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Abstract

In this thesis, we solve several optimal control problems constrained by linear as well as nonlinear stochastic
partial differential equations by a stochastic maximum principle. We provide some basic concepts from
functional analysis and a stochastic calculus to obtain existence and uniqueness results of mild solutions to
these equations. For the linear case, we consider two specific examples, where we involve nonhomogeneous
boundary conditions using the theory of fractional powers of closed operators. First, we treat the stochastic
heat equation with nonhomogeneous Neumann boundary conditions, where controls and additive noise
terms appear inside the domain as well as on the boundary. Here, the control problem is described by
tracking a desired state at the terminal point of time leading to a convex optimization problem. Using a
stochastic maximum principle, we state necessary and sufficient optimality conditions, which we utilize
to design explicit formulas for the optimal controls. By a reformulation of these formulas, we finally
obtain a feedback law of the optimal controls. Next, we consider the stochastic Stokes equations with
nonhomogeneous Dirichlet boundary conditions, where we include a linear multiplicative noise term. Here,
controls appear inside the domain as well as on the boundary. The control problem is defined by tracking
a desired state through the whole time interval leading to a convex optimization problem. Again, we
state necessary and sufficient optimality conditions the optimal controls have to satisfy. The design of
these optimal controls is mainly based on a duality principle giving relations between the mild solutions of
forward equations and a backward equation. Here, the forward equations are given by the partial Gateaux
derivatives of the stochastic Stokes equations with respect to the controls and the backward equation is
characterized by the adjoint equation. To derive this duality principle, an approximation of the mild
solutions by strong solutions is required, which we obtain using the resolvent operator. This provides
formulas for the optimal controls based on the adjoint equation. As a consequence, it remains to solve a
system of coupled forward and backward stochastic partial differential equations. For the nonlinear case, we
study the stochastic Navier-Stokes equations with homogeneous Dirichlet boundary conditions, where we
include a linear multiplicative noise term. Here, the theory of fractional powers of closed operators gives a
treatment of the convection term arising in these equations. In general, it is not possible to define a solution
over an arbitrary time interval. We overcome this problem using a local mild solution well defined upto
a certain stopping time. Hence, the cost functional related to the control problem has to incorporate this
stopping time leading to a nonconvex optimization problem. Thus, a stochastic maximum principle provides
only a necessary optimality condition. However, we still design the optimal control based on the adjoint
equation using a duality principle. Again, it remains to solve a system of coupled forward and backward
stochastic partial differential equations. Furthermore, we show that the optimal control satisfies a sufficient
optimality condition based on the second order Fréchet derivative of the cost functional.



Zusammenfassung

In der vorliegenden Arbeit werden verschiedene Optimalsteuerprobleme sowohl fiir lineare als auch nicht-
lineare stochastische partielle Differentialgleichungen mittels eines stochastischen Maximumprinzips gelost.
Wir fithren einige Grundlagen aus der Funktionalanalysis und ein stochastisches Kalkiil ein, um Existenz-
und Eindeutigkeitsresultate von milden Losungen dieser Gleichungen zu erhalten. Im linearen Fall betrach-
ten wir zwei konkrete Beispiele, wobei wir inhomogene Randbedingungen, unter Verwendung der Theorie
der abgeschlossenen Operatoren mit gebrochen Exponenten, einbeziehen. Zunichst behandeln wir die sto-
chastische Wiarmeleitungsgleichung mit inhomogenen Neumann-Randbedingungen, wobei Steuerungen und
additive Rauschterme sowohl im Gebiet als auch auf dem Rand auftreten. Hier wird das Steuerproblem
durch die Verfolgung eines gewiinschten Zustandes zum Endzeitpunkt beschrieben, was zu einem konvexen
Optimierungsproblem fiithrt. Mittels eines stochastischen Maximumprinzips geben wir notwendige und hin-
reichende Optimalitdtsbedingungen an, welche wir verwenden, um explizite Formeln fiir die optimalen Steue-
rungen zu konstruieren. Durch eine Umformulierung erhalten wir letztendlich, dass die optimalen Steue-
rungen als Riickkoppelungssteuerung dargestellt werden kann. Danach betrachten wir die stochastischen
Stokes Gleichungen mit inhomogenen Dirichlet-Randbedingungen, wobei wir einen linear-multiplikativen
Rauschterm einbeziehen. Hier treten Steuerungen sowohl im Gebiet als auch auf dem Rand auf. Das Steu-
erproblem besteht aus einer Verfolgung eines gewiinschten Zustandes iiber einem bestimmten Zeitinter-
vall, was zu einem konvexen Optimierungsproblem fithrt. Wieder geben wir notwendige und hinreichende
Optimalitdtsbedingungen an, welche die optimalen Steuerungen erfiillen. Die Konstruktion der optimalen
Steuerungen basiert vorwiegend auf einem Dualitdtsprinzip, welches Zusammenhénge zwischen den milden
Losungen von Vorwértsgleichungen und einer Riickwirtsgleichung angibt. Die Vorwérstgleichungen sind
durch die partiellen Gateaux-Ableitungen der Losungen der stochastischen Stokes Gleichungen beziiglich
der Steuerungen gegeben und die Riickwartsgleichung ist charakterisiert durch die adjungierte Gleichung.
Um dieses Dualitdtsprinzip herzuleiten, ist eine Approximation der milden Losungen durch starke Losungen
erforderlich, welche wir mittels der Resolvente erlangen. Wir erhalten somit Formeln fiir die optimalen Steue-
rungen basierend auf der adjungierten Gleichung. Somit bleibt ein System von gekoppelten stochastischen
partiellen Vorwarts- und Riickwértsgleichungen zu l6sen. Im nichtlinearen Fall analysieren wir die sto-
chastischen Navier-Stokes Gleichungen mit homogenen Dirichlet-Randbedingungen, wobei wir einen linear-
multiplikativen Rauschterm einbeziehen. Hier gibt uns die Theorie der abgeschlossenen Operatoren mit
gebrochen Exponenten eine Moglichkeit den Konvektionsterm in diesen Gleichungen handhabbar zu ma-
chen. Im Allgemeinen ist es nicht moglich eine Losung iiber einem beliebigen Zeitintervall zu definieren.
Wir bewéltigen dieses Problem, indem wir eine lokale milde Lésung verwenden, welche bis zu einer gewis-
sen Stoppzeit wohldefiniert ist. Demzufolge muss das zum Steuerproblem gehorige Kostenfunktional diese
Stoppzeit einbeziehen, was uns zu einem nicht-konvexen Optimierungsproblem fithrt. Dadurch gibt uns
ein stochastisches Maximumprinzip lediglich notwendige Optimalitdtsbedingungen. Nichtsdestotrotz kon-
struieren wir die optimalen Steuerungen basierend auf der adjungierten Gleichung unter Verwendung eines
Dualitétsprinzips. Ferner zeigen wir, dass die optimale Steuerung eine hinreichende Optimalitdtsbedingung,
unter Verwendung der Fréchet Ableitung zweiter Ordnung des Kostenfunktionals, erfiillt.
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Notation

General

N
z, 7+
R, R, R
Rnxm

B(X)

D

oD

Im z

M

My N M,
My U M,
Unzy Mn
M\ My
Re z
sSAt, sVt
[to, t1]

(to, t1], [to,t1)
XTL

0

natural numbers {1, 2, ...}
integers, nonnegative integers

real numbers, nonnegative real numbers, positive real numbers

real matrices with n rows and m columns
complex numbers
Borel o-field of a Banach space X

bounded domain in R”, i.e. an open and bounded subset of R™

boundary of D

imaginary part of z € C

closure of a set M

intersection of sets M; and Ms

union of sets M7 and M

union of a sequence of sets (M, )nen

relative complement of a set My in a set M

real part of z € C

min{s,t}, max{s,t} with s, € R

closed interval from ty € Rt to t; € RT with o < ¢4
half-closed interval from ty € RT to t; € R* with ¢ty < t;
n-dimensional vector space of a Banach space X
empty set

Operators and Functions

A*

AO&
D(A)
det(A)
div
R(X\; A)
R(N)

(S(t))e>0, (€)i>0

Tr(A)
p(A)
IR
<'7 '>X
V,A
1,

adjoint of an operator A

fractional power of an operator A with o € R
domain of an operator A

determinant of a matrix A

divergence of a vector field

resolvent operator of an operator A with A € p(A)
AR(N; A)

Cp semigroup generated by an operator A
trace of an operator A

resolvent set of an operator A

norm on a Banach space X

inner product on a Hilbert space X

Nabla operator, Laplace operator

indicator function of a subset M; of a set My

X



Probability Theory

Spaces
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(D)
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expected value of a random variable X

conditional expectation of a random variable X given a o-field G
probability of an event A € F

jump process of a Lévy process (L(t));>0
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operator Q/2 € L(X)
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Chapter 1

Introduction

1.1. Stochastic Systems

Unsteady deterministic ordinary differential equations and unsteady deterministic partial differential equa-
tions arise as models for many systems in engineering, chemistry, biology and physics. To cover random
environmental phenomena affecting theses systems, it is often required to involve noise terms as stochastic
processes leading to stochastic systems. Consequently, stochastic systems can always be motivated from
the deterministic approach. Furthermore, the state described by such a system is not differentiable with
respect to the time variable in general. A possibility to overcome this difficulty is given by reformulating the
differential equations as integral equations. This leads us immediately to stochastic differential equations
(SDEs) and stochastic partial differential equations (SPDEs), which are symbolic notions describing these
integral equations. Basically, one can consider SDEs driven by a Wiener noise, see [54] 55l [69, [66] and the
references therein. SPDEs with respect to Wiener noise can be considered as a generalization of SDEs in the
sense that these equations are formulated as evolution equations on infinite dimensional spaces. Here, we
will focus on infinite dimensional spaces given by separable Hilbert spaces. Thus, the solutions of SPDEs are
defined in a generalized sense in various ways. As a direct ansatz, one can formulate a strong solution, see
[23, 28] [42] [45]. This often requires too strong regularity properties of the solution to the SPDE and thus,
one introduces weaker concepts to obtain an equation well defined on a larger space. In [23] 28] 42] [73],
weak solutions are introduced, where the construction is mainly based on the inner product defined on
a suitable Hilbert space. Using Gelfand triples, a similar approach is given by variational solutions, see
[73], [80]. Mild solutions are often used for problems containing a linear (and possibly unbounded) operator
as the generator of a semigroup, see [23| 28] [42]. All of these concepts are based on a given probability
space and therefore, they are called (probabilistic) strong solutions. Solutions constructing the probability
space are called (probabilistic) weak solutions or martingale solutions, see [23] [28]. For various reasons, a
Wiener noise cannot cover all random environmental phenomena. Thus, it is often required to use more
general noise terms. One may consider systems including jumps leading to Lévy noise. For SDEs, we refer
to [2, 20 [82]. An approach for SPDEs is presented in [3] [I8, [71]. In a different direction one can consider a
noise term, where the increments are not necessarily independent. Such a noise term can be modeled using
a fractional Brownian motion. SDEs driven by fractional Brownian motions are studied in [64]. For SPDEs,
an approach is given in [29, [62].

In this thesis, we will mainly concentrate on systems described by SPDEs with Lévy noise. Here, we
analyze the following classes in more detail:

(i) linear SPDEs with additive Lévy noise,
(ii) linear SPDEs with multiplicative Lévy noise,
(iii) nonlinear SPDEs with multiplicative Lévy noise.

Based on [71], we prove existence and uniqueness results of these equations, where we incorporate some ad-
ditional difficulties. On the one hand, we treat a possibility to involve nonhomogeneous boundary conditions
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appearing in linear SPDEs. As examples, the stochastic heat equation with Neumann boundary condition
as well as the stochastic Stokes equations with Dirichlet boundary condition will be analyzed. On the other
hand, we consider a nonlinear SPDE, where the nonlinearity does not satisfy the usual assumptions given
by a growth condition and a Lipschitz condition. Here, the stochastic Navier-Stokes equations with homo-
geneous Dirichlet boundary condition will be treated as an example. These systems have in common that
they contain a linear and closed operator generating an analytic semigroup such that fractional powers of
these operators (possibly with a suitable perturbation) are well defined. We will figure out that the theory
of fractional powers of closed operators is useful to overcome the difficulties mentioned above, where the
solutions of the SPDEs are defined in a mild sense.

1.2. Stochastic Control

Due to the presence of a noise term, it might be the case that the state of the system reveals an undesired
behavior. Thus, it it reasonable to control a system in a certain desired way, where we always assume that
the state is completely observable. This immediately leads us to a stochastic control problem (in infinite
dimensions), which we consider as an optimization problem for a given cost functional constrained by a
SPDE. The minimizer of the cost functional is then called an optimal control. To solve this problem, there
exist mainly two approaches:

(i) stochastic maximum principle;
(ii) dynamic programming.

Based on existence and uniqueness results for the solution to a SPDE, one can often reformulate the control
problem as a minimization problem on a set of admissible controls given by a suitable Hilbert space or a
suitable subset of this Hilbert space. For that reason, the main idea of the stochastic maximum principle
is to state necessary and sufficient optimality conditions the optimal control has to satisfy. In general,
the necessary optimality condition can be derived using the Gateaux derivative of the cost functional.
Using this necessary optimality condition, one can derive an explicit formula of the optimal control based
on the adjoint equation, which is given by a backward stochastic partial differential equation (BSPDE).
Sufficient optimality conditions are often stated based on the second order Fréchet derivative of the cost
functional. If the control problem is additionally convex, then the necessary optimality condition is also
sufficient. For general concepts of optimization problems on Hilbert spaces, we refer to [57, [93]. Closely
related is Pontryagin’s maximum principle, where one minimizes the Hamiltonian instead of the original
control problem. However, one still obtains an explicit formula of the optimal control based on the adjoint
equation. As a consequence, it remains to solve the so called Hamiltonian system. For applications, we
refer to [14 [36] 47, [67]. In this context, we may also note the general theory for finite dimensional control
problems presented in [91]. In contrast to these methods, the dynamic programming principle considers the
control problem at different initial times and initial states through the so called value function. This value
function is the solution of a nonlinear partial differential equation given by the Hamilton-Jacobi-Bellman
equation. If the equation is solvable, then one can obtain a feedback law of the optimal control, see [33].
For applications, we refer to [22, 26 32} [61], [83], 92]. We also note the finite dimensional approach presented
in [35] O1].

The scope of this thesis is to provide a theory for solutions to specific stochastic control problems such that
they can be treated numerically. Since sufficient optimality conditions are useful to obtain the convergence to
an optimal control, we use a stochastic maximum principle here. This fact is already known for deterministic
problems, see [51]. As mentioned above, the design of the optimal controls is based on the adjoint equation
given by a BSPDE. To obtain the existence and uniqueness of a solution to the adjoint equation, it is often
required to apply a martingale representation theorem. Since a martingale representation theorem is not
available for Hilbert space valued Lévy processes in general, we are forced to restrict ourself to the case of
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Q-Wiener processes. However, we will state some possibilities to expand the theory to systems governed by
SPDE with Lévy noise.

1.3. Outline of the Thesis

This thesis is divided into two main parts. In the first part, we provide foundations from functional analysis
and a stochastic calculus in infinite dimensional spaces required for the second part, where we solve certain
stochastic control problems via a stochastic maximum principle.

In Chapter 2, we introduce the class of linear (not necessary bounded) operators A: D(A) C H — H
generating a Cy semigroup (S(¢))¢>0 on an arbitrary Hilbert space H. We state some basic properties and we
introduce the resolvent operator R(\; A) = (M — A)~! for appropriate A € C, where the operator I denotes
the identity operator on H. Here, we will use the resolvent operator to approximate mild solutions of SPDEs
and BSPDEs by strong solutions, which is required to obtain a so called duality principle. Furthermore, we
introduce fractional powers of the operator A denoted by A* with a € R. If the Cj semigroup (S(t)):>0
is analytic and the operator A is invertible, then we get some additional properties, which enable us to
incorporate nonhomogeneous boundary data to SPDEs. Moreover, we get a possible treatment of the
convection term arising in the stochastic Navier-Stokes equations. Especially, we will use the following
inequality frequently:

JAS W)y < Mot~

for all &« > 0 and all ¢ > 0, where M,,d > 0 are constants. Thus, this inequality is the main result of
this chapter. Finally, we consider the Laplace operator and the Stokes operator as typical examples for
generators of analytic semigroups with their fractional powers (with a possible modification) being well
defined.

Chapter 3 is devoted to the stochastic calculus used in the following chapters. We start with some basic
definitions and we introduce Lévy processes (L(t)):>0 with values in an arbitrary Hilbert space U. In
general, a Lévy process has the following decomposition for all ¢ > 0 and P-almost surely:

L(t) = at + W(t) + J(t),

where a € U represents the drift, (W (t));>o is the continuous part given by an U-valued Q-Wiener process
and (J(t)):>o illustrates the pure jump part characterized by a series of ¢-valued compound Poisson process.
When studying stochastic equations, it is necessary to define a stochastic integral of the form

t

[

0

for all ¢ € [0, 7] with T' > 0 and P-almost surely, where (¥(t));c[o,7] is a stochastic process taking values in
a suitable space of Hilbert-Schmidt operators. Here, we assume that the Lévy process (L(¢)):>0 is square
integrable and a martingale with respect to a certain filtration. We will state basic properties of such a
stochastic integral, which enables us to prove existence and uniqueness results of mild solutions to SPDEs
driven by Lévy processes. For the existence and uniqueness of mild solutions to BSPDEs, a martingale
representation theorem is often required. Since such a theorem is not available for Hilbert space valued
Lévy processes in general, we will study BSPDEs for the special of Q-Wiener processes. The SPDEs and
BSPDEs introduced here are motivated by systems arising in the following chapters. Moreover, we give a
comparison of strong, weak and mild solutions to these equations.

In Chapter 4, we consider a control problem constrained by the stochastic heat equation with nonhomo-
geneous Neumann boundary conditions on a bounded domain D C R™ with sufficiently smooth boundary
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OD. Namely, we will treat the following SPDE in L?(D):

{dy(t) = [Ay(t) + Bu(t) + (A — A)Nv(t)] dt + G(t) dW (t) + (A — A)N dW, (¢),
y(0) =¢

for t € [0,T]. Here, the operator A: D(A) C L*(D) — L*(D) is the Neumann realization of the Laplace
operator generating an analytic semigroup of contractions (eAt) >0 The process (u(t>)te[0,T] represents a

distributed control with values in L?(D) and B is a linear and bounded operator on L?(D). The process
(v(t))sejo,r) describes a boundary control with values in L?(9D) and N: L?*(9D) — L*(D) denotes the
Neumann operator. The real number A is chosen such that fractional powers of the operator A — A are
well defined. The noise terms (W (t));>o0 and (Wy(t))i>0 are given by Q-Wiener processes with values in
L?(D) and L?(9D), respectively. We denote by Q € L] (L?(D)) and Q, € L] (L?*(9D)) the covariance
operators of the processes (W(t));>0 or (W(t))i>0, respectively. The process (G(t))c[o,r] takes values in
L5y (QY?(L3(D)); L*(D)). As a consequence, controls and noise terms are defined inside the domain as
well as on the boundary. The cost functional related to the control problem is formulated as follows:

1

T T

K1 K2

I(w,0) = SEIT) ~ vl + B [ uOlsoyde + ZE [ o] oyt
0 0

where 34 € L?(D) is a given desired state and k1, k2 > 0 are weights. The task is to find optimal controls
u and ¥ minimizing this cost functional. The corresponding optimal state is denoted by (¥(t))ie(o,7)-
Employing a stochastic maximum principle, we will show that the optimal controls satisfy the following
feedback law for all a € (£, 3), almost all ¢ € [0, 7] and P-almost surely:

a(t) = - B PO +alt),
o(t) = ~ =" (A~ ' [PO(E) + a0,

where B* and G* denote the adjoint operators of B and G = (A — A)*N, respectively. The function
P:[0,T] — L(L*(D)) is the mild solution of the Riccati equation

it
P(T) =1,

L) = AP+ P()A— LPU)BBP@) — LH* (1G5 H(),
K1 K9

where H(t) = (A — A)1=*P(t) and I is the identity operator on L?(D). The function a: [0,7] — D((A —
A)1=2) is the unique solution of the deterministic backward integral equation

T
alt) = [ 470 (< LPWBE — W (68"~ ) ) ale)ds - ATy,

K1 K2
t
In Chapter 5, we study a control problem constrained by the stochastic Stokes equation with nonhomoge-
neous Dirichlet boundary conditions on a bounded domain D C R™ with sufficiently smooth boundary 0D.
In fact, we will deal with the following SPDE in H = {y € (L*(D))": div y =0 in D,y -1 =0 on dD}:

y(0)

{ dy(t) = [ Ay(t) + Bu(t) + ADv(t)] dt + G(y(t)) dW (t),
£.
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Above, the operator A: D(A) C H — H is the Stokes operator. Fractional powers of A are well defined and
denoted by A* with o € R. The process (u(t)).e[0,r] represents a distributed control with values in H and B
is a linear and bounded operator on H. The process (v(t)):c[o,7] describes a boundary control with values
in VO(0D) = {y € (L2(8’D))n :y-n=00n 9D} and D: VO(9D)) — H denotes the Dirichlet operator.
The noise term (W (t));>0 is a Q-Wiener process with values in H and covariance operator @ € L] (H).
The operator G: H — L(HS)(QUQ(H); H) is linear and bounded. Here, we will consider the following cost
functional:

1

T T T

K1 K2

Iwo) = 5B [ Iottino) = va@lpde + 5 B [ (@l de+ 2B [ 1o@lom bt
0 0 0

where yq € L?([0,T]; H) is a given desired velocity field and k1,k2 > 0 are weights. The task is to find
optimal controls w and ¥ as minimizers of this cost functional. Using a stochastic maximum principle, we
will obtain that the optimal controls satisfy for all o € (0, ), almost all ¢ € [0, 7] and P-a.s.

a(t) = fﬁil B2 (¢),
B(t) = —— K* A0 (1),
K2

where B* and K* are the adjoint operators of B and K = A®D, respectively. The process (z*(t)):eo, 1] is
characterized by the adjoint equation given by the following BSPDE in H:

dz*(t) = =[-AZ"(t) + G*(®(1)) + y(t) — ya(t)]dt + (t) AW (2),

(1) =0,
where the operator G* is the adjoint operator of G and the process (®(t))¢cjo,7] takes values in the space
L HS)(Ql/ 2(H); H). As a consequence, it remains to solve a system of coupled forward and backward
SPDEs.

