have to satisfy. Let us introduce the following cost

101



Chapter 5. Optimal Control of Uncertain Stokes Flows

functional:

J(u, v) =
1

2
E

T∫
0

‖y(t;u, v)− yd(t)‖2Hdt+
κ1

2
E

T∫
0

‖u(t)‖2H dt+
κ2

2
E

T∫
0

‖v(t)‖2V 0(∂D) dt, (5.7)

where (y(t;u, v))t∈[0,T ] is the mild solution of system (5.4) corresponding to the controls u ∈ U and v ∈ V .
The function yd ∈ L2([0, T ];H) is a given desired velocity field and κ1, κ2 > 0 are weights. The task is to
find controls u ∈ U and v ∈ V such that

J(u, v) = inf
u∈U,v∈V

J(u, v).

The controls u ∈ U and v ∈ V are called optimal controls. Note that the control problem is formulated
as an unbounded optimization problem constrained by a SPDE. The functional J : U × V → R given by
equation (5.7) is coercive, strictly convex and continuous, which is a consequence of Lemma 5.5. Hence, we
get the existence and uniqueness of optimal controls resulting from Corollary D.13.

Next, let us introduce the following systems in H:{
dz1(t) = [−Az1(t) +Bu(t)] dt+G(z1(t)) dW (t),

z1(0) = 0,
(5.8)

{
dz2(t) = [−Az2(t) +ADv(t)] dt+G(z2(t)) dW (t),

z2(0) = 0,
(5.9)

where u ∈ U , v ∈ V and (W (t))t≥0 is a Q-Wiener process with values in H and covariance operator
Q ∈ L+

1 (H). The operators A,B,D,G and the spaces U, V are introduced in Section 5.1 and Section 5.2,
respectively. Again, we use a mild solution to system (5.8) in the sense of Definition 3.78 with H = H,
Hb = V 0(∂D) and v = 0. As a consequence of Theorem 3.79 with α = 0, there exists a unique mild solution
(z1(t))t∈[0,T ] of system (5.8) for fixed control u ∈ U . Hence, the process (z1(t))t∈[0,T ] takes values in H such
that

E
T∫

0

‖z1(t)‖2Hdt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z1(t) =

t∫
0

e−A(t−s)Bu(s) ds+

t∫
0

e−A(t−s)G(z1(s)) dW (s).

Similarly, there exists a unique mild solution (z2(t))t∈[0,T ] of system (5.9) for fixed control v ∈ V . The
process (z2(t))t∈[0,T ] takes values in H such that

E
T∫

0

‖z2(t)‖2Hdt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z2(t) =

t∫
0

Ae−A(t−s)Dv(s) ds+

t∫
0

e−A(t−s)G(z2(s)) dW (s).
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Remark 5.6. Resulting from Theorem 3.82, the mild solution of system (5.8) satisfies even stronger regu-
larity conditions. Indeed the process (z1(t))t∈[0,T ] takes values in D(Aα) with α ∈ [0, 1

2 ) such that

E sup
t∈[0,T ]

‖z1(t)‖2D(Aα) <∞.

To illustrate the dependence on the controls u ∈ U and v ∈ V , let us denote by (z1(t;u))t∈[0,T ] and
(z2(t; v))t∈[0,T ] the mild solutions of system (5.8) and system (5.9), respectively. Whenever these processes
are considered for fixed controls, we use the notation introduced above. Similarly to Lemma 5.5, we get the
following result.

Lemma 5.7. Let (z1(t;u))t∈[0,T ] and (z2(t; v))t∈[0,T ] be the mild solutions of system (5.8) and system (5.9)
corresponding to the controls u ∈ U and v ∈ V , respectively. Then the process (z1(t;u))t∈[0,T ] is linear
with respect to u and the process (z2(t; v))t∈[0,T ] is linear with respect to v. Moreover, we have for every
u1, u2 ∈ U and every v1, v2 ∈ V

E
T∫

0

‖z1(t;u1)− z1(t;u2)‖2Hdt ≤ Ĉ E
T∫

0

‖u1(t)− u2(t)‖2H dt,

E
T∫

0

‖z2(t; v1)− z2(t; v2)‖2Hdt ≤ Ĉ E
T∫

0

‖v1(t)− v2(t)‖2V 0(∂D) dt,

where Ĉ > 0 is a constant.

This enables us to calculate the partial Fréchet derivative of the mild solution to system (5.4).

Theorem 5.8. Let (y(t;u, v))t∈[0,T ], (z1(t;u))t∈[0,T ] and (z2(t; v))t∈[0,T ] be the mild solutions of systems
(5.4), (5.8) and (5.9) corresponding to the controls u ∈ U and v ∈ V , respectively. Then the partial Fréchet
derivative of y(t;u, v) at u ∈ U in direction ũ ∈ U satisfies for fixed v ∈ V , t ∈ [0, T ] and P-a.s.

dFu y(t;u, v)[ũ] = z1(t; ũ).

The partial Fréchet derivative of y(t;u, v) at v ∈ V in direction ṽ ∈ V satisfies for fixed u ∈ U , t ∈ [0, T ]
and P-a.s.

dFv y(t;u, v)[ṽ] = z2(t; ṽ).

Proof. First, we calculate the Fréchet derivative of y(t;u, v) at u ∈ U in direction ũ ∈ U . Let v ∈ V be
fixed. Recall that the operators B : H → H and G : H → L(HS)(Q

1/2(H);H) are linear and bounded.

Moreover, we have
∥∥e−At∥∥L(H)

≤ 1 for all t ≥ 0. Using Theorem 3.62 (iii) and Fubini’s theorem, there

exists a constant C∗ > 0 such that for t ∈ [0, T ]

E ‖y(t;u+ ũ, v)− y(t;u, v)− z1(t; ũ)‖2H = E

∥∥∥∥∥∥
t∫

0

e−A(t−s)G(y(s;u+ ũ, v)− y(s;u, v)− z1(s; ũ)) dW (s)

∥∥∥∥∥∥
2

H

≤ C∗
t∫

0

E ‖y(s;u+ ũ, v)− y(s;u, v)− z1(s; ũ)‖2H ds.

By Proposition A.1, we have E‖y(t;u+ ũ, v)− y(t;u, v)− z1(t; ũ)‖2H = 0 and hence, we obtain

E
T∫

0

‖y(t;u+ ũ, v)− y(t;u, v)− z1(t; ũ)‖2Hdt = 0
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as a consequence of Fubini’s theorem. Therefore, the partial Fréchet derivative of y(t;u, v) at u ∈ U in
direction ũ ∈ U satisfies for every v ∈ V , t ∈ [0, T ] and P-a.s.

dFu y(t;u, v)[ũ] = z1(t; ũ).

Due to Lemma 5.7, the operator dFu y(t;u, v) is linear and bounded on U . Similarly, we obtain the partial
Fréchet derivative of y(t;u, v) at v ∈ V in direction ṽ ∈ V .

As a consequence of Remark D.6 and Theorem 5.8, we can calculate the partial Fréchet derivatives of the
cost functional (5.7). Indeed, the Fréchet derivative at u ∈ U in direction ũ ∈ U for fixed v ∈ V satisfies

dFu J(u, v)[ũ] = E
T∫

0

〈y(t;u, v)− yd(t), z1(t; ũ)〉H dt+ κ1 E
T∫

0

〈u(t), ũ(t)〉H dt, (5.10)

where (z1(t; ũ))t∈[0,T ] is the mild solution of system (5.8) corresponding to the control ũ ∈ U . The partial
Fréchet derivative at v ∈ V in direction ṽ ∈ V for fixed u ∈ U satisfies

dFv J(u, v)[ṽ] = E
T∫

0

〈y(t;u, v)− yd(t), z2(t; ṽ)〉H dt+ κ2 E
T∫

0

〈v(t), ṽ(t)〉V 0(∂D) dt, (5.11)

where (z2(t; ṽ))t∈[0,T ] is the mild solution of system (5.9) corresponding to the control ṽ ∈ V . Since the
cost functional J : U × V → R given by (5.7) is convex, we can apply Proposition D.14. Hence, the optimal
controls u ∈ U and v ∈ V satisfy the following necessary and sufficient optimality conditions:

dFu J(u, v)[ũ] = 0, (5.12)

dFv J(u, v)[ṽ] = 0 (5.13)

for every ũ ∈ U and every ṽ ∈ V .

Remark 5.9. Note that the necessary and sufficient optimality conditions (5.12) and (5.13) can be easily
obtained if system (5.4) is driven by a square integrable Lévy martingale as introduced in Section 3.3.

5.4. The Adjoint Equation

We use the optimality conditions (5.12) and (5.13) to derive explicit formulas for the optimal controls u ∈ U
and v ∈ V . Therefor, we need a duality principle, which gives us a relation between the Fréchet derivatives
of the mild solution to system (5.4) and the adjoint equation, which is given by the following backward
SPDE in H: {

dz∗(t) = −[−Az∗(t) +G∗(Φ(t)) + y(t)− yd(t)]dt+ Φ(t) dW (t),

z∗(T ) = 0,
(5.14)

where (y(t))t∈[0,T ] is the mild solution of system (5.4) and yd ∈ L2([0, T ];H) is the desired velocity field.

The process (W (t))t≥0 is a Q-Wiener process with values in H and covariance operator Q ∈ L+
1 (H) and the

operator G∗ : L(HS)(Q
1/2(H);H) → H is linear and bounded. A precise meaning is given in the following

remark.

Remark 5.10. Recall that the operator G : H → L(HS)(Q
1/2(H);H) is linear and bounded. Therefore,

there exists a linear and bounded operator G∗ : L(HS)(Q
1/2(H);H) → H satisfying for every h ∈ H and

every Φ ∈ L(HS)(Q
1/2(H);H)

〈G(h),Φ〉L(HS)(Q1/2(H);H) = 〈h,G∗(Φ)〉H . (5.15)
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Here, we use a mild solution to system (5.14) in the sense of Definition 3.91 with H = H. Recall that
there exists a unique mild solution (y(t))t∈[0,T ] of system (5.4) for fixed controls u ∈ U and v ∈ V . As a
consequence of Theorem 3.93, we can conclude that there exists a unique mild solution (z∗(t),Φ(t))t∈[0,T ]

of system (5.14) for fixed controls u ∈ U and v ∈ V . Hence, the pair of processes (z∗(t),Φ(t))t∈[0,T ] takes

values in H × L(HS)(Q
1/2(H);H) such that

sup
t∈[0,T ]

E‖z∗(t)‖2H <∞, E
T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z∗(t) =

T∫
t

e−A(s−t)G∗(Φ(s)) ds+

T∫
t

e−A(s−t) (y(s)− yd(s)) ds−
T∫
t

e−A(s−t)Φ(s) dW (s).

Furthermore, note that the mild solution of system (5.4) depends on the controls u ∈ U and v ∈ V . Thus,
we get this property for the mild solution of system (5.14) as well. To illustrate the dependence on the
controls u ∈ U and v ∈ V , let us denote by (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] the mild solution of system (5.14).
Whenever these processes are considered for fixed controls, we use the notation introduced above. For
the process (z∗(t;u, v))t∈[0,T ], one can show another important regularity property. Therefor, we need a
modification of Young’s inequality for convolutions.

Lemma 5.11. Let f ∈ Lp([0, T ]) and g ∈ Lq([0, T ]) be arbitrary. We set for t ∈ [0, T ]

h(t) =

T∫
t

f(s− t)g(s) ds.

If p, q, r ≥ 1 satisfy 1
p + 1

q = 1
r + 1, then h ∈ Lr([0, T ]) and

‖h‖Lr([0,T ]) ≤ ‖f‖Lp([0,T ])‖g‖Lq([0,T ]).

Proof. The proof can be obtained similarly to the classical version of Young’s inequality for convolutions,
see [13, Theorem 3.9.4].

Proposition 5.12. Let (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] be the mild solution of system (5.14) corresponding to
the controls u ∈ U and v ∈ V . Then (z∗(t;u, v))t∈[0,T ] takes values in D(Aε) with ε ∈ [0, 1) such that

E
T∫

0

‖z∗(t;u, v)‖2D(Aε)dt <∞.

Proof. For the sake of simplicity, we omit the dependence on the controls. Since (z∗(t))t∈[0,T ] is predictable,
we get for t ∈ [0, T ] and P-a.s.

z∗(t) = E

 T∫
t

e−A(s−t)G∗(Φ(s)) ds+

T∫
t

e−A(s−t) (y(s)− yd(s)) ds

∣∣∣∣∣∣Ft
 .
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Recall that the operator G∗ : L(HS)(Q
1/2(H);H) → H is bounded. Using Theorem 2.35, Proposition B.9

and Lemma 5.11, the process (z∗(t))t∈[0,T ] takes values in D(Aε) with ε ∈ [0, 1) and there exists a constant
C∗ > 0 such that

E
T∫

0

‖z∗(t)‖2D(Aε)dt

≤ 2E
T∫

0

 T∫
t

‖Aεe−A(s−t)G∗(Φ(s))‖Hds

2

dt+ 2E
T∫

0

 T∫
t

‖Aεe−A(s−t) (y(s)− yd(s)) ‖2Hds

2

dt

≤ 2M2
ε E

T∫
0

 T∫
t

(s− t)−ε‖G∗(Φ(s))‖Hds

2

dt+ 2M2
ε E

T∫
0

 T∫
t

(s− t)−ε‖y(s)− yd(s)‖Hds

2

dt

≤ C∗
E T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt+ E
T∫

0

‖y(t)‖2Hdt+

T∫
0

‖yd(t)‖2Hdt

 .

5.5. Approximation by a Strong Formulation

In general, a duality principle of solutions to forward and backward SPDEs can be obtained by applying
an Itô product formula. For Q-Wiener processes, this is provided by Corollary 3.69, which is not applicable
to solutions in a mild sense. Hence, we need to approximate the mild solutions of systems (5.8), (5.9)
and (5.14) by strong formulations. One method is given by introducing the Yosida approximation of the
operator A, see [23]. For applications regarding duality principles, see [36, 84]. However, we apply the
method introduced in [45, 53]. The basic idea is to formulate a mild solution with values in D(A) by
using the resolvent operator introduced in Section 2.1. Thus, we get the required convergences and the
mild solutions coincides with the strong solutions using results stated in Section 3.4.3. In this section, we
omit the dependence on the controls for the sake of simplicity. According to Section 2.1, let us denote by
R(λ;−A) ∈ L(H) the resolvent operator of −A with λ ∈ ρ(−A). We introduce the operator R(λ) ∈ L(H)
given by

R(λ) = λR(λ;−A) (5.16)

for all λ ∈ ρ(−A). Then we get the following properties.

Lemma 5.13. Let the operator R(λ) ∈ L(H) be given by equation (5.16). Then we have

(i) R(λ)y ∈ D(A) for every y ∈ H;

(ii) ‖R(λ)‖L(H) ≤ 1 for all λ > 0;

(iii) limλ→∞R(λ)y = y for every y ∈ H;

(iv) AαR(λ)y = R(λ)Aαy for every y ∈ D(Aα) with α < 1;

(v) R(λ) is self-adjoint on H.

Proof. The assertion (i) is an immediate consequence of the definition of the resolvent operators R(λ;−A).
Recall that (e−At)t≥0 is an analytic semigroup of contractions. Hence, we obtain (ii) by Theorem 2.11 and

106



Chapter 5. Optimal Control of Uncertain Stokes Flows

(iii) results from Corollary 2.12. Using Corollary 2.37, we get (iv). It remains to show (v). By Theorem
2.9, we have

R(λ;A) =

∞∫
0

e−λte−At dt.

Since the operator A is self-adjoint, we can conclude that the semigroup (e−At)t≥0 is self-adjoint as well.
Thus, we get the result.

5.5.1. The Forward Equations

Here, we provide approximations of the mild solutions to system (5.8) and system (5.9). We introduce the
following systems in D(A):{

dz1(t, λ) = [−Az1(t, λ) +R(λ)Bu(t)] dt+R(λ)G(R(λ)z1(t, λ)) dW (t),

z1(0, λ) = 0,
(5.17)

{
dz2(t, λ) = [−Az2(t, λ) +AR(λ)Dv(t)] dt+R(λ)G(R(λ)z2(t, λ)) dW (t),

z2(0, λ) = 0,
(5.18)

where u ∈ U and v ∈ V . The process (W (t))t≥0 is a Q-Wiener process with values in H and covariance
operator Q ∈ L+

1 (H). The operators A,B,D,G and the spaces U, V are introduced in Section 5.1 and
Section 5.2, respectively. The operator R(λ) is given by equation (5.16) with λ > 0.

Remark 5.14. Note that the approximation scheme provided in [45, 53] differs to the approximation scheme
introduced by system (5.17) or system (5.18). Here, the additional operator R(λ) is necessary to obtain a
duality principle.

Similarly to Section 5.3, we introduce mild solutions to system (5.17) and system (5.18).

Definition 5.15. a) A predictable process (z1(t, λ))t∈[0,T ] with values in D(A) is called a mild solution
of system (5.17) if

E
T∫

0

‖z1(t, λ)‖2D(A)dt <∞

and we have for t ∈ [0, T ] and P-a.s.

z1(t, λ) =

t∫
0

e−A(t−s)R(λ)Bu(s) ds+

t∫
0

e−A(t−s)R(λ)G(R(λ)z1(s, λ)) dW (s).

b) A predictable process (z2(t, λ))t∈[0,T ] with values in D(A) is called a mild solution of system (5.18)
if

E
T∫

0

‖z2(t, λ)‖2D(A)dt <∞

and we have for t ∈ [0, T ] and P-a.s.

z2(t, λ) =

t∫
0

e−A(t−s)AR(λ)Dv(s) ds+

t∫
0

e−A(t−s)R(λ)G(R(λ)z2(s, λ)) dW (s).
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Recall that the operator R(λ) is linear and bounded on H. As a consequence of Lemma 5.13 (i) and
the closed graph theorem, the operator AR(λ) is linear and bounded on H as well. Hence, existence and
uniqueness results of mild solutions to system (5.17) and system (5.18) with fixed λ > 0 can be obtained
similarly to Theorem 3.79. The following lemma provides strong formulations of the mild solutions to system
(5.17) and system (5.18).

Lemma 5.16. Let (z1(t, λ))t∈[0,T ] and (z2(t, λ))t∈[0,T ] be the mild solutions of system (5.17) and system
(5.18), respectively. Then we have for fixed λ > 0, t ∈ [0, T ] and P-a.s.

z1(t, λ) =

t∫
0

(−A)z1(s, λ) +R(λ)Bu(s) ds+

t∫
0

R(λ)G(R(λ)z1(s, λ)) dW (s),

z2(t, λ) =

t∫
0

(−A)z2(s, λ) +AR(λ)Dv(s) ds+

t∫
0

R(λ)G(R(λ)z2(s, λ)) dW (s).

Proof. The claim follows immediately from Theorem 2.35, Theorem 3.106 and Lemma 5.13.

We have the following convergence results.

Lemma 5.17. (i) Let (z1(t))t∈[0,T ] and (z1(t, λ))t∈[0,T ] be the mild solutions of system (5.8) and system
(5.17), respectively. Then we have

lim
λ→∞

E
T∫

0

‖z1(t)− z1(t, λ)‖2Hdt = 0.

(ii) Let (z2(t))t∈[0,T ] and (z2(t, λ))t∈[0,T ] be the mild solutions of system (5.9) and system (5.18), respectively.
Then we have

lim
λ→∞

E
T∫

0

‖z2(t)− z2(t, λ)‖2Hdt = 0.

Proof. First, we show part (i). Let I be the identity operator on H. Recall that G : H → L(HS)(Q
1/2(H);H)

is linear and bounded. By definition, we have for all λ > 0, t ∈ [0, T ] and P-a.s.

z1(t)− z1(t, λ) =

t∫
0

e−A(t−s)[I −R(λ)]Bu(s)ds

+

t∫
0

e−A(t−s)G([I −R(λ)]z1(s)) dW (s)

+

t∫
0

e−A(t−s)[I −R(λ)]G(R(λ)z1(s)) dW (s)

+

t∫
0

e−A(t−s)R(λ)G(R(λ) [z1(s)− z1(s, λ)]) dW (s).

The remaining part of the proof can be obtained similarly to [53, Lemma 3.1] using Corollary A.4.
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Next, we prove part (ii). By definition, we obtain for all λ > 0, t ∈ [0, T ] and P-a.s.

z2(t)− z2(t, λ) =

t∫
0

Ae−A(t−s)[I −R(λ)]Dv(s) ds

+

t∫
0

e−A(t−s)G([I −R(λ)]z2(s)) dW (s)

+

t∫
0

e−A(t−s)[I −R(λ)]G(R(λ)z2(s)) dW (s)

+

t∫
0

e−A(t−s)R(λ)G(R(λ) [z2(s)− z2(s, λ)]) dW (s).

Thus, we get for all λ > 0 and t ∈ [0, T ]

E ‖z2(t)− z2(t, λ)‖2H ≤ 4 I1(t, λ) + 4 I2(t, λ) + 4 I3(t, λ), (5.19)

where

I1(t, λ) = E

∥∥∥∥∥∥
t∫

0

Ae−A(t−s)[I −R(λ)]Dv(s) ds

∥∥∥∥∥∥
2

H

,

I2(t, λ) = E

∥∥∥∥∥∥
t∫

0

e−A(t−s)G([I −R(λ)]z2(s)) dW (s)

∥∥∥∥∥∥
2

H

+ E

∥∥∥∥∥∥
t∫

0

e−A(t−s)[I −R(λ)]G(R(λ)z2(s)) dW (s)

∥∥∥∥∥∥
2

H

,

I3(t, λ) = E

∥∥∥∥∥∥
t∫

0

e−A(t−s)R(λ)G(R(λ) [z2(s)− z2(s, λ)]) dW (s)

∥∥∥∥∥∥
2

H

.

Recall that D : V 0(∂D) → D(Aα) for all α ∈
(
0, 1

4

)
. Using Theorem 2.29 (iv), Theorem 2.35, Lemma 5.13

(iv), Fubini’s theorem and Young’s inequality for convolutions, there exists a constant C1 > 0 such that for
all λ > 0 and all t ∈ [0, T ]

t∫
0

I1(s, λ) ds ≤ E
t∫

0

 s∫
0

∥∥∥A1−αe−A(s−r)[I −R(λ)]AαDv(r)
∥∥∥
H
dr

2

ds

≤ C1 E
T∫

0

‖[I −R(λ)]AαDv(t)‖2H dt. (5.20)

Recall that
∥∥e−At∥∥L(H)

≤ 1 for all t ≥ 0. Due to Theorem 3.62 (iii) and Fubini’s theorem, there exists a
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constant C2 > 0 such that for all λ > 0 and all t ∈ [0, T ]

t∫
0

I2(s, λ) ds

≤
t∫

0

E
s∫

0

∥∥∥e−A(s−r)G([I −R(λ)]z2(r))
∥∥∥2

L(HS)(Q1/2(H);H)
dr ds

+

t∫
0

E
s∫

0

∥∥∥e−A(s−r)[I −R(λ)]G(R(λ)z2(r))
∥∥∥2

L(HS)(Q1/2(H);H)
dr ds

≤ C2

E T∫
0

‖[I −R(λ)]z2(t)‖2H dt+ E
T∫

0

‖[I −R(λ)]G(R(λ)z2(t))‖2L(HS)(Q1/2(H);H) dt

 . (5.21)

By Theorem 3.62 (iii), Lemma 5.13 (ii) and Fubini’s theorem, there exists a constant C3 > 0 such that for
all λ > 0 and all t ∈ [0, T ]

I3(t, λ) ≤ C3

t∫
0

E ‖z2(s)− z2(s, λ)‖2H ds.

Due to inequality (5.19), we get for all λ > 0 and t ∈ [0, T ]

E ‖z2(t)− z2(t, λ)‖2H ≤ 4 I1(t, λ) + 4 I2(t, λ) + 4C3

t∫
0

E ‖z2(s)− z2(s, λ)‖2H ds.

Applying Corollary A.4, we obtain for all λ > 0 and t ∈ [0, T ]

E ‖z2(t)− z2(t, λ)‖2H ≤ 4 I1(t, λ) + 4 I2(t, λ) + 16C3e
4C3t

 t∫
0

I1(s, λ) ds+

t∫
0

I2(s, λ) ds

 . (5.22)

Using equation (5.22), Fubini’s theorem, inequality (5.20) and inequality (5.21), there exists a constant
C∗ > 0 such that for all λ > 0

E
T∫

0

‖z2(t)− z2(t, λ)‖2H dt ≤ C
∗ E

T∫
0

‖[I −R(λ)]AαDv(t)‖2H dt+ C∗ E
T∫

0

‖[I −R(λ)]z2(t)‖2H dt

+ C∗ E
T∫

0

‖[I −R(λ)]G(R(λ)z2(t))‖2L(HS)(Q1/2(H);H) dt.

By Lemma 5.13 (iii) and Proposition B.7, we can infer

lim
λ→∞

E
T∫

0

‖z2(t)− z2(t, λ)‖2H dt = 0.
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5.5.2. The Backward Equation

Here we provide an approximation of the mild solution to system (5.14). We introduce the following
backward SPDE:{

dz∗(t, λ) = −[−Az∗(t, λ) +R(λ)G∗(R(λ)Φ(t, λ)) +R(λ)(y(t)− yd(t))] dt+ Φ(t, λ) dW (t),

z∗(T, λ) = 0,
(5.23)

where λ > 0. The process (y(t))t∈[0,T ] is the mild solution of system (5.4) and (W (t))t≥0 is a Q-Wiener

process with values in H and covariance operator Q ∈ L+
1 (H). The function yd ∈ L2([0, T ];H) is the desired

velocity field. The operators A and G∗ are introduced in Section 5.1 and Section 5.4, respectively. The
operator R(λ) is given by equation (5.16) with λ > 0. Similarly to Section 5.4, we introduce a mild solution
to system (5.23).

Definition 5.18. A pair of predictable processes (z∗(t, λ),Φ(t, λ))t∈[0,T ] with values in the product space

D(A)× L(HS)(Q
1/2(H);H) is called a mild solution of system (5.23) if

sup
t∈[0,T ]

E ‖z∗(t, λ)‖2D(A) <∞, E
T∫

0

‖Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt <∞,

and we have for all t ∈ [0, T ] and P-a.s.

z∗(t, λ) =

T∫
t

e−A(s−t)R(λ)G∗(R(λ)Φ(s, λ)) ds+

T∫
t

e−A(s−t)R(λ) (y(s)− yd(s)) ds

−
T∫
t

e−A(s−t)Φ(s, λ) dW (s).

Recall that the operators R(λ) and AR(λ) are linear and bounded on H. Hence, existence and uniqueness
results of the mild solution to system (5.23) can be obtained similarly to Theorem 3.93. The following lemma
states a strong formulation of the mild solution to system (5.23).

Lemma 5.19. Let the pair of stochastic processes (z∗(t, λ),Φ(t, λ))t∈[0,T ] be the mild solution of system
(5.23). Then we have for fixed λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t, λ) =

T∫
t

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds−
T∫
t

Φ(s, λ) dW (s).

Proof. The claim follows from Theorem 2.35, Theorem 3.112 and Lemma 5.13.

We have the following convergence results.

Lemma 5.20. Let (z∗(t),Φ(t))t∈[0,T ] and (z∗(t, λ),Φ(t, λ))t∈[0,T ] be the mild solutions of system (5.14) and
system (5.23), respectively. Then we have

lim
λ→∞

sup
t∈[0,T ]

E ‖z∗(t)− z∗(t, λ)‖2H = 0, lim
λ→∞

E
T∫

0

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0.

111



Chapter 5. Optimal Control of Uncertain Stokes Flows

Proof. Let I be the identity operator on H. By definition, we have for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t)− z∗(t, λ) =

T∫
t

e−A(s−t)[G∗(Φ(s))−R(λ)G∗(R(λ)Φ(s, λ))] ds

+

T∫
t

e−A(s−t)[I −R(λ)] (y(s)− yd(s)) ds−
T∫
t

e−A(s−t)[Φ(s)− Φ(s, λ)] dW (s). (5.24)

Recall that the operator G∗ : L(HS)(Q
1/2(H);H)→ H is linear and bounded. Hence, we get for all λ > 0,

all t ∈ [0, T ] and P-a.s.

z∗(t)− z∗(t, λ) =

T∫
t

e−A(s−t)G∗([I −R(λ)]Φ(s)) ds+

T∫
t

e−A(s−t)[I −R(λ)]G∗(R(λ)Φ(s)) ds

+

T∫
t

e−A(s−t)R(λ)G∗(R(λ)[Φ(s)− Φ(s, λ)]) ds+

T∫
t

e−A(s−t)[I −R(λ)] (y(s)− yd(s)) ds

−
T∫
t

e−A(s−t)[Φ(s)− Φ(s, λ)] dW (s).

Note that the assumptions of Lemma 3.92 are fulfilled. Thus, inequalities (3.27) and (3.28) hold. Let
T1 ∈ [0, T ). We obtain for all λ > 0

sup
t∈[T1,T ]

E ‖z∗(t)− z∗(t, λ)‖2H ≤ 4c(T − T1) [I1(λ) + I2(λ)] , (5.25)

E
T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt ≤ 4c(T − T1) [I1(λ) + I2(λ)] , (5.26)

where

I1(λ) = E
T∫

T1

[
‖G∗([I −R(λ)]Φ(t))‖2H + ‖[I −R(λ)]G∗(R(λ)Φ(t))‖2H + ‖[I −R(λ)] (y(t)− yd(t)) ‖2H

]
dt,

I2(λ) = E
T∫

T1

‖R(λ)G∗(R(λ)[Φ(t)− Φ(t, λ)])‖2Hdt.

Using Lemma 5.13 (iii) and Proposition B.7, we can conclude

lim
λ→∞

I1(λ) = 0. (5.27)

By Lemma 5.13 (ii), there exists a constant C∗ > 0 such that for all λ > 0

I2(λ) ≤ C∗ E
T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt. (5.28)
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Due to inequality (5.26) and inequality (5.28), we get for all λ > 0

E
T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt

≤ 4c(T − T1) I1(λ) + 4cC∗(T − T1)E
T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt.

We chose T1 ∈ [0, T ) such that 4cC∗(T − T1) < 1. Thus, we have for all λ > 0

E
T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt ≤
4c(T − T1) I1(λ)

1− 4cC∗(T − T1)
.

Due to equation (5.27), we can conclude

lim
λ→∞

E
T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0. (5.29)

Using inequality (5.25), inequality (5.28), equation (5.27) and equation (5.29), we have

lim
λ→∞

sup
t∈[T1,T ]

E ‖z∗(t)− z∗(t, λ)‖2H = 0.

By equation (5.24), we get for all λ > 0, all t ∈ [0, T1] and P-a.s.

z∗(t)− z∗(t, λ) = e−A(T1−t)[z∗(T1)− z∗(T1, λ)] +

T1∫
t

e−A(s−t)[G∗(Φ(s))−R(λ)G∗(R(λ)Φ(s, λ))] ds

+

T1∫
t

e−A(s−t)[I −R(λ)] (y(s)− yd(s)) ds−
T1∫
t

e−A(s−t)[Φ(s)− Φ(s, λ)] dW (s).

Again, we find T2 ∈ [0, T1] such that

lim
λ→∞

sup
t∈[T2,T1]

E ‖z∗(t)− z∗(t, λ)‖2Hdt = 0, lim
λ→∞

E
T1∫
T2

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0.

By continuing the method, we obtain the result.

5.6. Design of the Optimal Controls

Based on the results provided in the previous sections, we are able to show a duality principle. Since we
formulated a control problem with simultaneous distributed controls and boundary controls, we obtain two
equations. The first equation gives us a relation between the mild solution of system (5.8) and the mild
solution of the adjoint equation (5.14). The second equation provides a relation between the mild solution
of system (5.9) and the mild solution of the adjoint equation (5.14).
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Theorem 5.21. Let (y(t;u, v))t∈[0,T ] and (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] be the mild solutions of system (5.4)
and system (5.14) corresponding to the distributed control u ∈ U and the boundary control v ∈ V , respec-
tively. Moreover, let (z1(t; ũ))t∈[0,T ] and (z2(t; ṽ))t∈[0,T ] be the mild solutions of system (5.8) and system

(5.9) corresponding to the controls ũ ∈ U and ṽ ∈ V , respectively. Then we have for all α ∈ (0, 1
4 )

E
T∫

0

〈y(t;u, v)− yd(t), z1(t; ũ)〉H dt = E
T∫

0

〈z∗(t;u, v), Bũ(t)〉H dt, (5.30)

E
T∫

0

〈y(t;u, v)− yd(t), z2(t; ṽ)〉H dt = E
T∫

0

〈
A1−αz∗(t;u, v), AαDṽ(t)

〉
H
dt. (5.31)

Proof. For the sake of simplicity, we omit the dependence on the controls. First, we prove the result for
the approximations derived in Section 5.5. Let (z1(t, λ))t∈[0,T ] and (z2(t, λ))t∈[0,T ] be the mild solutions of
system (5.17) and system (5.18), respectively. Using Lemma 5.16, we have for all λ > 0, t ∈ [0, T ] and P-a.s.

z1(t, λ) =

t∫
0

(−A)z1(s, λ) +R(λ)Bũ(s) ds+

t∫
0

R(λ)G(R(λ)z1(s, λ)) dW (s), (5.32)

z2(t, λ) =

t∫
0

(−A)z2(s, λ) +AR(λ)Dṽ(s) ds+

t∫
0

R(λ)G(R(λ)z2(s, λ)) dW (s). (5.33)

Next, let the pair of stochastic processes (z∗(t, λ),Φ(t, λ))t∈[0,T ] be the mild solution of system (5.23). Due
to Lemma 5.19, we get for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t, λ) =

T∫
t

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds−
T∫
t

Φ(s, λ) dW (s). (5.34)

By definition, the process (z∗(t, λ))t∈[0,T ] is predictable. Using Proposition 3.16, we have for all λ > 0, all
t ∈ [0, T ] and P-a.s.

z∗(t, λ) = E

 T∫
0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds

∣∣∣∣∣∣Ft


−
t∫

0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds.

Due to the martingale representation theorem given by Theorem 3.86 with (M(t))t∈[0,T ] satisfying for all
t ∈ [0, T ] and P-a.s.

M(t) = E

 T∫
0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds

∣∣∣∣∣∣Ft
 ,

there exists a unique predictable process (Ψ(t, λ))t∈[0,T ] with values in L(HS)(Q
1/2(H);H) such that for all
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λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t, λ) = E

 T∫
0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds


−

t∫
0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds+

t∫
0

Ψ(s, λ) dW (s). (5.35)

Since the pair (z∗(t, λ),Φ(t, λ))t∈[0,T ] satisfies equation (5.34) uniquely, we can conclude Ψ(t, λ) = Φ(t, λ)
for all λ > 0, almost all t ∈ [0, T ] and P-almost surely. Applying the Itô product formula given by Corollary
3.69 to equation (5.32) and equation (5.35), we get for all λ > 0, all t ∈ [0, T ] and P-a.s.

〈z1(t, λ), z∗(t, λ)〉H = I1(t, λ) + I2(t, λ) + I3(t, λ) + I4(t, λ),

where

I1(t, λ) =

t∫
0

[〈z1(s, λ), Az∗(s, λ)〉H − 〈z
∗(s, λ), Az1(s, λ)〉H ] ds,

I2(t, λ) =

t∫
0

[
〈R(λ)G(R(λ)z1(s, λ)),Φ(s, λ)〉L(HS)(Q1/2(H),H) − 〈z1(s, λ), R(λ)G∗(R(λ)Φ(s, λ))〉H

]
ds,

I3(t, λ) =

t∫
0

〈z∗(s, λ), R(λ)Bũ(s)〉H ds−
t∫

0

〈z1(s, λ), R(λ) (y(s)− yd(s))〉H ds,

I4(t, λ) =

t∫
0

〈z1(s, λ),Φ(s, λ) dW (s)〉H +

t∫
0

〈z∗(s, λ), R(λ)G(R(λ)z1(s, λ)) dW (s)〉H .

By definition, we have z∗(T, λ) = 0 for all λ > 0 and P-almost surely. Hence, we obtain for all λ > 0 and
P-a.s.

0 = I1(T, λ) + I2(T, λ) + I3(T, λ) + I4(T, λ). (5.36)

Since the operator A is self-adjoint, we have for all λ > 0 and P-a.s.

I1(T, λ) = 0. (5.37)

Using Lemma 5.13 (v) and equation (5.15), we obtain for all λ > 0 and P-a.s.

I2(T, λ) = 0. (5.38)

By equations (5.36) – (5.38) and E I4(T, λ) = 0 for all λ > 0, we get for all λ > 0

0 = E I3(T, λ).

Hence, we have for all λ > 0

E
T∫

0

〈R(λ)z1(t, λ), y(t)− yd(t)〉H dt = E
T∫

0

〈R(λ)z∗(t, λ), Bũ(t)〉H dt. (5.39)
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Next, we show that the left hand side and the right hand side of equation (5.39) converges as λ → ∞. By
the Cauchy-Schwarz inequality and Lemma 5.13 (ii), we have for all λ > 0∣∣∣∣∣∣E

T∫
0

〈z1(t), y(t)− yd(t)〉H dt− E
T∫

0

〈R(λ)z1(t, λ), y(t)− yd(t)〉H dt

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣E
T∫

0

〈[I −R(λ)]z1(t), y(t)− yd(t)〉H dt

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣E
T∫

0

〈R(λ)(z1(t)− z1(t, λ)), y(t)− yd(t)〉H dt

∣∣∣∣∣∣
2

≤ 4

E
T∫

0

‖y(t)‖2H dt+

T∫
0

‖yd(t)‖2H dt

E
T∫

0

‖[I −R(λ)]z1(t)‖2H dt+ E
T∫

0

‖z1(t)− z1(t, λ)‖2H dt

 .

Using Lemma 5.13 (iii), Proposition B.7 and Lemma 5.17, we can conclude

lim
λ→∞

E
T∫

0

〈R(λ)z1(t, λ), y(t)− yd(t)〉H dt = E
T∫

0

〈z1(t), y(t)− yd(t)〉H dt. (5.40)

Recall that the operator B : H → H is bounded. Similarly as above, there exists a constant C∗ > 0 such
that for all λ > 0∣∣∣∣∣∣E

T∫
0

〈z∗(t), Bũ(t)〉H dt− E
T∫

0

〈R(λ)z∗(t, λ), Bũ(t)〉H dt

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣E
T∫

0

〈[I −R(λ)]z∗(t), Bũ(t)〉H dt

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣E
T∫

0

〈R(λ)(z∗(t)− z∗(t, λ)), Bũ(t)〉H dt

∣∣∣∣∣∣
2

≤ C∗
E

T∫
0

‖ũ(t)‖2H dt

E
T∫

0

‖[I −R(λ)]z∗(t)‖2H dt+ sup
t∈[0,T ]

E ‖z∗(t)− z∗(t, λ)‖2H

 .

By Lemma 5.13 (iii), Proposition B.7 and Lemma 5.20, we can infer

lim
λ→∞

E
T∫

0

〈R(λ)z∗(t, λ), Bũ(t)〉H dt = E
T∫

0

〈z∗(t), Bũ(t)〉H dt.

We conclude that the left hand side and the right hand side of equation (5.39) converges as λ → ∞ and
equation (5.30) holds.

Next, we show that equation (5.31) holds. Again, we apply Corollary 3.69 to equation (5.33) and equation
(5.35). Similarly to equation (5.39), we find for all λ > 0 and all α ∈ (0, 1

4 )

E
T∫

0

〈R(λ)z2(t, λ), y(t)− yd(t)〉H dt = E
T∫

0

〈
R(λ)A1−αz∗(t, λ), AαDṽ(t)

〉
H
dt. (5.41)

Similarly to equation (5.40), we can conclude

lim
λ→∞

E
T∫

0

〈R(λ)z2(t, λ), y(t)− yd(t)〉H dt = E
T∫

0

〈z2(t), y(t)− yd(t)〉H dt.
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Recall that the operator AαD : V 0(∂D) → H is bounded for all α ∈ (0, 1
4 ). Hence, the stochastic pro-

cess (AαDṽ(t))t∈[0,T ] takes values in H such that E
∫ T

0
‖AαDṽ(t)‖2Hdt < ∞. Since D(A1−α) is dense

in H, there exists a sequence of processes (vm(t))t∈[0,T ], m ∈ N, taking values in D(A1−α) such that

E
∫ T

0
‖vm(t)‖2D(A1−α)dt <∞ for each m ∈ N and

lim
m→∞

E
T∫

0

‖AαDṽ(t)− vm(t)‖2Hdt = 0.

Due to Proposition 5.12, the process (z∗(t))t∈[0,T ] takes values in D(A1−α) for all α ∈ (0, 1
4 ). By Lemma

5.13 (ii) and (iv), Lemma 2.34, the Cauchy-Schwarz inequality and Fubini’s theorem, there exists a constant
C∗ > 0 such that for all λ > 0, all α ∈ (0, 1

4 ) and each m ∈ N∣∣∣∣∣∣E
T∫

0

〈
A1−αz∗(t), vm(t)

〉
H
dt− E

T∫
0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣E
T∫

0

〈
[I −R(λ)]z∗(t), A1−αvm(t)

〉
H
dt

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣E
T∫

0

〈
R(λ)(z∗(t)− z∗(t, λ)), A1−αvm(t)

〉
H
dt

∣∣∣∣∣∣
2

≤ C∗
E

T∫
0

‖vm(t)‖2D(A1−α) dt

E
T∫

0

‖[I −R(λ)]z∗(t)‖2H dt+ sup
t∈[0,T ]

E ‖z∗(t)− z∗(t, λ)‖2H

 .

Using Lemma 5.13 (iii), Proposition B.7 and Lemma 5.20, we can infer for each m ∈ N

lim
λ→∞

E
T∫

0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt = E

T∫
0

〈
A1−αz∗(t), vm(t)

〉
H
dt.

Due to the Moore-Osgood theorem [81, Theorem 7.11], we get

lim
λ→∞

E
T∫

0

〈
R(λ)A1−αz∗(t, λ), AαDṽ(t)

〉
H
dt = lim

λ→∞
lim
m→∞

E
T∫

0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt

= lim
m→∞

lim
λ→∞

E
T∫

0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt

= E
T∫

0

〈
A1−αz∗(t), AαDṽ(t)

〉
H
dt.

We conclude that the left hand side and the right hand side of equation (5.41) converges as λ → ∞ and
equation (5.31) holds.

Based on the optimality conditions given by equation (5.12) and equation (5.13), we deduce formulas for
the optimal controls using the duality principle derived in the previous theorem.
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Theorem 5.22. Let (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] be the mild solution of system (5.14) corresponding to the

controls u ∈ U and v ∈ V . Then the optimal controls u ∈ U and v ∈ V satisfy for all α ∈ (0, 1
4 ), almost all

t ∈ [0, T ] and P-a.s.

u(t) = − 1

κ1
B∗z∗(t;u, v), (5.42)

v(t) = − 1

κ2
K∗A1−αz∗(t;u, v), (5.43)

where B∗ ∈ L(H) and K∗ ∈ L(H;V 0(∂D)) are the adjoint operators of the operators B ∈ L(H) and
K = AαD ∈ L(V 0(∂D);H), respectively.

Proof. Let (y(t;u, v))t∈[0,T ] and (z1(t;u))t∈[0,T ] be the mild solutions of system (5.4) and system (5.8)
corresponding to the controls u ∈ U and v ∈ V , respectively. Using equation (5.10) and equation (5.12),
the optimal control u ∈ U satisfies for every ũ ∈ U

E
T∫

0

〈y(t;u, v)− yd(t), z1(t; ũ)〉H dt+ κ1 E
T∫

0

〈u(t), ũ(t)〉H dt = 0.

By equation (5.30), we obtain for every ũ ∈ U

E
T∫

0

〈z∗(t;u, v), Bũ(t)〉H dt+ κ1 E
T∫

0

〈u(t), ũ(t)〉H dt = 0.

Hence, we get for every ũ ∈ U

E
T∫

0

〈B∗z∗(t;u, v) + κ1 u(t), ũ(t)〉H dt = 0.

Therefore, the optimal control u ∈ U satisfies equation (5.42) for almost all t ∈ [0, T ] and P-almost surely.
Let (z2(t; v))t∈[0,T ] be the mild solution of system (5.9) corresponding to the control v ∈ V . Due to

equation (5.11) and equation (5.13), the optimal control v ∈ V fulfills the following equation for every
ṽ ∈ V :

E
T∫

0

〈y(t;u, v)− yd(t), z2(t; ṽ)〉H dt+ κ2 E
T∫

0

〈v(t), ṽ(t)〉V 0(∂D) dt = 0.

By equation (5.31), we have for all α ∈ (0, 1
4 ) and every ṽ ∈ V

E
T∫

0

〈
A1−αz∗(t;u, v), AαDṽ(t)

〉
H
dt+ κ2 E

T∫
0

〈v(t), ṽ(t)〉V 0(∂D) dt = 0.

Hence, we get for all α ∈ (0, 1
4 ) and every ṽ ∈ V

E
T∫

0

〈
K∗A1−αz∗(t;u, v) + κ2 v(t), ṽ(t)

〉
V 0(∂D)

dt = 0.