In Chapter 6, we treat a control problem governed by the stochastic Navier-Stokes equations with homo-

geneous Dirichlet boundary conditions on a bounded domain D C R"™ with sufficiently smooth boundary
OD. Indeed, we will study the following SPDE in D(A®) for suitable o > 0:

dy(t) = —[Ay(t) + B(y(t)) — Fu(t)ldt + G(y(t)) dW (1),
y(0) =¢&.

Again, the operator A: D(A) € H — H is the Stokes operator and B is a bilinear operator related
to the convection term arising in the Navier-Stokes equations. The operator A=°B is well defined as a
mapping from D(A®) into H for certain § > 0. The process (u(t)):co,7) represents a distributed control
with values in D(A®) with 8 € [0,a] and F is a linear and bounded operator on D(A?). The noise term
(W(t))i>0 is a Q-Wiener process with values in H and covariance operator @ € L] (H). The operator
G: H — Lrs)(QY?(H); D(A®)) is linear and bounded. Due to the presence of the bilinear operator B,
we cannot ensure the existence and uniqueness of a mild solution over an arbitrary time interval [0,T].
However, we will show that there exists a unique mild solution upto a stopping time 7, for fixed m € N.
Thus, the cost functional related to the control problem has to incorporate this stopping time. In fact, the
cost functional is given by

Tm T
Tl = 38 [ 147 (0) — wa)y e + 3 [ 14%u(0)
0 0
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for fixed m € N, where yq € L%([0,7]; D(AY)) with v € [0,a] is a given desired state. The task is to find a
optimal control %,, minimizing this cost functional. By a stochastic maximum principle, we will prove that
the optimal control satisfies for almost all ¢t € [0,T] and P-a.s.

U (t) = —Py (F*A™%27 (1)),

where Py is a projection onto the set of admissible controls U and F* is the adjoint operator of F'. The
process (2, (t))ie(o,7) is described by the BSPDE in D(A°):
dz;

() = —Ljo ) ()= Az (1) = A B (y(1), A2, (1)) + G (AT @, (1))
+ A% (y(t) — ya(t))]dt + () AW (),
2 (T) =0,
where the operator B (y(t), ) is the adjoint operator of A=°B(-,y(t)) for t € [0, 7,,). Similarly, the operator
G* is the adjoint operator of G and the process (®,,,(t));e[0,7] takes values in L5y (Q/?(H); D(A®)). Again,
we can conclude that it remains to solve a system of coupled forward and backward SPDEs.

In the appendix, we provide some useful Gronwall-type inequalities. Moreover, we introduce Bochner
integrals as well as nuclear and Hilbert-Schmidt operators. These are the basic foundations to define
solutions to SPDEs. Finally, we treat optimization problems in infinite dimensional spaces, which enables
us to solve control problems constrained by SPDEs. The results stated in this part are well known. However,
we give a brief overview for the convenience of the reader.



Chapter 2

Infinitesimal Generators of Analytic Semigroups

In this chapter, we give some basic properties of strongly continuous semigroups and their infinitesimal
generators, see [311 [70, 89]. We mainly focus on infinitesimal generators as closed operators such that
their fractional powers can be defined. If the strongly continuous semigroup is analytic, then further
regularity results and estimates can be obtained, which we use frequently in the following chapters. Finally,
we consider the Laplace operator and the Stokes operator defined on bounded domains with sufficiently
smooth boundary. Here, we treat domains as open subsets and the characterization of the boundary as
introduced in [48]. We will ascertain that fractional powers of the Laplace operator as well as the Stokes
operator are well defined. The results shown here are mainly based on [30] 48] [85], [89].

Throughout this chapter, let  be a Hilbert space and let I be the identity operator on 7. We note that
most of the following results remain still true for Banach spaces.

2.1. Strongly Continuous Semigroups and the Resolvent Operator

In this section, we give basic definitions and basic properties of strongly continuous semigroups and their
infinitesimal generators. We introduce the resolvent set and resolvent operator of a closed operator. An
integral representation of the resolvent operator is provided and we state necessary and sufficient conditions
such that the closed operator is the infinitesimal generator of a strongly continuous semigroup of contractions
well known as the Hille-Yosida theorem. We start with a formal definition.

Definition 2.1. A family of linear and bounded operators (S(t))i>0 mapping H into itself is called a
semigroup if

(1) 5(0) = I;
(i) S(t+s) = S(t)S(s) for all s,t > 0.

The semigroup (S(t))i>0 mapping H into itself is called a strongly continuous semigroup or a Co
semigroup if for every x € H

lim ||S(t)x — =0.

i ||S(t)z — 2l

Theorem 2.2 (Chapter 1, Theorem 2.2, [70]). Let (S(t))i>0 be a Co semigroup. There exist constants
0 €R and M > 1 such that for allt >0

IS(E)]l 2y < Me®. (2.1)

Remark 2.3. If 0 = 0 in inequality (2.1), then (S(t))i>0 is called a uniformly bounded Cy semigroup. We
call (S(t))i>0 a Co semigroup of contractions if additionally M = 1.

Corollary 2.4 (Chapter 1, Corollary 2.3, [T0]). If (S(t))i>0 is a Cy semigroup, then for every x € H, the
mapping t — S(t)x is a continuous function from R into H.
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Definition 2.5. An operator A: D(A) C H — H is called the infinitesimal generator or simply gener-
ator of a Cy semigroup (S(t))i>0 if
Az = lim M
t10 t

for every x € D(A) with
. St —x
D(A) =Sz e€H: lim ——— exists .
t10 t
The set D(A) is called the domain of the operator A.

The generator of a Cy semigroup is a linear and closed operator but not necessarily bounded. The domain
is a dense subset of the underlying Hilbert space.

Theorem 2.6 ([3T], [70, [89]). Let A: D(A) C H — H be the generator of a Cy semigroup (S(t))i>0. Then
the following properties hold:

o ifx € D(A), then S(t)x € D(A) and

d
%S(t)x = AS(t)x = S(t)Ax

for allt > 0;
e for allt >0 and every x € H, we have

/S(s)x ds € D(A) and S(t)r—z= A/S(s)x ds;

0 0

o for allt > 0 and every x € D(A), we have
t t
S(t)x — S(s)x = /AS(r)w dr = /S(T)Al’ dr.

Using these properties and the closed graph theorem, we get a characterization of uniformly continuous
semigroups. Let £(H) contain all linear and bounded operators on H.

Definition 2.7. A semigroup (S(t))i>0 is called uniformly continuous if
lim [S(t) = Il =0
Corollary 2.8 (Chapter 2, Corollary 1.5, [31]). Let A: D(A) C H — H be the generator of a Cy semigroup
(S(t))i>0- The following assertions are equivalent:
(a) The operator A is bounded.
(b) The domain of A satisfies D(A) = H.
(¢) The domain D(A) is closed in H.

(d) The semigroup (S(t))i>o0 is uniformly continuous.
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In each case, the semigroup s given by

for allt > 0.

Let A: D(A) C H — H be a linear (not necessarily bounded) operator. We introduce the resolvent set
p(A) containing all complex numbers X for which AI — A is invertible, i.e.

p(A) ={\ € C: (A — A)~! exists and belongs to £(H)}.

We write A — A instead of AI — A to simplify the notation. For all A € p(A), we define the resolvent operator
R(NA) € L(H) by
RNA) =L — AL

We have the following characterization of elements of the resolvent set and an integral representation of the
resolvent operator.

Theorem 2.9 (Chapter 2, Theorem 1.10, [31]). Let A: D(A) C H — H be the generator of a Cy semigroup
(S(t))t>0 and take constants @ € R and M > 1 such that for allt >0

ISl cery < Me.
Then we have the following properties:
(i) If X € C such that [;° e S(t)dt exists for every x € H, then X € p(A).
(ii) If Re X > 0, then X € p(A) and |R(X; A)||zn) < 75—

In each case, the resolvent operator is given by

R(\ A) = /e—MS(t) dt.
0

Corollary 2.10 (Chapter 2, Corollary 1.11, [31]). Let A: D(A) C H — H be the generator of a Cy
semigroup (S(t))i>0 and take constants @ € R and M > 1 such that for all t >0

ISl ey < Me?.

For all A € C with Re A > 0 and each n € N, we have

RO A" = (s S RO A)

— 7(71—1 ol /t”_le_)‘tS(t) dt
' 0

and [|RON; A)" | vy < rengye -

Next, we state necessary and sufficient conditions such that the operator A is the generator of a Cjy
semigroup of contractions well known as the Hille-Yosida theorem.

Theorem 2.11 (Chapter 1, Theorem 3.1, [70]). An operator A: D(A) C H — H is the generator of a Cy
semigroup of contractions (S(t))i>o if and only if
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(i) A is closed and D(A) is dense in H;

ii) the resolvent set p(A) contains R and for all A > 0
0

RO Al ey <

> =

The previous theorem and its proof have some simple consequences on convergence results of the so called
Yosida approximation.

Corollary 2.12 (Section 1.3, [70]). Let A: D(A) C H — H be the generator of a Cy semigroup of contrac-
tions (S(t))i>0 and let Ay be the Yosida approzimation of A given by

Ay = MAR(MA).
Then Ay is the generator of an uniformly continuous semigroup of contractions (eA*t)tZO and we have
(i) imy_y00 AR(N; A)z = x for every x € H;
(i) limy_y0o Axz = Az for every x € D(A);
(i4) limy_, o0 et = S(t)x for every x € H and all t > 0.

Remark 2.13. For general versions of Theorem and Corollary concerning arbitrary Coy semi-
groups, we refer to [31, [70].

The following dilation theorem gives an important property of Cy semigroups of contractions.
Theorem 2.14. Let (S(t))i>0 be a Cy semigroup of contractions and set S(—t) = S(t)* for allt > 0. Then

there exists a Hilbert space H containing H and a group (S(t))ier on H such that S(t) = PyS(t) for all
t € R, where Py is the orthogonal projection from H onto H.

Proof. The claim follows from Theorem 9.22 and Theorem 9.23 in [71]. O

2.2. Analytic Semigroups

In this section, we introduce analytic semigroups and we state conditions such that an operator is the
generator of an analytic semigroup. We start with a formal definition. The main idea is to extend the
domain of the semigroup operator to regions in the complex plane containing R*. For 6 € (0, 7], we define
the sector

Yo={z€C:|argz| < 6}.

Definition 2.15. A Cy semigroup (S(t))e>o is called analytic if there exists 6 € (0,7] and a mapping
S:Xg — L(H) such that

e S(t) = S(t) for all t > 0;

° S(zl +29) = 5(21)3(22) for every z1, 22 € 3g;

e the mapping z — S(z) is analytic in Xg;

e lim

2s0.2¢5, S(2)x =z for every x € H.

To state conditions on an operator to be the generator of an analytic semigroup, we need the concept of
differentiable semigroups.

10
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Definition 2.16. A Cy semigroup (S(t))i>0 is called differentiable for t > to if for every x € H, the
mapping t — S(t)x is differentiable for t > to. The derivative of order n € N is denoted by S (t) for
t>to.

The following lemma provides an useful presentation of the derivatives to a differentiable semigroup.

Lemma 2.17 (Chapter 2, Lemma 4.2, [70]). Let (S(t))i>0 be a differentiable Cy semigroup for t >ty and
let A: D(A) C H — H be its generator. Then

e forn € N and t > nto, we have S(t): H — D(A™) and S (t) = A"S(t) is a bounded linear operator;
e forn € N and t > nty, the operator S~V (t) is continuous in the uniform operator topology.
We are now able to state basic properties of analytic semigroups.

Theorem 2.18 ([70, 89]). Let A: D(A) C H — H be the generator of a Cy semigroup (S(t))i>o0. If
0 € p(A), then the following statements are equivalent:

(a) The Cy semigroup (S(t))i>0 is uniformly bounded and analytic.
(b) For all A € C with ReA > 0 and Im X # 0, there exists a constant C' > 0 such that

RO Al ey <

[Tm Al

(c) There exist 6 € (0,%) and a constant M > 0 such that Xz 19 U{0} C p(A) and

M
IR Al ey < o

fO’I“ A€ E%_;,_g.

(d) The semigroup (S(t))i>o0 is differentiable for t > 0 and there exists a constant C' > 0 such that for all

t>0 o

[AS(@®)ll (0 < 7

Under additional assumptions, we can state a further generation theorem of analytic semigroups resulting

from the previous theorem. First, we define the adjoint operator of a linear operator. This requires the
following preliminary result.

Lemma 2.19 (Lemma 4.1.4, [85]). Let A: D(A) C H — H be linear and densely defined. Then for every
y € H, there exists at most one element z € H such that for every x € D(A)

(A2, Yy = (5, 2).
Definition 2.20. Let A: D(A) C H — H be linear and densely defined. We set
D(A*) ={y € H: there exists z € H such that (Az,y)y = (x, z)y for every x € D(A)}.
The adjoint operator A*: D(A*) C H — H is defined by A*y = z for every y € D(A*).

By Lemma[2.19] the element z € H in the above definition is unique. This justifies the notation A*y = z.

11
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Definition 2.21. A linear and densely defined operator A: D(A) C H — H is called symmetric if for
every x,y € D(A)
(Az,y)n = (z, Ay)n

The operator A is called self-adjoint if A = A* and D(A) = D(A*).
Remark 2.22. Obviously, a self-adjoint operator is symmetric. The converse is generally not true.
The following corollary gives some simple requirements on a Cjy semigroup to be analytic.

Corollary 2.23 (Corollary 7.1.1, [89]). If the operator A: D(A) C H — H is self-adjoint and the generator
of a Cy semigroup of contractions (S(t))i>o0, then (S(t))i>0 analytic.

We will often use this corollary to obtain that a Cy semigroup is analytic.

2.3. Fractional Powers of Closed Operators

In this section, we define fractional powers of closed operators. We give conditions such that these operators
are well defined. Moreover, we state some basic properties, which are used frequently in the following
chapters. First, we introduce the gamma function given by

oo

INa) = /s“ilefs ds

0

for all @ > 0. A change of variables with s = ¢t for ¢ > 0 gives us
b /t“ Le=et dt. (2.2)
I
0

Let A: D(A) C ‘H — H be a linear (not necessarily bounded) operator such that —A is the generator of
a Cp semigroup (S(t))¢>o. It is quite natural to consider equation (2.2)) by substituting ¢ with A and e~
with S(t). Note that we can write at least formally S(t) = e=4%. We then have the following definition.

Definition 2.24. For a > 0, the operator A=“: D(A™%) C H — H given by

oo

% /to‘_lS(t)as dt

0

for every x € D(A™%) is called the fractional power of the operator A with exponent —«. The domain of
A% 4s given by

D(A™)=(zeH: /t“fls(t):c dt is convergent
0
For a =0, we set A° =1 and D(A®) = H.
The space D(A™%) is a linear subspace of 1 and A~ is a linear and closed operator for a > 0. Moreover,

we have for 0 < a <
D(A™P) Cc D(A™®).

12
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Remark 2.25. If —A is the generator of a Cy semigroup (S(t))e>0 satisfying for all t >0
1S(t)]l crey < Me™

with @ > 0 and M > 1, then D(A~®) =H and A= is a linear and bounded operator. Indeed, one can easily

obtain
o0

/ta_1||S(t)H£(H)dt < 0.
0

The fact that A~ is linear and bounded follows immediately from the closed graph theorem.

In the remaining part of this section, we assume that —A satisfies the assumptions of Remark
Remark 2.26. By definition of the resolvent operator and Corollary we have for A = 0 and each
neN

(A" = R(0;-A)" = ﬁ /t"’lS(t) dt.

Recall that T'(n) = (n—1)! for each n € N. Hence, the operator A~™ given by Definition coincides with
the classical representation of the operator (Afl)n for each n € N.

In the following lemma, we state some basic properties.
Lemma 2.27 (Section 7.6, [89]). We have

(i) A=(@+B) = A=*A=F for all o, B > 0;

(i) for all a € (0,1)

sin T

A0 =

™

//\‘O‘(/\ +A)
0

(111) limy 0 A~ = x for every x € H;
(iv) the operator A~% is injective for all a > 0.

The fact that the operator A™% is injective for all & > 0 allows us to define fractional powers of the
operator A for any positive real number.

Definition 2.28. Let A~ be the fractional power of the operator A with o > 0. We define
A% = (A7)
We get the following basic properties.
Theorem 2.29 (Chapter 2, Theorem 6.8, [70]). We have

(i) A%: D(A%) C H — H is a closed operator with D(A%) = R(A™%) for all @ > 0, where R(A™%)
denotes the range of the operator A=%;

(ii) D(AP) C D(A®) for all 0 < a < B;
(#ii) for all a > 0, the domain D(A®) is dense in H;
(iv) APy = A“APzx for all a, B € R and every x € D(AY) with v = max{a, 3, a + B}.

13
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In general, one can not give an explicit formula for the operator A® with o > 0. Nevertheless, we get the
following representation, which is an immediate consequence of Lemma

Theorem 2.30 (Theorem 7.6.2, [89]). If o € (0,1) and x € D(A), then

Acg = 21T /Aafl(MA)*ledA.
0

Next, we state some useful estimates.

Theorem 2.31 (Theorem 7.6.3, [89]). If o € (0,1), then there exists a constant C > 0 such that for every
x € D(A) and all p >0
[A%2ll3 < C(p™ [l2ll2e + p*~ | Awll20)

and
A%z x < 2C|z]l3; || A]|.

Corollary 2.32. Let o € (0,1] and let B: D(B) C H — H be a closed operator with D(A*) C D(B).
There exists a constant C' > 0 such that for every x € D(A®)

|Bx||y < C||A%||% (2.3)

and in particular
1A%zl < Cll A5 (2.4)

for 0 < B < a < 1. Moreover, there exists a constant Cy > 0 such that for every x € D(A) and all p >0
Bzl < CLlp™||zlls + p | All3). (2.5)

Proof. A proof of inequalities (2.3) and (2.5 can be found in [89, Corollary 7.6.2]. Inequality (2.4) follows
from inequality (2.3) and Theorem (ii). O

Theorem 2.33. For a > 0, the space D(A®) equipped with the inner product
(T,y)p(as) = (A%, A%Y)u
for every x,y € D(A%) becomes a Hilbert space.

Proof. The norm on D(A%) is given by

zllpasy = \/ (@, %) D(ax)

for every x € D(A%). Let (z,,)nen be a Cauchy sequence in D(A®). Then (A%x,)nen is a Cauchy sequence
in H. Since H is a Hilbert space, there exists y € H such that lim,_, ||y — A%2,||% = 0. Using inequality
(2.4) with 8 = 0, we have for each n,m € N

|2 — Zmllu < C| A%, — A% ||

We conclude that the sequence (z,)nen is a Cauchy sequence in H and there exists © € H such that
limy, o0 || — @]l = 0. Since A* is closed, we have z € D(A%) and A% = y. Therefore, we obtain
limy, o0 ||A%x,, — A%z||3 = 0. Therefore, the sequence (x,)nen converges in D(A%). O

Lemma 2.34. If the operator —A is self-adjoint, then A% is self-adjoint for all a € R.

14
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Proof. First, we show the claim for negative exponents. Recall that the operator —A is the generator of
a Cy semigroup (S(t))i>0. Since the operator —A is self-adjoint, the semigroup (S(t)):>o is self-adjoint as
well. By Definition 2.24] we get for every 1,22 € H and all & > 0

<A_al‘1,$2>H = <].—‘(10£) /ta_lS(t)xl dt,l‘2>
0 H

1 T a—1 o —«
= <1‘1, F(a) O/t S(t)CCQ dt> = <l‘1,A $2>,H . (26)

H

1 Ji a—1
= I‘(a)o/t <S(t)l‘1,$2>7_[ dt

Next, we show the claim for positive exponents. Using Theorem m (iv) and equation (2.6)), we obtain for
every 1,22 € D(A%) and all o > 0

(A%, x2) 4, = <Aa:101,A_“A‘Xm2>H = <A_“‘A“x17A“m2> = (21, A%2)y, -

H
For a = 0, the claim is obvious. O
Under additionally requirements, we get the following regularity results and useful estimates.

Theorem 2.35. Let —A be the generator of an analytic semigroup (S(t))i>0 satisfying the assumptions of
Remark[2.25 If 0 € p(A), then

(i) S(t): H — D(A%) for allt >0 and all @ € R;
(ii) for every x € D(A*) and all « € R, we have A*S(t)x = S(t)A%x;

(iii) the operator A*S(t) is linear and bounded for allt > 0 and all « € R. In addition, there exist constants
My, 6 > 0 such that for allt > 0 and all « > 0

IA*S ()| 230y < Mat™%e™";

(iv) for all o € (0,1], there exists a constant Co, > 0 such that for every v € D(A%)

1Stz — xlln < Cat®[[A%2] 3.

Proof. The proof can be found in [70, Chapter 2, Theorem 6.13] and [89 Theorem 7.7.2]. O

Remark 2.36. The previous theorem is the main result of this chapter and used frequently in the following
chapters. Hence, we will often require that an analytic semigroup satisfying Remark [2.25, Moreover, the
number 0 has to be an element of the resolvent set.

Corollary 2.37. Let R(A\;—A) be the resolvent operator of —A with a real number A € p(—A) such that
A > 0. If the assumptions of Theorem hold, then we have for everyy € D(A%) with a < 1

A“R(N;—A)y = R(A\; —A)A%y.