Therefore, the optimal control v ∈ V satisfies equation (5.43) for all α ∈ (0, 1
4 ), almost all t ∈ [0, T ] and

P-almost surely.
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Remark 5.23. Let us denote by (y(t))t∈[0,T ] and (z∗(t),Φ(t))t∈[0,T ] the mild solutions of system (5.4) and
system (5.14) corresponding to the optimal controls u ∈ U and v ∈ V , respectively. As a consequence of the
previous theorem, the optimal velocity field (y(t))t∈[0,T ] can be computed by solving the stochastic boundary
value problem imposed by the following system of coupled forward-backward SPDEs:

d y(t) =

[
−Ay(t)− 1

κ1
BB∗z∗(t)− 1

κ2
ADK∗A1−αz∗(t)

]
dt+G(y(t)) dW (t),

d z∗(t) = −
[
−Az∗(t) +G∗

(
Φ(t)

)
+ y(t)− yd(t)

]
dt+ Φ(t) dW (t),

y(0) = ξ, z∗(T ) = 0.

Remark 5.24. If system (4.3) is driven by a Lévy process, then one can obtain the optimal controls stated
in the previous theorem as follows:
We assume that system (4.3) is driven by an additive Lévy noise, i.e. the Hilbert-Schmidt operator G does
not depend on the velocity field. Hence, the partial Fréchet derivatives are given by system (5.8) and system
(5.9), whereby the diffusion term vanishes. Furthermore, the adjoint equation (5.14) has a deterministic
structure in the sense that Φ(t) = 0. The duality principle stated in Theorem 5.21 is then a consequence
of a suitable product formula. The derivation of the optimal controls follows immediately from the previous
theorem.
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Chapter 6

Optimal Control of Uncertain Fluid Flows

In this chapter, we consider a control problem constrained by the unsteady stochastic Navier-Stokes equa-
tions with homogeneous Dirichlet boundary conditions. Motivated by [44], we first analyze the deterministic
Navier-Stokes equations with homogeneous Dirichlet boundary conditions, which are usually considered as
no-slip boundary conditions. Similarly to the previous chapters, we reformulate these equations as an evo-
lution equation in a suitable Hilbert space such that the existence and uniqueness of a solution can be
obtained using fractional powers of closed operators introduced in Section 2.3. Based on this approach, we
extend the Navier-Stokes equations by an additional noise term. Due to the properties of a bilinear operator
related to the convection term arising in the Navier-Stokes equations, we get a restriction on the dimension
of the domain. However, we will figure out that an existence and uniqueness result of a local mild solution
to the stochastic Navier-Stokes equations holds especially in two-dimensional as well as three-dimensional
domains. The control problem considered here is motivated by common control strategies such as tracking
a desired velocity field or minimizing the enstrophy, see [22, 46, 50, 59, 68, 83, 87]. We provide the existence
and uniqueness of the optimal controls, which enables us to solve uniquely the control problem through
a stochastic maximum principle. Since the control problem is formulated as a nonconvex optimization
problem, we only obtain a necessary optimality condition as a variational inequality. However, we still can
utilize this necessary optimality condition using a duality principle to derive the optimal controls. As a
consequence, it remains to solve a coupled system of forward and backward SPDEs. Finally, we show that
the optimal control satisfies a sufficient optimality condition. The results presented here are mainly based
on [6, 7].

Throughout this chapter, let (Ω,F ,P) be a given complete probability space endowed with a normal
filtration (Ft)t≥0.

6.1. Motivation

Throughout this chapter, let D ⊂ Rn, n ≥ 2, be a connected and bounded domain with C∞ boundary ∂D.
We consider the following Navier-Stokes equations with homogeneous Dirichlet boundary condition:

∂

∂t
y(t, x) + (y(t, x) · ∇)y(t, x) +∇p(t, x)− ν∆y(t, x) = f(t, x) in (0, T )×D,

div y(t, x) = 0 in (0, T )×D,
y(t, x) = 0 on (0, T )× ∂D,
y(0, x) = ξ(x) in D,

(6.1)

where y(t, x) ∈ Rn denotes the velocity field with initial value ξ(x) ∈ Rn and p(t, x) ∈ R describes the
pressure of the fluid. The parameter ν > 0 is the viscosity parameter (for the sake of simplicity, we assume
ν = 1) and f(t, x) ∈ Rn is the external force.

Next, we reformulate system (6.1) as an evolution equation. For more details, we refer to [44]. According
to Section 2.5.2, let us introduce the following Hilbert spaces:

H =
{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
,
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V =
{
y ∈

(
H1

0 (D)
)n

: div y = 0 in D
}

and let A : D(A) ⊂ H → H be the Stokes operator given by

D(A) = (H2(D))n ∩ V, Ay = −Π∆y

for every y ∈ D(A), where the operator Π: (L2(D))n → H is an orthogonal projection. By Theorem
2.61, the operator −A is the generator of an analytic semigroup of contractions (e−At)t≥0. Hence, we can
introduce fractional powers of A denoted by Aα with α ∈ R according to Section 2.3. Furthermore, we
define B(y, z) = Π(y · ∇)z for some y, z ∈ H. If y = z, we write B(y) = B(y, y). Applying the projection
Π, system (6.1) can be formulated in the following abstract form:

d

dt
y(t) = −Ay(t)−B(y(t)) + Πf(t),

y(0) = Πξ.
(6.2)

For the sake of simplicity, we assume f(t), ξ ∈ H for all t ∈ [0, T ]. We consider this equation in integral
form

y(t) = e−Atξ −
t∫

0

e−A(t−s)[B(y(s))− f(s)] ds

for all t ∈ [0, T ]. Moreover, we have the following properties of the nonlinear term in equation (6.2).

Lemma 6.1 (cf. Lemma 2.2,[44]). Let 0 ≤ δ < 1
2 + n

4 . If y ∈ D(Aα1) and z ∈ D(Aα2), then we have∥∥A−δB(y, z)
∥∥
H
≤ M̃ ‖Aα1y‖H ‖A

α2z‖H ,

with some constant M̃ = M̃δ,α1,α2
, provided that α1, α2 > 0, δ + α2 >

1
2 and δ + α1 + α2 ≥ n

4 + 1
2 .

Corollary 6.2. Let α1, α2 and δ be as in Lemma 6.1. If y, z ∈ D(Aβ), β = max{α1, α2}, then we have∥∥A−δ(B(y)−B(z))
∥∥
H
≤ M̃(‖Aα1y‖H ‖A

α2(y − z)‖H + ‖Aα1(y − z)‖H ‖A
α2z‖H).

Proof. Using Lemma 6.1, we get∥∥A−δ(B(y)−B(z))
∥∥
H

=
∥∥A−δ(B(y, y − z) +B(y − z, z))

∥∥
H

≤
∥∥A−δB(y, y − z)

∥∥
H

+
∥∥A−δB(y − z, z)

∥∥
H

≤ M̃(‖Aα1y‖H ‖A
α2(y − z)‖H + ‖Aα1(y − z)‖H ‖A

α2z‖H).

As a consequence, the bilinear operator B satisfies a growth condition and a Lipschitz condition only
locally. Thus, we cannot prove the existence and uniqueness of a solution to system (6.2) over the whole
time interval [0, T ] in general. However, we have the following local result.

Theorem 6.3. Let α ∈ (0, 1) and δ ∈ [0, 1) be given parameters such that 1 > δ+α > 1
2 and δ+2α ≥ n

4 + 1
2 .

Furthermore, let the function f : [0, T ]→ D(Aα) satisfy

T∫
0

‖f(t)‖2D(Aβ) dt <∞
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with β ∈ [0, α] such that α − β < 1
2 . Then for any ξ ∈ D(Aα), there exists a unique continuous solution

y : [0, T ]→ D(Aα) of system (6.2) satisfying

sup
t∈[0,τ ]

‖y(t)‖D(Aα) <∞

for a certain point of time τ ∈ [0, T ].

Proof. The proof can be obtained similarly to [44, Theorem 2.3].

6.2. The Controlled Stochastic Navier-Stokes Equations

In this section, we introduce the controlled stochastic Navier-Stokes equation with homogeneous Dirichlet
boundary conditions. We show that there exists a unique mild solution up to a certain stopping time and we
state some basic properties. Let us assume that the external force f(t) in equation (6.2) can be decomposed
as the sum of a control term and a noise term dependent on the velocity field y(t). Hence, we obtain the
stochastic Navier-Stokes equations in D(Aα):{

dy(t) = −[Ay(t) +B(y(t))− Fu(t)]dt+G(y(t)) dW (t),

y(0) = ξ,
(6.3)

where ξ ∈ L2(Ω;D(Aα)) is F0-measurable and (W (t))t≥0 is a Q-Wiener process with values in H and
covariance operator Q ∈ L+

1 (H). We introduce the space LkF (Ω;Lr([0, T ];D(Aβ))) containing all Ft-adapted

processes (u(t))t∈[0,T ] with values in D(Aβ) such that E(
∫ T

0
‖u(t)‖rD(Aβ) dt)

k/r < ∞ with k, r ∈ [0,∞) and

β ∈ [0, α]. The space LkF (Ω;Lr([0, T ];D(Aβ))) equipped with the norm

‖u‖kLkF (Ω;Lr([0,T ];D(Aβ))) = E

 T∫
0

‖u(t)‖rD(Aβ) dt

k/r

for every u ∈ LkF (Ω;Lr([0, T ];D(Aβ))) becomes a Banach space. The set of admissible controls U is a closed,
bounded and convex subset of the Hilbert space L2

F (Ω;L2([0, T ];D(Aβ))) such that 0 ∈ U . Moreover,
we assume that the operators F : D(Aβ) → D(Aβ) and G : H → L(HS)(Q

1/2(H);D(Aα)) are linear and
bounded. In general, we can not ensure the existence and uniqueness of a mild solution over an arbitrary
time interval [0, T ] since the nonlinear operator B satisfies a growth condition and a Lipschitz condition
only locally, which is a consequence of Lemma 6.1 and Corollary 6.2. Thus, we need the following definition
of a local mild solution.

Definition 6.4 (cf. Definition 3.2, [25]). Let τ be a stopping time taking values in (0, T ] and (τm)m∈N be
an increasing sequence of stopping times taking values in [0, T ] satisfying limm→∞ τm = τ . A predictable
process (y(t))t∈[0,τ) with values in D(Aα) is called a local mild solution of system (6.3) if for fixed
m ∈ N

E sup
t∈[0,τm)

‖y(t)‖2D(Aα) <∞

and we have for each m ∈ N, all t ∈ [0, T ] and P-a.s.

y(t ∧ τm) = e−A(t∧τm)ξ −
t∧τm∫
0

Aδe−A(t∧τm−s)A−δB(y(s)) ds+

t∧τm∫
0

e−A(t∧τm−s)Fu(s) ds

+ Iτm(G(y))(t ∧ τm),
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where

Iτm(G(y))(t) =

t∫
0

1[0,τm)(s)e
−A(t−s)G(y(s ∧ τm)) dW (s). (6.4)

Remark 6.5. Note that the stopped stochastic convolution (Iτm(G(y))(t∧ τm))t∈[0,T ] is well defined due to
Lemma 3.66.

The proof of the existence and uniqueness of a local mild solution to system (6.3) can be shown in two
steps. First, we consider a modified system to get a mild solution well defined over the whole time interval
[0, T ]. Second, we introduce suitable stopping times such that the mild solution of the modified system and
the local mild solution of system (6.3) coincides. We introduce the following auxiliary system in D(Aα):{

dym(t) = −[Aym(t) +B(πm(ym(t)))− Fu(t)] dt+G(ym(t)) dW (t),

ym(0) = ξ,
(6.5)

where m ∈ N and πm : D(Aα)→ D(Aα) is defined by

πm(y) =

{
y ‖y‖D(Aα) ≤ m,
m‖y‖−1

D(Aα)y ‖y‖D(Aα) > m.
(6.6)

Then we have for every y, z ∈ D(Aα)

‖πm(y)‖D(Aα) ≤ min{m, ‖y‖D(Aα)}, (6.7)

‖πm(y)− πm(z)‖D(Aα) ≤ 2‖y − z‖D(Aα). (6.8)

We get the following existence and uniqueness result.

Theorem 6.6. Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ + α > 1
2 and δ + 2α ≥ n

4 + 1
2 .

Furthermore, let u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) be fixed for β ∈ [0, α] such that α − β < 1

2 . Then for fixed
m ∈ N and any ξ ∈ L2(Ω;D(Aα)), there exists a unique mild solution (ym(t))t∈[0,T ] of system (6.5) in the
sense of Definition 3.81. Moreover, the process (ym(t))t∈[0,T ] has a continuous modification.

Proof. Using Lemma 6.1, Lemma 6.2, inequality (6.7) and inequality (6.8), we have for every y, z ∈ D(Aα)

‖A−δB(πm(y))‖H ≤ mM̃ ‖y‖D(Aα),

‖A−δ[B(πm(y))−B(πm(z))]‖H ≤ 2mM̃ ‖y − z‖D(Aα).

Therefore, the assumptions of Theorem 3.82 hold and we get the existence and uniqueness of a mild solution
to system (6.5). The fact that the process (ym(t))t∈[0,T ] has a continuous modification is a consequence of
Remark 3.83.

As a consequence of the previous theorem, the mild solution (ym(t))t∈[0,T ] of system (6.5) takes values in
D(Aα) such that

E sup
t∈[0,T ]

‖ym(t)‖2D(Aα) <∞

and we have for all t ∈ [0, T ] and P-a.s.

ym(t) = e−Atξ −
t∫

0

Aδe−A(t−s)A−δB(πm(ym(s))) ds+

t∫
0

e−A(t−s)Fu(s) ds

+

t∫
0

e−A(t−s)G(ym(s)) dW (s). (6.9)

Thus, we obtain the following existence and uniqueness result of a local mild solution to system (6.3).
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Theorem 6.7. Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ + α > 1
2 and δ + 2α ≥ n

4 + 1
2 .

Furthermore, let u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) be fixed for β ∈ [0, α] such that α − β < 1

2 . Then for any
ξ ∈ L2(Ω;D(Aα)), there exists a unique local mild solution (y(t))t∈[0,τ) of system (6.3). Moreover, the
process (y(t))t∈[0,τ) has a continuous modification.

Proof. Due to Theorem 6.6, we get the existence and uniqueness of a mild solution (ym(t))t∈[0,T ] to system
(6.5), which has a continuous modification. Next, we define a sequence of stopping times (τm)m∈N by

τm = inf{t ∈ (0, T ) : ‖ym(t)‖D(Aα) > m} ∧ T (6.10)

P-a.s. with the usual convention that inf ∅ = +∞. The fact that τm is a stopping time results from Remark
3.14. By definition of the map πm, we get πm(ym(t)) = ym(t) for all t ∈ [0, τm) and P-almost surely. Using
equation (6.9) and Lemma 3.66, we obtain for fixed m ∈ N, all t ∈ [0, T ] and P-a.s.

ym(t ∧ τm) = e−A(t∧τm)ξ −
t∧τm∫
0

Aδe−A(t∧τm−s)A−δB(ym(s)) ds+

t∧τm∫
0

e−A(t∧τm−s)Fu(s) ds

+ Iτm(G(y))(t ∧ τm),

where Iτm(G(y))(t) is given by equation (6.4). Since the sequence of stopping times (τm)m∈N is increasing
and bounded, there exists a stopping time τ such that τ = limm→∞ τm resulting from Lemma 3.11 (ii).
Moreover, we have P-a.s. 0 < τ ≤ T . We set for each m ∈ N, all t ∈ [0, τm) and P-a.s.

y(t) = ym(t). (6.11)

Then the process (y(t))t∈[0,τ) is the unique local mild solution of system (6.3).

Remark 6.8. (i) Note that the previous theorem is especially valid for n = 2 and n = 3. Hence, we get
the existence and uniqueness of a solution to the stochastic Navier-Stokes equations for two-dimensional as
well as three-dimensional domains up to a certain stopping time.
(ii) In case of additive noise in system (6.3), i.e. G(y) ≡ G, we have

E sup
t∈[0,ρ]

‖y(t)‖2D(Aα) <∞

for a certain stopping time ρ with values in [0, T ] and independent of m ∈ N. The proof can be found in
[10, 34].
(iii) If, in addition to the assumptions of Theorem 6.7, we require

E sup
t∈[0,τ)

t∫
0

(t− s)−n/4|∇y(s)| ds <∞,

then the solution of system (6.3) is a global mild solution in the sense that P(τ = T ) = 1, see [25].

In the remaining part of this chapter, we always assume that the parameters α ∈ (0, 1), δ ∈ [0, 1) and
β ∈ [0, α] satisfy the assumptions of Theorem 6.7 and the stopping times (τm)m∈N are given by equation
(6.10). Moreover, we assume that the initial value ξ ∈ L2(Ω;D(Aα)) is fixed. To illustrate the dependence
on the control u ∈ L2

F (Ω;L2([0, T ];D(Aβ))), let us denote by (ym(t;u))t∈[0,T ] and (y(t;u))t∈[0,τu) the mild
solution of system (6.5) and the local mild solution of system (6.3), respectively. Note that the stopping times
(τum)m∈N depend on the control as well. Whenever these processes and the stopping times are considered
for fixed control, we use the notation introduced above. We have the following continuity property.
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Lemma 6.9. For fixed m ∈ N, let (ym(t;u))t∈[0,T ] be the mild solution of system (6.5) corresponding to

the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). If u1, u2 ∈ LkF (Ω;L2([0, T ];D(Aβ))) for k ≥ 2, then there exists a

constant c > 0 such that

E sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖kD(Aα) ≤ c ‖u1 − u2‖kLkF (Ω;L2([0,T ];D(Aβ))).

Proof. Recall that the operators F : D(Aβ)→ D(Aβ) and G : H → L(HS)(Q
1/2(H);D(Aα)) are linear and

bounded. By definition, we have for all t ∈ [0, T ] and P-a.s.

ym(t;u1)− ym(t;u2) = −
t∫

0

Aδe−A(t−s)A−δ [B(πm(ym(s;u1)))−B(πm(ym(s;u2)))] ds

+

t∫
0

e−A(t−s)F [u1(s)− u2(s)] ds

+

t∫
0

e−A(t−s)G(ym(s;u1)− ym(s;u2)) dW (s).

Let T1,m ∈ (0, T ]. Using Theorem 2.35, Corollary 6.2, inequalities (6.7) and (6.8), the Cauchy-Schwarz
inequality and Proposition 3.65 (ii), there exist constants C1, C2, C3 > 0 such that

E sup
t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖kD(Aα)

≤ 3k−1 E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δ [B(πm(ym(s;u1)))−B(πm(ym(s;u2)))]
∥∥∥
H
ds

k

+ 3k−1 E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα−βe−A(t−s)AβF [u1(s)− u2(s)]
∥∥∥
H
ds

k

+ 3k−1 E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)AαG(ym(s;u1)− ym(s;u2)) dW (s)

∥∥∥∥∥∥
k

H

≤
(
C1T

k(1−α−δ)
1,m + C2T

k/2
1,m

)
E sup
t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖kD(Aα)

+ C3E

 T∫
0

‖u1(t)− u2(t)‖2D(Aβ) dt

k/2

.

We chose T1,m ∈ (0, T ] such that C1T
k(1−α−δ)
1,m + C2T

k/2
1,m < 1. Hence, we get

E sup
t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖kD(Aα) ≤ c1,mE

 T∫
0

‖u1(t)− u2(t)‖2D(Aβ) dt

k/2

,
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where c1,m = C3

1−C1T
k(1−α−δ)
1,m −C2T

k/2
1,m

. Next, we consider for all t ∈ [T1,m, T ], P-a.s. and for i = 1, 2

ym(t;ui) = e−A(t−T1,m)ym(T1,m;ui)−
t∫

T1,m

Aδe−A(t−s)A−δB(πm(ym(s;ui))) ds+

t∫
T1,m

e−A(t−s)Fui(s) ds

+

t∫
T1,m

e−A(t−s)G(ym(s;ui)) dW (s).

Again, we find T2,m ∈ [T1,m, T ] and a constant c2,m > 0 such that

E sup
t∈[T1,m,T2,m]

‖ym(t;u1)− ym(t;u2)‖kD(Aα) ≤ c2,mE

 T∫
0

‖u1(t)− u2(t)‖2D(Aβ) dt

k/2

.

By continuing this method, we obtain the result.

Remark 6.10. By definition, we have for all t ∈ [0, τum) and P-a.s. y(t;u) = ym(t;u). Hence, a similar
result of the previous lemma holds for the local mild solution of system (6.3).

In the following lemmas, we show some useful properties of the stopping times.

Lemma 6.11. For fixed m ∈ N, let (ym(t;u))t∈[0,T ] be the mild solution of system (6.5) corresponding to

the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) and let the stopping time τum be given by equation (6.10). Then we

have
lim

u1→u2

P (τu1
m 6= τu2

m ) = 0.

Proof. By the extended version of Markov’s inequality and Lemma 6.9 with k = 2, we get for all ε > 0

P

(
sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖D(Aα) ≥ ε

)
≤ 1

ε2
E sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖2D(Aα)

≤ c

ε2
E

T∫
0

‖u1(t)− u2(t)‖2D(Aβ) dt. (6.12)

Next, we assume limu1→u2
P (τu1

m < τu2
m ) > 0. Due to the definition of the stopping times, we can conclude

lim
u1→u2

P
(
{‖ym(τu1

m ;u1)‖D(Aα) > m} ∩ {‖ym(τu1
m ;u2)‖D(Aα) ≤ m}

)
> 0.

Therefore, there exists ε0 > 0 such that

lim
u1→u2

P
(
‖ym(τu1

m ;u1)‖D(Aα) − ‖ym(τu1
m ;u2)‖D(Aα) ≥ ε0

)
> 0.

This implies that limu1→u2 P
(
‖ym(τu1

m ;u1)− ym(τu1
m ;u2)‖D(Aα) ≥ ε0

)
> 0, which is a contradiction to in-

equality (6.12). We get limu1→u2
P (τu1

m < τu2
m ) = 0. Similarly, we obtain limu1→u2

P (τu1
m > τu2

m ) = 0.

Lemma 6.12. For fixed m ∈ N, let (ym(t;u))t∈[0,T ] be the mild solution of system (6.5) corresponding

to the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) and let the stopping time τum be given by equation (6.10). If

u1, u2 ∈ Lk+1
F (Ω;L2([0, T ];D(Aβ))) for k ≥ 1, then

lim
θ→0

P
(
τu1
m 6= τu1+θu2

m

)
θk

= 0.

Proof. The claim follows similarly to Lemma 6.11.
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6.3. A Generalized Control Problem

In this section, we introduce the control problem. We provide the existence and uniqueness of an optimal
control and we calculate the Gâteaux derivatives of the cost functional related to the control problem.
This requires the Gâteaux derivative of the local mild solution to system (6.3), which is given by the local
mild solution of the linearized stochastic Navier-Stokes equations. Moreover, we show that the Gâteaux
derivatives of the cost functional up to order two coincide with the Fréchet derivatives up to order two.
As a consequence, we can obtain necessary and sufficient optimality conditions. Let us introduce the cost
functional Jm : L2

F (Ω;L2([0, T ];D(Aβ)))→ R given by

Jm(u) =
1

2
E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt+
1

2
E

T∫
0

‖Aβu(t)‖2Hdt, (6.13)

where m ∈ N is fixed and γ ∈ [0, α]. Moreover, the process (y(t;u))t∈[0,τu) is the local mild solution of

system (6.3) corresponding to the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) and yd ∈ L2([0, T ];D(Aγ)) is a given

desired velocity field. The task is to find a control um ∈ U such that

Jm(um) = inf
u∈U

Jm(u). (6.14)

The control um ∈ U is called an optimal control. Note that for γ = 0, the formulation coincides with a
tracking problem, for more details see [50, 59, 68, 87]. For γ = 1

2 and yd ≡ 0, we minimize the enstrophy, see
[22, 46, 83]. Hence, we are dealing with a generalized cost functional, which incorporates common control
problems in fluid dynamics.

Remark 6.13. (i) Note that by definition of the local mild solution, we only can ensure that the first addend
of the cost functional given by (6.13) is well defined up to the stopping time τum for fixed m ∈ N.
(ii) In case of additive noise in system (6.3), we can replace the stopping time τum in equation (6.13) by a
certain stopping time ρu independent of m ∈ N.
(iii) If the assumptions of Remark 6.8 (iii) are fulfilled, then we can replace the stopping time τum in equation
(6.13) by the deterministic terminal point of time T .

6.3.1. Existence and Uniqueness of the Optimal Control

Since the velocity field as well as the stopping times are nonconvex with respect to the control, we formulated
the control problem as a nonconvex optimization problem. To obtain the existence and uniqueness of the
optimal control um ∈ U , we show that Corollary D.18 can be applied. For that purpose, we first show the
following continuity result.

Lemma 6.14. Let (y(t;u))t∈[0,τu) be the local mild solution of system (6.3) corresponding to the control
u ∈ U , where the stopping times (τum)m∈N are defined by equation (6.10). Then for fixed m ∈ N, the
functional

fm(u) = E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt

is continuous with respect to the control u ∈ U .

Proof. Let the process (ym(t;u))t∈[0,T ] be the mild solution of system (6.5) corresponding to the control
u ∈ U and let u1, u2 ∈ U . We define the stopping times τm = τu1

m ∧ τu2
m and τm = τu1

m ∨ τu2
m . Moreover, let

the control u ∈ U be given by

u =

{
u1 if τm = τu1

m ,

u2 if τm = τu2
m .
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Using Corollary 2.32, equation (6.11) and the Cauchy-Schwarz inequality, there exists a constant K̃ > 0
such that

|fm(u1)− fm(u2)|

=

∣∣∣∣∣∣∣E
τu1m∫
0

‖Aγ(ym(t;u1)− yd(t))‖2H dt− E
τu2m∫
0

‖Aγ(ym(t;u2)− yd(t))‖2H dt

∣∣∣∣∣∣∣
≤ E

τm∫
0

∣∣∣‖Aγ(ym(t;u1)− yd(t))‖2H − ‖A
γ(ym(t;u2)− yd(t))‖2H

∣∣∣ dt+ E
τm∫
τm

‖Aγ(ym(t;u)− yd(t))‖2H dt

≤ K̃

(
E sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖2D(Aα)

)1/2

+ 2

T∫
0

P(τu1
m ∧ τu2

m ≤ t < τu1
m ∨ τu2

m )
(
C2m2 + ‖yd(t))‖2D(Aγ)

)
dt.

Due to Lemma 6.9 with k = 2, we have limu1→u2
E supt∈[0,T ] ‖ym(t;u1)− ym(t;u2)‖2D(Aα) = 0. By Lemma

6.11, we get limu1→u2 P(τu1
m ∧ τu2

m ≤ t < τu1
m ∨ τu2

m ) = 0. Using Proposition B.7, we obtain

lim
u1→u2

|fm(u1)− fm(u2)| = 0.

Hence, the functional fm(u) is continuous with respect to the control u ∈ U .

As a consequence, we get the following existence and uniqueness result.

Theorem 6.15. Let the functional Jm : L2
F (Ω;L2([0, T ];D(Aβ)))→ R be given by (6.13). Then there exists

a unique optimal control um ∈ U .

Proof. The space L2
F (Ω;L2([0, T ];D(Aβ))) is a Hilbert space and thus, a uniformly convex Banach space

and by definition, the set of admissible controls U ⊂ L2
F (Ω;L2([0, T ];D(Aβ))) is bounded and closed such

that 0 ∈ U . Due to Lemma 6.14, the functional

fm(u) = E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt

is continuous and obviously, we have fm(u) ≥ 0 for every u ∈ U . Applying Corollary D.18 with p = 2, the
claim follows.

Remark 6.16. As shown in [7], the previous theorem can be proven for the stochastic Navier-Stokes equa-
tions with multiplicative Lévy noise, i.e. in system (6.3), we replace the Q-Wiener process by a square
integrable Lévy martingale as introduced in Section 3.3.

6.3.2. The Linearized Stochastic Navier-Stokes Equations

We introduce the following system in D(Aα):{
dz(t) = −[Az(t) +B(z(t), y(t)) +B(y(t), z(t))− Fv(t)] dt+G(z(t)) dW (t),

z(0) = 0,
(6.15)
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where v ∈ L2
F (Ω;L2([0, T ];D(Aβ))), the process (y(t))t∈[0,τ) is the local mild solution of system (6.3) and

the process (W (t))t≥0 is a Q-Wiener process with values in H and covariance operator Q ∈ L+
1 (H). The

operators A,B, F,G are introduced in Section 6.1 and Section 6.2, respectively.
Similarly to Section 6.2, we first consider the following modified system in D(Aα):{
dzm(t) = −[Azm(t) +B(zm(t), πm(ym(t))) +B(πm(ym(t)), zm(t))− Fv(t)] dt+G(zm(t)) dW (t),

zm(0) = 0,
(6.16)

where the process (ym(t))t∈[0,T ] is the mild solution of system (6.5) and πm : D(Aα) → D(Aα) is given by
equation (6.6). By Theorem 6.6, we get the existence and uniqueness of the mild solution (ym(t))t∈[0,T ] to

system (6.5) for fixed m ∈ N and fixed control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Recall that the initial value

ξ ∈ L2(Ω;D(Aα)) is fixed as well. Similarly to Theorem 6.6, we obtain the existence and uniqueness of a
mild solution (zm(t))t∈[0,T ] to system (6.16) for fixed m ∈ N and fixed v ∈ L2

F (Ω;L2([0, T ];D(Aβ))). As a
consequence, the process (zm(t))t∈[0,T ] takes values in D(Aα) such that

E sup
t∈[0,T ]

‖zm(t)‖2D(Aα) <∞

and we have for all t ∈ [0, T ] and P-a.s.

zm(t) =−
t∫

0

Aδe−A(t−s)A−δ [B(zm(s), πm(ym(s))) +B(πm(ym(s)), zm(s))] ds+

t∫
0

e−A(t−s)Fv(s) ds

+

t∫
0

e−A(t−s)G(zm(s)) dW (s).

Due to Theorem 6.7, we get the existence and uniqueness of the local mild solution (y(t))t∈[0,τ) to system

(6.5) for fixed control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Similarly to Theorem 6.7, we obtain the existence

and uniqueness of a local mild solution (z(t))t∈[0,τ) to system (6.15) for fixed v ∈ L2
F (Ω;L2([0, T ];D(Aβ))),

where the stopping times (τm)m∈N are given by equation (6.10). Therefore, the process (z(t))t∈[0,τ) takes
values in D(Aα) such that for fixed m ∈ N

E sup
t∈[0,τm)

‖z(t)‖2D(Aα) <∞

and we have for each m ∈ N, all t ∈ [0, T ] and P-a.s.

z(t ∧ τm) =−
t∧τm∫
0

Aδe−A(t∧τm−s)A−δ [B(z(s), y(s)) +B(y(s), z(s))] ds+

t∧τm∫
0

e−A(t∧τm−s)Fv(s) ds

+ Iτm(G(z))(t ∧ τm),

where

Iτm(G(z))(t) =

t∫
0

1[0,τm)(s)e
−A(t−s)G(z(s ∧ τm)) dW (s).

Next, we show some useful properties. Note that the mild solution of system (6.5) depends on the con-
trol u ∈ L2

F (Ω;L2([0, T ];D(Aβ))). Hence, the mild solution of system (6.16) depends on the control
u ∈ L2

F (Ω;L2([0, T ];D(Aβ))) as well as on the control v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Let us denote by

(zm(t;u, v))t∈[0,T ] the mild solution of system (6.16). Similarly, we indicate by (z(t;u, v)))t∈[0,τu) the local

mild solution of system (6.15) corresponding to the controls u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Whenever

these processes are considered for fixed controls, we use the notation introduced above.
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Lemma 6.17. For fixed m ∈ N, let (zm(t;u, v))t∈[0,T ] be the mild solution of system (6.16) corresponding

to the controls u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). If v ∈ LkF (Ω;L2([0, T ];D(Aβ))) for k ≥ 2, then there exists

a constant c̃ > 0 such that

E sup
t∈[0,T ]

‖zm(t;u, v)‖kD(Aα) ≤ c̃ ‖v‖
k
LkF (Ω;L2([0,T ];D(Aβ))). (6.17)

Proof. Let the stochastic process (ym(t;u))t∈[0,T ] be the mild solution of system (6.5) corresponding to

the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Recall that the operator F : D(Aβ) → D(Aβ) and the operator

G : H → L(HS)(Q
1/2(H);D(Aα)) are bounded. Let T1,m ∈ (0, T ]. By Theorem 2.35, Lemma 6.1, Proposi-

tion 3.65 (ii), inequality (6.7) and the Cauchy-Schwarz inequality, there exist constants C1, C2, C3 > 0 such
that

E sup
t∈[0,T1,m]

‖zm(t;u, v)‖kD(Aα)

≤ 4k−1E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB(zm(s;u, v), πm(ym(s;u)))
∥∥∥
H
ds

k

+ 4k−1E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB(πm(ym(s;u)), zm(s;u, v))
∥∥∥
H
ds

k

+ 4k−1E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα−βe−A(t−s)AβFv(s)
∥∥∥
H
ds

k

+ 4k−1E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)AαG(zm(s;u, v)) dW (s)

∥∥∥∥∥∥
k

H

≤
(
C1T

k(1−α−δ)
1,m + C2T

k/2
1,m

)
E sup
t∈[0,T1,m]

‖zm(t;u, v)‖kD(Aα) + C3 E

 T∫
0

‖v(t)‖2D(Aβ) dt

k/2

.

We chose T1,m ∈ (0, T ] such that C1T
k(1−α−δ)
1,m + C2T

k/2
1,m < 1. Then we have

E sup
t∈[0,T1,m]

‖zm(t;u, v)‖kD(Aα) ≤ c1,m E

 T∫
0

‖v(t)‖2D(Aβ) dt

k/2

,

where c1,m = C3

1−C1T
k(1−α−δ)
1,m −C2T

k/2
1,m

. By definition, we have for all t ∈ [T1,m, T ] and P-a.s.

zm(t;u, v) = e−A(t−T1,m)zm(T1,m;u, v)

−
t∫

T1,m

Aδe−A(t−s)A−δ [B(zm(s;u, v), πm(ym(s;u))) +B(πm(ym(s;u)), zm(s;u, v))] ds

+

t∫
T1,m

e−A(t−s)Fv(s) ds+

t∫
T1,m

e−A(t−s)G(zm(s;u, v)) dW (s).
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Again, we find T2,m ∈ [T1,m, T ] such that

E sup
t∈[T1,m,T2,m]

‖zm(t;u, v)‖kD(Aα) ≤ c2,mE

 T∫
0

‖v(t)‖2D(Aβ) dt

k/2

,

where c2,m > 0 is a constant. By continuing the method, we obtain inequality (6.17).

Lemma 6.18. For fixed m ∈ N, let (zm(t;u, v))t∈[0,T ] be the mild solution of system (6.16) corresponding to

the controls u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Then we have for every u, v1, v2 ∈ L2

F (Ω;L2([0, T ];D(Aβ))),
all a, b ∈ R, all t ∈ [0, T ] and P-a.s.

zm(t;u, a v1 + b v2) = a zm(t;u, v1) + b zm(t;u, v2).

Proof. Let the process (ym(t;u))t∈[0,T ] be the mild solution of system (6.5) corresponding to the control

u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). To simplify the notation, we set for all t ∈ [0, T ] and P-a.s.

z̃m(t) = zm(t;u, a v1 + b v2)− a zm(t;u, v1)− b zm(t;u, v2).

Recall that the operators F : D(Aβ)→ D(Aβ) andG : H → L(HS)(Q
1/2(H);D(Aα)) are linear and bounded.

Let T1,m ∈ (0, T ]. By Theorem 2.35, Lemma 6.1, Proposition 3.65 (ii) with k = 2 and inequality (6.7), there
exist constants C1, C2 > 0 such that

E sup
t∈[0,T1,m]

‖z̃m(t)‖2D(Aα) ≤ 3E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB(z̃m(s), πm(ym(s;u)))
∥∥∥
H
ds

2

+ 3E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB(πm(ym(s;u)), z̃m(s))
∥∥∥
H
ds

2

+ 3E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)AαG(z̃m(s)) dW (s)

∥∥∥∥∥∥
2

H

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup
t∈[0,T1,m]

‖z̃m(t)‖2D(Aα).

We chose T1,m ∈ (0, T ] such that C1T
2−2α−2δ
1,m + C2T1,m < 1. Then we have

E sup
t∈[0,T1,m]

‖z̃m(t)‖2D(Aα) = E sup
t∈[0,T1,m]

‖zm(t;u, a v1 + b v2)− a zm(t;u, v1)− b zm(t;u, v2)‖2D(Aα) = 0.

Similarly to Lemma 6.17, we can conclude that the result holds for the whole time interval [0, T ].

Lemma 6.19. For fixed m ∈ N, let (zm(t;u, v))t∈[0,T ] be the mild solution of system (6.16) corresponding

to the controls u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Then there exists a constant c > 0 such that for every

u1, u2 ∈ L2
F (Ω;L2([0, T ];D(Aβ))) and every v ∈ L4

F (Ω;L2([0, T ];D(Aβ)))

E sup
t∈[0,T ]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα) ≤ c ‖v‖
2
L4
F (Ω;L2([0,T ];D(Aβ)))‖u1 − u2‖L2

F (Ω;L2([0,T ];D(Aβ))). (6.18)
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Proof. To simplify the notation, we set for every y, z ∈ D(Aα)

B̃(y, z) = B(z, y) +B(y, z).

Since the operator B is bilinear on D(Aα) × D(Aα), the operator B̃ is bilinear as well and using Lemma
6.1, we get for every y, z ∈ D(Aα)∥∥∥A−δB̃(y, z)

∥∥∥
H
≤ 2M̃‖y‖D(Aα)‖z‖D(Aα). (6.19)

Let the stochastic process (ym(t;ui))t∈[0,T ] be the mild solution of system (6.5) corresponding to the control

ui ∈ L2
F (Ω;L2([0, T ];D(Aβ))) for i = 1, 2. Recall that the operator G : H → L(HS)(Q

1/2(H);D(Aα)) is
linear and bounded. Let T1,m ∈ (0, T ]. By Theorem 2.35, the inequalities (6.7), (6.8) and (6.19), Proposition
3.65 (ii) with k = 2 and the Cauchy-Schwarz inequality, there exist constants C1, C2, C3 > 0 such that

E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

≤ 3 E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB̃(πm(ym(s;u1)), zm(s;u1, v)− zm(s;u2, v))
∥∥∥
H
ds

2

+ 3 E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB̃(πm(ym(s;u1))− πm(ym(s;u2)), zm(s;u2, v))
∥∥∥
H
ds

2

+ 3 E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)AαG(zm(s;u1, v)− zm(s;u2, v)) dW (s)

∥∥∥∥∥∥
2

H

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

+ C3

(
E sup
t∈[0,T1,m]

‖zm(t;u2, v)‖4D(Aα)

)1/2(
E sup
t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα)

)1/2

.

Using Lemma 6.9 with k = 2 and Lemma 6.17 with k = 4, we can conclude that there exists a constant
C∗3 > 0 such that

E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

+ C∗3

E

 T∫
0

‖v(t)‖2D(Aβ)dt

2


1/2E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ)dt

1/2

.

We chose T1,m ∈ (0, T ] such that C1T
2−2α−2δ
1,m + C2T1,m < 1. Then we infer

E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

≤ c1,m

E

 T∫
0

‖v(t)‖2D(Aβ)dt

2


1/2E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ)dt

1/2

,
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where c1,m =
C∗3

1−C1T
2−2α−2δ
1,m −C2T1,m

. Similarly to Lemma 6.17, we can conclude that the result holds for the

whole time interval [0, T ].

Remark 6.20. By definition, we have for all t ∈ [0, τum) and P-a.s. z(t;u, v) = zm(t;u, v). Hence, one can
easily obtain similar results for the local mild solution of system (6.15).

6.3.3. The Derivatives of the Cost Functional

First, we show that the local mild solution of system (6.15) is the Gâteaux derivative of the local mild
solution to system (6.3) with respect to the control variable.

Theorem 6.21. Let (y(t;u))t∈[0,τu) and (z(t;u, v))t∈[0,τu) be the local mild solution of system (6.3) and sys-

tem (6.15) corresponding to the controls u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))), respectively. Then for fixed m ∈ N,

the Gâteaux derivative of y(t;u) at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in direction v ∈ L2

F (Ω;L2([0, T ];D(Aβ)))
satisfies for all t ∈ [0, τum) and P-a.s.

dGu y(t;u)[v] = z(t;u, v).

Proof. First, we assume that u, v ∈ L4
F (Ω;L2([0, T ];D(Aβ))). Since the operator B is bilinear on the space

D(Aα) × D(Aα) and the operators F : D(Aβ) → D(Aβ) and G : H → L(HS)(Q
1/2(H);D(Aα)) are linear,

we find for all θ ∈ R\{0}, all t ∈ [0, τum ∧ τu+θv
m ) and P-a.s.

1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

= −
t∫

0

Aδe−A(t−s)A−δB

(
y(s;u+ θv),

1

θ
[y(s;u+ θv)− y(s;u)]− z(s;u, v)

)
ds

−
t∫

0

Aδe−A(t−s)A−δB

(
1

θ
[y(s;u+ θv)− y(s;u)]− z(s;u, v), y(s;u)

)
ds

−
t∫

0

Aδe−A(t−s)A−δB(y(s;u+ θv)− y(s;u), z(s;u, v)) ds

+

t∫
0

e−A(t−s)G

(
1

θ
[y(s;u+ θv)− y(s;u)]− z(s;u, v)

)
dW (s). (6.20)

Next, let 0 = T0,m < T1,m < ... < Tl,m = T be a partition of the time interval [0, T ], which we specify below.
Since the stopping time τum ∧ τu+θv

m takes values in [0, T ], we have for almost all ω ∈ Ω and all θ ∈ R\{0}

1τum∧τ
u+θv
m ∈[0,T1,m](ω) +

l−1∑
j=1

1τum∧τ
u+θv
m ∈(Tj,m,Tj+1,m](ω) = 1. (6.21)

To simplify notation, we set 10 = 1τum∧τ
u+θv
m ∈[0,T1,m] and 1j = 1τum∧τ

u+θv
m ∈(Tj,m,Tj+1,m] for j = 1, ..., l − 1.

Furthermore, let (ym(t;u∗))t∈[0,T ] and (zm(t;u∗, v∗))t∈[0,T ] be the mild solutions of system (6.5) and system

(6.16) corresponding to arbitrary controls u∗, v∗ ∈ L2
F (Ω;L2([0, T ];D(Aβ))), respectively. By definition,

we have for every u∗, v∗ ∈ L2
F (Ω;L2([0, T ];D(Aβ))), all t ∈ [0, τu

∗

m ) and P-a.s. y(t;u∗) = ym(t;u∗) and
z(t;u∗, v∗) = zm(t;u∗, v∗). Recall that G : H → L(HS)(Q

1/2(H);D(Aα)) is bounded. By equation (6.20),
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Theorem 2.35, Lemma 6.1, Proposition 3.65 (ii) with k = 2 and the Cauchy-Schwarz inequality, there exist
constants C1, C2, C3 > 0 such that for all θ ∈ R\{0} and for j = 1, ..., l − 1

E

[
1j sup

t∈[0,T1,m]

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E

[
1j sup

t∈[0,T1,m]

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]

+ C3

(
E sup
t∈[0,T1,m]

‖zm(t;u, v)‖4D(Aα)

)1/2(
E sup
t∈[0,T1,m]

‖ym(t;u+ θv)− ym(t;u)‖4D(Aα)

)1/2

.

We chose T1,m ∈ (0, T ] such that C1T
2−2α−2δ
1,m + C2T1,m < 1. Then we find for all θ ∈ R\{0} and for

j = 1, ..., l − 1

E

[
1j sup

t∈[0,T1,m]

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]

≤ c1,m

(
E sup
t∈[0,T1,m]

‖zm(t;u, v)‖4D(Aα)

)1/2(
E sup
t∈[0,T1,m]

‖ym(t;u+ θv)− ym(t;u)‖4D(Aα)

)1/2

,

where c1,m = C3

1−C1T
2−2α−2δ
1,m −C2T1,m

. Using Lemma 6.9 with k = 4 and Lemma 6.17 with k = 4, we can

conclude for j = 1, ..., l − 1

lim
θ→0

E

[
1j sup

t∈[0,T1,m]

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]
= 0. (6.22)

Similarly, we get

lim
θ→0

E

[
10 sup

t∈[0,τum∧τ
u+θv
m )

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]
= 0.

By definition, we have for all t ∈ [T1,m, T ], P-a.s. and for i = 1, 2

y(t ∧ τuim ;ui) = e−A(t∧τuim −T1,m∧τ
ui
m )
[
y(T1,m ∧ τuim ;ui)− Iτuim (G(y))(T1,m ∧ τuim )

]
−

t∧τuim∫
T1,m∧τ

ui
m

Aδe−A(t∧τuim −s)A−δB(y(s;ui)) ds+

t∧τuim∫
T1,m∧τ

ui
m

e−A(t∧τuim −s)Fui(s) ds

+ Iτuim (G(y))(t ∧ τuim ),

where u1 = u+ θv and u2 = u and

z(t ∧ τum;u, v) = e−A(t∧τum−T1,m∧τum)
[
z(T1,m ∧ τum;u, v)− Iτum(G(z))(T1,m ∧ τum)

]
−

t∧τum∫
T1,m∧τum

Aδe−A(t∧τum−s)A−δ [B(z(s;u, v), y(s;u)) +B(y(s;u), z(s;u, v))] ds

+

t∧τum∫
T1,m∧τum

e−A(t∧τum−s)Fv(s) ds+ Iτum(G(z))(t ∧ τum).
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Again, we find T2,m ∈ [T1,m, T ] such that for j = 2..., l − 1

lim
θ→0

E

[
1j sup

t∈[T1,m,T2,m]

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]
= 0

and

lim
θ→0

E

[
11 sup

t∈[T1,m,τum∧τ
u+θv
m )

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]
= 0.