Proof. Using Theorem we get for every y € H

R\, —A)y = /e_’\tS(t)y dt.
0

15
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First, we show the claim for o < 0. By Remark the operator A® is linear and bounded. Using Theorem
we obtain

A“R(\; —A)y:A“/ “MS(t)ydt = /e_)‘tS (t) A%y dt = R(\; —A) A%y
0 0

Next, let a € (0,1). By Theorem [2.29] (i), the operator A® is linear and closed. Due to Theorem [2.35] (iii),

we have
oo

/e_ht\\A“S(t)yllndt < Ma/e_“t_“dtllyllﬂ = Mo AT (1 = a)lyfla < oo

0
Hence, the assumptions of Proposition are fulfilled. Using additionally Theorem we get for every
y € D(A%)

A“R(\; —A)y = Aa/e MS(t)y dt = /e‘”S(t)Aaydt = R(\;—A)A%y
0 0

2.4. Friedrichs Extension

To obtain that an operator is the generator of an analytic semigroup, we will frequently use Corollary
This requires a self-adjoint operator, which is not always given. However, one can often show that a self-
adjoint extension exists, which is given by the so called Friedrichs extension. First, we introduce the energy
space of a linear (not necessarily bounded) operator A: D(A) C H — H. We start with the definition of
semi-bounded operators.

Definition 2.38. A linear and densely defined operator A: D(A) C H — H is called semi-bounded if
there exists a constant ¢ € R such that for every x € D(A)

(Az,x)yy > clll,
Theorem 2.39. A semi-bounded operator A: D(A) C H — H is symmetric.

Proof. By definition, the domain D(A) is dense in H and (Ax,x),, is real. The claim follows immediately
from [85, Theorem 4.1.5 (d)]. O

Let the operator A: D(A) C H — H be semi-bounded with (Az, z),, > c||z||7, for every x € D(A) and
let A € R such that A + ¢ > 0. We set for every z,y € D(A)

[z, y]x = (A7, y)n + Mz, y)n. (2.7)

One can easily verify that [-,]x is an inner product on D(A). Then the norm is defined by ||z|x = v/[z, ]
for every x € D(A). Since the space D(A) is not complete with this norm, we need the following construction
of the so called energy space.

Definition 2.40. Let the operator A: D(A) C H — H be semi-bounded with (Ax,x),, > c||z||3, for every
x € D(A) and let A € R such that A+ ¢ > 0. The energy space H) is defined by

o, = {x € H: there exists a sequence (Tp)neny C D(A) such that lim ||z — 2,]y =0
n—oo
and lim ||z, — zp|x = O} .
n,M—00

The sequence (Tn)nen i called an approximating sequence.

16



Chapter 2. Infinitesimal Generators of Analytic Semigroups

Lemma 2.41 (Lemma 4.1.8,[85]). Let x,y € H, with approzimating sequences (Tn)nen and (Yn)nen,
respectively. Then the limit
lim [xnayn])\ = [$7y]A

n—roo

exists and is independent of the choice of the approximating sequences.

Due to the previous lemma, we can define the inner product [-, -] on the energy space Hy. Moreover, we
get the following properties.

Theorem 2.42 (Theorem 4.1.8,[85]). Let the operator A: D(A) C H — H be semi-bounded satisfying
(Az,x), > c||z|3, for every x € D(A) and let X € R such that X+ ¢ > 0. The space Hy equipped with the
inner product [x,y]x for every x,y € Hy in the sense of Lemma becomes a Hilbert space. The domain
D(A) is a dense subset of Hx. If p € R satisfies p+c > 0, then Hy = H,, and the corresponding norms
|- llx and || - ||, are equivalent.

Due to the previous theorem, we can conclude that the energy space H) depends only on the operator
A: D(A) C H — H and not on A € R. Hence, we shall write H4 instead of Hy. We are now able to state
Friedrichs extension theorem.

Theorem 2.43 (Theorem 4.1.9, [85]). Let the operator A: D(A) C H — H be semi-bounded satisfy-
ing (Ax,x), > cl|z||3, for every x € D(A). If Ha is the corresponding energy space, then the operator
Ap: D(Ap) CH — H given by

D(Ap) = HaND(A"), Apx= A"z for every x € D(AF)
is a self-adjoint extension of the operator A. Moreover, we have for every x € D(Af)
(Apa,x)y > clz]3.

Remark 2.44. Let A: D(A) C H — H be a semi-bounded operator. By Theorem we get that A
is symmetric and hence, we obtain D(A) C D(A*) and Ax = A*x for every x € D(A). Also note that
D(A) C Hy since for every x € D(A) the sequence (Zn)nen given by x, = x for each n € N is an
approzimating sequence. Therefore, we can conclude that the operator Ap: D(Ap) C H — H constructed
in the previous theorem is an extension of the operator A.

2.5. Examples

In this section, we consider some important examples of closed operators generating analytic semigroups
such that their fractional powers are well defined. Here, we introduce the Laplace operator as well as the
Stokes operator defined on Ly-spaces.

2.5.1. The Laplace Operator

Here, we study the Dirichlet realization as well as the Neumann realization of the Laplace operator. Let
x = (x1,...,2,) € R™. For functions y: R™ — R, we introduce the nabla operator V given by

vy(o) = (942, )

Oz, ' Oz,

and we introduce the Laplace operator A defined by
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Often, we will omit the dependence on x for the sake of simplicity. Here, we analyze the Laplace operator as
a closed operator on the Hilbert space H = L?(D), where D is a bounded domain with sufficiently smooth
boundary 9D.

The Dirichlet Realization of the Laplace Operator

We assume that D C R” is a bounded domain with C? boundary dD. We set D(4g) = C§°(D) and we
define the operator Ag: D(Ag) C L?(D) — L?(D) by

Aoy = —Ay (2.8)
for every y € D(Ayp).

Lemma 2.45. The operator Ay: D(Ag) C L?*(D) — L*(D) defined by equation @ is semi-bounded with
(Aoy, y) L2 (D) > c||y||2L2(D) for every y € D(Ag), where ¢ > 0 is a constant.

Proof. Tt is well known that D(Ay) is dense in the space L?(D), see [85, Theorem 1.3.6/2]. Obviously, the
operator Ag is linear. By partial integration and the Poincaré inequality, there exists a constant ¢ > 0 such
that for every y € D(Ay)

(Aoy, y)r2() = —/DAy(ff)y(ff) da = /DVy(fE)Vy(x) dz = ||Vylli2(p) = cllyllZzp)-

Thus, the operator Ag is semi-bounded. O

Let Aj: D(A) € L*(D) — L*(D) be the adjoint operator of Ag. By the previous lemma, we can
apply Theorem with the result that the Friedrichs extension of the operator A, exists. We denote the
Friedrichs extension of the operator Ag by A: D(A) C L?(D) — L*(D). Moreover, we get the following
properties.

Lemma 2.46. The operator A: D(A) C L?(D) — L*(D) is self-adjoint and we have for every y € D(A)
(Ay,y)2(p) > CHy||2L?(D)7 (2.9)
where the constant ¢ > 0 arises from Lemma|2.49. Furthermore, we have
D(A) = Hy(D) N H*(D), Ay =-Ay
for every y € D(A).
Proof. By Theorem we have
D(A) = Ha, N D(4;), Ay = Agy

for every y € D(A), where H 4, is the energy space of the operator Ag. The operator A is the self-adjoint
extension of Ay and we have for every y € D(A)

(Ay,y)L2(p) = cllyllZz ()

where the constant ¢ > 0 arises from Lemma
Next, we determine the domain D(A) explicitly. We start with the space Ha,. For every y,z € D(Ay),
let [y, z]1 be given by equation |D with A =1 and ||y|l1 = /[y, y]1. By partial integration, we obtain for
every y € D(Ay)
1911 = (Aoy, y) L2y + 191|720y = IVUlIZ2(0) + 9l Z2(p)-
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Hence, the norm || - ||; is equal to the norm on H!(D). It is well known that D(Ap) is dense in the space
H} (D), see [85], Theorem 1.5.5/1]. By definition of the energy space, we get Ha, = H} (D). To determine the
set D(AS), we first calculate the operator Af. In the sense of distributions, we obtain for every y € D(Ay)
and z € D(Ap)

(A3, Y 1ao) = (2, Aoy) 2(p) = — /D (@) Ay(z) do = — /D Ax(@)y(@) do = (~A2,y) papy - (2.10)
Hence, we get for every z € D(A})
Ajz = —Az
in the sense of distributions. Moreover, we have
D(4y) c {z€ L*(D): — Az € L*(D)}.

Conversely, if z € L?(D) such that —Az € L?(D) in the sense of distributions, then by equation (2.10)), we
get z € D(AS). Therefore, we obtain

D(4y) ={z€ L*(D): — Az L*(D)}.
By definition of the domain of the operator A, we can conclude
D(A) = Hay N D(A}) ={z € H)(D): — Az € L*(D)}.

It is well known that we can write equivalently D(A) = H} (D) N H%(D), see [85, Remark 6.2.2/3] and the
references therein. O

Remark 2.47. There exists another approach to introduce the Laplace operator with Dirichlet boundary
condition. For more details, we refer to [30, Chapter 2, Section 3.3.A]. Let D C R™ be a bounded domain
with C*° boundary 0D. We consider the following Dirichlet boundary value problem:

{—Ay(x) =z(z) zeD,

y(x) =0 x € dD. (2.11)

Here, the definition of a solution (often called weak solution) is in a generalized sense as follows: First, we
assume that y € C5°(D). Multiplying both sides of the equation —Ay = z by a function ¢ € C§°(D) and
using partial integration, we get

/ Vy(z) - Vo(x)de = / 2(z)¢(z) d. (2.12)
D D

Obviously, the above equation remains valid for y,¢ € Hg(D) and z € L*(D), which can be achieved using
density results. We call y € H3(D) a weak solution of if equation holds for every ¢ € Hi (D).
If z € L*(D), then there exists a unique weak solution y € H}(D) of . Moreover, we get y € H*(D),
see [15, Theorem 9.25]. Hence, we can introduce an operator A: D(A) C L*(D) — L*(D) given by

D(A) = HY(D) N H*(D), Ay=—Ay

for everyy € D(A). The operator A is self-adjoint and there exists a constant ¢ > 0 such that the inequality
(Ay,y)2(p) > cHy||2LQ(D) holds for every y € D(A), see [89, Section 4.1].

We proceed with the Friedrichs extension A: D(A) C L*(D) — L*(D).
Corollary 2.48. The operator A: D(A) C L?(D) — L?(D) is closed and densely defined.
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Proof. Recall that the operator A is self-adjoint. Hence, we can conclude that the operator A is closed, see
[85, Theorem 4.1.5. (c)]. Since D(Ag) C D(A) and D(Ap) is dense in L?(D), the set D(A) is also dense in
L*(D). O

Next, we show the existence of the resolvent operator.

Lemma 2.49. If A\ > 0, then the resolvent operator R(\; —A) = (A + A)~! exists and we have

. (2.13)

> =

RN = A 22 (py) <
Proof. For the operator A + A, we define the range by
R(\+ A) = {z € L*(D): there exists y € D(A) such that (A 4+ A)y = 2}
and the null space by
NA+A)={ye D(A): A+ A)y =0}.
Since the operator A is self-adjoint, we have
L*(D) =R\ +A) e N+ A),

where @ denotes the direct sum, see [85, Lemma 4.1.6]. First, we determine the set AN'(A + A). Using
inequality (2.9), we get for every y € D(A)

I+ Dyli20) = Nyl 720y + 2MAY, v) 2(0) + [ AY[l72(py > A [1Yll72(p)- (2.14)
Hence, we have for every y € N(A+ A)

0=[|A+ AyllZ2p) = Nllyll72(p)-

As a consequence, the null space N'(\ + A) contains only 0 € D(A). Thus, we have L?(D) = R(A + A).

Next, we show that L?(D) = R(A+ A). If z € L?(D), then there exists a sequence (2, )men C R(A + A)
such that lim,, ,o 2, = 2 in L?(D). Moreover, there exists y,, € D(A) such that (A + A)y,, = 2., for each
m € N. By inequality , we have for each my,mo € N

1 1
||ym1 - ym2HL2(D) < XH()\—"_A)(yml - ym2>||L2(D) = Xllzml - Zm2||L2(D)'

We obtain that the sequence (ym)men is a Cauchy sequence in L?(D) and hence, there exists y € L?*(D)
such that lim,, s ¥ = y in L?(D). Moreover, we get

lim Ay, =

lim
m— 00 m— 00

(A + A)Ym — Aym] = n}gnoo [Zm — AYm| = 2 — Ay,

where the convergence is in L?(D). Since the operator A is closed, we can conclude that y € D(A) and
(A + A)y = 2. Therefore, we have L?*(D) = R(\ + A).

Next, we consider the operator A + A: D(A) — L%*(D). Let y1,y2 € D(A) satisfy (A + A)y; = z and
(MA)ys = 2z for z € L?(D). We obtain y; —y» € N (A+A) and hence, we get y; = y». Therefore, the operator
A + A is injective. Since L?*(D) = R(\ + A), we infer that the inverse operator (A + A)~!: L?(D) — D(A)
exists. Due to inequality , we get for every y € L*(D)

1 _ 1
1RO =A)yllzm) < SIA+ DA+ A yll2m) = Syl o)

and hence, inequality (2.13]) holds. O
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We are now able to show the main result.

Theorem 2.50. The operator —A: D(A) C L?(D) — L?(D) is the generator of an analytic semigroup of
contractions (e=4);>.

Proof. Due to Corollary the operator —A: D(A) C L?(D) — L?(D) is closed and densely defined. By
Lemma [2.49] the resolvent set p(—A) contains Ry and for A > 0

1
[R(A; —A) || 2(z2py) < T

Thus, we can apply Theorem with the result that the operator —A is the generator of a Cy semigroup
of contractions (e’At)tZO. Due to Lemma the operator — A is self-adjoint and thus, the Cy semigroup
(e=4);>0 is analytic due to Corollary O

As a consequence of the previous theorem and the fact that the operator —A is self-adjoint, there exists

a constant € > 0 such that

le= 4\ cz2pyy < e

for all t > 0, see [89] Theorem 7.2.8]. Hence, the assumptions of Remark are satisfied with M = 1.
Therefore, we can define fractional powers of the operator A denoted by A% with o € R according to
Section Furthermore, if 9D is a C* boundary, then we can determine the domain D(A?) for « € (0, 1)
explicitly.

Theorem 2.51 (Theorem 1, [38]). The domain of fractional powers of the operator A is given by
(i) D(A*) = H?>*(D) for a € (0, %),
(ii) D(AYY) C HY2(D),
(iii) D(A%) = H3*(D) for a € (4, 3),
(ii) D(A¥*) c Hy*(D),
(v) D(A*) = H3*(D) for a € (3,1).

Remark 2.52. For general results on the Dirichlet realization of the Laplace operator defined on LP-spaces,
we refer to [89].

The Neumann Realization of the Laplace Operator
Let D C R™ be a bounded domain with C*° boundary 9D. We set

D(Ay) = {y € C™(D): g—z =0on 6@} ,

where 7 is the C*° outward normal to 9D, i.e. the vector field n = (11, ...,n,) is the outward normal to 9D
with 71, ..., m, € C>(0D). We define the operator Ag: D(Ag) C L?*(D) — L*(D) by

Aoy = Ay (2.15)
for every y € D(Ayp).

Lemma 2.53. The operator Ay: D(Ag) C L*(D) — L?*(D) defined by equation is linear, densely
defined and (Aoy,y)r2(py < 0 for every y € D(Ag).
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Proof. Since C(D) is dense in L*(D) and C(D) C D(Ay), we have that D(Ay) is dense in L?(D). Obviously,
the operator Ay is linear. By Green’s identity, we get for every y € D(Ay)

(Aoy,y) 12y = /D Ay(x)y(z) de = — /D Vy(e) - Vy(z) dz = —||Vy|2(p) < 0.

O

As a consequence, we get that the operator —Ag is semi-bounded with (—Aoy,y)r2(p)y > 0 for every
y € D(Ap). Let Ay: D(A}) C L*(D) — L?(D) be the adjoint operator of Ag. Then we can apply Theorem
with the result that the Friedrichs extension of the operator Ay exists. In the remaining part, we
denote the Friedrichs extension of the operator Ag by A: D(A) C L?*(D) — L*(D). We get the following
properties, which can be derived similarly to Lemma [2.46

Lemma 2.54 (Theorem 5.31 (i), [48]). The operator A: D(A) C L*(D) — L?*(D) is self-adjoint and
(Ay,y)12(p) < 0 for every y € D(A). Furthermore, we have

0

D(A) = {y € H*(D): a—y =0on 6’D} , Ay = Ay for every y € D(A).
n

Remark 2.55. For the Neumann realization of the Laplace operator, the number 0 is an eigenvalue with

constant functions as the related eigenfunctions, while 0 is an element of the resolvent set of the Dirichlet

realization of the Laplace operator, see [[8, Theorem 5.31]. This is the main difference of these operators.

Remark 2.56. Similarly to Remark[2.47, there exists another approach to introduce the Laplace operator
with Neumann boundary conditions. For more details, we refer to [30, Chapter 2, Section 3.3.C]. Let
D C R"™ be a bounded domain with C*° boundary 0D. We consider the following Neumann boundary value
problem:

Ay(x) = z(x) z €D,

W) g seop (2.16)
on ’

where 1 is the outward normal to D. Here, the definition of a solution (often called weak solution) is in
a generalized sense as follows: First, we assume that y € C*°(D). Multiplying both sides of the equation
Ay = z by a function ¢ € C°(D) and using Green’s identity, we get

/ Vy(z) - Vo(x) de = / 2(z)¢(z) du. (2.17)
D D
Obviously, the above equation remains still valid for y,¢ € H*(D) and z € L*(D), which can be achieved

using density results. We call y € HY(D) a weak solution of if equation holds for every
¢ € HY(D). A weak solution y € H' (D) of exists and is unique up to a constant if and only if

z € L*(D) satisfies
/ z(z)dx = 0.
D

Moreover, one can conclude that y € H*(D), see [15, Theorem 9.26]. Hence, we can introduce an operator
A: D(A) C L*(D) — L?*(D) given by

D(A) = {yeHQ(D): g—z:O on BD}, Ay = Ay

for every y € D(A). The operator A is self-adjoint and (Ay,y)r2py < 0 for every y € D(A), see [89,
Section 4.2 and Lemma 1.6.1].
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Similarly to the Dirichlet realization of the Laplace operator, we can show that the operator A is closed
and densely defined. Moreover, if A > 0, then the resolvent operator R(\; A) exists and we have

1
RN Al ez < T
Therefore, we get the following generation theorem, which can be obtained similarly to Theorem [2.50

Theorem 2.57. The operator A: D(A) C L*(D) — L%(D) is the generator of an analytic semigroup of

contractions (e);>o.

By Remark the number 0 is an eigenvalue of the operator A and hence, we have 0 ¢ p(A). As a
consequence, we can not apply Theorem [2:35] directly. Here, we can easily overcome this problem as follows:
Let A > 0. Due to the previous theorem, the operator A — X is still the generator of an analytic semigroup
given by (e~ *eAt),, see [0, Chapter 3, Corollary 2.2]. Hence, the operator A— \ satisfies the assumptions
of Remark with M =1 and 8 = X. Therefore, we can define fractional powers of the operator A — A
denoted by (A — A)* with o € R according to Section Also note that we can apply Theorem since
0 € p(A — A). Furthermore, we can determine the domain D((A — A)%) for a € (0,1) explicitly.

Theorem 2.58 (Theorem 2, [38]). The domain of fractional powers of the operator A — A is given by
(i) D((A — A)*) = H?>*(D) for a € (0,3),
(ii) D((A — A)*/*) C H¥*(D),

(iii) D((A — A)®) = {y € H*(D): 92 =0 on ap} forae (2,1).

2.5.2. The Stokes Operator
Let D C R™ be a bounded domain with C? boundary 9D and let

Cow =1y € (C5°(D))": div y = 0 in D}.
We introduce the following common spaces:

H = Completion of C§°, in (L*(D))"
={ye(L*(D)":divy=0inD,y-n=0ondD},
V' = Completion of Cg, in (Hl(D))n
= {y € (HA(D)" : divy =0in D} ,

where 7 denotes the unit outward normal to D. The space H equipped with the inner product
(Y, 2)1 = (Y, 2) (L2 (D))r = / Zyi(a:)zi(x) dx
D=1

for every y = (y1,..,Yn),2 = (21,...,2n) € H becomes a Hilbert space. For all x = (z1,...,2,) € D,
4 131 . . . , » 4 . .
we denote D7 = m with |j] = >, ji. We set DIy = (D7yy, ..., Diy,) with |j| < 1 for every

y= (y1,..-,yn) € V. Then the space V equipped with the inner product

(,2)v = > _(Dy, D72) (12 (py)e
l71<1
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for every y,z € V becomes a Hilbert space. The norms in H and V are denoted by || - ||z and || - ||v,
respectively. Moreover, we get the orthogonal Helmholtz decomposition

(L*(D))" = H®{Vy:y € H' (D)},

where @ denotes the direct sum. Then there exists an orthogonal projection IT: (L?(D))" — H, see [39].
We set D(Ag) = C§%, and we define the operator Ag: D(Ag) C H — H by

Agy = —IIAy (2.18)

for every y € D(Ap), where A is the Laplace operator defined for vector functions in the sense that
Ay = (Ayla ey Ayn)

Lemma 2.59. The operator Ay: D(Ag) C H — H given by is semi-bounded with (Aoy, y)m > c|ly|l%
for every y € D(Ap), where ¢ > 0 is a constant.