Using equation (6.22) for j = 1, we obtain

lim
θ→0

E

[
11 sup

t∈[0,τum∧τ
u+θv
m )

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]
= 0.

By continuing the method, we obtain for j = 0, 1, ..., l − 1

lim
θ→0

E

[
1j sup

t∈[0,τum∧τ
u+θv
m )

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]
= 0.

Due to equation (6.21), we have

lim
θ→0

E sup
t∈[0,τum∧τ

u+θv
m )

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

=

l−1∑
j=0

lim
θ→0

E

[
1j sup

t∈[0,τum∧τ
u+θv
m )

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

]
= 0.

Therefore, the Gâteaux derivative of the velocity field (y(t;u))t∈[0,τu) at u ∈ L4
F (Ω;L2([0, T ];D(Aβ))) in

direction v ∈ L4
F (Ω;L2([0, T ];D(Aβ))) satisfies for all t ∈ [0, τum ∧ τu+θv

m ) and P-a.s.

dGu y(t;u)[v] = z(t;u, v). (6.23)

Note that by Lemma 6.11, we have
lim
θ→0

P(τum 6= τu+θv
m ) = 0.

Moreover, the operator dGu y(t;u) is linear and bounded due to Lemma 6.17 with k = 4 and Lemma 6.18.
Since the space L4

F (Ω;L2([0, T ];D(Aβ))) is dense in L2
F (Ω;L2([0, T ];D(Aβ))), the equation (6.23) holds for

u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))), which is a consequence of Lemma 6.17 with k = 2, Lemma 6.18 and Lemma

6.19.

This enables us to derive the Gâteaux derivative of the cost functional.

Theorem 6.22. Let Jm : L2
F (Ω;L2([0, T ];D(Aβ)))→ R be defined by (6.13). Then the Gâteaux derivative

at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in direction v ∈ L2

F (Ω;L2([0, T ];D(Aβ))) satisfies

dGJm(u)[v] = E
τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt+ E
T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt,

where the process (z(t;u, v))t∈[0,τu) is the local mild solution of system (6.15) corresponding to the controls

u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))).
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Proof. We define the functionals Φ1,Φ2 : L2
F (Ω;L2([0, T ];D(Aβ)))→ R by

Φ1(u) =
1

2
E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt, Φ2(u) =
1

2
E

T∫
0

‖Aβu(t)‖2Hdt.

First, we derive the Gâteaux derivative of the functional Φ1 at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in direction

v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). We get for all θ ∈ R\{0}∣∣∣∣∣∣∣

1

θ
[Φ1(u+ θv)− Φ1(u)]− E

τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt

∣∣∣∣∣∣∣
≤ I1(θ) + I2(θ) + I3(θ) + I4(θ) + I5(θ), (6.24)

where

I1(θ) =

∣∣∣∣∣∣∣
1

2θ
E
τum∧τ

u+θv
m∫

0

‖Aγ(y(t;u+ θv)− y(t;u))‖2H dt

∣∣∣∣∣∣∣ ,

I2(θ) =

∣∣∣∣∣∣∣E
τum∧τ

u+θv
m∫

0

〈
Aγ(y(t;u)− yd(t)), Aγ

(
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

)〉
H

dt

∣∣∣∣∣∣∣ ,

I3(θ) =

∣∣∣∣∣∣∣
1

2θ
E

τu+θvm∫
τum∧τ

u+θv
m

‖Aγ(y(t;u+ θv)− yd(t))‖2H dt

∣∣∣∣∣∣∣ ,

I4(θ) =

∣∣∣∣∣∣∣
1

2θ
E

τum∫
τum∧τ

u+θv
m

‖Aγ(y(t;u)− yd(t))‖2H dt

∣∣∣∣∣∣∣ ,

I5(θ) =

∣∣∣∣∣∣∣E
τum∫

τum∧τ
u+θv
m

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt

∣∣∣∣∣∣∣ .
Let the process (ym(t;u∗))t∈[0,T ] be the mild solution of system (6.5) corresponding to an arbitrary control

u∗ ∈ L2
F (Ω;L2([0, T ];D(Aβ))). We have for every u∗ ∈ L2

F (Ω;L2([0, T ];D(Aβ))), all t ∈ [0, τu
∗

m ) and P-a.s.
y(t;u∗) = ym(t;u∗) and ‖y(t;u∗)‖D(Aα) ≤ m. Using Corollary 2.32, we obtain for all θ ∈ R\{0}

I1(θ) ≤

∣∣∣∣∣CT2θ
E sup
t∈[0,T ]

‖ym(t;u+ θv)− ym(t;u)‖2D(Aα)

∣∣∣∣∣ .
Due to Lemma 6.9 with k = 2, we can conclude

lim
θ→0
I1(θ) = 0. (6.25)

Using the Cauchy-Schwarz inequality and Corollary 2.32, there exists a constant C∗ > 0 such that for all
θ ∈ R\{0}

I2(θ) ≤ C∗
(
E sup
t∈[0,τum∧τ

u+θv
m )

∥∥∥∥1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥2

D(Aα)

)1/2

.
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Due to Theorem 6.21, we can infer
lim
θ→0
I2(θ) = 0. (6.26)

Using Corollary 2.32 and Fubini’s theorem, we get for all θ ∈ R\{0}

I3(θ) ≤

∣∣∣∣∣∣
T∫

0

1

2θ
P
(
τum ∧ τu+θv

m ≤ t < τu+θv
m

) (
2C2m2 + 2 ‖yd(t)‖2D(Aγ)

)
dt

∣∣∣∣∣∣ .
Due to Lemma 6.12 with k = 1, we have

lim
θ→0

1

θ
P
(
τum ∧ τu+θv

m ≤ t < τu+θv
m

)
= 0

for all t ∈ [0, T ]. By Proposition B.7, we can infer

lim
θ→0
I3(θ) = 0. (6.27)

Similarly, we find
lim
θ→0
I4(θ) + lim

θ→0
I5(θ) = 0. (6.28)

Using inequality (6.24) and equations (6.25) – (6.28), we get

lim
θ→0

∣∣∣∣∣∣∣
1

θ
[Φ1(u+ θv)− Φ1(u)]− E

τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt

∣∣∣∣∣∣∣ = 0.

Therefore, the Gâteaux derivative of Φ1 : L2
F (Ω;L2([0, T ];D(Aβ)))→ R at u ∈ L2

F (Ω;L2([0, T ];D(Aβ))) in
direction v ∈ L2

F (Ω;L2([0, T ];D(Aβ))) is given by

dGΦ1(u)[v] = E
τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt. (6.29)

Let the stochastic process (zm(t;u, v))t∈[0,T ] be the mild solution of system (6.16) corresponding to the

controls u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). We have for all t ∈ [0, τum) and P-a.s. z(t;u, v) = zm(t;u, v). Using

Lemma 6.18, the functional dGΦ1(u) is linear. Moreover, by the Cauchy-Schwarz inequality, Corollary 2.32,
Lemma 6.17 with k = 2, there exists a constant C∗ > 0 such that

∣∣dGΦ1(u)[v]
∣∣2 ≤

2E
τum∫
0

‖Aγy(t;u)‖2Hdt+ 2

T∫
0

‖Aγyd(t)‖2Hdt

E
τum∫
0

‖Aγz(t;u, v)‖2Hdt

≤ C∗ ‖v‖2L2
F (Ω;L2([0,T ];D(Aβ))) .

Hence, the functional dGΦ1(u) is bounded.
Note that the functional Φ2 : L2

F (Ω;L2([0, T ];D(Aβ))) → R is given by the squared norm in the Hilbert
space L2

F (Ω;L2([0, T ];D(Aβ))). Similarly to Remark D.6 (ii), we get that the Gâteaux derivative of Φ2 at
u ∈ L2

F (Ω;L2([0, T ];D(Aβ))) in direction v ∈ L2
F (Ω;L2([0, T ];D(Aβ))) is given by

dGΦ2(u)[v] = E
T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt. (6.30)
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Obviously, the functional dGΦ2(u) is linear and bounded.
Using equation (6.29) and equation (6.30), the Gâteaux derivative of Jm at u ∈ L2

F (Ω;L2([0, T ];D(Aβ)))
in direction v ∈ L2

F (Ω;L2([0, T ];D(Aβ))) is given by

dGJm(u)[v] = dGΦ1(u)[v] + dGΦ2(u)[v]

= E
τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt+ E
T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt.

Since dGΦ1(u) and dGΦ2(u) are linear and bounded, the functional dGJm(u) is linear and bounded as
well.

Recall that the set of admissible controls U is a closed, bounded and convex subset of the Hilbert space
L2
F (Ω;L2([0, T ];D(Aβ))) such that 0 ∈ U . Moreover, the cost functional Jm : U → R given by equation

(6.13) satisfies the assumptions of Proposition D.19. Hence, the optimal control um ∈ U satisfies the
necessary optimality condition

dGJm(um)[u− um] ≥ 0 (6.31)

for fixed m ∈ N and every u ∈ U . Due to Theorem 6.22, we get the variational inequality

E
τumm∫
0

〈Aγ(y(t;um)− yd(t)), Aγz(t;um, u− um)〉H dt+ E
T∫

0

〈
Aβum(t), Aβ(u(t)− um(t))

〉
H
dt ≥ 0 (6.32)

for fixed m ∈ N and every u ∈ U . We will use this inequality to derive an explicit formula for the optimal
control um ∈ U .

Remark 6.23. If system (6.3) is driven by a square integrable Lévy martingale (introduced in Section 3.3),
then one may obtain the necessary optimality condition (6.31) as follows:
Note that it is also necessary to replace the Q-Wiener process by a square integrable Lévy martingale in
system (6.15). Especially, a generalization of Lemma 6.17 with k = 4 is required as an auxiliary result to
obtain Theorem 6.21. To prove this lemma, we need a generalization of the maximal inequality stated in
Proposition 3.65 (i) for k = 4. Such an inequality can be found in [49, Proposition 1.3 (i)], which requires to
calculate the quadratic variation of a square integrable Lévy martingale. In general, the quadratic variation
of a right-continuous square integrable martingale (M(t))t≥0 with values in an arbitrary Hilbert space H is
defined by

[M ]t = lim
j→∞

∑
ti∈Pj

‖M(ti+1 ∧ t)−M(ti ∧ t)‖2H (6.33)

for all t ≥ 0 and P-almost surely, where Pj contains the points of time 0 < t0 < t1 < ... < tj satisfying
limi→∞ ti =∞ and limj→∞ δ(Pj) = 0 with δ(Pj) = supti∈Pj (ti+1 − ti). The convergence of equation (6.33)

is in L1(Ω,F ,P). Let (〈M〉t)t≥0 be the predictable variation of (M(t))t≥0 introduced in Theorem 3.20. If
(M(t))t≥0 is real-valued and continuous, then

[M ]t = 〈M〉t

for all t ≥ 0 and P-almost surely, see [63, Theorem 18.6]. One can easily adopt the proof to obtain this
result for a Hilbert space valued process. However, for a square integrable Lévy martingale, the quadratic
variation and the predictable variation do not coincide in general. Hence, the determination of the quadratic
variation to a square integrable Lévy martingale might be the most challenging task here.
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Next, we state the second order Gâteaux derivative of the cost functional (6.13). Moreover, we show that
the Gâteaux derivatives and the Fréchet derivatives coincide, which will enable us to obtain a sufficient
optimality condition.

Corollary 6.24. Let Jm : L2
F (Ω;L2([0, T ];D(Aβ)))→ R be defined by (6.13). Then the Gâteaux derivative

of order two at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in directions v1, v2 ∈ L2

F (Ω;L2([0, T ];D(Aβ))) satisfies

dG(Jm(u))2[v1, v2] = E
τum∫
0

〈Aγz(t;u, v1), Aγz(t;u, v2)〉H dt+ E
T∫

0

〈
Aβv1(t), Aβv2(t)

〉
H
dt,

where the processes (z(t;u, vi))t∈[0,τu) form the local mild solution of system (6.15) corresponding to the

controls u, vi ∈ L2
F (Ω;L2([0, T ];D(Aβ))) for i = 1, 2.

Proof. The result can be obtained similarly to Theorem 6.22.

Corollary 6.25. Let Jm : L2
F (Ω;L2([0, T ];D(Aβ)))→ R be defined by (6.13). Then the Fréchet derivative

at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in direction v ∈ L2

F (Ω;L2([0, T ];D(Aβ))) satisfies

dFJm(u)[v] = E
τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt+ E
T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt,

where the process (z(t;u, v))t∈[0,τu) is the local mild solution of system (6.15) corresponding to the controls

u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Moreover, the functional dFJm(u)[v] is continuous with respect to u.

Proof. Using Theorem 6.22, we have that the Gâteaux derivative at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in direc-

tion v ∈ L2
F (Ω;L2([0, T ];D(Aβ))) satisfies

dGJm(u)[v] = E
τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt+ E
T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt.

If v ∈ L4
F (Ω;L2([0, T ];D(Aβ))), then the process (z(t;u, v))t∈[0,τum) is continuous with respect to the con-

trol u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) resulting from Lemma 6.19. By Lemma 6.17 with k = 2, Lemma 6.18

and the fact that the space L4
F (Ω;L2([0, T ];D(Aβ))) is dense in L2

F (Ω;L2([0, T ];D(Aβ))), we can con-
clude that the process (z(t;u, v))t∈[0,τum) is continuous with respect to u ∈ L2

F (Ω;L2([0, T ];D(Aβ))) for

v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). The fact that (y(t;u))t∈[0,τum) is continuous with respect to the control

u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) is an immediate consequence of Lemma 6.9 with k = 2. Using additionally

Lemma 6.11, one can show that u 7→ dGJm(u) is a continuous mapping from L2
F (Ω;L2([0, T ];D(Aβ))) into

L(L2
F (Ω;L2([0, T ];D(Aβ)));R). Hence, we can apply Corollary D.5 and the claim follows.

Corollary 6.26. Let Jm : L2
F (Ω;L2([0, T ];D(Aβ)))→ R be defined by (6.13). Then the Fréchet derivative

of order two at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in directions v1, v2 ∈ L2

F (Ω;L2([0, T ];D(Aβ))) satisfies

dF (Jm(u))2[v1, v2] = E
τum∫
0

〈Aγz(t;u, v1), Aγz(t;u, v2)〉H dt+ E
T∫

0

〈
Aβv1(t), Aβv2(t)

〉
H
dt,

where the processes (z(t;u, vi))t∈[0,τu) are the local mild solution of system (6.15) corresponding to the con-

trols u, vi ∈ L2
F (Ω;L2([0, T ];D(Aβ))) for i = 1, 2. Moreover, the functional dF (Jm(u))2[v1, v2] is continuous

with respect to u.

Proof. The result can be obtained similarly to Corollary 6.25.
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6.4. The Adjoint Equation

We will use the necessary optimality condition (6.32) to derive an explicit formula the optimal control
um ∈ U has to satisfy. Therefor, we need a duality principle, which provides a relation between the local
mild solution to system (6.15) and the corresponding adjoint equation, which is given by the following
backward SPDE in D(Aδ):

dz∗m(t) = −1[0,τm)(t)[−Az∗m(t)−A2αB∗δ
(
y(t), Aδz∗m(t)

)
+G∗(A−2αΦm(t))

+A2γ(y(t)− yd(t))] dt+ Φm(t) dW (t),

z∗m(T ) = 0,

(6.34)

where m ∈ N and the process (y(t))t∈[0,τ) is the local mild solution of system (6.3). The stopping times
(τm)m∈N are defined by equation (6.10) and yd ∈ L2([0, T ];D(Aγ)) is the given desired velocity field. The
operator A and its fractional powers are introduced in Section 6.1. The process (W (t))t≥0 is a Q-Wiener
process with values in H and covariance operator Q ∈ L+

1 (H). The operators B∗δ (y(t), ·) : H → D(Aα) for
t ∈ [0, τm) and G∗ : L(HS)(Q

1/2(H);D(Aα)) → H are linear and bounded. A precise meaning is given in
the following remark.

Remark 6.27. (i) By Lemma 6.1, we obtain that the operator A−δ[B(·, y) +B(y, ·)] : D(Aα)→ H is linear
and bounded for every y ∈ D(Aα) such that ‖y‖D(Aα) ≤ m. Therefore, there exists a linear and bounded
operator B∗δ (y, ·) : H → D(Aα) satisfying for every h ∈ H and every z ∈ D(Aα)

〈A−δ[B(z, y) +B(y, z)], h〉H = 〈z,B∗δ (y, h)〉D(Aα).

We can rewrite this equivalently as

〈A−δ[B(z, y) +B(y, z)], h〉H = 〈Aαz,AαB∗δ (y, h)〉H (6.35)

for every h ∈ H and every z ∈ D(Aα). By the closed graph theorem, the operator AαB∗δ (y, ·) : H → H is
linear and bounded.
(ii) Recall that ‖y(t)‖D(Aα) ≤ m for all t ∈ [0, τm) and P-almost surely.

(iii) Due to the fact that the operator G : H → L(HS)(Q
1/2(H);D(Aα)) is linear and bounded, there exists

a linear and bounded operator G∗ : L(HS)(Q
1/2(H);D(Aα)) → H satisfying for every h ∈ H and every

Φ ∈ L(HS)(Q
1/2(H);D(Aα))

〈G(h),Φ〉L(HS)(Q1/2(H);D(Aα)) = 〈h,G∗(Φ)〉H .

We can rewrite this equivalently as

〈AαG(h), AαΦ〉L(HS)(Q1/2(H);H) = 〈h,G∗(Φ)〉H (6.36)

for every h ∈ H and every Φ ∈ L(HS)(Q
1/2(H);D(Aα)).

Here, we use a mild solution to system (6.34) in the sense of Definition 3.95 with H = H. By Theorem
6.7, we get the existence and uniqueness of a local mild solution (y(t))t∈[0,τ) to system (6.3) for fixed control

u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). As a consequence of Theorem 3.98, we can conclude that there exists a unique

mild solution (z∗m(t),Φm(t))t∈[0,T ] of system (6.34) for fixed control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) and fixed

m ∈ N. Hence, the pair of processes (z∗m(t),Φm(t))t∈[0,T ] takes values in D(Aδ)× L(HS)(Q
1/2(H);H) such

that

E sup
t∈[0,T ]

‖z∗m(t)‖2D(Aδ) <∞,

E
T∫

0

‖Φm(t)‖2L(HS)(Q1/2(H);H)dt <∞
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and we have for all t ∈ [0, T ] and P-a.s.

z∗m(t) =−
T∫
t

1[0,τm)(s)A
αe−A(s−t)AαB∗δ

(
y(s ∧ τm), Aδz∗m(s)

)
ds

+

T∫
t

1[0,τm)(s)e
−A(s−t)G∗(A−2αΦm(s)) ds

+

T∫
t

1[0,τm)(s)A
γe−A(s−t)Aγ (y(s ∧ τm)− yd(s)) ds

−
T∫
t

e−A(s−t)Φm(s) dW (s).

Since the local mild solution of system (6.3) depends on the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))), we get

this property for the mild solution of system (6.34) as well. To illustrate the dependence on the control
u ∈ L2

F (Ω;L2([0, T ];D(Aβ))), let us denote by (z∗m(t;u),Φm(t;u))t∈[0,T ] the mild solution of system (6.34).
Whenever these processes are considered for fixed controls, we use the notation introduced above.

Remark 6.28. (i) As a consequence of Theorem 3.98, we get the additional restrictions α, δ < 1
2 and

γ + δ < 1
2 . Therefore, we can not solve the control problem (6.14) for γ = 1

2 through a stochastic maximum
principle directly. However, we will show in Section 6.7 that we easily overcome this problem in the case of
additive noise in system (6.3).
(ii) If yd ∈ L∞([0, T ];D(Aγ)), then the restriction γ + δ < 1

2 vanishes.

Lemma 6.29. Let (z∗m(t),Φm(t))t∈[0,T ] be the mild solution of system (6.34). Then we have for fixed m ∈ N

E sup
t∈[τm,T ]

‖z∗m(t)‖2D(Aδ) = 0 and E
T∫

τm

‖Φm(t)‖2L(HS)(Q1/2(H);H) dt = 0.

Proof. By definition, we obtain for all t ∈ [τm, T ] and P-a.s.

z∗m(t) = −
T∫
t

e−A(s−t)Φm(s) dW (s).

The claim follows by Lemma 3.96.

6.5. Approximation by a Strong Formulation

As shown in Section 5.6, through a duality principle one can utilize an optimality condition to obtain an
explicit formula the optimal control has to satisfy. A duality principle of solutions to forward and backward
SPDEs can be obtained by applying an Itô product formula. Since this formula is not applicable to solutions
in a mild sense, we derive an approximation similarly to Section 5.5. Recall that the operator R(λ) ∈ L(H)
is given by

R(λ) = λR(λ;−A) (6.37)

for all λ ∈ ρ(−A), where λR(λ;−A) is the resolvent operator of −A introduced in Section 2.1. Especially,
we use Lemma 5.13, which is directly applicable here. Furthermore, we omit the dependence on the controls
in this section.
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6.5.1. The Forward Equation

Here, we provide an approximation of the mild solution to system (6.16). We introduce the following system
in D(A1+α):

dzm(t, λ) = −[Azm(t, λ) +R(λ)B(R(λ)zm(t, λ), πm(ym(t)))

+R(λ)B(πm(ym(t)), R(λ)zm(t, λ))−R(λ)Fv(t)] dt+R(λ)G(R(λ)zm(t, λ)) dW (t),

zm(0, λ) = 0,

(6.38)

where m ∈ N and v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). The operator R(λ) is given by equation (6.37) with λ > 0

and the operators A,B, F,G are introduced in Section 6.1 and Section 6.2, respectively. The mapping
πm : D(Aα) → D(Aα) is given by (6.6) and the process (ym(t))t∈[0,T ] is the mild solution of system (6.5).

The process (W (t))t≥0 is a Q-Wiener process with values in H and covariance operator Q ∈ L+
1 (H).

Definition 6.30. A predictable process (zm(t, λ))t∈[0,T ] with values in D(A1+α) is called a mild solution
of system (6.38) if

E sup
t∈[0,T ]

‖zm(t, λ)‖2D(A1+α) <∞

and we have for all t ∈ [0, T ] and P-a.s.

zm(t, λ) =−
t∫

0

Aδe−A(t−s)R(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))] ds

+

t∫
0

e−A(t−s)R(λ)Fv(s) ds+

t∫
0

e−A(t−s)R(λ)G(R(λ)zm(s, λ)) dW (s).

Recall that the operators R(λ) and AR(λ) are linear and bounded on H. Hence, for fixed m ∈ N and
fixed λ > 0, an existence and uniqueness result of a mild solution to system (6.38) can be obtained similarly
to the mild solution of system (6.16). In the following lemma, we state a strong formulation of the mild
solution to system (6.38).