Proof. By definition of the space H, we get that D(Ap) is dense in H. Since the operator IT: (L?(D))" — H
is an orthogonal projection, the operator II is linear, self-adjoint and we have Ily = y for every y € H.
Hence, the operator Ay is linear and we get for every y € D(Ag)

(Aoy, y)n = —(MAY, y)u = —(Ay,y)u.
The remaining part of the proof can be obtained similarly to Lemma [2.45] O

Let Af: D(A§) C H — H be the adjoint operator of Ag. As a consequence of the previous lemma, we
can apply Theorem with the result that the Friedrichs extension of the operator Ay exists. In the
remaining part, we denote the Friedrichs extension of the operator Ag by A: D(A) C H — H. We get the
following properties, which can be derived similarly to Lemma [2.46]

Lemma 2.60. The operator A: D(A) C H — H is self-adjoint and we have for every y € D(A)

where the constant ¢ > 0 arises from Lemma|2.59, Furthermore, we have
D(A) = (H*(D)" NV, Ay = —TIAy for every y € D(A).

Similarly to the Dirichlet realization of the Laplace operator, we can show that the operator A is closed
and densely defined. Moreover, if A > 0, then the resolvent operator R(\; —A) exists and we have
1

1RO =l e < 5

Therefore, we get the following generation theorem, which can be obtained similarly to Theorem

Theorem 2.61. The operator —A: D(A) C H — H is the generator of an analytic semigroup of contrac-
tions (e=4);>0.

Due to the previous Theorem and the fact that the operator —A is self-adjoint, there exists a constant
6 > 0 such that

||€_At||z:(H) <e?

for all ¢ > 0, see [89, Remark 7.2.1]. Hence, the assumptions of Remark are satisfied with M = 1.
Therefore, we can define fractional powers of the operator A denoted by A% with a € R according to Section
Furthermore, if the boundary 9D is a C* boundary, then we can determine the domain D(A%) for
a € (0,1) explicitly. Let the operator Ap: D(Ap) C (L*(D))"™ — (L*(D))" be the Dirichlet realization
of the Laplace operator, which we can introduce similarly to Section [2.5.1} Then, we get the following
presentation.
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Theorem 2.62 (|37, [88]). For all a € (0,1), we have
D(A%) = D(A%) N H.

As a consequence of the previous theorem and Theorem we can determine the domain D(A®%) for
a € (0,1) explicitly.
Corollary 2.63. The domain of fractional powers of the operator A is given by

(i) D(A%) = (H**(D))"NH for0<a <1

(ii) D(AY*) c (H'*(D))" nH,

3

(iti) D(A*) = (HZ*(D))"NH for + <a<3,

NI

(ii) D(A%) C (Hg/2<p))" nH,

(v) D(A%) = (H3*(D))" N H for 2 <a<1.

Remark 2.64. For general results on the Stokes operator defined on LP-spaces, we refer to [43)].
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Chapter 3

Stochastic Calculus

This chapter is devoted to SPDEs both of forward and of backward type. Forward SPDEs driven by Lévy
noise are often stated as stochastic evolution equations on infinite dimensional spaces, see [71]. The theory
presented here extends results well known for the case of Wiener noise, see [23 42} [73]. For stochastic
ordinary differential equations with Lévy noise, we refer to [20] [74]. Similarly, backward SPDEs can also
be stated as stochastic evolution equations, see [Il, [52]. Existence and uniqueness results of these backward
equations are mainly based on a martingale representation theorem. Since these representation formulas are
not available for infinite dimensional Lévy processes, we have to restrict to the case of to backward SPDEs
driven by Wiener noise.

We start with basic notions and definitions concerning random variables and stochastic processes on
separable Hilbert spaces. Afterwards, we give an overview on properties of infinite dimensional Lévy pro-
cesses. For a certain class of Lévy processes, we introduce the stochastic integral and we state basic results,
which we use in the following chapters. This allows us to define solutions to SPDEs both of forward and
of backward type. The equations considered here are mainly motivated by control problems we discuss in
the following chapters. For forward SPDEs, we will figure out that the mild solution is useful to involve
nonhomogeneous boundary conditions. In control theory, backward SPDEs characterizes the dynamics of
the adjoint equation, which is closely related to the corresponding forward equation. For that reason, we
will also consider mild solutions of backward SPDEs. Finally, we state different concepts of solutions and
we will give a relationship between these solutions, where we mainly use results shown in [I} 23] 53] [71].

Throughout this chapter, let (Q2, F7,P) be a given probability space. We always assume that (Q, F,P) is
complete, i.e. A€ F, BC A and P(A) =0 imply B € F.

3.1. Preliminaries

Let U be a separable Hilbert space and let B(U) denote its Borel o-field. An U-valued random variable or
a random variable with values in I/ is any measurable mapping X :  — U, i.e. X maps €2 into U such that
{X e A} ={weQ: X(w) € A} € F for arbitrary A € B(U). We denote the law or the distribution of X by
Z(X)(A) =Pw e Q: X(w) € A) for all A € B(U). For an U-valued random variable X, one can introduce
its expected value

E[X] = /Q X (w) P(dw)

in the sense of a Bochner integral as introduced in Section [B] The expected value is well defined if
BNl = [ 1% (@)l Pld) < o (3.1)

A random variable satisfying condition is integrable. If E || X||], < co with 1 < p < oo, then X is
p-integrable. The space of p-integrable random variables with values in U is denoted by LP(Q;U).

Let Z be a time interval given by all nonnegative real numbers RT or a finite interval [0, 7] with T > 0.
A family (X (t)):ez of U-valued random variables is called U-valued stochastic process or stochastic process
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with values in Y. The stochastic process (X (t))ter is p-integrable if for all ¢t € Z, the random variable X (t)
is p-integrable. We set X (t)(w) = X (¢t,w) for all t € Z and w € Q. The function X(-,w): Z — U is called
trajectory of (X (t))tez.

Definition 3.1. Let (X(t))iez be a stochastic process with values in U. An U-valued stochastic process
(Y(t))iez is a modification of (X (t))iez if for allt € T

Next, we introduce different continuity properties of stochastic processes.
Definition 3.2. An U-valued stochastic process (X (t))tez s

e stochastically continuous if for allt € T and € > 0

lim P(|[X(#) = X(s)[lu > €) = 0;

e continuous (with probability 1) if its trajectories X (-,w) are continuous P-almost surely.
Under additional requirements, we can define the mean square continuity.

Definition 3.3. An U-valued square integrable stochastic process (X (t))iez is mean square continuous
or continuous in mean square if for allt € T

. . 2:
lim B[ X (1) — X (s) % = 0.

We have the following relationships between these various types of continuity, which are well known for
real valued stochastic processes, see [55, [66]. One can easily adapt these results to Hilbert space valued
stochastic processes.

Proposition 3.4. We have the following implications:
(i) Fvery continuous stochastic process is stochastically continuous.
(ii) Every mean square continuous stochastic process is stochastically continuous.

In general, there is no relation between the continuity with probability 1 and the continuity in mean
square. Furthermore, we obtain that the stochastically continuity is the weakest notion among the continuity
properties introduced above. However, to require the stochastically continuity is often sufficient. Obviously,
stochastic processes with jumps occurring in the trajectories are not continuous. Therefore, we introduce
the concept of cadlag trajectories.

Definition 3.5. A stochastic process (X (t))iez taking values in U is cadlag (continu a droite et limites a
gauche) if P-a.s.

o (X(t))tez is right-continuous, i.e. X (t+) =lim,; X (s) = X (¢) for allt € T and
o (X (t))tez has left limits, i.e. X (t—) = limgy, X (s) exists for allt € T.

Next, we introduce different properties of measurability for stochastic processes. Let the probability space
(Q, F,P) be equipped with a filtration (F;)iez, i.e. (Ft)iez is a family of increasing o-fields.

Definition 3.6. The filtration (Fi)iez is said to be normal if Fo contains all A € F such that P(A) =0
and we have Fy = (5, Fs for all t € T.
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Definition 3.7. An U-valued stochastic process (X (t))icr is Fr-adapted if for all t € I, the random
variable X (t) is Fi-measurable.

Let Pz denote the smallest o-field of subsets of Z x {2 containing all sets of the form
(s,t] x Awith s,t €Z,s<t,AeFs and {0} x A with A € Fy.
We have the following definition.

Definition 3.8. AnU-valued stochastic process (X (t)):cz is called predictable if it is a measurable mapping
from (Z x Q,Pz) into (U, BU)).

Every predictable stochastic process is Fi-adapted. The converse is in general not true. However, the
following result is useful to conclude that a stochastic process has a predictable modification.

Proposition 3.9 (Proposition 3.7 (ii),[23]). Assume that the stochastic process (X (t))¢cjo, 1] is Fi-adapted
and stochastically continuous. Then the process (X (t))tcjo,r) has a predictable modification.

Next, we define stopping times, which are necessary for the definition of local solutions to SPDEs.

Definition 3.10. A random variable 7: Q — [0,00] is a stopping time (with respect to the filtration
(Fe)tez) if for allt € T
{r<t}={weQ: 7(w) <t} e F.

We have the following basic properties, which follow immediately from the previous definition.

Lemma 3.11 (Lemma 9, [82]). Let 7 and p be stopping times and let (Tm)men be a sequence of stopping
times. Then

(i) T A p=min{r, p} and 7V p = max{r, p} are stopping times;
(ii) the limit T = limy,, o0 Ton 98 @ stopping time if (T )men 1S increasing or decreasing.

Lemma 3.12 ([74,[78,[82]). Let the Filtration (F)iez be normal and let (X (t))iez be an Fi-adapted cadlag
process with values in R™, n € N. If T € B(R™) is open, then

T=inf{t>0:¢€Z,X(t) eTl}
is a stopping time. We employ the standard convention that inf{(} = +oo0.

Theorem 3.13. Let the Filtration (Fi)iez be normal and let (X(t))iez be an Fi-adapted cadlag process
with values in U. If ¢ > 0, then
T=mf{t >0: ¢t €L, | X{)|u > c}

is a stopping time. We employ the standard convention that inf{(} = +oo.

Proof. Obviously, the stochastic process (||X(¢)|u)tez is Fi-adapted, cadlag and takes values in R. By
Lemma with n = 1, the claim follows immediately. O

Remark 3.14. IfZ = [0,T], then by Lemma (i) and Theorem[3.13, the random variable
r=inf{t € (0,T): | X({t)||et > c} AT
18 a stopping time.

Finally, we introduce martingales on Hilbert spaces. Therefor, we need the concept of the conditional
expectation. The existence and uniqueness is provided by the following result.
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Proposition 3.15 (Proposition 3.13, [71]). Let G be a sub-o-field of F and let X be an U-valued integrable
random wvariable. Then, up to a set of P-measure 0, there is a unique integrable G-measurable random
variable E[X|G] with values in U such that for all A € G

/A X (w) P(dw) = /A E[X|G](w) P(dw).

In the previous proposition, we call E[X|G] the conditional expectation of X given G. We have the
following basic properties, which are well known for real-valued random variables, see [12].

Proposition 3.16 (Proposition 3.15, [71]). Let X,Y be U-valued integrable random variable and let a,b € R.
Assume that G is a sub-o-field of F. Then the following properties hold P-almost surely:

(i) ElaX +bY|G] = aE[X|G] + bE[Y]|F];
(11) if K € L(U; 1) where H is another separable Hilbert space, then E[K X|G] = K E[X|G];

(iti) if X is G-measurable and £ is a real-valued integrable random variables such that £ X is integrable,
then E[§ X|G] = X E[¢]G];

(111) if V is a sub-o-field of G, then E[E[X|G]|V] = E[X|V];
() if X is independent of G, then E[X|G] = E[X];

(v) if f: R = R is a convex function such that the random wvariable f(||X|jys) is integrable, then we get
FUEXG] ) < B (X065

(vi) if the o-fields (Gm)men 18 an increasing sequence satisfying G = o(Gm: m € N), then we obtain

We proceed with the definition of Hilbert space valued martingales.

Definition 3.17. An F;-adapted integrable stochastic process (M(t))iez with values in U is a martingale
(with respect to the filtration (Fi)iez) if for all s,t € T with s <t and P-a.s.

E[M ()| Fs] = M(s).

Proposition 3.18 (Proposition 3.25, [71]). Let (X(t))iez be an Fi-adapted integrable stochastic process
with values in U. Assume that X (t) — X (s) is independent of Fs for all s,t € T witht > s. Then the process
(M(t))rez given by M(t) = X(t) — E[X (t)] for all t € T and P-almost surely is a martingale.

Theorem 3.19 (Theorem 3.41, [71]). Let (M (t))i>0 be a stochastically continuous square integrable mar-
tingale with values in U. Then (M(t))i>0 has a cadlag modification (still denoted by (M (t))i>0) satisfying
for all T >0 and all r >0

1
P( sup ||M(#)[|er > r) < S E[M(D)[Z

te[0,T)

Moreover, we have for all T > 0 and all k € (0,2)

E swp M)l < 5ot (BT,

t€[0,T] 2—k

Let M?(U) contain all stochastically continuous square integrable martingales (M (t));>o with values in
U. By Theorem we can always assume that the elements of M?(U) are cadlag. Moreover, we have the
following result.
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Theorem 3.20. If M € M?(U), then there exists a unique increasing predictable process ((M);)i>0 such
that (M)o =0 and (||[M )| — (M)¢)t>0 is a real-valued martingale.

Proof. The claim follows by applying the Doob-Meyer decomposition theorem to the real valued process
(”M(t)HzQ,{)tzo, see [71]. *

In the previous theorem, the process ((M);)¢>o is called angle bracket or predictable variation process.

Theorem 3.21. Let M € M?(U) such that M(0) = 0. Then we have for all T > 0

E sup [[M(t)|F <4B(M)r = 4E|M(T)|Z.
te[0,T)

Proof. One can deduce the assertion from [63] Theorem 20.6]. O

Finally, for M € M?(U), we introduce the operator angle bracket process denoted by ({((M)););>0. Let
L1 (U) be the space of all nuclear operators on U equipped with the nuclear norm and let £ (&) denote the
subspace of £1(U) containing all self-adjoint nonnegative nuclear operators. For more details, see Appendix
For z,y € U, we define the operator x @ y: U — U by = ® y(z) = (x, 2)yy for every z € U. Then, we
have z @ y € L1(U) with ||z @ y||z, @) = l|z|lullylle. I M € M?(U), then the process (M (t) @ M(t))¢o is
an L;(U)-valued right-continuous process such that for all £ > 0

E[|M () ® M)z, @) = EIM@)]l-
We have the following result.

Theorem 3.22 (Theorem 8.2, [T1]). Let M € M?(U). Then there exists a unique right-continuous increas-
ing predictable process (((M))¢)i>0 with values in LT (U) such that ((M))o = 0 and (M (t)@M (t)—{((M))¢)i>0
is an L1(U)-valued martingale. Moreover, there exists a predictable process (Q(t));>o0 with values in L (U)
such that for all t > 0 and P-a.s.

(M), = / Q(s) d(M),.
0

3.2. Lévy Processes

In this section, we give an introduction to Lévy processes with values in a separable Hilbert space U. For
a comparison with finite dimensional Lévy processes, we refer to [2]. We assume that the probability space
(Q, F,P) is equipped with a normal filtration (F;);cz. Let us start with a formal definition.

Definition 3.23. A stochastic process (L(t))i>o taking values in U is called a Lévy process if
e P-a.s. L(0) =0;

o (L(t))t>0 has independent and time-homogeneous increments, i.e. for 0 < tog < t; < ... < ty,, the
random variables L(t1) — L(to), L(t2) — L(t1), ..., L(tm) — L(tm—1) are independent and for any s,t > 0
with s < t, the law L (L(t) — L(s)) depends only on the difference t — s;

o (L(t))t>0 is stochastically continuous.
For an U-valued Lévy process (L(t))i>0, let py be the law of the random variable L(t) for ¢ > 0. Then

(i) po = 0o and pgrs = pg * s for all s, > 0;
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(ii) limgpope({z € U: ||z|lu < r}) =1 for every r > 0.

Here, the measure dy is the unit measure concentrated at {0} and u; * ps denotes the convolution of the
measures iy and ps. The family of measures (p);>0 is called the convolution semigroup of measures. For
more details, see [71].

Theorem 3.24 (Theorem 4.3, [71]). Every Lévy process (L(t))t>o0 has a cadlag modification.

Given a cadlag process (L(t)):>0, the process of jumps (AL(t))¢>o is defined by AL(t) = L(t) — L(t—)
for all ¢ > 0 and P-almost surely.

Theorem 3.25 (Theorem 4.4, [71]). Assume that (L(t))i>0 is an U-valued cadlag Lévy process with bounded
Jumps, i.e. there exists ¢ > 0 such that ||AL(t)|ly < ¢ for all t > 0 and P-almost surely. Then we have for
all B>0 and allt >0

EAIEOIu < o

For every U-valued cadlag Lévy process (L(t)):>o0 with bounded jumps, we have E||L(t)||}; < oo for each
n € N and all ¢t > 0 resulting from the previous theorem.

3.2.1. Examples
Compound Poisson Processes

We start with a definition of a Poisson process, which is an increasing Lévy process taking values in Z%
with jumps of size 1.

Definition 3.26. A Poisson process (N(t));>o with intensity a € (0,00) is a Lévy process with values in

Z% such that the random wvariable N(t) has a Poisson distribution with parameter at for all t > 0, i.e. for

allt >0 and each k € ZT

(at)”
k!

Recall that a random variable Z with values in R is exponentially distributed with parameter a € (0, 00)
if P(Z > t) = e~ for all t > 0. The following proposition provides the construction of a Poisson process
based on a sequence of independent exponentially distributed random variables.

—at

P(N(t) = k) =

Proposition 3.27 (Proposition 4.9 (i) and (ii), [42]). The process (N(t))i>0 is @ Poisson process with
intensity a if and only if there exists a sequence (Zp,)men of independent exponentially distributed random
variables with parameter a such that for all t > 0 and P-a.s.

ift < Z
NOER S
k iftelZi+..+Zk, 21+ ...+ Z11).

As a consequence, a Poisson process takes values in Z* with a finite number of jumps on a finite time
interval. Due to the following proposition, we get that each jump is of size 1.

Proposition 3.28 (Proposition 4.9 (iv), [42]). An Z*-valued Lévy process (N(t))i>o0 is a Poisson process
if and only if for all t > 0
P(AN(t) = N(t) - N(t—) € {0,1}) = 1.

Next, we use Poisson processes for the construction of compound Poisson processes with values in the
separable Hilbert space U. Let v be a finite measure on U such that v({0}) = 0. Moreover, let v** denote
the k-th convolution of the measure v and let 1° = &g, i.e. ¥ is the unit measure concentrated at {0}. Then
we have the following definition.
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Definition 3.29. A cadlag Lévy process (L(t))i>0 with values in U is a compound Poisson process with
Lévy measure or jump intensity measure v if for all t > 0 and all T € B(U)

—v = tk *
P(L(t) € T) = e VWY " Y (D).
k=0

We get the following construction of a compound Poisson process given a Lévy measure v.

Proposition 3.30 (Theorem 4.15 (i) and (i), [42]). Let v be a finite measure supported on U\{0} and let
a=vU). An U-valued stochastic process (L(t))i>0 is a compound Poisson process with Lévy measure v if
and only if there exists a sequence (Zm)men of independent U-valued random variables with identical laws
equal to a='v and a Poisson process (N (t))i>o with intensity a and independent of (Zm)men such that for

allt > 0 and P-a.s.
N(t)

Lt) =Y Z.
k=1
Next, we state important properties of compound Poisson processes. We start with a condition for
integrability.

Proposition 3.31 (Proposition 4.18 (i), [42]). An U-valued compound Poisson process (L(t));>o with Lévy
measure v is integrable if and only if

/ [yllec v(dy) < oc. (3.2)
u

If the condition holds, then we have for allt >0

E[L(t)] =t /u yu(dy).

If (L(t))¢>0 is an integrable compound Poisson process with values in ¢, then one can introduce the
compensated compound Poisson process (L(t));>o given by L(t) = L(t) — E[L(t)] for all ¢ > 0 and P-almost
surely. We get the following result.

Proposition 3.32. Let (F;)i>0 be a normal filtration. If (L(t))i>0 is an integrable Fi-adapted compound
Poisson process, then the compensated compound Poisson process (L(t))i>o is a martingale.

Proof. Due to the fact that (L(t));>0 is an Fy-adapted Lévy process, the increment E(t) —Z(s) is independent
of F for all t > s > 0. By Proposition (i) and (iv), we get for all ¢ > s > 0 and P-a.s.

E [E(t)‘ fs} —E [E(t) - E(s)‘ fs] +E [E(s)‘ ]-"S] —E [Z(t) - E(s)} +E [E(s)‘ fs} :

Obviously, the process (Z(t))tzo is Fi-adapted and E [E(t)} =0 for all ¢ > 0. Since the filtration (F3)¢>0 is

normal, we can conclude that the process (L(t));>0 is a martingale. O
We proceed with a condition on (compensated) compound Poisson process to be square integrable.

Proposition 3.33 (Proposition 4.18 (iii), [42]). AnU-valued compound Poisson process (L(t));>o with Lévy
measure v is square integrable if and only if

/ Y2, v(dy) < oo. (3.3)
u
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If the condition holds, then we have for allt > 0

/u yv(dy)

Moreover, we get for allt > 0 and every x, € U

2
E|LE)Z =t /u g2 (dy) +

o E[Zo)|, =1 /u Il v(dy)-

B[(Z0).), (E0.2),] =t [ @zt

Finally, we state the characteristic function of a (compensated) compound Poisson process.

Proposition 3.34 ([71]). Let (L(t))i>0 be an U-valued compound Poisson process with Lévy measure v.
We have for every x € U, all z € C and allt > 0

E exp {z(z, L(t))uy} = exp {t/u (1 - ez<w’y>“) I/(dy)} .

For the compensated process (E(t))tzo, we have for every x €U, all z € C and allt >0

E exp {z <:E,E(t)>u} = exp {t/u (1 — e 4 z(m,y)u) V(dy)} .

Q-Wiener Processes

A Q-Wiener process is a typical example of a continuous Lévy process. The definition of a Q-Wiener
process requires to introduce Gaussian measures on (U, B(U)). First, we recall some basic properties of
Gaussian measures on finite dimensional spaces. A Gaussian measure y on (R™, B(R™)) with n € N is either
concentrated at one point p = §,, with m € R™ or has the density f: R — R given by
flz) = v e~ 3(Q (@—m) z—m)gn
(2m)" det(Q)

for all z € R™, where m = (m1,...m,) € R" and Q = (¢jx)j,k=1,.,n € R"*™ is a positive symmetric matrix.
The characteristic functional fi: R™ — R of a Gaussian measure y is given by

,&()\) _ / ei(/\,ac>Rn'u(dm) _ 6i</\,m>Rn—%(Q)\,/\>Rn

for all A € R™. As a consequence, a Gaussian measure on (R”, B(R™)) is uniquely determined by the values
of m and @ and hence, we denoted this measure by A (m, Q). Moreover, we have for each j,k=1,...,n

[ o Nm Q) =y and [y =) = ma) Nom,Q)(ds) = gy

n

Thus, we call m the mean and @ is the covariance matrix. Based on the finite dimensional setting, we can
introduce Gaussian measures on Hilbert spaces.

Definition 3.35. A measure p on the space (U, B(U)) is called Gaussian if for every h € U, there exist
m=m(h) €R and ¢ = q(h) > 0 such that for all A € B(R)

u({o € Us (hahy € A}) = N(m,q)(A).
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Proposition 3.36 (Theorem 2.1.2, [73]). A measure p on (U, B(U)) is Gaussian if and only if
A(A) = / Oy () = A= (@A
u
for every A €U, where m € U and Q € LT (U). Moreover, we have for every g,h € U
/u(x,h>u u(dx) = (m, h)y,
| (@ =l = mghu o) = (@
| = mlf utao) = @),

In the previous proposition, the element m € U is called the mean and @ € Ef (U) is called the covariance
operator, which uniquely determine the Gaussian measure on (U, B(U)). Hence, we denote the Gaussian
measure on (U, B(U)) by N(m, Q).

Definition 3.37. A random variable X with values in U is Gaussian if there exist m € U and Q € L (U)
such that £ (X) = N (m, Q). A stochastic process (X (t))i>0 with values inU is Gaussian if for eachn € N
and arbitrary t1, ...,t, > 0, the U™-valued random variable (X (t1), ..., X (tn)) is Gaussian.

Proposition 3.38 (Proposition 2.1.4, [73]). Let X be an U-valued Gaussian random variable. Then (X, h)y
is a real valued Gaussian random variable for every h € U and the following statements holds:

o E(X,h)y = (m,h)y for every h € U;
o E(X —m,h)y (X —m, g = (Qh, g)u for every g,h € U;
o E|X —m|}3 = THQ).
We proceed with the definition and basic properties of a Q-Wiener process.

Definition 3.39. An U-valued continuous Lévy process (W (t))i>o0 with mean 0 is called a Q-Wiener
process.

Proposition 3.40 (Theorem 4.20, [42]). Let (W (t))i>0 be a Q-Wiener process with values in U. Then
(W (t))e>0 is a Gaussian process such that E|W (t)||% < oo for all t > 0.

Remark 3.41. In [23,[73], it is assumed that a Q-Wiener process (W (t))i>0 has Gaussian increments, i.e.
LW(t) —W(s)) = N(0,(t — s)Q) for allt > s > 0. Here, one can obtain this property as follows: By
Proposition the process (W (t))i>0 is a Gaussian process. Hence, the distribution Z (W (t)) is Gaussian
with mean 0 for all t > 0. Moreover, we have for every g,h € U and all s,t >0

EW (1), h)u(W (s), glu = t AsEW (1), h)y (W (1), g)us = t A5 (Qh, g)u,

where Q € LT (U) is the covariance operator of the Gaussian measure £ (W (1)) arising from Proposition
[3-38 This implies for every h € U and all t > s >0

E(W(t) = W(s), h)i; = (t = 5)(Qh, hju.

Thus, we get L(W(t) — W (s)) =N(0,(t —s)Q) for allt > s> 0.
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As a consequence of the previous remark, the covariance operator ) € £1+(Z/{) completely characterizes
the distribution of a Q-Wiener process. By Proposition there exist an orthonormal basis (uy,)nen of U
and a sequence (A, )nen of nonnegative real numbers such that Qu,, = A\, u,, for each n € N. In the following
proposition, we provide a series presentation of a Q-Wiener process in term of mutually independent real
valued Brownian motions.

Proposition 3.42 (Proposition 4.3, [23]). Assume that (W (t))i>0 is a Q-Wiener process with values in
U and covariance operator Q € LT (U). Let (up)nen be an orthonormal basis of U and let (A\)nen be a
sequence of nonnegative real numbers such that Qu, = A\yu, for each n € N. Then for all t > 0 and P-a.s.

W(t) = Z \/Ewn(t)um (3.4)

where for each n € N, the processes (wy,(t))i>0 are mutually independent real valued Brownian motions

given by .
wn(t) = \/ATL<W(t)’ Un)u

for allt > 0 and P-almost surely. The series in converges in L2(S;U).

Finally, we state the characteristic function of a Q-Wiener process.

Proposition 3.43. Let (W (t))i>0 be an U-valued Q- Wiener process with covariance operator Q € LT (U).
We have for every x € U and allt >0

E iV (O — o= 4@

Proof. Due to Remark we have that the distribution .Z (W (t)) is Gaussian with mean 0 and covariance
operator tQ). Using Proposition the claim follows. O

3.2.2. Lévy-Khinchin Decomposition

Let (L(t))i>0 be a cadlag Lévy process with values in ¢. The Lévy-Khinchin decomposition provides an
representation of the process (L(t));>o as the sum of its continuous part and its pure jump part. First,
we consider the pure jump part. Let A € B(U) be separated from 0, i.e. the set A € B(U) satisfies
An{y elU: ||lyllu < r} =0 for sufficiently small » > 0. Then the process (L4 (t)):>0 given by

La(t)= Y 1a(AL(s))AL(s),
0<s<t

for all £ > 0 and P-almost surely, is a well defined Lévy process with values in U. We get the following
results.

Lemma 3.44. Let A € B(U) be separated from 0. Then the processes (La(t))i>0 and (L(t) —La(t))i>0 are
independent Lévy processes.

Proof. A proof can be found in [71, Appendix F]. O

Corollary 3.45. Let A, B € B(U) be disjoint sets that are separated from 0. Then the processes (L (t))i>o0
and (Lp(t))i>0 are independent Lévy processes.

Proof. Obviously, the set AU B € B(U) is separated from 0. Thus, the process (Laup(t))i>o0 is a well
defined Lévy process with values in Y. Since A and B are disjoint, we get for all £ > 0 and P-a.s.

Laus(t) = La(t) + Lp(t).
The claim follows by Lemma O

36



Chapter 3. Stochastic Calculus

Lemma 3.46 (Lemma 4.25, [71]). For all A € B(U) separated from 0 and all x € U, we have

E exp {i{x, La(t))u} = exp {—t/A (1 - ei<I7y>“) I/(dy)} .

By Proposition [3.34] we can conclude that (L4 (¢))¢>0 is an U-valued compound Poisson process with
Lévy measure 1 4(y)v(dy). This process is fundamental by constructing the pure jump part of (L(t))>o0.
Let (ry,)nez+ be a strictly decreasing null sequence. Then the Lévy process (L(¢))¢>o has finite many jumps
on the set Ag = {y € U: ||y|lu > ro} on a finite time interval. The process (L4, (t))i>0 given by

Lag(t) = 3 14, (AL()AL(),

0<s<t

for all ¢ > 0 and P-almost surely, is a well defined U-valued Lévy process containing all jumps larger or
equal to 7y with respect to the norm in /. Due to Lemma the process (La,(t))t>0 is a compound
Poisson process with Lévy measure 1y, >r} (¥)v(dy). To cover the remaining jumps we introduce the
sets A, = {y € U: r, < ||lyllu < rn—1} for each n € N. Note that these sets are still separated from 0.
Hence, for each n € N, the processes (Ly, (t))i>0 given by

La,(t)= > 1a,(AL(t))AL(t),

0<s<t

for all ¢ > 0 and P-almost surely, are well defined U-valued Lévy process. By Lemma the processes
(La,(t)t=0, n € N, are compound Poisson processes with Lévy measure 1, <|jyu<rn._.}(®)V(dy). In
general, we can not ensure that the series of small jumps Y - La, (t) converges on a bounded time
interval [0,T]. Therefore, for each n € N, we have to consider the compensated processes of (L4, (t))i>0-
Note that the jumps of (L4, (t))i>0 are bounded by r,_; for each n € N. Hence, we can apply Theorem
with the result that the processes (L4, (t)):>0 are integrable for each n € N. Using Proposition
we have for eachn € Nand allt > 0

BlLa, (0] =t [ yoldy)

Anp
Thus, we can introduce the compensated compound Poisson processes (L, (t))i>0, n € N, given by
L(t) = L, () = BlLa, (0] = La, (0~ ¢ [ yoldy)
An

for all t > 0 and P-almost surely. To get a convergence result of the series > - | L, (t) on a bounded interval
[0,T], we need the following preliminary result.

Proposition 3.47 (Theorem 4.23 (i), [71]). If v is a jump intensity measure corresponding to an U-valued
Lévy process (L(t))i>0, then

|l 7 1) via) < o (35)

Lemma 3.48 (Lemma 4.26, [71]). If assumption is satisfied, then the series y - | Ly(t) converges
P-a.s. uniformly on each bounded interval [0,T].

Now, we are able to state the Lévy-Khinchin decomposition, where we also characterize the continuous
part of a Lévy process.
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Theorem 3.49 (Theorem 4.23 (ii), [71]). Let (L(t))i>0 be an U-valued Lévy process with Lévy measure v.
Then we have the following representation for all t > 0 and P-almost surely:

L(t)y=at+W(t) + Z (LAn (t) — t/A yu(dy)) + L, (¢), (3.6)

where a € U, (W (t))t>0 is an U-valued Q-Wiener process, (La,(t))i>0 is an U-valued compound Poisson
process with Lévy measure 1yjjy|, >r,} (¥)v(dy) and (La, (t))t>0 is an U-valued compound Poisson processes
with Lévy measure 1, <|ylu<rn_.}(y)V(dy) for each n € N. Moreover, all members of the representation
are independent processes and the series converges P-a.s. uniformly on each bounded subinterval of [0,00).

As a consequence of the previous theorem, we get the following Lévy-Khinchin formula.
Theorem 3.50 (Theorem 4.27, [42]). Let (L(t))i>0 be an U-valued Lévy process with Lévy measure v and
let pz be the distribution of L(t) for allt > 0. We have for every x € U and all t > 0
E e LM — / e TV (dy) = e,
u

where

wlz) = ilaoh + 5(Qu.ahu+ [

[ (1 N () i y)u) v(dy).

Here, the value a € U and the covariance operator Q) € Ef(l/{) corresponding to the Q-Wiener process

(W(t))i>0 arise from Theorem .

In the previous theorem, the triple (a,@,v) is called the characteristics of the Lévy process (L(t))i>0,
which describes the distribution p; for all ¢ > 0 completely.
3.2.3. Square Integrable Lévy Processes

Let (L(t))i>0 be a square integrable Lévy process with values in ¢/. We assume that (L(t));>0 is Fi-adapted
such that L(t) — L(s) is independent of F; for all £ > s > 0.

Proposition 3.51 (Theorem 4.44, [T1]). There exist m € U and Q € L] (U) such that
E(L(t),x)y =t (m,x)y,
E<L(t) —mt, JI)Z/{(L(S) —ms, y)l/{ =tAs <Qx7 y>l/la
E|L(t) — mtl|f = tTr(Q)

forallt,s >0 and every x,y € U.

In the previous proposition, the element m € U is called the mean and the operator Q € L} (U) is
called the covariance operator of (L(t));>o. Next, we consider the Lévy-Khinchin decomposition for square
integrable Lévy processes. We need the following preliminary result, which is an immediate consequence of
Proposition |3.33| and Theorem [3.49

Corollary 3.52 (Theorem 4.47 (i), [71]). AnU-valued Lévy process with Lévy measure v is square integrable

if and only if
| 1ol vt
u
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Using Theorem the process (L(t)):>0 has the representation (3.6). Recall that (La,(t)):>0 is an
U-valued compound Poisson process with Lévy measure 1y, >r1(¥)v(dy). By Proposition and
Corollary the process (L4, (t)):>0 is square integrable. Hence, the mean exists and due to Proposition
[3:31] we get for all t >0

B(Lay (0] =t

{llylluzro}

yv(dy) = t/A yv(dy).

We get the following result.

Theorem 3.53. A square integrable Lévy process (L(t))i>o0 with values inU has the following decomposition
for allt > 0 and P-almost surely:

L(t) =tb+ W(t) + M;(¢), (3.7)
where b € U, (W (t))i>0 is an U-valued Q-Wiener process and (My(t))i>o is an U-valued square integrable
Lévy process containing all jumps of (L(t))i>0. Moreover, the processes (W (t))i>o and (M;(t))i>o are
independent martingales with mean 0.

Proof. Using Theorem we have for all ¢ > 0 and P-almost surely

L(t):ta+t/

Ao

ywldy) + Wt + 3 (LAw(t)t / yu(dw) L) =t [ yviay)

Weset b=a+ [, yv(dy) and

My (t) = g (LAn (1) —t /A

for all t > 0 and P-almost surely. By Theorem[3.49] the processes (W (t));>0 and (M (t))>0 are independent.
Since (L(t))t>0 is Fi-adapted such that L(t) — L(s) is independent of F; for all t > s > 0, we can conclude
that this property holds for (W(t))i>0 as well as for (M;(t))i>0. Hence, the processes (W(t));>o and
(Mjy(t))i>0 are martingales. By definition, the Q-Wiener process (W (t)):>0 has mean 0. Since (M;(t))i>0
is a series of compensated compound Poisson processes, it has mean 0 as well. O

yV(dy)) + La,(t) — t/A yv(dy)

n 0

Remark 3.54. It follows from the proof of the previous theorem that for all t > 0

E[L(t)] = tb =ta +t/A yv(dy),

where a € U arises from Theorem and v is the Lévy measure corresponding to (L(t))i>o-

Assume that (L(t)):>0 has the representation . Let Qo € L] (U) be the covariance operator of
(W(t))i>0 and let Q1 € L] (U) be the covariance operator of (M;(t))i>0. Since (W (t))¢>o and (M (t))i>0
are independent, the process (L(t));>0 has the covariance operator Q = Qo + Q1. The following theorem
provides a characterization of Q.

Theorem 3.55 (Theorem 4.47 (ii), [T1]). Assume that the process (L(t))i>o0 has the representation (3.7).
Let Q1 € L (U) be the covariance operator of (M(t))i>0. Then we have for every x,z € U

(@i, 2y = /u (& whudes v (dy).

Another important representation of a Lévy process is the expansion as a series of real-valued Lévy
processes. For the remaining part of this section, we assume that the U-valued square integrable Lévy
process (L(t))¢>o has mean 0 and covariance operator Q € L] (U). By Proposition there exist an
orthonormal basis (u, )nen of U and a sequence (A, )nen of nonnegative real numbers such that Qu,, = A,u,
for each n € N. We get the following convergence results, which generalizes Proposition [3.42
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Theorem 3.56. We have for allt > 0 and P-a.s.
L(t) = Y Ln(t)un, (3.8)
n=1

where for each n € N, the processes (L, (t))i>0 are uncorrelated square integrable Lévy processes with values
in R and mean 0 given by

for allt > 0 and P-almost surely. The series in (@ converges in probability uniformly in t on any compact
interval [0, T and in L?(Q;U) for all t > 0.
Proof. Since Q € L] (U), we have

Z)\n =Tr(Q) < cc.
n=1

Obviously, the processes (L, (t)):>o are real valued Lévy processes for each n € N. By Proposition we
get for each n € Nand all t > 0

E[Ln ()] = E(L(t), un)u = 0
and

E [L,,(t)*] = E(L(t), un)? = t{Qun, up)u = Ant.

Similarly, we obtain for each n,m € N and all t,s > 0
E[Ln(t)Lm(S)] = E(L(t), un>b{ <L(5)7 Um>u =tA 5<Qun7 Um>u = (t A S)An(;n,ma

where ,, , denotes the Kronecker delta. Hence, the processes (L, (t));>0 are square integrable and uncor-
related with mean 0 for each n € N.

Next, we show the convergence of the series (3.8) in L2(%;U) for all t > 0. We set for each k € N, all
t > 0 and P-a.s.

k
Se(t) = L (t)un.

Then it follows that for all ¢ > 0 and each j,k € N with j < k

2

k k k
BIS(0) = SO =E|| Y La®un| = 3 ElLal)Lan(®)] fwnstmlue =t 3 A

n=j+1 u n,m=j5+1 n=j+1

Since Y07, A, < 0o, we can conclude that (Sk(t))ken is a Cauchy sequence in L?(€2;) for all ¢ > 0. Hence,
the series converges in L?(Q;U) for all t > 0.

Finally, we prove the convergence of the series in probability uniformly in t on any compact interval
[0,7]. Recall that (L(t))i>0 is a square integrable Lévy process with mean 0 such that L(t) — L(s) is
independent of F, for all ¢ > s > 0. Due to Proposition the process (L(t)):>0 is a martingale. Hence,
we can conclude that the process (Sk(t))i>0 is a stochastically continuous square integrable martingale with
values in U. Applying Theorem [3.19] we get for all » > 0 and each j,k € N

P ( sup ||Sk(t) = S;j()[lu = T> < %Ellsk(T) - S5(D)llz

t€[0,T]

and the claim follows. O
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Remark 3.57. (i) The series (@ converges for all t > 0 and P-a.s. if and only if

PG
n=1

for all t > 0 and P-almost surely.
(ii) For a general Lévy process, the series @) converges in probability, uniformly on any compact interval

[0,T], see [T1, Theorem 4.39].

By Proposition we can conclude that the Lévy process (L(t)):>o is a martingale. Moreover, we get
the following martingale properties.

Proposition 3.58 (Theorem 4.49 (ii),[71]). The processes (|| L(t)||Z, —tTr(Q))i>0 and (L(t)® L(t) —tQ)i>0
are martingales with values in R and L£1(U), respectively. Moreover, the process ((L(t), x)u)i>0 15 a square
integrable real valued martingale for every x € U and the process ((L(t), )u{L(t), Y)u — t{Qx, Y)u)i>0 1S a
real valued martingale for every x,y € U.

It follows from the previous proposition that the angle bracket ((L);):>0 is given by (L); = t Tr(Q) for all
t > 0 due to Theorem Moreover, the operator angle bracket process ({((L)):):>o satisfies ((L)); =
for all ¢ > 0 resulting from Theorem [3.22

3.3. A Stochastic Integral

In this section, we introduce infinite dimensional stochastic integrals with respect to a square integrable
Lévy martingale. The construction is similar to the case of a stochastic integral with respect to a Q-Wiener
process, see [23], 42] [73]. Let the complete probability space (£, F,P) be equipped with a normal filtration
(Fi)i>0. We start with a formal definition of elementary processes. Let 7' > 0 be a fixed terminal point of
time and let U/ and ‘H be separable Hilbert spaces.

Definition 3.59. An L(U;H)-valued stochastic process (V(t))ico,1) is called elementary if there exists
m € N such that for allt € [0,T] and P-a.s.

m—1

\IIJ (t],tj+1] ) (39)
7=0

where 0 = tp < t1 < ... < ty, = T and ¥; are Fy;-measurable L(U;H)-valued random variables for
ji=0,1,...,m—1.

The space of all L(U;H)-valued elementary processes is denoted by Ep. Moreover, let (L(t));>0 be a
square integrable Lévy martingale with values in U, i.e. (L(t));>0 is an U-valued square integrable Lévy
process and a martingale with respect to (F;);>0. For ¥ € &p with representation , we define the
stochastic integral by

m—1

:/\1/(5) dL(s) = "0, (L(t;01 A ) — L{t; A1) (3.10)
0 j=0

for all t € [0, T] and P-almost surely. Obviously, the operator I is linear on &7 for all ¢ € [0, T] and P-almost

surely. Next, we extend the definition of the stochastic integral to a larger class of stochastic processes. As
a consequence of Theorem the process (L(t));>0 is a square integrable Lévy martingale if and only if
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E[L(t)] = 0 for all t > 0. By Proposition there exists an covariance operator Q € L] (U) of (L(t))s>0
such that

E<L(t)’ x>U<L(8)v Z/>Z,{ =tAs <Q$, y>u

for all 5,¢ > 0 and every x,y € U. Let us denote by L gg)(U;H) the space of Hilbert-Schmidt operators
from U to H as introduced in Appendix [C} Using Proposition [C.9] and Remark [C.I0] there exists an
operator Q'/? € LT (U) such that Q/2Q"Y? = Q and we get L(U;H) C Lms)(Q/2(U); H). Therefore, we
can conclude that elementary processes takes values in £ HS)(Ql/ 2(U); H). For the remaining part of this
section, we assume that every ¥ € Er satisfies

T
2
B [ IO 0 a0 < o
0

We equip the space & with the inner product

T

(U, B)s, = E / (W), D)) e @2 15700
0

for every U, ® € Ep. We get the following result.

Theorem 3.60. Let (L(t));>0 be a square integrable Lévy martingale with values in a separable Hilbert
space U and covariance operator Q € LT (U). If U € Er, then we have for all t € [0,T]

t 2 t
E /\II(S) dL(s) :]E/||‘II(5)||2£(HS)(Q1/2(U);H) ds.
0 " 0

Proof. The claim results from [7T], Proposition 8.6] and Proposition m O

As a consequence of the previous theorem, we get that the mapping I} : &7 — L?(;H) is linear and
bounded for all ¢ € [0,7] and especially, the mapping I%: &7 — L*(Q;H) is an isometric transformation.
Hence, we can uniquely extend the definition of the stochastic integral to integrands taking values in the
completion of & denoted by L£2. We still denote the extension from £2 into L?(2;H) by I} and we write

formally
t

IFE(W) = [ U(s)dL(s)
/

for all ¢t € [0,T] and P-almost surely. Moreover, we set

t t T

[eese = [viaze) - [veae

T 0 0

for all 0 < r <t < T and P-almost surely. The following proposition characterizes the space of integrands
L2, explicitly.