Lemma 6.31. Let (zm(t, λ))t∈[0,T ] be the mild solution of system (6.38). Then we have for fixed m ∈ N,
fixed λ > 0, all t ∈ [0, T ] and P-a.s.

zm(t, λ) =−
t∫

0

Azm(s, λ) +AδR(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))] ds

+

t∫
0

R(λ)Fv(s) ds+

t∫
0

R(λ)G(R(λ)zm(s, λ)) dW (s).

Proof. The claim follows immediately from Theorem 2.35, Theorem 3.106 and Lemma 5.13.

We get the following convergence result.

Lemma 6.32. Let (zm(t))t∈[0,T ] and (zm(t, λ))t∈[0,T ] be the mild solutions of system (6.16) and system
(6.38), respectively. Then we have for fixed m ∈ N

lim
λ→∞

E sup
t∈[0,T ]

‖zm(t)− zm(t, λ)‖2D(Aα) = 0.
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Proof. Let I be the identity operator on H. We define the operator

B̃(y, z) = B(z, y) +B(y, z)

for every y, z ∈ D(Aα). Since B is bilinear on D(Aα)×D(Aα), the operator B̃ is bilinear as well and using
Lemma 6.1, we get for every y, z ∈ D(Aα)∥∥∥A−δB̃(y, z)

∥∥∥
H
≤ 2M̃‖y‖D(Aα)‖z‖D(Aα). (6.39)

Recall that the operator G : H → L(HS)(Q
1/2(H);D(Aα)) is linear and bounded. By definition, we find for

all λ > 0, all t ∈ [0, T ] and P-a.s.

zm(t)− zm(t, λ) = −
t∫

0

Aδe−A(t−s)A−δB̃(πm(ym(s)), [I −R(λ)]zm(s)) ds

−
t∫

0

Aδe−A(t−s)[I −R(λ)]A−δB̃(πm(ym(s)), R(λ)zm(s)) ds

−
t∫

0

Aδe−A(t−s)R(λ)A−δB̃(πm(ym(s)), R(λ) [zm(s)− zm(s, λ)]) ds

+

t∫
0

e−A(t−s)[I −R(λ)]Fv(s) ds

+

t∫
0

e−A(t−s)G([I −R(λ)]zm(s)) dW (s)

+

t∫
0

e−A(t−s)[I −R(λ)]G(R(λ)zm(s)) dW (s)

+

t∫
0

e−A(t−s)R(λ)G(R(λ) [zm(s)− zm(s, λ)]) dW (s).

Let T1,m ∈ (0, T ]. Then we get for all λ > 0

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) ≤ 7 I1(λ) + 7 I2(λ) + 7 I3(λ), (6.40)

where

I1(λ) = E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

Aδe−A(t−s)R(λ)A−δB̃(πm(ym(s)), R(λ) [zm(s)− zm(s, λ)]) ds

∥∥∥∥∥∥
2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)R(λ)G(R(λ) [zm(s)− zm(s, λ)]) dW (s)

∥∥∥∥∥∥
2

D(Aα)

,
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I2(λ) = E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

Aδe−A(t−s)A−δB̃(πm(ym(s)), [I −R(λ)]zm(s)) ds

∥∥∥∥∥∥
2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

Aδe−A(t−s)[I −R(λ)]A−δB̃(πm(ym(s)), R(λ)zm(s)) ds

∥∥∥∥∥∥
2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)[I −R(λ)]Fv(s) ds

∥∥∥∥∥∥
2

D(Aα)

,

I3(λ) = E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)G([I −R(λ)]zm(s)) dW (s)

∥∥∥∥∥∥
2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)[I −R(λ)]G(R(λ)zm(s)) dW (s)

∥∥∥∥∥∥
2

D(Aα)

.

By Theorem 2.35, Corollary 2.32, Lemma 5.13, Proposition 3.65 (ii) with k = 2, inequality (6.7) and
inequality (6.39), there exist constants C1, C2 > 0 such that for all λ > 0

I1(λ) ≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) . (6.41)

Similarly, there exists a constant C∗ > 0 such that for all λ > 0

I2(λ) ≤ C∗ E sup
t∈[0,T1,m]

‖[I −R(λ)]Aαzm(t)‖2H + C∗ E sup
t∈[0,T1,m]

∥∥∥[I −R(λ)]A−δB̃(πm(ym(t)), R(λ)zm(t))
∥∥∥2

H

+ C∗ E
T1,m∫
0

∥∥[I −R(λ)]AβFv(t)
∥∥2

H
dt,

I3(λ) ≤ C∗ E
T1,m∫
0

‖[I −R(λ)]zm(t)‖2H dt+ C∗ E
T1,m∫
0

‖[I −R(λ)]AαG(R(λ)zm(t))‖2L(HS)(Q1/2(H);H) dt.

Using Lemma 5.13 (iii) and Proposition B.7, we can conclude

lim
λ→∞

I2(λ) + lim
λ→∞

I3(λ) = 0. (6.42)

Due to inequality (6.40) and inequality (6.41), we find for all λ > 0

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) ≤ K1,m E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) + 7 I2(λ) + 7 I3(λ),

where K1,m = 7C1T
2−2α−2δ
1,m + 7C2T1,m. We chose T1,m ∈ (0, T ] such that K1,m < 1. Then we obtain for

all λ > 0

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) ≤
7 I2(λ) + 7 I3(λ)

1−K1,m
.
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By equation (6.42), we get

lim
λ→∞

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) = 0.

Similarly to Lemma 6.17, we can conclude that the result holds for the whole time interval [0, T ].

6.5.2. The Backward Equation

Here we provide an approximation of the mild solution to system (6.34). We introduce the following
backward SPDE in D(A1+δ):

dz∗m(t, λ) = −1[0,τm)(t)
[
−Az∗m(t, λ)−AαR(λ)AαB∗δ

(
y(t), R(λ)Aδz∗m(t, λ)

)
+R(λ)G∗(A−2αR(λ)Φm(t, λ)) +AγR(λ)Aγ (y(t)− yd(t))

]
dt+ Φm(t, λ) dW (t),

z∗m(T, λ) = 0,

(6.43)

where m ∈ N. The operator R(λ) is given by equation (6.37) with λ > 0 and the operators A,B∗δ , G
∗ are

introduced in Section 6.1 and Section 6.4, respectively. The process (y(t))t∈[0,τ) is the local mild solution of
system (6.3) with stopping times (τm)m∈N defined by (6.10) and yd ∈ L2([0, T ];D(Aγ)) is the given desired
velocity field. The process (W (t))t≥0 is a Q-Wiener process with values in H and covariance operator
Q ∈ L+

1 (H).

Definition 6.33. We call a pair of predictable processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] with values in the space

D(A1+δ)× L(HS)(Q
1/2(H);H) a mild solution of system (6.43) if

E sup
t∈[0,T ]

‖z∗m(t, λ)‖2D(A1+δ) <∞, E
T∫

0

‖Φm(t, λ)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) =−
T∫
t

1[0,τm)(s)A
αe−A(s−t)R(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
ds

+

T∫
t

1[0,τm)(s)e
−A(s−t)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds

+

T∫
t

1[0,τm)(s)A
γe−A(s−t)R(λ)Aγ (y(s ∧ τm)− yd(s)) ds−

T∫
t

e−A(s−t)Φm(s, λ) dW (s).

Recall that the operators R(λ) and AR(λ) are linear and bounded on H. Hence, an existence and
uniqueness result of a mild solution to system (6.43) can be obtained similarly to the mild solution of
system (6.34) for fixed m ∈ N and fixed λ > 0. Moreover, we get the following result.

Lemma 6.34. Let the pair of processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solution of system (6.43).
Then we have for fixed m ∈ N and fixed λ > 0

E sup
t∈[τm,T ]

‖z∗m(t, λ)‖2D(A1+δ) = 0 and E
T∫

τm

‖Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt = 0.
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Proof. The claim follows similarly to Lemma 6.29.

The following lemma gives us a strong formulation of the mild solution to system (6.43).

Lemma 6.35. Let the pair of processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solution of system (6.43).
Then we have for fixed m ∈ N, fixed λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) =−
T∫
t

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

+

T∫
t

1[0,τm)(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds

+

T∫
t

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

−
T∫
t

Φm(s, λ) dW (s).

Proof. The claim follows from Theorem 2.35, Theorem 3.112 and Lemma 5.13.

We get the following convergence results.

Lemma 6.36. Let (z∗m(t),Φm(t))t∈[0,T ] and (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solutions of system (6.34)
and system (6.43), respectively. Then we have for fixed m ∈ N

lim
λ→∞

E sup
t∈[0,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) = 0,

lim
λ→∞

E
T∫

0

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0.

Proof. Let I be the identity operator on H. By definition, we have for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t)− z∗m(t, λ)

= −
T∫
t

1[0,τm)(s)A
αe−A(s−t)[AαB∗δ

(
y(s ∧ τm), Aδz∗m(s)

)
−R(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
] ds

+

T∫
t

1[0,τm)(s)e
−A(s−t)[G∗(A−2αΦm(s))−R(λ)G∗(A−2αR(λ)Φm(s, λ))] ds

+

T∫
t

1[0,τm)(s)A
γe−A(s−t)[I −R(λ)]Aγ (y(s ∧ τm)− yd(s)) ds

−
T∫
t

e−A(s−t)[Φm(s)− Φm(s, λ)] dW (s).
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Recall that the operators AαB∗δ (y(t), ·) : H → H for t ∈ [0, τm) and G∗ : L(HS)(Q
1/2(H);D(Aα))→ H are

linear and bounded. Hence, we find for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t)− z∗m(t, λ) = −
T∫
t

1[0,τm)(s)A
αe−A(s−t)AαB∗δ

(
y(s ∧ τm), [I −R(λ)]Aδz∗m(s)

)
ds

−
T∫
t

1[0,τm)(s)A
αe−A(s−t)[I −R(λ)]AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s)

)
ds

−
T∫
t

1[0,τm)(s)A
αe−A(s−t)R(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδ[z∗m(s)− z∗m(s, λ)]

)
ds

+

T∫
t

1[0,τm)(s)e
−A(s−t)G∗(A−2α[I −R(λ)]Φm(s)) ds

+

T∫
t

1[0,τm)(s)e
−A(s−t)[I −R(λ)]G∗(A−2αR(λ)Φm(s)) ds

+

T∫
t

1[0,τm)(s)e
−A(s−t)R(λ)G∗(A−2αR(λ)[Φm(s)− Φm(s, λ)]) ds

+

T∫
t

1[0,τm)(s)A
γe−A(s−t)[I −R(λ)]Aγ (y(s ∧ τm)− yd(s)) ds

−
T∫
t

e−A(s−t)[Φm(s)− Φm(s, λ)] dW (s).

Note that each integrand of the Bochner integrals on the right hand side satisfies the assumptions of Lemma
3.96 and Corollary 3.97, respectively. Let T1,m ∈ [0, T ). Using inequality (3.39) and inequality (3.45), we
get for all λ > 0

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) ≤ 7 I1(λ) + 7 I2(λ) + 7 I3(λ), (6.44)

where

I1(λ) = ĉ(T − T1,m)2−2α−2δ E sup
t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥R(λ)AαB∗δ
(
y(t ∧ τm), R(λ)Aδ[z∗m(t)− z∗m(t, λ)]

)∥∥2

H

]

+ c(T − T1,m)1−2δ E
T∫

T1,m

1[0,τm)(t)
∥∥R(λ)G∗(A−2αR(λ)[Φm(t)− Φm(t, λ)])

∥∥2

H
dt,

I2(λ) = ĉ(T − T1,m)2−2α−2δ E sup
t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥AαB∗δ (y(t ∧ τm), [I −R(λ)]Aδz∗m(t)
)∥∥2

H

]
+ ĉ(T − T1,m)2−2α−2δ E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥[I −R(λ)]AαB∗δ
(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2

H

]
,
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I3(λ) = c(T − T1,m)1−2δ E
T∫

T1,m

1[0,τm)(t)
∥∥G∗(A−2α[I −R(λ)]Φm(t))

∥∥2

H
dt

+ c(T − T1,m)1−2δ E
T∫

T1,m

1[0,τm)(t)
∥∥[I −R(λ)]G∗(A−2αR(λ)Φm(t))

∥∥2

H
dt

+ c(T − T1,m)1−2γ−2δ E
T∫

T1,m

1[0,τm)(t) ‖[I −R(λ)]Aγ (y(t ∧ τm)− yd(t))‖2H dt.

By Lemma 5.13 (ii), there exist constants C1, C2 > 0 such that for all λ > 0

I1(λ) ≤ C1(T − T1,m)2−2α−2δ E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ)

+ C2(T − T1,m)1−2δ E
T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt. (6.45)

Moreover, there exists a constant C∗ > 0 such that for all λ > 0

I2(λ) ≤ C∗ E sup
t∈[T1,m,T ]

∥∥[I −R(λ)]Aδz∗m(t)
∥∥2

H

+ C∗ E sup
t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥[I −R(λ)]AαB∗δ
(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2

H

]
,

I3(λ) ≤ C∗ E
T∫

T1,m

‖[I −R(λ)]Φm(t)‖2H dt+ C∗ E
T∫

T1,m

∥∥[I −R(λ)]G∗(A−2αR(λ)Φm(t))
∥∥2

H
dt

+ C∗ E
T∫

T1,m

1[0,τm)(t) ‖[I −R(λ)]Aγ (y(t ∧ τm)− yd(t))‖2H dt.

Using Lemma 5.13 (iii) and Proposition B.7, we can conclude

lim
λ→∞

I2(λ) + lim
λ→∞

I3(λ) = 0. (6.46)

Due to inequality (3.40) and inequality (3.46), we get for all λ > 0

E
T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt ≤ 7 I4(λ) + 7 I5(λ) + 7 I6(λ), (6.47)

where

I4(λ) = ĉ(T − T1,m)2−2α E sup
t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥R(λ)AαB∗δ
(
y(t ∧ τm), R(λ)Aδ[z∗m(t)− z∗m(t, λ)]

)∥∥2

H

]

+ c(T − T1,m)E
T∫

T1,m

1[0,τm)(t)‖R(λ)G∗(A−2αR(λ)[Φm(t)− Φm(t, λ)])‖2Hdt,
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I5(λ) = ĉ(T − T1,m)2−2α E sup
t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥AαB∗δ (y(t ∧ τm), [I −R(λ)]Aδz∗m(t)
)∥∥2

H

]
+ ĉ(T − T1,m)2−2α E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥[I −R(λ)]AαB∗δ
(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2

H

]
,

I6(λ) = c(T − T1,m)E
T∫

T1,m

1[0,τm)(t)
∥∥G∗(A−2α[I −R(λ)]Φm(t))

∥∥2

H
dt

+ c(T − T1,m)E
T∫

T1,m

1[0,τm)(t)
∥∥[I −R(λ)]G∗(A−2αR(λ)Φm(t))

∥∥2

H
dt

+ c(T − T1,m)1−2γ E
T∫

T1,m

1[0,τm)(t) ‖[I −R(λ)]Aγ (y(t ∧ τm)− yd(t))‖2H dt.

Again, there exist constants C1, C2 > 0 such that for all λ > 0

I4(λ) ≤ C1(T − T1,m)2−2α E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ)

+ C2(T − T1,m) E
T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt. (6.48)

Similarly to equation (6.46), we get

lim
λ→∞

I5(λ) + lim
λ→∞

I6(λ) = 0. (6.49)

By inequalities (6.44), (6.45), (6.47) and (6.48), we have for all λ > 0

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) + E
T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt

≤ K1,m

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) + E
T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt


+ 7 I2(λ) + 7 I3(λ) + 7 I5(λ) + 7 I6(λ),

where

K1,m = max
{
C1(T − T1,m)2−2α−2δ + C1(T − T1,m)2−2α, C2(T − T1,m)1−2δ + C2(T − T1,m)

}
.

We chose T1,m ∈ [0, T ) such that K1,m < 1. Thus, we get for all λ > 0

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) + E
T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt

≤ 7 I2(λ) + 7 I3(λ) + 7 I5(λ) + 7 I6(λ)

1−K1,m
.

150



Chapter 6. Optimal Control of Uncertain Fluid Flows

Due to equation (6.46) and equation (6.49), we have

lim
λ→∞

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) = 0,

lim
λ→∞

E
T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt = 0.

Similarly to Lemma 6.17, we can conclude that the result holds for the whole time interval [0, T ].

6.6. Design of the Optimal Control

Based on the results provided in the previous sections, we are able to show a duality principle, which gives
us a relation between the local mild solution of system (6.15) and the mild solution of system (6.34).

Theorem 6.37. Let the processes (y(t;u))t∈[0,τu) and (z(t;u, v))t∈[0,τu) be the local mild solutions of sys-

tem (6.3) and system (6.15), respectively, corresponding to the controls u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))).

Moreover, let the process (z∗m(t;u),Φm(t;u))t∈[0,T ] be the mild solution of system (6.34) corresponding to

the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Then we have for fixed m ∈ N

E
τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt = E
τum∫
0

〈z∗m(t;u), Fv(t)〉H dt. (6.50)

Proof. For the sake of simplicity, we omit the dependence on the controls. First, we prove the result for
the approximations derived in Section 6.5. Let (zm(t, λ))t∈[0,T ] be the mild solution of system (6.38). Using
Lemma 6.31, we have for all λ > 0, all t ∈ [0, T ] and P-a.s.

zm(t, λ) =−
t∫

0

Azm(s, λ) +AδR(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))] ds

+

t∫
0

R(λ)Fv(s) ds+

t∫
0

R(λ)G(R(λ)zm(s, λ)) dW (s). (6.51)

Next, let the pair of stochastic processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solution of system (6.43). By
Lemma 6.35, we get for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) =−
T∫
t

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

+

T∫
t

1[0,τm)(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds+

T∫
t

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

−
T∫
t

Φm(s, λ) dW (s). (6.52)
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By definition, the process (z∗m(t, λ))t∈[0,T ] is predictable. Using Proposition 3.16, we find for all λ > 0, all
t ∈ [0, T ] and P-a.s.

z∗m(t, λ)

= −E

 T∫
0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

∣∣∣∣Ft


+ E

 T∫
0

1[0,τm)(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds+

T∫
0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

∣∣∣∣Ft


+

t∫
0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

−
t∫

0

1[0,τm)(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds−
t∫

0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds.

By Theorem 3.86 with (M(t))t∈[0,T ] satisfying for all t ∈ [0, T ] and P-a.s.

M(t)

= −E

 T∫
0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

∣∣∣∣Ft


+ E

 T∫
0

1[0,τm)(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds+

T∫
0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

∣∣∣∣Ft
 ,

there exists a unique predictable process (Ψm(t, λ))t∈[0,T ] with values in L(HS)(Q
1/2(H);H) such that for

all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t, λ)

= −E

 T∫
0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds


+ E

 T∫
0

1[0,τm)(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds+

T∫
0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds


+

t∫
0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

−
t∫

0

1[0,τm)(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds−
t∫

0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

+

t∫
0

Ψm(s, λ) dW (s). (6.53)
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Since the pair (z∗m(t, λ),Φm(t, λ))t∈[0,T ] satisfies equation (6.52) uniquely, we have Ψm(t, λ) = Φm(t, λ) for
all λ > 0, almost all t ∈ [0, T ] and P-almost surely. Applying Corollary 3.69 to equation (6.51) and equation
(6.53), we get for all λ > 0, all t ∈ [0, T ] and P-a.s.

〈zm(t, λ), z∗m(t, λ)〉H = I1(t, λ) + I2(t, λ) + I3(t, λ) + I4(t, λ) + I5(t, λ),

where

I1(t, λ) =

t∫
0

1[0,τm)(s) 〈zm(s, λ), Az∗m(s, λ)〉H ds−
t∫

0

〈z∗m(s, λ), Azm(s, λ)〉H ds,

I2(t, λ) =

t∫
0

1[0,τm)(s)
〈
zm(s, λ), AαR(λ)AαB∗δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)〉
H
ds

−
t∫

0

〈
z∗m(s, λ), AδR(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))]

〉
H
ds,

I3(t, λ) =

t∫
0

〈R(λ)G(R(λ)zm(s, λ)),Φm(s, λ)〉L(HS)(Q1/2(H),H) ds

−
t∫

0

1[0,τm)(s)
〈
zm(s, λ), R(λ)G∗(A−2αR(λ)Φm(s, λ))

〉
H
ds,

I4(t, λ) =

t∫
0

〈z∗m(s, λ), R(λ)Fv(s)〉H ds−
t∫

0

1[0,τm)(s) 〈zm(s, λ), AγR(λ)Aγ (y(s ∧ τm)− yd(s))〉H ds,

I5(t, λ) =

t∫
0

〈zm(s, λ),Φm(s, λ) dW (s)〉H +

t∫
0

〈z∗m(s, λ), R(λ)G(R(λ)zm(s, λ)) dW (s)〉H .

By Lemma 6.34, we obtain for all λ > 0 and P-a.s.

0 = I1(τm, λ) + I2(τm, λ) + I3(τm, λ) + I4(τm, λ) + I5(τm, λ). (6.54)

Since the operator A is self-adjoint, we have for all λ > 0 and P-a.s.

I1(τm, λ) = 0. (6.55)

Recall that y(t) = πm(ym(t)) for all t ∈ [0, τm) and P-almost surely. Using Lemma 2.34, Lemma 5.13 and
equation (6.35), we find for all λ > 0 and P-a.s.

I2(τm, λ) = 0. (6.56)

Due to Lemma 2.29 (iv), Lemma 2.34 and equation (6.36), we obtain for all λ > 0 and P-a.s.

I3(τm, λ) = 0. (6.57)

By equations (6.54) - (6.57) and the fact that E I5(τm, λ) = 0, we get for all λ > 0

0 = E I4(τm, λ).
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Hence, we have for all λ > 0

E
τm∫
0

〈R(λ)Aγzm(t, λ), Aγ (y(t)− yd(t))〉H dt = E
τm∫
0

〈R(λ)z∗m(t, λ), Fv(t)〉H dt. (6.58)

Next, we show that the right hand side and the left hand side of equation (6.58) converges as λ→∞. Let
(ym(t))t∈[0,T ] and (zm(t))t∈[0,T ] be the mild solutions of system (6.5) and system (6.16), respectively. By
definition, we have for all t ∈ [0, τm) and P-a.s. y(t) = ym(t), ‖ym(t)‖D(Aα) ≤ m and z(t) = zm(t). Using
Lemma 6.32, we obtain

lim
λ→∞

E sup
t∈[0,τm)

‖z(t)− zm(t, λ)‖2D(Aα) = 0. (6.59)

By the Cauchy-Schwarz inequality, Lemma 5.13 (ii) and Corollary 2.32, there exists a constant C∗ > 0 such
that for all λ > 0∣∣∣∣∣∣E

τm∫
0

〈Aγz(t), Aγ (y(t)− yd(t))〉H dt− E
τm∫
0

〈R(λ)Aγzm(t, λ), Aγ (y(t)− yd(t))〉H dt

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣E
τm∫
0

〈[I −R(λ)]Aγz(t), Aγ (y(t)− yd(t))〉H dt

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣E
τm∫
0

〈R(λ)Aγ(z(t)− zm(t, λ)), Aγ (y(t)− yd(t))〉H dt

∣∣∣∣∣∣
2

≤ C∗
E

τm∫
0

‖[I −R(λ)]Aγz(t)‖2H dt+ E sup
t∈[0,τm)

‖z(t)− zm(t, λ)‖2D(Aα)

 .