Proposition 3.61 (Proposition 4.22, [23]). The following statements hold:

(i) If (¥ (t))iejo,r) is an L(U;H)-valued predictable process, then (V(t))ep,r) is an Ligs)(QY*U);H)-
valued predictable process. In particular, elementary processes are L(pg) (Q1/2(U);H)-valued pre-
dictable processes.
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(it) If (U(t))ieo,1] s an Lims)(QY*(U); H)-valued predictable processes such that

T
2
E [ 10010010 dt <
0

then there exists a sequence (Vp,)neny C Er such that

i B [ U0) = Va0, g1 dt =0

Hence, the space £2 contains all predictable processes (V(t))sefo,r) With values in E(HS)(Q1/2(U);H)

such that

T
2
E/ H\IJ(t)Hﬁ(HS)(Ql/Z(M);H) dt < oo.
0

The space £2. equipped with the inner product of £7 becomes a Hilbert space. Next, we provide some basic

properties of the stochastic integral.

Theorem 3.62. Let (L(t))i>0 be a square integrable Lévy martingale with values in a separable Hilbert

space U and covariance operator Q € LT (U) and let ¥ € L2. Then the following statements hold:

(i) If 0 <r <t <T, then 1, ¥ € L2 and we have P-a.s.

t

T
/\Il(s) dL(s) = /]l(r,t](s)\ll(s) dL(s).
0

T

(i1) We get for allt € [0,T)

E U(s)dL(s)| =0.
/

(1ii) We have for all t € [0,T]

t 2 L
E /\Il(s) dL(s) :E/II‘I’(S)llz,/;(HS)(Qw(u);H) ds.
0 H 0

(iv) The process (ItL(\II))tG[OyT] given by

t

IF (o) = /\Il(s) dL(s)

0

for allt € [0,T] and P-a.s. is a mean square continuous H-valued martingale.
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Proof. Tt suffices to show the assertions (i), (ii) and (iii) for elementary processes. The generalization for
elements in £% can be obtained using standard density arguments.

First, we show that (i) holds. If ¥ € &r, then the process (1,4 (s)¥(s))seo, 7 is an elementary process
with values in £(U;H) and

2 2
0 0

Hence, we get 1, y¥ € Er. To obtain equation (3.11)), we use the operator notation introduced by equation
(3.10). We show some useful preliminary identities. Let ® € Er have the following representation for all
€ [0,7] and P-almost surely:

m—1
;1 (t5.t; +1]
7=0
where 0 = tg < t; < ... < t, = T and ®; are F;;,-measurable L(U;H)-valued random variables for

j=0,1,....,m — 1. Let (uy)nen be an orthonormal bas1s of U. Using Proposition [B.7] . we get

m—1
E (IF(®), I/ ()),, = E(®; (L(tj41) — L(t))) , ®r (L(tryr At) — L(te A1)

§,k=0
m—1 oo

= > E[®5®; (L(tj41) — L(t5))  wn)u(tn, L{ters At) — Lty At))]
7,k=0 n=1
m—1 oo oo

= Z E [(L(thrl) — L(tj), 'U,l>z,{<ul, @;@kunm(um L(tk+1 A t) - L(tk AN t)>u] .
Jk=0 n=1 =1

Note that there exists jo € {0,1,...,m — 1} such that ¢ € (¢;,,%;,+1]. Using Proposition and the fact
that the process (L(t)):>0 is Fi-adapted, we obtain for each k = 0,1, ..., jo

E [(L(t go+1) L(tjo) un)u{ur, ®, @run)u(un, L{tksr At) — Lte At))u]

E [E[(L JOH L(tjo), up) e Fel (ua, @5 @i )og (i, Lt At) — Lty A )]

E [(L(t o) u)u (i, @5 gt )gq (i, L(tegr At) — Lt At))y]

E [(L(tjo41 At) = L(tjo A t), w)eg(ur, @5 @rtin)og (i, L(tgpr At) — Lt At))u] -

If jo <m —1, then L(tg41 At) — L(tp At) =0 for k > jo. We can conclude

&=
7~
3R
=
=
5
B
N
2

I
NE
NE

|
—

E [<L(tj+1 A t) - L(tj A t), ul>z,{ <ul, @j@kunm <un, L(tk_;,_l A t) - L(tk A t)>u]

S
i
=3
3
Il
-
I
—

3
L

I
NE

E (@]9, (L(tyo1 A t) — L{ty A, ueuns Lt A1) — Lt A8))ud]

S
? ES
Il
= o
3
Il
—_

E[(®; (L(tjta At) = Lt A1), @k (L(tria AE) — Ltk A1)))2]

j,k=0
=E|1F@)|3,.-
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Using additionally Theorem [3.60, we obtain

E|75(To.0 ) = I (D)5,

2
<2E||IF(Lp g %) — I} (Lo, 9)||;, + 2B [|If (T g ¥) — IF (¥

I3 )]
AR (IF (10,0 ®), IF (10,4 ®)),, + 2E HItL(]l[O,t]\II)H’zH +2E || If (L0, ¥ — ‘I’)Hi

)|y, +2E |7/ (L. ¥ — ¥ 5,

<2E HIT(1[0 ¢ HH

<2E ||IT(11[0 )|, — 2E[|TF (1o

<2E / [L00EONZ,,,, v &~ 2E [ NL0a V)%, qrsunm @
0 0

2
+ QIE/ H]I[Oﬂ (8)¥(s) — \IJ(S)Hﬁ(HSﬂQI/Q(U);H) ds
0

Thus, we obtain P-a.s.

t t T

T
/\I/(s) dL(s) = /\1/(5) dL(s) — /\I/(s) dL(s) = I} (¥) — I} (V) = IF (1 (g ¥) = /]1(,.,,5](5)\1!(5) dL(s).
0 0

r 0

Next, we prove (ii). Due to (i), it suffices to show the result for t = T. We assume that ¥ € Ep has the
representation (3.9)). By definition of the stochastic integral, we get

T

B| [ 06)dne)| = X B, (25 - L)

0

Let (hpn)nen and (uy, )nen be orthonormal basis of H and U, respectively. By Propositionand Proposition
3.16] we get for j =0,1,....m—1

=

E [, (L(tj+1) — L(t)))] =

ST (L(tia1) = L(t5)) s ) sl

M

E [(L(tj11) = L(t;), U5 hn)uhn)

3
Il

M
NE

E [(U] hn, uryu (L(tj1) — L(t5), urdu]

3
I
-
£
Il
-

o
[M]8

E [<\I/;khmuk>z,{E [(L(tj+1) - L(tj)7 uk>?/l|]:tj]] B

k=1

3
Il
A

Since the Lévy process (L(t)):e[o,r) in an U-valued martingale, we obtain for j =0,1,...,m — 1
E [(L(tj+1) — L(tj),uk>u|]:tj] =0

and thus, the claim (ii) holds. Note that (iii) is already stated in Theorem A proof of (iv) can be
found in 71, Theorem 8.7 (iii)]. O
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The following proposition is useful when dealing with a closed operator A: D(A) C H — H.
Proposition 3.63. Let U € £2.. If U(t)y € D(A) for every y €U, all t € [0,T] and P-almost surely,

T T
2 2
E/ IOz s (@12 At < 00 and E/ AV Dz s (@12 @y A < 00,
0 0

then we have P-a.s. fOT U(t)dL(t) € D(A) and

T T
A/\I/(t) dL(t) = /A\Il(t) dL(t).
0 0
Proof. One obtains the result similarly to the case of Q-Wiener processes, see [23], Proposition 4.30]. O

Next, we state a stochastic Fubini theorem. Let A be a finite measure on a measurable space (E,&).
Recall that Pr denotes the smallest o-field of subsets of Qr = [0,7] x Q containing all sets of the form

(s,t] x Awith0<s<t<T,s<t,AeFs; and {0} x A with A € Fy.
Then we get the following result.

Proposition 3.64 (Theorem 8.14, [71]). Assume that the mapping (t,
(Qr x B, Pr x B(E)) into (Lms)(Q"*U); H), B(L(rs) QY (U); 1))

w,z) = Y(t,w,x) is measurable from
) and

T
JE [196.00)12, . gy e iNa) < o
E 0

Then P-a.s.
T

/ /\Il(t,w,x)dL(t) d)\(x)/T /\If(t,w,x)d)\(x) dL(t).

E 0 0

Next, we introduce stochastic convolutions. Let (S(t)):>¢ be a Co-semigroup on H and let ¥ € £%. Then
the stochastic convolution (I(t)):efo, 1) given by

I(t) = / S(t — 5)W(s) dL(s) (3.12)
0

is well defined for all ¢ € [0,T] and P-almost surely. Under additional assumptions, we get the following
maximal inequality.

Proposition 3.65 (cf. Proposition 1.3, [49]). Let (S(t))i>0 be a contraction semigroup on H and assume
that W € L2. Then the following statements hold:

(i) If k € (0,2], then

k k/2

T
~ 2
+€[0,T] <SG E 0/||‘I’(t)|g(Hs><Ql/2(u);H) e ],

E sup O/S(t—s)\Il(s) dL(s) )

where ék > 0 is a constant.

46



Chapter 3. Stochastic Calculus

(11) Assume that (L(t))i>0 has continuous trajectories. If k € (0,00), then

k k/2

t T
B s / S(t—8)U(s)dL(s)| < E / 12, 0w dt]
0 0

te[0,T
H

where ¢, > 0 is a constant.

In order to define local mild solutions to SPDESs, we need to introduce a stopped stochastic convolution.
Here, we can argue as in [16, Appendix]. Let 7 be a stopping time with values in [0, T]. We consider the
stopped process (I(t A T)):efo,r)- Unfortunately, the formula

tAT

I(tAT) = /S(t/\r—s)\IJ(s)dL(s)
0

is not well defined due to the fact that we integrate a process, which is not even F;-adapted. To overcome
this problem, we introduce a process (I (t)):cjo, 7] given by

L(t) = / Loy (5)S(t — 5)B(s A7) dL(s) (3.13)
0

for all ¢ € [0, 7] and P-almost surely. We get the following result.

Lemma 3.66. Let (S(t))i>0 be a Co-semigroup on H and let T be a stopping time with values in [0,T).

Assume that the processes (1(t))iepo,r) and (I7(t))iepo,r) are given by and , respectively. Then,
we have for all t € [0,T] and P-almost surely

St—tAT)I(tAT)=I.(t)

and in particular
ItAT)=L(tAT).

Proof. The processes (I(t))cpo,r) and (I-(t))icjo,r) have cadlag modifications by [71, Theorem 9.24]. The
remaining part of the proof can be obtained similarly to [I6, Lemma A.1]. O

Finally, we state a product formula for infinite dimensional stochastic processes. Here, we assume that
the Lévy process (L(t));>0 is given by a Q-Wiener process. To be consistent with the notation introduced
in Section we denote this process by (W (¢));>0. We have the following It6 formula.

Proposition 3.67 (Theorem 4.32, [23]). Assume that X° is an Fo-measurable H-valued random variable,
(f(t))eepo,) is an H-valued Fi-adapted process such that E fOT | f(#)||3dt < 0o and ¥ € L2.. Let the process
(X ())tepo, 1 be given by

X(t):XO—i—/f(s) ds+/\II(s) dW (s)
0 0

for all t € [0,T] and P-almost surely. Assume that the function J: [0,T] x H — R is continuous and its
partial Fréchet derivatives denoted by Jy, Jy, Jyo are uniformly continuous on bounded subsets of [0,T] x H.
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Then we have for all t € [0,T] and P-a.s.

J(t,X(t)=J(0,X°) +/ U(s)dW (s))4
0

t

]. *
+ / [Jt (5, X(5)) + (T (5, X(5)), F)) e+ 5 T (o (5, X () (R()QY2)(W(5)QY/2) )} s

Remark 3.68. For further versions of the Ité formula for infinite dimensional stochastic processes, we
refer to [{3], Section 2.5].

Corollary 3.69. Fori=1,2, assume that X are Fo-measurable H-valued random variables, (fi(t))ie(o1]
are ‘H-valued Fi-adapted process such that Efo |l fi(#®)||ndt < 0o and ¥; € L%. Fori = 1,2, assume that
the processes (X;(t))epo,r) satisfy for allt € [0,T] and P-a.s.

t

Xi(t):X?—i—/fi(s) ds—f—/\lli(s) AW (s).
0

0
Then we have for all t € [0,T] and P-a.s.

t

(X1 (6), X))y = (X0, X9),, + / [<X1(s), F2(8))ay + (Xa(s), £1(5)) g + (W1 (s), xpz(s)>ﬁ(m)(@1/2(u)ﬂ)] ds

0

+0/<X1(s),\112 H+0/ 5)dW (s))4

Proof. The claim follows from Proposition with J: H x H — R given by J(x1,22) = (21, 22). O

3.4. Stochastic Partial Differential Equations

In this section, we prove existence and uniqueness results for SPDEs both of forward and backward type,
which we deal with in the following chapters. Here, we will mainly concentrate on mild solutions to SPDEs.
For forward equations, the proof of the existence and uniqueness of mild solutions is based on the Banach
fixed point theorem, see [23 [42] [7T], [73]. Mild solutions of backward equations require a martingale represen-
tation theorem, see [52]. Furthermore, we will also show the relationship to different concepts of solutions.
Throughout this section, we assume that the complete probability space (2, F,P) is equipped with a normal
filtration (Fi)¢>o.

3.4.1. Forward Stochastic Partial Differential Equations

Here, we prove existence and uniqueness results of forward SPDEs motivated by systems arising in stochastic

control problems. We study systems on bounded domain with sufficiently smooth boundary, where we also

involve nonhomogeneous boundary data. Therefore, we introduce two separable Hilbert spaces H and Hp,

where H refers to data defined inside the domain and H; refers to data defined on the boundary. We start
with the following linear system in H:

{ y(t) = [Ay(t) + Bu(t) + (A — A)Nyo(t)] dt + G(t) dL(t) + (A — A)No dLy(t), (3.14)

y(0) =¢. '
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‘We assume that

e the operator A: D(A) C H — H is the generator of an analytic semigroup of contractions (e4*);>¢
and A > 0 is an element of the resolvent set p(A);

the process (u(t)).cpo,r] is Fi-adapted and takes values in H such that
T
E [ Ju(o)l dt < oo
0

o Be L(H);

e (L(t));>0 is an H-valued square integrable Lévy martingale with covariance operator Q € L7 (H);

)

(G(t)sep0,7 is a predictable process with values in £(zrg)(Q'/2(#); H) such that

T
2 .
E [ IGO0y 2020 <
0

the process (v(t)):epo,) is Fi-adapted and takes values in H; such that

T
2
E/Hv(t)HHb dt < 00;
0

(Lp(t))¢>0 is an Hp-valued square integrable Lévy martingale with covariance operator Q, € L] (Hs);

N1, Na € L(Hp; D((N — A)?)) for a € (0, 2);

e ¢ is an Fp-measurable random variable with values in H.

Note that the operator A — X is still generator of an analytic semigroup given by (e=*e4t),>q, see [70]

Chapter 3, Corollary 2.2]. Hence, the operator A — A satisfies the assumptions of Remark with M =1
and 6 = A. Therefore, we can define fractional powers of the operator A — A denoted by (A — A)* with
a € R according to Section respectively. Moreover, we have 0 € p(A — ). Thus, we get the following
properties.

Corollary 3.70. We have
o (A=A Py =(A—A)*\— APy for all o, 3 € R and every y € D(AY) with v = max{a, 8, + B};
o e H — D((\—A)) for allt >0 and all a € R;
o (\— A)eAty = e\ — A)*y for every y € D((\ — A)) and all a« € R;

e the operator (A — A)*eAt is linear and bounded for all t > 0 and all a € R. In addition, there exist
constants My, 0 > 0 such that for allt > 0 and all @ > 0

(A — A)¥e[|5 < Mot~e™°"

Proof. The assertions follow immediately from Theorem m (iv) and Theorem m O
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Remark 3.71. In control theory, system arises for the controlled stochastic heat equation with
nonhomogeneous Neumann boundary conditions. Then the operator A refers the Neumann realization of
the Laplace operator introduced in Section[2.5.1 Moreover, the term u(t) is a distributed control and L(t)
is a Lévy noise defined inside the domain. Similarly, the term v(t) is a boundary control and Ly(t) is a
Lévy noise defined on the boundary. The operators Ny, No belong to the Neumann operator mapping the
boundary data inside the domain. Typically, we have N1 = Ns.

Definition 3.72. A predictable process (y(t))ie(o,r) with values in H is called a mild solution of system
3.17) if

sup El|y(t)[|3, < oo
t€[0,T]

and for all t € [0,T] and P-a.s.

t t

¢
y(t) = ete + /eA(t_s)Bu(s) ds + /()\ — A Nyw(s) ds + /eA(t_s)G(s) dL(s)
0

0

t
+/ (A — A= N, dLy (s).
0

Theorem 3.73. Let (u(t))ieo,r) and (v(t))ieo,r) be fivred. For any & € L*(Q;H), there exists a unique
mild solution (y(t))iefo,r) of system . Moreover, the process (y(t))icjo,r] is mean square continuous.

Proof. By definition, the mild solution of system (3.14] is unique. Next, we show that (y(t)):eo, 1 takes
values in H such that sup,¢jo 1) E|y(t)||3, < oo. We define for all ¢ € [0,7] and P-a.s.

t t t

e :eAtg+/eA<t*S>Bu(s) ds, o(t) = /()\ A)eAt5) Nyu(s )ds+/()\fA)eA(t*S)N2 dLy(s),

0 0 0
t

Ys(t) = / eA=9Q(s) dL(s).

0

Recall that He‘AtHﬁ(H) <1forallt>0and B € L(H). Hence, the process (¢1(t))¢cjo,r] takes values in H
and there exists a constant C7; > 0 such that

sup E||vq(t )||H<2 sup EH@AtfHH+2 sup E

eA=%) Bu(s)
tel0,T) tel0,T t€[0,T]

2
ds
H

<o |Ejez+ B / lu(t)|12, dt

Since Ny, No € L(Hp; D((A —A)O‘)) for o € (0, 3), we get (A— A)*Ny, (A — A)*Ny € L(Hp; H) by the closed
graph theorem. By Theorem [3.62] (iii), Corollary [3.70] and the Cauchy-Schwarz inequality, the process
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(2(t))tefo, 7] takes values in H and there exists a constant Cy > 0 such that for all a € (3, 3)
. 2

sup E||g2(t)3, <2 sup E / | = 1A (= A2 Nyo(s) | ds
te[0,T] t€[0,T] 0 "

t 2

+2 sup E /()\ — A)12eAS (N — A)* Ny dLy(s)
te[0,T]
H
t 2
<oM2 ., sup E /(t — (= ANy (s) |, ds
t€[0,T]

t
2 202

M [ = A) 2Hl3( Q" (Ha)iH) tebl(l)%“ / (=) ds

0

T
< Cy 1+]E/||v(t)||?Hb dt
0

Using Theorem (iii) and Fubini’s theorem, the process (13(t)):c[o,r] takes values in H such that

2

t
sup Elva(0)l, < sup & [ [[ed26(s)|
te[0,T]

T
dsg]E/ G a0 dt.
t€[0,T ) J I ()Hﬂ(Hs)(Ql/z(H)}l)

Las)(QY2(H);H

Next, we prove that the process (y(t)):e[o,r] is mean square continuous. We assume w.l.o.g. 0 <tg <t < T
Let I be the identity operator on H. By the Cauchy-Schwarz inequality, there exists a constant ¢; > 0 such
that

2

to
E ||1/)1(t) _ ¢1(t0)||§{ < (BA(tfto) _ ) Ato€ ’ +3E / (6A(t7to) _ I) 6A(tofs)Bu(S) ds
0 H
¢ 2
+3E /eA(t_s)Bu(s) ds
to u
to 2
(eA(tft“) - I) eAtog ’ +3E (eA(tft“) - I) /6‘4(“’75)3%&(5) ds
0 H

T
+ e1(t —to) IE/ [u(t)||3, dt.
0

Due to Corollary Theorem (i) and (iii) and the Cauchy-Schwarz inequality, there exists a constant
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co > 0 such that

E [[4h2(t) — 2 (t0) I3,

2 2

to

< 4E / (A=) 1) (A = A)eACOINyu(s) ds| +4E /t | = At Nw(s)|, as
to

0 H
to 2 t 2
+4E / <eA(t_t°) - 1) (A — A)et =9I N, dLy(s)|| +4E /()\ — A)eM Ny dLy(s)
0 H to H
to 2 T
<4E (eA@*fo) - I) /(/\ — A)eA I N y(s)ds||  + eat fto)%*l]E/ ()13, dt
0 H 0
to 2
+4E (eA@*to) - I) /(A — A)eAOTIN, ALy (s)||  + calt — t9)2* 7L
0 H

Let (hn)nen be an orthonormal basis in H. Using Theorem (i) and (iii), we obtain

E (|03 (5) () — 3 () (t0) 1%,

to 2 t 2
<2E / (eA@*to) - 1) A=) G(s)dL(s)|| +2E / At=9G(s) dL(s)
0 H to H
to 2 t
S 2 E (eA(t—tO) — I) /eA(tO—s)G(S) dL(S) + 2 E/ ||G(S>||2£(HS) (Ql/z(H),H) dS.
0 H to

Note that limy_4, [[e=4~*)h — h||% = 0 holds for every h € H. Using Corollary and Proposition
we can infer that the process (y(t))ic[o,r) is mean square continuous. Moreover, the process (y(t))icjo,1]
is obviously Fi-adapted. Hence, the process (y(t))¢cjo,r] has a predictable modification resulting from
Proposition |3.9 O

Remark 3.74. Let the process (G(t))icio,r) be time independent, i.e. G(t) = G for all t € [0,T] and
P-almost surely, where G is a square integrable random wvariable with values in E(HS)(QUQ(H);H). If
o € (3,32), then the mild solution (y(t))ieo,r) of system takes values in D((A\—A)?) with B € 0,3 —a)
such that

sup Ely(t)|Baays) < 0o

te[0,T]

Remark 3.75. The mild solution (y(t))icjo,r of system has also a cadlag modification. One can
argue as in [71, Theorem 9.24]. Since (eAt)tZO 1s a Cy semigroup of contractions, we can apply Theorem

m. Thus, there exists a Hilbert space H containing H and a group (5(t))ter on H such that et = Py S(t)
for all t € R, where Py is the orthogonal projection from H onto H. Note that Py S(t): H — D((A — A)%)
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for allt > 0 and all « € R due to Corollary . Using Proposition we get for allt € [0,T) and P-a.s.

t t

/eA(t—S)G(S) dL(s) = PH§(t)/§(—s)G(s) dL(s),

0 0

¢ ¢
/(A—A)eA(t‘s)Ng dLy(s) = (A — APy S(t / YA — A)* Ny dLy(s).
0 0
We set X(t) = [o S( s)dL(s) and Xy(t) = [7 S(—s)(A — A)*NadLy(s) for all t € [0,T] and P-almost
surely By Theorem (w), the pmcesses (X(t))tecjo,m and (Xp(t))tcjo,r) are mean square continuous

Jte
H-valued martingales. Therefore the processes (X (t)):e(o, ] and (Xy(t))tejo,r) have cadlag modiﬁcations as
a consequence of Theoremn Since the mappmg t— S’( )z is continuous from R\{O} into H for every
x € H, we can conclude that the processes (PyS(t )X (t))teo,r) and (A — A)'- @ Py S(t) X, (t ))tcjo,r) have

cadlag modifications.

Remark 3.76. Let (W(t))i>0 be a Q-Wiener process and let V € L%. Then it is well known that the

process (X (t))efo,r) given by
¢

X(t) = /\II(S) dW (s)
0

for allt € [0,T] and P-a.s. is continuous, see [23, Section 4.2]. Therefore, the mild solution (y(t))icjo,1]
of system has a continuous modification if (L(t))i>o0 and (Ly(t))i>0 are Q-Wiener processes. The
assertion can be obtained similarly to the previous Remark.

Next, we consider the following linear system on D(A%):

{ y(t) = L Ay(t) + Bu(t) + ADv(t)] dt + G(y(t)) dL(2), (3.15)
We assume that

e the operator A: D(A) C H — H is linear and closed such that —A is the generator of an analytic
semigroup of contractions (e~*);>0 and 0 is an element of the resolvent set p(A);

the process (u(t))icjo, 7] is predictable and takes values in H such that

T
E [ lutt)l, dt < oc;
0

e Be L(H);

(L(t))¢>0 is an H-valued square integrable Lévy martingale with covariance operator Q € L] (H);

G: H — Lis)(QY?(H); H) is linear and bounded;

the process (v(t));epo,r is predictable and takes values in H,; such that

T
2
B [ oo, dt < oo
0
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e D € L(Hy; D(AP)) for B € (0, 1);
e ¢ is an Fp-measurable random variable with values in H.

Remark 3.77. In control theory, system arises for the controlled stochastic Stokes equations with
nonhomogeneous Dirichlet boundary conditions. Then the operator A refers to the Stokes operator introduced
in Section[2.5.9 Moreover, the term u(t) is a distributed control and L(t) is a Lévy noise defined inside the
domain. The term v(t) is a boundary control and D denotes the Dirichlet operator mapping the boundary
data inside the domain.

Definition 3.78. A predictable process (y(t))icjo,r) with values in D(A%) is called a mild solution of

system if

T
E / 2 eyt < o0
0

and for t € [0,T] and P-a.s.

t t t

y(t) = e A + / e~ =) Bu(s) ds + / Ae= A=) Do (s) ds + / e TIG(y(s)) dL(s).
0 0 0

Theorem 3.79. Let (u(t))ieo,r) and (v(t))iepo,r) be fiwed. If oo € [0,1) and B € (0,5 — ), then for any
€ € L*(%; D(A%)), there exists a unique mild solution (y(t))iejo,m) of system .

Proof. For all to,t, € [0,T] with ¢y < 1, let the space Zj;, 4, contain all predictable processes ((t))sci, 1]
with values in D(A®) such that E fttol lg(t) ||2D(Aa)dt < 00. The space Zj, +,] equipped with the inner product

ty

(1:92) 240y = E/@1(t),§2(t)>D(Aa)dt

to
for every 1,72 € Z},,+,) becomes a Hilbert space. We define for ¢ € [0, 7] and P-a.s.

t

T () =e e+ [ e A= Bu(s)ds + | Ae ) Du(s)ds + [ e 2 G(5(s)) dL(s).
/ / /

Let Ty € (0,T] and let us denote by Z7, the space Zjg 1. First, we prove that J maps Zr, into itself. We
define for ¢t € [0,77] and P-a.s.

t

t
P1(t) = e e+ /e_A(t_S)Bu(s) ds, (t) = /Ae_A(t_s)Dv(s) ds,
0

0

() () = / A=) G (G (s)) dL(s).
0

Recall that He*AtHL(H) < 1lforallt >0 and B € £(H). Using Theorem Proposition and the
Cauchy-Schwarz inequality, the process (¥1(t)):eo,1,] takes values in D(A%) and there exists a constant
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C4 > 0 such that
T T T /[t 2
E/||¢1(t)||%(Aa)dt < 2]E/He_‘4tA°‘§Hidt+2E/ /HA%—A<t—S>Bu(s)HHds dt
0 0 0 0
T/t 2
<A E (€] 0y + 2VEE [ | [(6-9) " [Buls)lyds |
0 0

<0y B2 0y +E / ()2, dt
0

Since D € L(Hy; D(A*TF)) for a+ B € (0,%), we get A*PD € L(Hy;H) by the closed graph theorem.
By Theorem m (iv), Theorem m Propos1t10n - and Young’s inequality for convolutions, the process

(V2(t))tejo, 1) takes values in D(A®) and there exists a constant C > 0 such that

T/ t 2

T
E/H%(t)né(m)dtg ZE/ /HAl—ﬂe—A<t—S>Aa+ﬂDv(s)HHds dt
0 0 0
T, [t 2
< Mf,BE/ /(t—s)ﬁ_l HA“J“@DU(S)HHdS dt
0 0
T, 2 T
< M7 g4 /tﬂ—ldt E/HA“JrﬁDv(t)Hidt
0 0
Ty
< CQE/Hv(t)n;b dt.
0

Due to Theorem and since G: H — Lgs)(Q2(H);H) is linear and bounded, one can verify the

assumptions of Proposition Hence, the process (¢3(9)(t))iejo,1,] takes values in D(A®). Using Fubini’s
2

theorem, Theorem (iii), Theorem Young’s inequality for convolutions and Corollary there

exists a constant C3 > 0 such that
2

Ty t
/ @Ol dt = [ E| [ A% 4CI6(50)) des)| e
0 0 H

<MZE [ [0 9 UGG, . 01200 d

1
< Oy E / 12 eyl (3.16)

0

Hence, we can conclude that for fixed § € Zr,, the process (J(7)(t)):ejo,y] takes values in D(A®) such
that IEf 1T (9)(¢ )”D(Aa dt < co. Obviously, the process (J(7)(t)):e[o,r,] is predictable. Therefore, we

can infer that J maps Z'T1 into itself.
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Next, we show that 7 is a contraction on Zr,. Recall that G: H — L(z5)(QY/*(H); H) is linear. Using
inequality (3.16)), we get for every 71,92 € Zp,

T T T
]E/ 7 (g2)(t) — j(g2)(t)|‘2D(Aa) dt = E/ s (1 — Z]z)(t)HQD(Aa) dt < CsT) 2 E/ 191 () = G2(t) 1D aeydt
0 0 0

We choose Ty € (0,T] such that C’3T11_2“ < 1. Applying the Banach fixed point theorem, we get a unique
element y € Zp, such that for ¢t € [0,77] and P-a.s. y(t) = J(y)(1).
Next, we consider for ¢ € [T1,T] and P-a.s.

t t t
T@)(#) = e~ ATy ) 4 / = A1=3) Bu(s) ds + / Ae=A=9) Doy (s) ds + / e~ A=) G (5(s)) dL(s).
Ty T T

Again, for a certain T, € [T1,T], there exists a unique fixed point of J on Zp, r,). By continuing the
method, we get the existence and uniqueness of a predictable process (y(t)):efo,) satisfying for ¢ € [0, 7]
and P-a.s. y(t) = J(y)(t). O

Next, we consider the following nonlinear system in D(A%):

{dy(t) = —[Ay(t) + B(y(1)) — Fu(t)] dt + G(y()) dL(t),

(3.17)
y(0) =¢&.
‘We assume that

e the operator A: D(A) C H — H is linear and closed such that —A is the generator of an analytic
semigroup of contractions (e~*);>0 and 0 is an element of the resolvent set p(A);

there exists o, ¢ € [0,1) and a constant C' > 0 such that for every y,z € D(A%)

1A BW)lln < Cllyllpeasy, (3.18)
1A= (B(y) = B(2)ln < Clly = 2llp(acy; (3.19)

the process (u(t)):cjo, 1) is Ft-adapted and takes values in D(AP), B € [0,a], such that
T
E [ [u(®)lbae)dt < oo
0

o F e L(D(AP);

(L(t))s>0 is a square integrable Lévy martingale with values in H and covariance operator Q € £} (H);

o G:H — Lins) (QY?(H); D(A)) satisfies for every y,z € H
IGWI £ sy (@2 (1):D(A)) < Cllylin, (3.20)
1G(y) — G(Z)||£(Hs>(Q1/2(H);D(Au)) < Clly — 2ln, (3.21)

where C > 0 is a constant;
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e ¢ is an Fy-measurable random variable with values in H.

Remark 3.80. In control theory, system arises for the controlled stochastic Navier-Stokes equations
with homogeneous Dirichlet boundary conditions. Then the operator A refers to the Stokes operator intro-
duced in Section . The operator B is related to the convection term. Moreover, the term u(t) is a
distributed control and L(t) is a Lévy noise defined inside the domain.

Definition 3.81. A predictable process (y(t))icjo,r) with values in D(A%) is called a mild solution of

system if

E sup [ly(t)[IDiaay < o0 (3.22)
te[0,7]
and for all t € [0,T] and P-a.s.
¢ ¢ ¢
y(t) = e Ate — /A‘Se*A(t*S)A*‘SB(y(s)) ds + /e*A(t*S)Fu(s) ds +/e*A(t*S)G(y(s))dL(s).
0 0 0

The main difficulty is the case a+4¢ > 2. For that reason, the strong regularity property (3.22) is required.

Theorem 3.82. Let the parameters o, 6 € [0,1) satisfy o+ < 1. Moreover, let (u(t)):cjo,r) be fized
with B € [0,«) such that o — 8 < % Then for any & € L?(Q; D(A%)), there erists a unique mild solution
(y(t))tejo,r) of system . Moreover, the process (y(t))icjo, 1) is mean square continuous.

Proof. For all tg,t; € [0,T] with tg < t1, let the space Z[;, +,) contain all predictable processes (§(t))sefty,1]
with values in D(A®) such that Esup,ep, 4, ||;z](t)\|2D(Aa) < oco. The space 2, ;,1 equipped with the norm

]:IE sup ||2:/(t)||§)(AC‘)

191,
te(to,t1]

to,t1

for every § € 2|4, +,) becomes a Banach space. We define for all ¢ € [0,7] and P-a.s.

T@)(E) = e=Ate — / A5 e=A1=5) A5 B(5i(5)) ds + / = A1=5) Py (s) ds + / e~ A=) G (5(s)) dL(s).
0 0 0

Let Ty € (0,T] and let us denote by Z7, the space Zjo 1,]. First, we prove that J maps Zr, into itself. We
define for all ¢ € [0,7}] and P-a.s.

t t
V() = e~ Atg + / e=AU=5) Py (s) ds,  o(f)(t) = / ABe= A=) A5 B(ii(5)) ds,
0 0

a() () = / A G (G (s)) dL(s).
0

Recall that He*AtHL(H) < 1lforall¢t>0and F € L(H). Using Theorem Proposition and the
Cauchy-Schwarz inequality, we get that the process (11(t)):e[0,1y] takes values in D(A®) and there exists a
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constant C; > 0 such that

E sup [1(0)[hae) < 2E sup [[e” A% +2E sup / Jac—ter A Fus) | as

t€[0,74] te[0,Ty] te(0,T4]
¢ 2
2 —a
S 2E||€||D(Aa) +2M /B]E sup /(t_s)ﬁ ||Fu(s)||D(Aﬁ) ds
tG[O Tl]

< Ci |Bllbean +E [ 1u®)lan
0

By Theorem m (iv), Theorem Proposition and inequality (3.18)), the process (2(7)(t))te(0,1y]

takes values in D(A®) and there exists a constant C'2 > 0 such that

E sup [2(5) (B30 <E sup / | acsseae0 4= B(g(s))|| as
te[0,T1] te[0,T1] H

t 2

<2 0B sup | [t 97 6) | pgany ds
te[0,T1]

<Oy E sup. ||l/( NDae) -
te[0,T

Due to Theorem Corollary inequality (3.20)), one can verify the assumptions of Proposition [3.63]
and hence, the process (¥3(7)(t)):e[o,1,] takes values in D(A®). Using additionally Propositionm (i) with
k = 2, there exists a constant C's > 0 such that

t 2
E sup [[¢5(5)(0)[5ae) =F sup / e~ A1) 4G (§(s)) dL(s)
t€[0,T1] t€[0,T1] )
= C2E/ IG@ENE @72 rypam

< C5E sup |g(t )H2D(Aa)'
te[0,T1]

Hence, we can conclude that for fixed § € Z7,, the processes (J (7)(t))¢cjo, 1) takes values in D(A®) such that
E sup, o, |7 (9)(¢ )2 D(ae) < 00. To conclude that J maps Zr, into itself, it remains to show that the pro-
cess (T (9)(t))tefo,y] is predlctable We first prove that the process (J () (t))+e[o,,] is mean square continu-
ous. Note that similarly to Theorem“7 we obtain that the processes (11(t))efo,ry) and (¥3(9)(t))eefo,y]
are mean square continuous for fixed y € Zp,. We assume w.l.o.g. 0 <ty <t <7Tj. Let I be the identity
operator on H. From Theorem (iv), Theorem and inequality , there exists a constant ¢ > 0
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such that

to 2

B 2(0)(6) ~ V(i) o) [paey < 2B | [ (7407 - 1) 4000409 47 B(5(s)) ds
0

H
. 2
+2E / HA@+5e—A<f‘S>A“5B(§(8))HH ds
to
to 2
<9E (efA(Ho), 1) / A= Alo=5) 4= B(5(5)) ds
0 H
et —to)* P E sup [|§(6)][Hae -
te[0,T1]

Since lim;_,y, [|e”A¢~%)h — b3y = 0 holds for every h € H and using Proposition we can infer that
the process (¢2(7)(t))tcjo, 7] is mean square continuous for fixed § € Z7,. Thus, we can conclude that the
process (J(7)(t))+efo,r,] is mean square continuous for fixed § € Zr,. Since (J(7)(t))tcjo,1,] is Fi-adapted,
we can apply Proposition Hence, the process (J(9)(t)):eo,] has a predictable modification for fixed
y € 21,

Next, we show that J is a contraction on Z7,. Using Theorem m (iv), Theorem and inequality
, there exists a constant ¢; > 0 such that for every 1,92 € 21,

t
E sup [[¢a(§1)(t) — 2(52) (D) piaey S E sup / | A=#8em 409 470 [B(gu(s)) ~ B(Ga(s))]|, ds
tE[O,Tl] tE[O,Tl] F H

STy E sup [|51(t) — G2t Hiae -
t€[0,T1]

By Theorem [2.35] Proposition and inequality (3.21]), there exists a constant ¢ > 0 such that for every
91,92 € 21,
. 2
B sup [0a(in)(t) ~ dal@R) () iany =E sup | [ 4004 G5 (5) - Gl7a(s))]dL(s)

te[0,1y] te[0,T1]
H

<N E sup [[1() = §2() | D ae) -
t€[0,T1]

Consequently, we obtain for every 41,92 € Zr,

E sup [|T(50)(t) = T (@) ) piaey < KL E sup [[51(8) = G2() [ Dan)
t€[0,Ty] t€[0,Ty]

where K1 = 201T1272a725 +2coT1. We chose T; € [0,T] such that K7 < 1. Applying the Banach fixed point
theorem, we get a unique element y € Zp, such that for all ¢ € [0, 73] and P-a.s. y(t) = J(y)(1).
Next, we consider for all ¢ € [T}, T] and P-a.s.

J@)t) = e_A(t_Tl)y(Tl) — A‘Se_A(t_s)A_‘SB(gj(s)) ds + e_A(t_s)Fu(s) ds + e_A(t_s)G(g(s)) dL(s).
/ / /
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Again, for a certain T, € [T1,T], there exists a unique fixed point of J on Zp, r,). By continuing the
method, we get the existence and uniqueness of a predictable process (y(t))c[o,r] satisfying for all ¢ € [0, T]]
and P-a.s. y(t) = T (y)(t). O

Remark 3.83. Similarly to Remark [3.75, one can conclude that the mild solution of system has a
cadlag modification. If (L(t))i>0 is a Q- Wiener process, then there exists a continuous modification, where

we can argue as in Remark [3.70

3.4.2. Backward Stochastic Partial Differential Equations

Existence and uniqueness results of mild solutions to backward SPDEs are mainly based on a martingale
representation theorem. These theorems are not available for infinite dimensional Lévy processes in general.
Here, we will restrict to the case of Q-Wiener processes. Let H be a separable Hilbert space. Throughout this
section, we assume that (W (t));>0 is an H-valued Q-Wiener process with covariance operator Q € L1 (H).
First, we provide a martingale representation theorem. A more general result is given in [42] Theorem 2.5].
By Proposition there exists an orthonormal basis (hy)neny of H and a sequence of nonnegative real
numbers (Ap)nen such that Qh,, = A,h, for each n € N. Due to Proposition we have the following
expansion for arbitrary ¢ > 0:

W) = VAnwn()ha,
n=1

where (wy(t))t>0, n € N, are mutually independent real valued Brownian motions. For the remaining
part of this section, we assume that the complete probability space (€2, F,P) is endowed with the filtration
(F(t))i=0 given by Fy = o{{U,—, Fi*} for all ¢ > 0, where F}* = o{w,(s) : 0 < s < t}. We need the following
auxiliary results, where T > 0 is fixed.

Lemma 3.84. For each n € N, the linear span of the random variables

T T
1
exp /h(t) dw, (t) — 3 /(h(t))2 dt 3 : h € L*([0,T]) deterministic
0 0
is dense in L?(Q, F2,P).
Proof. The claim follows immediately from [66, Lemma 4.3.2]. O

Lemma 3.85. Let the process (m(t))i>o be a continuous real valued Fy-martingale such that E|m(t)|? < oo

for allt > 0. Then there exists a unique sequence of predictable real valued processes (¢n(t))iejo,r), 7 € N,
such that for all t € [0,T] and P-a.s.

(o) = Em(©]+ 3 [ VAo dun(s),

where Y07 A EfOT |n (t)]?dt < .
Proof. By definition, we get
L*(Q, Fr,P) = P L*(Q, F7,P).

n=1
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As a consequence of Lemma the linear span of the random variables

T T
1
exp /h ) dw, (t 5/ dt 3 : h € L*([0,T]) deterministic,n € N
0 0
is dense in L?(Q, Fr,P). For the remaining part, we can adopt the proof of [66, Theorem 4.3.4]. O

We have the following martingale representation theorem in (2, 77, P). A proof can be found in [42]. For
the convenience of the reader, we will adopt this proof here.

Theorem 3.86. Let the process (M(t))i>0 be a continuous Fy-martingale with values in H such that
E|[M(t)||3, < oo for all t > 0. Then there exists a unique predictable process (®(t))iepo, ] with values

in Lms)(QV(H); H) such that EfOT |®(t) ||E(Hs>(Q1/2 (1)) @t < 00 and we have for all t € [0,T] and P-a.s.

t

M(t) = E[M(0)] + / B(s) dVV (s).
0
Proof. Recall that (hy,)men is an orthonormal basis of 2. Using Lemma for each m € N, there exists

a unique sequence of predictable real valued processes (¢ (t))¢cjo, 7], 7 € N, such that for all ¢ € [0, 7] and
P-a.s.

(M (1), hun)w = E[(M > ) dwa(s),

o\bb

where Y2°° A, E [ @7 (¢)[2dt < oo. Note that for all ¢ € [0,7]

E Y (M(t), hm)3 = E|M(t)|l3; < oo.

m=1

Hence, we have for all ¢ € [0,T] and P-a.s.

= Z <M(t), hm>?—thm

m=1

and using Proposition [B:7} we obtain

m=1 m=1

S BUM(O). o] = liwwmmmm] — B (0))

Therefore, we get for all ¢t € [0, 7] and P-a.s.

= > BUMO) i) + D0 D [ VA0 (5 (5
0

—EDO)+ 3 > [ VA o) du (),
m=1n=1 0
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This representation and the assumptions on the process (M (t))¢>0 justifies the interchanging of summations
with the result that

Next, let the process (®(t))c[o,r) be defined for every x € QY%(H), every y € H, all t € [0, T] and P-a.s.

o0

(@t)w, y)n = Z Z A (Y, i )2 (T, hn>Q1/2(H)¢Tnn(t)»
n=1m=1
where the inner product in Q'/2(#) is defined in Remark|C.10} Then the process (®(t))teo0,m) is predictable

with values in £ g ) (Q'/2(H); H) such that EfOT 1D(2)]| dt < oo and we have for all t € [0,T]
and P-a.s.