Using Lemma 5.13 (iii), equation (6.59) and Proposition B.7, we can conclude

lim
λ→∞

E
τm∫
0

〈R(λ)Aγzm(t, λ), Aγ (y(t)− yd(t))〉H dt = E
τm∫
0

〈Aγz(t), Aγ (y(t)− yd(t))〉H dt.

Recall that the operator F : D(Aβ)→ D(Aβ) is bounded. Similarly as above, there exist constants C∗ > 0
such that for all λ > 0∣∣∣∣∣∣E

τm∫
0

〈z∗m(t), Fv(t)〉H dt− E
τm∫
0

〈R(λ)z∗m(t, λ), Fv(t)〉H dt

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣E
τm∫
0

〈[I −R(λ)]z∗m(t), Fv(t)〉H dt

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣E
τm∫
0

〈R(λ)(z∗m(t)− z∗m(t, λ)), Fv(t)〉H dt

∣∣∣∣∣∣
2

≤ C∗
E

T∫
0

‖[I −R(λ)]z∗m(t)‖2H dt+ E sup
t∈[0,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ)

 .

By Lemma 5.13 (iii), Lemma 6.36 and Proposition B.7, we can infer

lim
λ→∞

E
τm∫
0

〈R(λ)z∗m(t, λ), Fv(t)〉H dt = E
τm∫
0

〈z∗m(t), Fv(t)〉H dt.
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We conclude that the right hand side and the left hand side of equation (6.58) converges as λ → ∞ and
equation (6.50) holds.

Based on the necessary optimality condition formulated as the variational inequality (6.32) and the duality
principle derived in the previous theorem, we are able to deduce a formula the optimal control has to satisfy.

Theorem 6.38. Let (z∗m(t;u),Φm(t;u))t∈[0,T ] be the mild solution of system (6.34) corresponding to the

control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Then for fixed m ∈ N, the optimal control um ∈ U satisfies for almost

all t ∈ [0, T ] and P-a.s.
um(t) = −PU

(
F ∗A−2βz∗m(t;um)

)
, (6.60)

where PU : L2
F (Ω;L2([0, T ];D(Aβ))) → U is the projection onto U and F ∗ ∈ L(D(Aβ)) is the adjoint

operator of F ∈ L(D(Aβ)).

Proof. Using inequality (6.32) and Theorem 6.37, the optimal control um ∈ U satisfies for every u ∈ U

E
τumm∫
0

〈z∗m(t;um), F (u(t)− um(t))〉H dt+ E
T∫

0

〈
Aβum(t), Aβ(u(t)− um(t))

〉
H
dt ≥ 0.

By Lemma 6.29, we have 1[0,τumm )(t)z
∗
m(t;um) = z∗m(t;um) for all t ∈ [0, T ] and P-almost surely. Due to

Lemma 2.29 (iv), Lemma 2.34, we obtain for every u ∈ U

E
τumm∫
0

〈z∗m(t;um), F (u(t)− um(t))〉H dt = E
T∫

0

〈
1[0,τumm )(t)z

∗
m(t;um), F (u(t)− um(t))

〉
H
dt

= E
T∫

0

〈
AβA−2βz∗m(t;um), AβF (u(t)− um(t))

〉
H
dt

= E
T∫

0

〈
AβF ∗A−2βz∗m(t;um), Aβ(u(t)− um(t))

〉
H
dt.

Hence, we find for every u ∈ U

E
T∫

0

〈
−F ∗A−2βz∗m(t;um)− um(t), u(t)− um(t)

〉
D(Aβ)

dt ≤ 0.

By Proposition D.21, we obtain equation (6.60). We note that the mild solution of system (6.34) is a pair
of predictable processes (z∗m(t;u),Φm(t;u))t∈[0,T ] such that especially E supt∈[0,T ] ‖z∗m(t;u)‖2D(Aδ) < ∞ for

every u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Hence, we get F ∗A−2βz∗m(·;um) ∈ L2

F (Ω;L2([0, T ];D(Aβ))), which
justifies the application of the projection operator PU .

Remark 6.39. Let us denote by (y(t))t∈[0,τ) and (z∗m(t),Φm(t))t∈[0,T ] the local mild solutions of system
(6.3) and the mild solution of system (6.34), respectively, corresponding to the optimal control um ∈ U . As
a consequence of the previous theorem, the optimal velocity field (y(t))t∈[0,,τ) can be computed by solving the
following system of coupled forward-backward SPDEs:

dy(t) = −[Ay(t) +B(y(t)) + FPU
(
F ∗A−2βz∗m(t)

)
] dt+G(y(t)) dW (t),

dz∗m(t) = −1[0,τm)(t)[−Az∗m(t)−A2αB∗δ
(
y(t), Aδz∗m(t)

)
+G∗(A−2αΦm(t)) +A2γ (y(t)− yd(t))] dt

+ Φm(t) dW (t),

y(0) = ξ, z∗m(T ) = 0.
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Corollary 6.40. Let the control um ∈ U be given by equation (6.60). Then we have for fixed m ∈ N

E
T∫

τumm

‖um(t)‖2D(Aβ)dt = 0.

Proof. Let (z∗m(t;um),Φm(t;um))t∈[0,T ] be the mild solution of system (6.34) corresponding to the optimal
control um ∈ U . By Lemma 6.29, we have E supt∈[τumm ,T ] ‖z

∗
m(t;um)‖2D(Aδ) = 0. Moreover, note that the

operators in equation (6.60) are linear and bounded. Using Corollary 2.32, there exists a constant C∗ > 0
such that

E
T∫

τumm

‖um(t)‖2D(Aβ)dt = E
T∫

τumm

∥∥PU (F ∗A−2βz∗m(t;um)
)∥∥2

D(Aβ)
dt ≤ C∗ E sup

t∈[τumm ,T ]

‖z∗m(t;um)‖2D(Aδ) = 0.

Finally, we show that the optimal control um ∈ U given by equation (6.60) satisfies a sufficient optimality
condition.

Theorem 6.41. Let um ∈ U be given by equation (6.60). Then um ∈ U is an optimal control of the control
problem (6.14).

Proof. Note that the set U is a convex subset of the Hilbert space L2
F (Ω;L2([0, T ];D(Aβ))). By Corollary

6.26, the cost functional Jm given by equation (6.13) is twice continuous Fréchet differentiable. Recall that
um ∈ U satisfies the necessary optimality condition (6.31), which are also valid for the Fréchet derivative
due to Theorem 6.22 and Corollary 6.25. Moreover, we have for every v ∈ L2

F (Ω;L2([0, T ];D(Aβ)))

dF (Jm(um))2[v, v] = E
τumm∫
0

‖Aγz(t;um, v)‖2H dt+ E
T∫

0

‖Aβv(t)‖2Hdt ≥ E
T∫

0

‖v(t)‖2D(Aβ)dt.

Hence, the assumptions of Proposition D.22 are fulfilled and the optimal control um ∈ U given by equation
(6.60) is a local minimum of the cost functional Jm. Due to Theorem 6.15, we can conclude that this
minimum is also global.

6.7. The Case of Additive Noise

As described in Remark 6.28, the control problem (6.14) for γ = 1
2 can not be solved through a stochastic

maximum principle directly. Here, we give a possible simplification, which enables us to overcome this
problem.

We introduce the stochastic Navier-Stokes equations with additive noise in D(Aα):{
dy(t) = −[Ay(t) +B(y(t))− Fu(t)] dt+GdW (t),

y(0) = ξ,
(6.61)

where u ∈ L2
F (Ω;L2([0, T ];D(Aβ))), ξ ∈ L2(Ω;D(Aα)) is F0 measurable and the process (W (t))t≥0 is a Q-

Wiener process with values in H and covariance operator Q ∈ L+
1 (H). The operators A,B, F are introduced

in Section 6.1 and Section 6.2, respectively. Moreover, we assume that G ∈ L(HS)(Q
1/2(H);D(Aα)). Note

that system (6.61) is a special case of system (6.3). Hence, the existence and uniqueness of a local mild
solution to system (6.61) is an immediate consequence of Theorem 6.7. We denote by (y(t;u))t∈[0,τu) the

local mild solution of system (6.61) to illustrate the dependence on the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))).
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Remark 6.42. Similarly to Section 6.2, one first considers the following system in D(Aα):{
dym(t) = −[Aym(t) +B(πm(ym(t)))− Fu(t)] dt+GdW (t),

ym(0) = ξ,
(6.62)

where m ∈ N and πm : D(Aα) → D(Aα) is given by equation (6.6). If the parameters α ∈ (0, 1) and
δ ∈ [0, 1) and β ∈ [0, α] satisfy the assumptions of Theorem 6.6, then there exists a unique mild solution of
system (6.62) for fixed m ∈ N, fixed u ∈ L2

F (Ω;L2([0, T ];D(Aβ))) and any ξ ∈ L2(Ω;D(Aα)) in the sense
of Definition 3.81. Similarly to the proof of Theorem 6.7, the sequence of stopping times (τm)m∈N is defined
by

τm = inf{t ∈ (0, T ) : ‖ym(t)‖D(Aα) > m} ∧ T (6.63)

P-a.s. and the stopping time τ is given by τ = limm→∞ τm.

Following Section 6.3, we consider again the cost functional Jm : L2
F (Ω;L2([0, T ];D(Aβ)))→ R given by

Jm(u) =
1

2
E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt+
1

2
E

T∫
0

‖u(t)‖2D(Aβ)dt, (6.64)

where m ∈ N is fixed and γ ∈ [0, α]. Moreover, the process (y(t;u))t∈[0,τu) is the local mild solution of

system (6.61) corresponding to the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) and yd ∈ L2([0, T ];D(Aγ)) is a

given desired velocity field. The task is to find a control um ∈ U such that

Jm(um) = inf
u∈U

Jm(u),

where the set of admissible controls U is a closed, bounded and convex subset of the Hilbert space
L2
F (Ω;L2([0, T ];D(Aβ))) such that 0 ∈ U . The control um ∈ U is called an optimal control. The exis-

tence and uniqueness of the optimal control follows from Theorem 6.15.
Next, we state the necessary optimality condition. Similarly to Section 6.3, we first introduce the following

linearized system in D(Aα):{
dz(t) = −[Az(t) +B(z(t), y(t)) +B(y(t), z(t))− Fv(t)] dt,

z(0) = 0,
(6.65)

where v ∈ L2
F (Ω;L2([0, T ];D(Aβ))), the process (y(t))t∈[0,τ) is the local mild solution of system (6.61). The

operators A,B, F are introduced in Section 6.1 and Section 6.2, respectively. Note that system (6.65) is a
special case of system (6.15). Hence, the existence and uniqueness of a local mild solution to system (6.65)
follows immediately. We denote by (z(t;u, v))t∈[0,τu) the local mild solution of system (6.61) to illustrate

the dependence on the control u, v ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Furthermore, for fixed m ∈ N, the Gâteaux

derivative of y(t;u) at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in direction v ∈ L2

F (Ω;L2([0, T ];D(Aβ))) satisfies for
all t ∈ [0, τum) and P-a.s.

dGu y(t;u)[v] = z(t;u, v),

which can be obtained similarly to Theorem 6.21. Therefore, the Gâteaux derivative of the cost func-
tional Jm : L2

F (Ω;L2([0, T ];D(Aβ))) → R given by (6.64) at u ∈ L2
F (Ω;L2([0, T ];D(Aβ))) in direction

v ∈ L2
F (Ω;L2([0, T ];D(Aβ))) satisfies

dGJm(u)[v] = E
τum∫
0

〈Aγ(y(t;u)− yd(t)), Aγz(t;u, v)〉H dt+ E
T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt.
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This result follows immediately from Theorem 6.22. The Gâteaux derivative of order two as well as the
Fréchet derivatives can be obtained from Corollaries 6.24 - 6.26. According to inequality (6.31), the optimal
control um ∈ U satisfies the following necessary optimality condition for fixed m ∈ N and every u ∈ U :

dGJm(um)[u− um] ≥ 0.

To utilize this necessary optimality condition, we first introduce the adjoint equation in D(Aδ):{
dz∗m(t) = −1[0,τm)(t)[−Az∗m(t)−A2αB∗δ

(
y(t), Aδz∗m(t)

)
+A2γ(y(t)− yd(t))] dt,

z∗m(T ) = 0,
(6.66)

where m ∈ N and the process (y(t))t∈[0,τ) is the local mild solution of system (6.61). The sequence of
stopping times (τm)m∈N is defined by equation (6.63) and yd ∈ L2([0, T ];D(Aγ)) is the given desired
velocity field. The operator A and its fractional powers are introduced in Section 6.1. Moreover, the
operator B∗δ (y(t), ·) : H → D(Aα) for t ∈ [0, τm) is linear and bounded. A precise meaning is given by
Remark 6.27 (i). The existence and uniqueness of a mild solution to system (6.66) can be obtained using
the Banach fixed point theorem without additional restrictions on the parameters α ∈ (0, 1) and δ ∈ [0, 1)
and β, γ ∈ [0, α] if we require that yd ∈ L∞([0, T ];D(Aγ)). Let us denote by (z∗m(t;u))t∈[0,T ] the mild

solution of system (6.66) to illustrate the dependence on the control u ∈ L2
F (Ω;L2([0, T ];D(Aβ))). Note

that the process (z∗m(t;u))t∈[0,T ] is not Ft-adapted. Furthermore, we can easily derive a duality principle
similarly to Theorem 6.37. As a consequence, for fixed m ∈ N, the optimal control um ∈ U satisfies for
almost all t ∈ [0, T ] and P-a.s.

um(t) = −PU
(
F ∗A−2βE [z∗m(t;um)|Ft]

)
, (6.67)

where PU : L2
F (Ω;L2([0, T ];D(Aβ))) → U is the projection onto U and F ∗ ∈ L(D(Aβ)) is the adjoint

operator of F ∈ L(D(Aβ)). This result follows immediately from Theorem 6.38. As described in Section
6.6, the optimal control um ∈ U given by equation (6.67) satisfies also a sufficient optimality condition.

Remark 6.43. Note that we can easily generalize these results if system (6.3) is driven by a square integrable
Lévy martingale as introduced in Section 3.3.
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A. Some Gronwall-type Inequalities

In this section, we state the Gronwall inequality and their modifications. Let T > 0. We start with the
classical version.

Proposition A.1 (Corollary 6.60, [69]). Let a : [0, T ] → [0,∞) be an increasing function and let the
functions x, b : [0, T ]→ R be integrable such that b(t) ≥ 0 for almost all t ∈ [0, T ] and

T∫
0

b(t)|x(t)| dt <∞.

If

x(t) ≤ a(t) +

t∫
0

b(s)x(s) ds

for t ∈ [0, T ], then

x(t) ≤ a(t) exp


t∫

0

b(s) ds


for t ∈ [0, T ].

As a consequence of the previous Proposition, we get the following Gronwall inequality of backward type.
A proof for Stieltjes integrals can be found in [69, Corollary 6.61].

Corollary A.2. Let a : [0, T ] → [0,∞) be a decreasing function and let the functions x, b : [0, T ] → R be
integrable such that b(t) ≥ 0 for almost all t ∈ [0, T ] and

T∫
0

b(t)|x(t)| dt <∞.

If

x(t) ≤ a(t) +

T∫
t

b(s)x(s) ds

for t ∈ [0, T ], then

x(t) ≤ a(t) exp


T∫
t

b(s) ds


for t ∈ [0, T ].
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Proof. By a change of variables, we get for t ∈ [0, T ]

x(T − t) ≤ a(T − t) +

t∫
0

b(T − s)x(T − s) ds.

We set x̃(t) = x(T − t), ã(t) = a(T − t) and b̃(t) = b(T − t) for t ∈ [0, T ]. Applying Proposition A.1, we
obtain for t ∈ [0, T ]

x̃(t) ≤ ã(t) exp


t∫

0

b̃(s) ds

 .

Thus, we have for t ∈ [0, T ]

x(T − t) ≤ a(T − t) exp


t∫

0

b(T − s) ds

 = a(T − t) exp


T∫

T−t

b(s) ds

 .

Therefore, the claim follows.

The following inequality is applicable for nonmonotonic functions.

Proposition A.3 (Theorem 1, [90]). Let a, x : [0, T ]→ [0,∞) be integrable functions such that a(t), x(t) ≥ 0
for t ∈ [0, T ] and let the function b : [0, T ]→ [0,∞) be nondecreasing and continuous such that 0 ≤ b(t) ≤M
for all t ∈ [0, T ]. Suppose that β > 0. If

x(t) ≤ a(t) + b(t)

t∫
0

(t− s)β−1x(s) ds

for t ∈ [0, T ], then

x(t) ≤ a(t) +

t∫
0

[ ∞∑
n=1

(b(t)Γ(β))
n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds

for t ∈ [0, T ], where Γ(·) is the gamma function.

The previous result has some useful consequences.

Corollary A.4. Let a, x : [0, T ] → [0,∞) be integrable functions such that a(t), x(t) ≥ 0 for t ∈ [0, T ] and
let b ≥ 0. If

x(t) ≤ a(t) + b

t∫
0

x(s) ds

for t ∈ [0, T ], then

x(t) ≤ a(t) + b

t∫
0

eb(t−s)a(s) ds

for t ∈ [0, T ].
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Proof. Using Proposition A.3 with b(t) = b for all t ∈ [0, T ] and β = 1, we get for t ∈ [0, T ]

x(t) ≤ a(t) +

t∫
0

[ ∞∑
n=1

(bΓ(1))
n

Γ(n)
(t− s)n−1a(s)

]
ds.

Since Γ(n) = (n− 1)! for each n ∈ N, the claim follows.

Corollary A.5. Let a, x : [0, T ] → [0,∞) be integrable functions such that a(t), x(t) ≥ 0 for t ∈ [0, T ] and
let b ≥ 0. If

x(t) ≤ a(t) + b

T∫
t

x(s) ds

for t ∈ [0, T ], then

x(t) ≤ a(t) + b

T∫
t

eb(s−t)a(s) ds

for t ∈ [0, T ].

Proof. The claim can be obtained similarly to Corollary A.2.

B. The Bochner Integral

Here, we introduce the Bochner integral and we will state some basic properties. For more details, we refer
to [27, 58]. Throughout this section, let X be a Banach space and let (Ω,Σ, µ) be a measure space with
finite measure µ.

Let f : Ω→ X be a simple function, i.e.

f =

n∑
k=1

xk1Ak ,

where (Ak)k=1,...,n ⊂ Σ is a partition of Ω and (xk)k=1,...,n ⊂ X. Then the Bochner integral is defined by∫
Ω

f dµ =

n∑
k=1

xk µ(Ak)

and for every A ∈ Σ, we set ∫
A

f dµ =

∫
Ω

1Af dµ.

Next, we extend the definition of the Bochner integral.

Definition B.1. a) A function f : Ω → X is called (strongly) measurable if there exists a sequence of
simple functions (fn)n∈N such that µ-a.e. limn→∞ ‖f − fn‖X = 0.
b) We call f : Ω → X weakly measurable if for every x′ ∈ X ′, the real-valued function ω 7→ 〈x′, f(ω)〉 is
measurable.

On separable Banach spaces, we have the following equivalences, which are consequences of Pettis mea-
surability theorem.
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Proposition B.2 (Corollary 3.10.5,[27]). Let X be a separable Banach space and let f : Ω→ X. Then the
following conditions are equivalent:

(i) f is measurable;

(ii) f is weakly measurable;

(iii) for every open (or closed) set A in X, we have f−1(A) ∈ Σ.

Remark B.3. Whenever we are dealing with separable Banach spaces, we use property (iii) of the previous
Proposition to characterize that a function is measurable.

Definition B.4. A measurable function f : Ω→ X is called Bochner integrable if there exists a sequence
of simple functions (fn)n∈N such that

lim
n→∞

∫
Ω

‖f − fn‖Xdµ = 0.

We call the sequence (fn)n∈N an approximating sequence.

For every Bochner integrable function f : Ω → X with approximating sequence (fn)n∈N, we define for
every A ∈ Σ ∫

A

f dµ = lim
n→∞

∫
A

fn dµ.

The definition is independent of the approximating sequence. Furthermore, a characterization of Bochner
integrable functions is given as follows.

Theorem B.5 (Theorem 3.10.9, [27]). A measurable function f : Ω→ X is Bochner integrable if and only
if
∫

Ω
‖f‖X dµ <∞.

Corollary B.6 (Corollary 3.10.10 and Corollary 3.10.11, [27]). If f : Ω→ X is Bochner integrable, then∥∥∥∥∫
Ω

f dµ

∥∥∥∥
X

≤
∫

Ω

‖f‖Xdµ

and the Bochner integral of f is absolutely continuous with respect to the measure µ, i.e.

lim
µ(A)→0

∫
A

f dµ = 0.

We denote by L1(Ω,Σ, µ) the space of integrable real-valued functions with respect to the measure space
(Ω,Σ, µ). Then we get the following dominated convergence theorem for Bochner integrals.

Proposition B.7 (Theorem 3.10.12, [27]). Let fn : Ω → X, n ∈ N, be Bochner integrable functions and
f : Ω→ X such that limn→∞ µ{‖fn − f‖X > ε} = 0 for all ε > 0 and there exists g ∈ L1(Ω,Σ, µ) such that
µ-a.e. ‖fn‖X ≤ g for each n ∈ N. Then f : Ω→ X is Bochner integrable and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.

In this context, we also recall the monotone convergence theorem for nonnegative real valued functions.

Proposition B.8 (Theorem 2.2.6, [27]). Let fn : Ω → [0,+∞], n ∈ N, be an increasing sequence of
measurable functions converging to a function f : Ω→ [0,+∞]. Then f is measurable and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.
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The following property is useful, when dealing with closed linear operators A : D(A) ⊂ X → Y , where Y
is another Banach space.

Proposition B.9 (Theorem 3.10.16, [27]). If f : Ω→ X and Af : Ω→ Y are Bochner integrable, then

A

∫
Ω

f dµ =

∫
Ω

Af dµ.

Finally, we introduce Lp-spaces for Banach space valued functions. For p ∈ [1,∞), we set

Lp(Ω;X) =

{
f : Ω→ X : f is Bochner integrable such that

∫
Ω

‖f‖pXdµ <∞
}

and

L∞(Ω;X) = {f : Ω→ X : f is measurable and there exists M > 0 such that µ-a.e. ‖f‖X ≤M} .

Moreover, let N = {f : Ω→ X : µ-a.e. f = 0}. We define the Lp-space as quotient spaces as follows:

Lp(Ω;X) = Lp(Ω;X)/N for p ∈ [1,∞), L∞(Ω;X) = L∞(Ω;X)/N .

If we equip the space Lp(Ω;X) for p ∈ [1,∞) with the norm

‖f‖Lp(Ω;X) =

(∫
Ω

‖f‖pXdµ
)1/p

,

then Lp(Ω;X) becomes a Banach space. Similarly, if we equip the space L∞(Ω;X) with the norm

‖f‖L∞(Ω;X) = inf{M > 0: µ{‖f‖X > M} = 0},

then L∞(Ω;X) becomes a Banach space. Furthermore, simple functions are dense in Lp(Ω;X) for p ∈ [1,∞).

C. Nuclear and Hilbert-Schmidt Operators

In this section, we state some basic facts of linear and bounded operators on Hilbert spaces. We will mainly
focus on nuclear operators and Hilbert-Schmidt operators. Here, we closely follow [23, 45, 71, 73]. Let U
and H be two separable Hilbert spaces.

The space of all linear and bounded (or continuous) operators is denoted by L(U ;H). Then L(U ;H)
equipped with the operator norm

‖T‖L(U ;H) = sup
x∈U,x 6=0

‖Tx‖H
‖x‖U

for every T ∈ L(U ;H) becomes a Banach space. For the sake of simplicity, we set L(U) = L(U ;U).

Remark C.1. Note that we can define linear and bounded operators even if U and H are Banach spaces.

The adjoint operator of T ∈ L(U ;H) is denoted by T ∗ ∈ L(H;U). It is uniquely determined by the
following equation for every x ∈ U and every y ∈ H:

〈Tx, y〉H = 〈x, T ∗y〉U .

We call an operator T ∈ L(U) self-adjoint if T = T ∗. The operator T ∈ L(U) is nonnegative (semidefinite)
if 〈Tx, x〉U ≥ 0 for every x ∈ U .
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Definition C.2. An operator T ∈ L(U ;H) is called nuclear or trace class if it has the representation

Tx =

∞∑
n=1

an〈bn, x〉U

for every x ∈ U , where the sequences (an)n∈N ⊂ H and (bn)n∈N ⊂ U satisfy
∑∞
n=1 ‖an‖H‖bn‖U <∞.

The space of all nuclear operators is denoted by L1(U ;H). Similarly as above, we set L1(U) = L1(U ;U).
The space L1(U ;H) equipped with the nuclear norm

‖T‖L1(U ;H) = inf

{ ∞∑
n=1

‖an‖H‖bn‖U : Tx =

∞∑
n=1

an〈bn, x〉U

}

for every T ∈ L1(U ;H) becomes a separable Banach space. We get the following basic properties.

Proposition C.3 (Proposition A.4, [71]). Let V be another separable Hilbert space.

(i) If S ∈ L1(U ;H) and T ∈ L(H;V), then TS ∈ L1(U ;V) and

‖TS‖L1(U ;V) ≤ ‖S‖L1(U ;H)‖T‖L(H;V).

(ii) If S ∈ L(U ;H) and T ∈ L1(H;V), then TS ∈ L1(U ;V) and

‖TS‖L1(U ;V) ≤ ‖S‖L(U ;H)‖T‖L1(H;V).

For T ∈ L1(U), we can introduce the trace of T by

Tr(T ) =

∞∑
n=1

〈Tun, un〉U ,

where (un)n∈N is an orthonormal basis of U .

Proposition C.4 (Remark B.0.4, [73]). If T ∈ L1(U), then Tr(T ) is well defined and independent on the
choice of the orthonormal basis. Moreover, we have

|Tr(T )| ≤ ‖T‖L1(U).

We denote by L+
1 (U) the subspace of L1(U) containing all self-adjoint nonnegative nuclear operators. We

have the following result, which is especially valid for all T ∈ L+
1 (U).

Proposition C.5 (Proposition 2.1.5, [73]). If T ∈ L(U) is a self-adjoint nonnegative operator such that
Tr(T ) <∞, then there exist an orthonormal basis (un)n∈N of U and a sequence (λn)n∈N of nonnegative real
numbers such that for each n ∈ N

Tun = λnun

and 0 is the only accumulation point of (λn)n∈N.

Definition C.6. An operator T ∈ L(U ;H) is called Hilbert-Schmidt if

∞∑
n=1

‖Tun‖2H <∞,

where (un)n∈N is an orthonormal basis of U .
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The space of all Hilbert-Schmidt operators is denoted by L(HS)(U ;H) and we set L(HS)(U) = L(HS)(U ;U).
Let (un)n∈N be an orthonormal basis of U . The space L(HS)(U ;H) equipped with the inner product

〈S, T 〉L(HS)(U ;H) =

∞∑
n=1

〈Sun, Tun〉H

for every S, T ∈ L(HS)(U ;H) becomes a separable Hilbert space. If (hn)n∈N is an orthonormal basis of H,
then (hn ⊗ um)n,m∈N defined by hn ⊗ um = hn〈um, ·〉U is a complete orthonormal basis of L(HS)(U ;H).

Proposition C.7 (Proposition A.3, [71]). The norm corresponding to the inner product on L(HS)(U ;H) is
independent on the choice of the orthonormal basis of U . Moreover, we have T ∈ L(HS)(U ;H) if and only
if T ∗ ∈ L(HS)(H;U). In this case, it holds that

‖T‖L(HS)(U ;H) = ‖T ∗‖L(HS)(H;U).

Proposition C.8 (Proposition C.4, [23]). Let V be another separable Hilbert space. If S ∈ L(HS)(U ;H)
and T ∈ L(HS)(H;V), then TS ∈ L1(U ;V) and

‖TS‖L1(U ;V) ≤ ‖S‖L(HS)(U ;H)‖T‖L(HS)(H;V).

Proposition C.9 (Proposition 2.3.4, [73]). If T ∈ L(U) is self-adjoint and nonnegative, then there exists a
unique self-adjoint nonnegative operator T 1/2 ∈ L(U) such that T 1/2T 1/2 = T . If additionally Tr(T ) <∞,
then T 1/2 ∈ L(HS)(U) with ‖T 1/2‖L(HS)(U) = Tr(T ) and ST 1/2 ∈ L(HS)(U ;H) for every S ∈ L(U ;H).

Remark C.10. Let T ∈ L(U) be a self-adjoint nonnegative operator such that Tr(T ) < ∞. Due to
Proposition C.5, there exist an orthonormal basis (un)n∈N of U and a sequence (λn)n∈N of nonnegative real
numbers such that Tun = λnun for each n ∈ N. Using Proposition C.9, there exists a unique self-adjoint
nonnegative operator T 1/2 ∈ L(U) such that T 1/2T 1/2 = T . We obtain T 1/2un =

√
λnun for each n ∈ N.

Hence, we can conclude that the subspace T 1/2(U) of U equipped with the inner product

〈x, y〉T 1/2(U) =

∞∑
n=1

1

λn
〈x, un〉U 〈y, un〉U

for every x, y ∈ T 1/2(U) becomes a Hilbert space and (
√
λnun)n∈N is an orthonormal basis of T 1/2(U). By

definition, we obtain that the inner product on L(HS)(T
1/2(U);H) is given by

〈R,S〉L(HS)(T 1/2(U);H) =

∞∑
n=1

λn〈Run, Sun〉H = 〈RT 1/2, ST 1/2〉L(HS)(U ;H)

for every R,S ∈ L(HS)(T
1/2(U);H). Moreover, we have L(U ;H) ⊂ L(HS)(T

1/2(U);H) as a consequence of
Proposition C.9.

D. Optimization in Infinite Dimension

In this section, we consider convex as well as nonconvex optimization problems of functionals defined on
Banach spaces. We introduce the concepts of Gâteaux and Fréchet derivatives. Moreover, we state results
on the existence of unique extrema, which represents a solution of an optimization problem. Finally we
state necessary and sufficient optimality conditions such a extrema has to satisfy. For more details, we refer
to [11, 51, 57, 93]. Throughout this section, let X,Y and Z be Banach spaces.

165



Appendix

Differential Calculus in Banach Spaces

We start with a formal the definition.

Definition D.1. Let f : M ⊂ X → Y be an operator with M 6= ∅ open.

(i) We call f Gâteaux differentiable at x ∈M if the limit

dGf(x)[h] = lim
t→0

f(x+ th)− f(x)

t

exists for all h ∈ X and dGf(x) ∈ L(X;Y ). We then call dGf(x)[h] the Gâteaux derivative of f at
x ∈M in direction h ∈ X.

(ii) We call f Fréchet differentiable at x ∈M if the limit

lim
‖h‖X→0

‖f(x+ h)− f(x)− dF f(x)[h]‖Y
‖h‖X

= 0

exists and dF f(x) ∈ L(X;Y ). We then call dF f(x)[h] the Fréchet derivative of f at x ∈ M in
direction h ∈ X.

(iii) We call f Gâteaux/Fréchet differentiable on M if f is Gâteaux/Fréchet differentiable at every
x ∈M .

Remark D.2. (i) Let f : M ⊂ X → Y be an operator with M 6= ∅ open. The Gâteaux derivative of order
n ≥ 2 denoted by dG(f(x))n with x ∈ M is defined as the Gâteaux derivative of dG(f(x))n−1, whenever it
exists. Similarly, we define the Fréchet derivative of order n ≥ 2.
(ii) Let MX ⊂ X, MY ⊂ Y be nonempty and open and let f : MX ×MY → Z be an operator. For fixed
y ∈MY , the partial Gâteaux derivatives of f at x ∈MX in direction h ∈ X is defined by

dGx f(x, y)[h] = lim
t→0

f(x+ th, y)− f(x, y)

t
,

whenever the limit exists. The partial Gâteaux derivatives of f at y ∈MY is defined analogously. Similarly,
we define the partial Fréchet derivatives.

In contrast to the Gâteaux derivative, there exists a chain rule for the Fréchet derivative. This is the
main difference of both type of derivatives.

Proposition D.3 (Theorem 4.1.1,[57]). Let g : MX ⊂ X → Y and f : MY ⊂ Y → Z be Fréchet differen-
tiable on the open sets MX and MY , respectively. Then the Fréchet derivative of the composition f ◦ g at
x ∈MX in direction h ∈ X is given by

dF f ◦ g(x)[h] = dF f(g(x))
[
dF g(x)[h]

]
.

Obviously, every Fréchet differentiable operator is Gâteaux differentiable. The converse is in general
not true. However, we can state conditions such that the Gâteaux derivative and the Fréchet derivative
coincides. Therefor, we need the following preliminary result known as the mean value theorem.

Proposition D.4 (Theorem 4.1.2 (b),[57]). Let M ⊂ X open and let f : M ⊂ X → Y be Gâteaux differen-
tiable on the interval

[x, x+ h] = {x+ th : t ∈ [0, 1]} ⊂M.
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If z 7→ dGf(z) is continuous from [x, x+ h] into L(X;Y ), then

‖f(x+ h)− f(x)‖Y ≤ sup
t∈[0,1]

‖dGf(x+ th)‖L(X;Y )‖h‖X

and for every T ∈ L(X;Y )

‖f(x+ h)− f(x)− Th‖Y ≤ sup
t∈[0,1]

‖dGf(x+ th)− T‖L(X;Y )‖h‖X .

Note that the previous proposition holds especially for T = dGf(x). Thus, we get immediately the
following result.

Corollary D.5 (Corollary 4.1.1,[57]). Let M ⊂ X open and let f : M ⊂ X → Y be continuous and Gâteaux
differentiable on M . If x 7→ dGf(x) is continuous from M into L(X;Y ), then f is Fréchet differentiable on
M and for every x ∈M

dF f(x) = dGf(x).

Remark D.6. Here, we show some classical examples of Fréchet differentiable operators:

(i) Let g : X → Y be defined by
g(x) = Tx+ y,

where T ∈ L(X;Y ) and y ∈ Y is fixed. Then we get for every x, h ∈ X

g(x+ h)− g(x) = Th.

Thus, we can conclude that for every x ∈ X

lim
‖h‖X→0

‖g(x+ h)− g(x)− Th‖Y
‖h‖X

= 0.

Therefore, the operator g is Fréchet differentiable on X and the Fréchet derivative of g at x ∈ X in
direction h ∈ X is given by

dF g(x)[h] = Th.

(ii) Let Y be a Hilbert space and let f : Y → R be given by

f(y) = ‖y‖2Y .

We obtain for every x, h ∈ X

f(y + h)− f(y) = 〈y + h, y + h〉Y − 〈y, y〉Y = 2〈y, h〉Y + ‖h‖2Y .

Hence, we can infer that for every y ∈ Y

lim
‖h‖Y→0

|f(y + h)− f(y)− 2〈y, h〉Y |
‖h‖Y

= 0.

Therefore, the functional f is Fréchet differentiable on Y and the Fréchet derivative of f at y ∈ Y in
direction h ∈ Y is given by

dF f(y)[h] = 2〈y, h〉Y .

(iii) Let Y be a Hilbert space. Moreover, let g : X → Y and f : Y → R be as in (i) and (ii), respectively.
Thus, the composition f ◦ g : X → R is given by

f ◦ g(x) = ‖Tx+ y‖2Y .

Using Proposition D.3, the functional f ◦ g is Fréchet differentiable on X and the Fréchet derivative
of f ◦ g at x ∈ X in direction h ∈ X is given by

dF f ◦ g(x)[h] = dF f(g(x))
[
dF g(x)[h]

]
= 2〈g(x), Th〉Y .
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Convex Optimization Problems

Let f : M ⊂ X → R be a functional with M 6= ∅. We consider the following optimization problem:

f(x) = inf
x∈M

f(x), (D.1)

where x ∈M is called the minimum of f . First, we state conditions on the optimization problem ensuring
the existence and uniqueness of such a minimum x ∈ M . Therefor, we introduce the concept of lower
semi-continuous functionals.

Definition D.7. Let f : M ⊂ X → R be a functional. Then:

(i) f is called lower semi-continuous at x ∈M if

f(x) ≤ lim inf
y→x

f(y).

(ii) f is called sequentially lower semi-continuous at x ∈M if for every sequence (xn)n∈N ⊂M such
that limn→∞ xn = x, we have

f(x) ≤ lim inf
n→∞

f(xn);

(iii) f is called weak sequentially lower semi-continuous at x ∈M if for every sequence (xn)n∈N ⊂M
such that limn→∞〈x′, xn〉 = 〈x′, x〉 for every element x′ ∈ X ′, we have

f(x) ≤ lim inf
n→∞

f(xn).

Remark D.8. Note that every continuous functional f : M ⊂ X → R is lower semi-continuous. Moreover,
we can conclude that f is lower semi-continuous if and only if f is sequentially lower semi-continuous.

Under additional assumptions, we get the following equivalence.

Lemma D.9 (Proposition 38.7 (2), [93]). Let f : M ⊂ X → R be convex with M closed and convex. Then
f is (sequentially) lower semi-continuous if and only if f is weak sequentially lower semi-continuous.

We have the following existence result on a solution to problem (D.1).

Proposition D.10 (Theorem 7.3.5, [57]). Let X be a reflexive Banach space and suppose that the functional
f : M ⊂ X → R is weak sequentially lower semi-continuous with M bounded, closed and convex. Then there
exists x ∈M such that

f(x) = inf
x∈M

f(x).

If the functional is defined on an unbounded set, then we can overcome this problems as follows.

Definition D.11. A functional f : M ⊂ X → R is coercive over M if

lim
‖x‖X→∞

|f(x)| =∞,

where x ∈M .

Proposition D.12 (Theorem 7.3.7, [57]). Let X be a reflexive Banach space and suppose that the functional
f : M ⊂ X → R is coercive and weak sequentially lower semi-continuous with M closed and convex. Then
there exists x ∈M such that

f(x) = inf
x∈M

f(x).
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The uniqueness of a solution to problem (D.1) can be achieved under additional requirements.

Corollary D.13. Let X be a reflexive Banach space and suppose that the functional f : M ⊂ X → R is
coercive, strictly convex and weak sequentially lower semi-continuous with M closed and convex. Then there
exists a unique element x ∈M such that

f(x) = inf
x∈M

f(x).

Proof. Using Proposition D.12, we get immediately the existence of a minimum. To prove uniqueness, we
assume that x1, x2 ∈ M with x1 6= x2 satisfy f(x1) = f(x2) = infx∈M f(x). For all t ∈ (0, 1), we have
tx1 + (1− t)x2 ∈M due to the fact that M is convex. Since f is strictly convex, we get for all t ∈ (0, 1)

f(x2) = tf(x1) + (1− t)f(x2) > f(tx1 + (1− t)x2),

which is a contradiction to the assumption.

Note that the previous corollary remains still true if M = X. In this case, we get the following necessary
and sufficient optimality conditions.

Proposition D.14 (Proposition 42.10, [93]). If f : X → R is convex and Gâteaux differentiable on X, then
x ∈ X is a minimum of f if and only if

dGf(x)[h] = 0

for every h ∈ X.

Nonconvex Optimization Problems

Let f : M ⊂ X → R be a functional with M 6= ∅. We study again the optimization problem

f(x) = inf
x∈M

f(x),

where x ∈ M is the minimum of f . In Corollary D.13, note that the uniqueness of a minimum is mainly
based on the assumption that the functional f is strictly convex. In contrast to this result, we consider
here more general problems, where f is not necessarily convex. However, the existence and uniqueness of a
minimum can still be obtained for a certain class of optimization problems.

First, we introduce uniformly convex Banach spaces. These spaces were first introduced in [19]. It is also
shown that the function spaces Lp and the sequence spaces lp for p ∈ (1,∞) are specific examples.

Definition D.15. A Banach space X is called uniformly convex if for every ε ∈ (0, 2], there exists
δ(ε) > 0 such that for every x, y ∈ X

‖x‖X = ‖y‖X = 1, ‖x− y‖X ≥ ε ⇒
∥∥∥∥x+ y

2

∥∥∥∥
X

≤ 1− δ(ε).

This definition has a simple geometric interpretation. It states that the mid-point of two elements of the
unit sphere cannot approach the surface of the sphere unless the distance of these elements goes to zero.

Remark D.16. We have the following basic results:

(i) The Milman–Pettis theorem states that every uniformly convex Banach space is reflexive, see [72].
The converse is in general not true, see [24].
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(ii) Let X be a Hilbert space. If x, y ∈ X satisfy ‖x‖X = ‖y‖X = 1 and ‖x− y‖ ≥ ε with ε ∈ (0, 2], then
by the parallelogram law, we have

‖x+ y‖2X = ‖x+ y‖2X + ‖x− y‖2X − ‖x− y‖2X
≤ 2‖x‖X + 2‖y‖2X − ‖x− y‖2X
≤ 4− ε2.

We set δ(ε) = 1 − 1
2

√
4− ε2. Then we get

∥∥x+y
2

∥∥
X
≤ 1 − δ(ε). Therefore, every Hilbert space is

uniformly convex.

We have the following existence and uniqueness result of a minimum to the optimization problem intro-
duced above, where we assume that the functional f : M ⊂ X → R is given by

f(x) = g(x) + ‖x‖pX (D.2)

with g : M ⊂ X → R and p ≥ 1.

Proposition D.17 (Partie (A), Théorème 4.2,[11]). Let X be an uniformly convex Banach space and let
M ⊂ X be bounded and closed. Moreover, let g : M ⊂ X → R be a lower semi-continuous functional, which
is bounded from below. Then there exists a dense subset M0 ⊂M such that for every y ∈M0 and all p ≥ 1
we get the existence of an element x(y) ∈M satisfying

g(x(y)) + ‖x(y)− y‖pX = inf
x∈M

(g(x) + ‖x− y‖pX) .

If p > 1, then x(y) is unique. Furthermore, the mapping y 7→ x(y) is continuous on M0.

The previous proposition has a simple consequence.

Corollary D.18. Let X be a uniformly convex Banach space and let M ⊂ X be bounded and closed such
that 0 ∈ M . Moreover, let g : M ⊂ X → R be a continuous functional, which is bounded from below. Then
for all p ≥ 1, there exists x ∈M such that

g(x) + ‖x‖pX = inf
x∈M

(g(x) + ‖x‖pX) .

If p > 1, then x is unique.

Proof. Using Proposition D.17, there exists a dense subset M0 ⊂ M such that for every y ∈ M0 and all
p ≥ 1 we get the existence of an element x(y) ∈M satisfying

g(x(y)) + ‖x(y)− y‖pX = inf
x∈M

(g(x) + ‖x− y‖pX) .

Furthermore, the mapping y 7→ x(y) is continuous. Since M0 is a dense subset of M and 0 ∈M , there exists
a sequence (yn)n∈N ⊂M0 such that limn→∞ ‖yn‖X = 0. Let x ∈M be given by

x = lim
n→∞

x(yn). (D.3)

Due to the continuity properties, we get

g(x) + ‖x‖pX = lim
n→∞

(g(x(yn)) + ‖x(yn)− yn‖pX)

= lim
n→∞

inf
x∈M

(g(x) + ‖x− yn‖pX)

= inf
x∈M

(g(x) + ‖x‖pX) .

The uniqueness of x is a consequence of Proposition D.17 and the uniqueness of the limit in (D.3).
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Next, we state a necessary optimality condition.

Proposition D.19 (Theorem 1.46, [51]). Let M 6= ∅ be a convex subset of X and let f : M ⊂ X → R be
well defined on an open neighborhood of M . Then x ∈M is a minimum of f if

dGf(x)[x− x] ≥ 0 (D.4)

for every x ∈M , whenever f is Gâteaux differentiable at x ∈M .

Remark D.20. In the previous proposition, we can consider dGf(x) as an element of the dual space X ′.
In the sense of dual pairing, inequality (D.4) can be rewritten equivalently by

〈dGf(x), x− x〉 ≥ 0

for every x ∈M . Thus, inequality (D.4) is often called variational inequality.

If X is a Hilbert space, then the variational inequality (D.4) can often be solved using a projection
operator. Therefor, we need the following result.

Proposition D.21 (Lemma 1.10 (b), [51]). Let M be a closed and convex subset of the Hilbert space X
and let P : X →M be the projection on M , i.e.

‖P (x)− x‖X = min
y∈M
‖y − x‖X

for every x ∈ X. Then z = P (x) for x ∈ X if and only if for every y ∈M

〈x− z, y − z〉X ≤ 0.

Finally, we state a sufficient optimality condition.

Proposition D.22 (Theorem 4.23, [86]). Let M be a convex subset of the Banach space X. Moreover, let
the functional f : X → R be twice Fréchet differentiable on an open subset containing x ∈ M such that the
mapping x 7→ dF (f(x))2 is continuous at x. If x satisfies

dF f(x)[x− x] ≥ 0

for every x ∈M and there exists a constant δ > 0 such that

dF (f(x))2[h, h] ≥ δ‖h‖2X

for every h ∈ X, then there exist constants ε, σ > 0 such that

f(x) ≥ f(x) + σ‖x− x‖2X

for every x ∈M with ‖x− x‖X ≤ ε.

Remark D.23. From the previous proposition, we only obtain that the minimum x ∈ M is local. If we
require additionally that f : X → R is given by equation (D.2) with p > 1 such that the assumptions of
Corollary D.18 hold, then we can conclude that the minimum is also global.
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