2
Lius)(QY2(H);H)

Jo@aw ) =3 VA [ e du (o).
0 n=1 m=1 0

which completes the proof. O

Remark 3.87. Here, we recall a martingale representation theorem, where the filtration is generated by a
real-valued Lévy process. For more details, we refer to [65]. Let (0, F,P) be a complete probability space
and let (L(t))i>0 be a real-valued Lévy process, where we assume that we are using the cadlag modification.
We endow the probability space (Q, F,P) with the filtration (F;)i>0 given by Fy = a{G, UN} for all t > 0,
where Gy = o{L(s) : 0 < s <t} and N contains all sets A € F with P(A) = 0. The characteristic function
of (L(t))e>0 is given by

E 0Lt — ,—tw(0)

for every 8 € R and all t > 0, where
2
P(0) = —iab + %92 + /R (1= e + 1 pp1<1y (2) i02) v(dz)

with a € R, 0® > 0 and v is a measure on R\{0} with [,(1Aa2?)v(dx) < co. This formula is the well known
Lévy-Khinchin formula, which is also stated in Theorem[3.50 for an infinite dimensional Lévy process. We
assume that for some e >0 and A > 0

/ AMely(dr) < oo,
(_578)C

which implies especially that E|L(t)|™ < oo for each n € N and all t > 0. Let (AL(t))i>o0 be the process of
Jumps given by AL(t) = L(t) — L(t—) for all t > 0 and P-almost surely. We also introduce the power jump
processes (X" (t))i>0 with k € N defined by

. L(t) ifk=1
YW= = AL ifk>2
0<s<t

for all t > 0 and P-almost surely. Then the processes (X*(t))i>0 with k € N are again Lévy processes and
we get for each k € N and allt > 0
E[X*(t)] = tmy,
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with my = E[L(1)] and my, = [y a*v(dz) for k > 2. We denote by (Y*(t));>0 with k € N the compensated
power jump processes given by YFE(t) = XF(t) — tmy for each k € N, all t > 0 and P-almost surely.
The processes (YE(t));>0 with k € N are martingales. We introduce the stochastic processes (H(t))i>0
with k € N as linear combinations of the stochastic processes (Y7 (t))i>o for j = 1,...,k with the leading
coefficient equal to 1, i.e. we have for each k € N, allt > 0 and P-a.s.

HY) =Y () + app 1 YU ) + oo+ ap 1 YH(2),

where ay; € R for all j = 1,...,k — 1. The processes (H*(t));>0 with k € N are again martingales.
Furthermore, the coefficients ap; € R with k € N and j = 1,...,k — 1 are chosen such that the processes
(H*(t))i>0 with k € N are pairwise strongly orthogonal, i.e. we have for each k,l € N

lim sup

/ | (#) H (8)| P(dw) = 0.
=00 1>0 J {1k (1) H (1) 2

We get the following martingale representation theorem, see [65, Remark 2/: If (m(t))i>o0 is a square in-
tegrable real-valued Fy-martingale satisfying supt20E|m(t)|2 < o0, then there exist predictable processes

(0" (t))e>0 with k € N such that E [ |¢*(t)|?dt < 0o for each k € N and we have for all t >0 and P-a.s.

m(t) = +Z/¢’f dH"(s

k=17

We also note that further martingale representation theorems for filtration generated by real-valued square
integrable Lévy processes can be found in [2, [T7].

Remark 3.88. The previous remark enables us to state a martingale representation theorem for an in-
finite dimensional martingale as follows: Again, we assume that the complete probability space (Q, F,P)
is endowed with the filtration (F;)i>0 as introduced in the previous remark. Let (M(t));>0 be a square
integrable Fy-martingale with values in H satisfying sup,~q E||[M (t)||3, < oo. Let (hn)nen be an orthonor-
mal basis in H. The processes ((M(t), hn)#)i>0 are square integrable real-valued Fy-martingale such that
sup;so E[(M(t), hp)|? < oo for each n € N. Hence, for each n € N, there exist predictable processes
(% (t))i>0 with k € N such that for allt > 0 and P-a.s.

(MO, bl = BUM(O), oo + 5 / & (s) dH¥ (s
k=1 0

Since sup,sqE Y07 (M(t), hn)3, = supyso B[ M (t)[|3, < oo, we obtain for allt >0 and P-a.s.

Z w)2hn = ZE hn)achn] + /¢ﬁ(s)hn dH"(s).

k=17

Using Proposition [B.7, we get for allt > 0 and P-a.s.

M(t) = Z

Remark 3.89. Note that the martingale representation theorem derived in the previous remark is based on
the filtration (Fy)i>0 generated by the real-valued Lévy process (L(t))i>o0. Following the proof of Theorem

o0

/qﬁ Vhn dH"(s).

1k=1
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3.80, a general martingale representation theorem with o filtration generated by an infinite dimensional
Lévy process requires a series expansion with mutually independent real-valued Lévy processes. According to
Theorem such a series expansion is only available with uncorrelated Lévy processes. For that reason,
we are forced to restrict the martingale representation theorem stated in the previous remark to the case of
a filtration generated by a real-valued Lévy process.

Next, we introduce the following system in H:

(3.23)

dz(t) = —[—Az(t) + G(2(t), ®(t)) + g(t)|dt + P () AW (¢),
2(T) = Z.

‘We assume that

e the operator A: D(A) C H — H is linear and closed such that —A is the generator of a Cyy semigroup
(€_At)t20§

o G:H x E(HS)(QI/Z(H); H) — H satisfies for every y,z € H and every ®, ¥ € L(HS)(QI/Q(H);H)
[G(y, @)l < C [HyHH Pl L s @200 | > (3.24)

1G(y,®) — Gz W)l < € [lly = 2l + 1® = Wllg g @200 (3.25)

where C' > 0 is a constant;

® (9(t))teo,1) is a predictable process with values in H such that
T
E [ lg(o)l5,dt < o
0

e 7 is an Fpr-measurable random variable with values in H.

Remark 3.90. In control theory, system arises for the adjoint equation of the controlled stochastic
Stokes equations.

Definition 3.91. A pair of predictable processes (z(t), ®(t))iejo.r] with values in H x Lgs)(QY*(H); H)
1s called a mild solution of system if

T
sup B =(0)% < oo, E [ 1002, @0 dt < 0
t€[0,T) 5

and we have for all t € [0,T] and P-a.s.

T T
z(t) = e~ ATtz 4 /e_A(S_t) [G(2(s),®(s)) + g(s)] ds — /e_A(S_t)q)(s) dW (s). (3.26)

An existence and uniqueness result is mainly based on the following lemma.
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Lemma 3.92 (Lemma 2.1,[52]). Let ¢ € L*(Q;H) be Fr-measurable and let (f(t))iepo,r) be a predictable

process with values in H such that IEfOT |l f(t)||3,dt < co. Then there exists a unique pair of predictable
processes (@(t), p(t))ieo, ) with values in H x /J(HS)(QUQ(H);H) such that for all t € [0,T] and P-a.s.

T T

o(t) = e_A(T_t)C + /e_A(S_t)f(s) ds — /e_A(S_t)d)(s) dW (s).

t t

Moreover, there exists a constant ¢ > 0 such that for all t € [0,T]

B0l < [EICI+ (@~ OF [ 17(s)Ids] (3:27)
. t

E [ 10 ey urscaoaods < BN+ (T~ ) / 17(6) Beds | (3.9
t

Existence and uniqueness results of mild solutions to backward SPDEs with cylindrical Wiener processes
can be found in [52]. Similarly, we get the existence of a unique mild solution to system ([3.23]).

Theorem 3.93. Let (g(t))ico,r) be fired. For any Z € L*(4H), there exists a unique mild solution
(2(t), ®(t))tecjo,r) of system

Proof. Let Z} contain all H-valued predictable processes ((t))icjo,r) such that sup,co ) EIIZ(2)[|F, < oo
The space Z+ equipped with the norm

1212, = sup E[Z(t)[I3,
t€[0,T)

for every 7 € Z1 becomes a Banach space. Similarly, let Z2 denote the space of all predictable processes
(‘i)(t))te[o,T] with values in £(zg)(QY/?(H); H) such that E fOT |®(t dt < co. The space Z2.
equipped with the inner product

T
B, d,) :E/<<i> . a(1)) di
< 12 z2 ) 1), (1) Las)(QY2(H)H)

for every ®;, @5 € Z2 becomes a Hilbert space.
Next, we define a sequence (2,,, ®,,)nen C 24 x Z2 satisfying for each n € N, all ¢ € [0, 7] and P-a.s.

HC(HS)(Q1/2 (H);H)

T T
Zn(t) = e AT 7 4 / e AV [Q (2, 1(5), Pr_1(s)) + g(s)]ds — / e AV, (5) dW (s), (3.29)

t t

where zo(t) = 0 and ®g(¢) = 0 for all ¢t € [0,T]. Note that by Lemma and inequality (3.24)), one can
easily verify that (2, ®,)nen C Z% x Z2. Furthermore, we obtain for each n € N, all t € [0, 7] and P-a.s.

T
Znt1(t) — 2n(t) = /e_A(s_t) (G(zn(5), Pn(s)) — Gzn-1(s), Pn-1(s))]ds

t

T
— / e AT D, 1 (5) — B, ()] AW (s). (3.30)
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Using inequality (3.25)) and Fubini’s theorem, there exists a constant C' > 0 such that for each n € N

T
E / 1G (2 (8), @ (1)) — G nr (£), s ()2,
0

T
<0 | sup Blllt) = 2un O +E [ 10260 = 0us Ol @ungoon #] - B3
€10,
0

Hence, equation (3.30) satisfies the assumptions of Lemma Let Ty € [0,T). Due to the inequalities
(13-27), (3.28) and (3.31)), there exists a constant C* > 0 such that for each n € N

T
2
sup ||z 41(8) = 2a ()13 + E / 1941 (8) = (O Z, 0 @172 20070 Ot
te[Ty,T) 7

1

T
<O =T0) | s Elzat) = 2 @l +E [ 19000 = 0 Ol 01000 4
1, Tl

Therefore, we find for each n € N

T
2
b Ellznt1(t) — za(t)5 + E / P01 (8) = P71 (172 301530) Bt
1 e

T
* n 2
<@ @-1)" | sw Ela®l+E [ 19012, @000 &
te[Ty,T] 7
1

We choose Ty € [0,T) such that C*(T — Ty) < 1. Thus, we can conclude that (z,, ®,)ney C 24 x Z2 is a
Cauchy sequence on the interval [T}, T]. Using equation (3.30)), we have for each n € N, all ¢ € [0,7}] and
P-a.s.

T
Zn+1(t) — 2n(t) = e A0 [2n41(T1) — 2o (T1)] + / e A7 [G(2n(s), Pn(s)) — G(zn-1(s), Pn-1(s))]ds

t
T

- / A0 [, (s) — @, (5)] AW (s).

t

Again, we find Ty € [0,7}] such that the sequence (2, ®,)neny C 2+ x Z2 is a Cauchy sequence on the
interval [T, T1]. By continuing this method, we can infer that (z,, ®,)nen C 24 x Z2 is a Cauchy sequence
on the interval [0, T]. Hence, there exist z € Z+ and ® € Z% such that

z= lim z,, ®= lim ®,.
n—r oo n—oo

Using equation (3.29)), one can easily verify that the pair of stochastic processes (z(t), ®(t)):eo, 1) satisfy

equation ([3.26]). O
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We introduce the following system in D(A%):

{dz(t) = [~ Az(t) + AYB(2(t)) + APG(B(t)) + AVg(t)]dt + B(t) dW (¢), 3.3

z(T)=Z.
‘We assume that

e the operator A: D(A) C ‘H — H is linear and closed such that —A is the generator of an analytic
semigroup of contractions (e~4?);>¢ and 0 is an element of the resolvent set p(A);

e B: D(A%) — H satisfies for every y,z € H

1Bl < Cliyllpas), (3.33)
1B(y) = B(2)lln < Clly — zllpas), (3.34)

where C* > 0 is a constant;

o G: E(HS)(Q”Z(’H); H) — H satisfies for every ®, ¥ € L(Hs)(Ql/Z(’H);’H)

1G®) 2 < Cl®lls 00 @203 (3.35)
|G(®) ~ CW)[ls < ClI® — Ul @090 (3.36)

where € > 0 is a constant;

® (9(t))ieo,1) is a predictable process with values in H such that
T
B [ lo(o)l5, it <
0

e 7 is an Fp-measurable random variable with values in H.

Remark 3.94. In control theory, system arises for the adjoint equation of the controlled stochastic
Navier-Stokes equations.

Definition 3.95. A pair of predictable processes (z(t), ®(t)),e(0,1] with values in D(A%)x Lz s)(QY*(H); H)
is called a mild solution of system if

T
B s (0 <o B [ IOOI2 0y @200t < 0
€10,

0

and we have for all t € [0,T] and P-a.s.

T T T
z(t) = e~ ATz 4 /Aae_A(s_t)B(z(s)) ds + /Aﬁe_A(s_t)G((b(s)) ds + /A'Ve_A(S_t)g(s) ds
t t t

T
— / e AP (s) dW (s). (3.37)
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An existence and uniqueness result requires a generalization of Lemma as follows.

Lemma 3.96. Let 6,c € [0,3) satisfy 6 +e < 3. Furthermore, let ¢ € L*(Q; D(A®)) be Fr-measurable and

let (f(t))iepo,r) be a predictable process with values in ‘H such that Efo | f(t)]|3,dt < co. Then there exists
a unique pair of predictable processes (p(t), d(t))iefo,r) with values in D(A%) x £(HS)(Q1/2(’H); D(A%)) such
that for allt € [0,T] and P-a.s.

T T
o(t) = e~ ATt 4 /Age_A(s_t)f(s) ds — /e_A(s_t)AeqS(s) dW (s). (3.38)
t t

Moreover, there exists a constant ¢ > 0 such that for all t € [0,T]

E SEI}]H‘P(S)HQD(A‘S) <c EIICIIQD(M)+(T—t)l’z‘;’QaE/||f(8)|\31d5 ; (3.39)
selt,
T
E [ 1010 012000000985 < € [EIGEoan + (T = 0" [£s) s . (3.40)
t t

Proof. Let the process (¢(t))¢cjo,r) satisfy for all ¢ € [0,T] and P-a.s.

T

p(t)=E e~ AT=Y¢ 4 /Ase_A(S_t)f(s) ds| Fy

t
Due to Proposition we have for all ¢ € [0,T] and P-a.s.

T
o(t) = e ATDE[C|F] + / Afe AR [ f(s)|F] ds. (3.41)

t

Using Theorem and the Cauchy- Schwarz inequality, we can conclude that the process (¢(t)).e[0, 1) takes

values in D(A?) such that Esup,¢jo 77 [l¢(?) < 00. Moreover, the process (¢(t))¢cjo,7] is predictable,

which can be obtained similarly to Theorem [3.73] By Proposition [3.86] there exists a unique predictable
T

process (J(7))rejo,r) With values in E(HS)(QUQ( ); H) such that E [; HJ(T)HZH&(QU?(H);H)({T < oo and

we get for all t € [0,T] and P-a.s.

t

E[C|F] =E[¢] + / J(r) AW (r).

0

Thus, we get for all ¢ € [0,T] and P-a.s.

T
E[¢|F]) =¢— /J(r) dW (r). (3.42)

We first assume that (f(s))sefo,7) is predictable and continuous such that sup,ego ) E[l f(s )13, < oc. Using
Proposition u for all s € [0,T)], there exist a unique predictable process (K (s, T))re[o,T] with values in
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L) (QY2(H); H) such that E [ [|K(s,r)|

||L(HS)(Q1/2(H);H)CZT < oo and we get for all ¢ € [0,7] and P-a.s.

E[f(s)| 7] = E[f(s)] + / K (s,r) dW (r).
0

Since (f(s))sejo,7] is predictable, one can conclude that K(s,r) = 0 for all s € [0, 7] and almost all € [s, T
Moreover, we have for all s,t € [0,T] and P-a.s.

E [f(s)|F] = /K 5 7) W (r (3.43)

Using equations (3.41)) - (3.43)), we obtain for all ¢ € [0,T] and P-a.s.

S

T T
o(t) = e AT ¢ / J(r)ydw(r)| + / Afe AT | f(s) — / K(s,r)dW (r)| ds.

t
Applying Proposition we get for all t € [0,7T] and P-a.s.

T T

plt) = AT 0G4 [are A gy ds - [ are 000 dw ), (3.44)

t t
where for almost all r € [0,7] and P-a.s.

T
o(r) = A=Ze=AT=) 1 (1) + / A K (s,7) ds.

r

By Theorem and the Cauchy-Schwarz inequality, we can conclude that the process (¢(t))¢cjo,7] takes
values in L) (QY?(H); D(A®)). Since the processes (J(r)),ep,7) and (K(s,)),ejo.7] are predictable for
all s € [0, 77, the process (¢(r)),e[o,r] is predictable as well.

Next, we show that inequality 1-) and inequality (3.40] - hold. By equation , Proposition
Theorem and the Cauchy-Schwarz inequality, there exists a constant ¢ > 0 such that for all t € [0, T

2

E sup ll(s )||D(A5 <2E sup [e” AT~ S)A5C||2 +2E sup /HAHE —Alr- Sf(r)H dr
s€t,T s€[t,T] sE[t,T] H

< [BICI s + (T — ' > E / 7)1 ds
Using equation (3.42)) and Theorem (i) and (iii), we get for all ¢ € [0, T

2 2
]E/ 1Tz sy @120y A < AR IS, -

69



Chapter 3. Stochastic Calculus

Similarly, by equation (3.43)) and Theorem [3.62] (i) and (iii), we get for all s,t € [0,T]

2
/ V(5,71 vz oy dr < AENF(5) I

Due to Theorem the Cauchy-Schwarz inequality, Fubini’s theorem and Corollary there exists a
constant ¢ > 0 such that for all ¢ € [0,T]

T
E/ 1450 (IIZ 15y @2 0020 I
T 2

—A(T—-r) e, —A(s—r)
<2E / e AT DI o @uracigdr + 2E | / O ) I

t

2M2(T _ t>1—25 9
< 2E/ HJ(T)H%(Hs)(Qlﬂ(H);H)dr + 517—25 E// HK(377")Hc(ys)(Q1/2(7-t);H) dr ds
t ot

T
<c [BICR e + (T — 1) *E / 1£(3) Zuds

Note that equation , inequality and inequality also hold for an H-valued predictable
process (f(t))tcjo, 7] such that E fOT || f(t)||3,dt < oo, which is an immediate consequence of the fact that
C([0,T); L2(2;H)) is dense in L2([0, T]; L2(Q, H)).

Finally, we prove that the pair of stochastic processes (o(t), ¢(t))icjo, 1) is unique. Let (p1(t), ¢1())refo,1]
and (p2(t), ¢2(t))tecjo,r) satisfy equation (3.38). Then we have for all ¢ € [0,7] and P-a.s.

T

o1(t) — alt) = — / A0 A% (6 (5) — o)) ATV (5).

t

We obtain that the pair of processes (1(t) — w2(t))icjo,r) and (¢1(t) — ¢2(t))iefo,r) fulfills equation (3.38)
with ¢ = 0 and f = 0. By inequality (3.39)), we have ¢1(t) = @a(t) for all ¢ € [0,7] and P-almost surely.
Using inequality (3.40)), we get ¢1(t) = ¢2(t) for almost all ¢ € [0,T] and P-almost surely. O

Corollary 3.97. Let 6 € [0,1) and € € [0, 3) satisfy 6 +& < 1. Furthermore, let ( € L*(Q; D(A%)) be an
Fr-measurable random variable and let (f(t))ief0,m) be a predictable stochastic process with values in H such
that E sup,c(o 1 | f(#)]13, < co. Then there exists a unique pair of predictable processes ((t), ¢(t))iefo,r) with

values in D(A%) x L) (QY*(H); D(A®)) such that for all t € [0,T] and P-a.s.

T

T
o(t) = e~ ATt 4 /Aae_A(S_t)f(s) ds — /e_A(S_t)A8¢>(s) dW (s).
t

t

Moreover, there exists a constant ¢ > 0 such that for all t € [0,T]

E Sup_ le(s)IDasy < ¢

up B¢ Has) + (T =) E sup | f(s)[I3] (3.45)
sE

s€t,T]
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E / I8 s @205 < [Eclbany + (T = 7B sup. ||f(s)||%]~ (3.46)
t !

Proof. The proof can be obtained similarly to Lemma [3.96 O

Based on the above results, we are able to prove the existence and uniqueness of the mild solution to

system (|3

Theorem 3.98. Let o, 3,7,0 € [0, 2) satisfy B+ 6 < 2 and v+ 0 < 5. Moreover, let (g(t))ico, 1) be fized.
For any Z € L?(); D(A®)), there exists a unique mild solution (z(t), <I>( )iejo,r) of system

Proof. Let Z1 contain all D(A%)-valued predictable processes (2(t))tefo,m) With Esupyero 1 [12(2) H%(Aa) < 0.
The space Z+ equipped with the norm

1712, =& sup IEOlbese
telo,
for every Z € Z1 becomes a Banach space. Similarly, let ZT denote the space of all predictable processes

(®(t))sefo,r) With values in L£zrs)(QY/2(H); 1) such that ]Efo |®(¢ dt < co. The space Z2
equipped with the inner product

Hﬁ(HS)(Ql/2 (H)iH)

T
b, b =E [ (&), Do(t dt
(1.8),, / (B10220), e

for every Py, D, € Z2 becomes a Hilbert space.
Next, we define a sequence (2,,, @, )nen C 241 X Z2 satisfying for each n € N, all ¢ € [0, 7] and P-a.s.

T T T
Zn(t) = e AT 7 —|—/AaefA(Sft)B(zn_1(s)) ds + /AﬁefA(sft)G((I)n_l(s)) ds + /AvefA(sft)g(s) ds

t t t
T

_ / c~AGDG, (5)dIV(s), (3.47)

t

where zo(t) = 0 and ®¢(¢t) = 0 for all ¢ € [0,T]. Note that by Lemmau Corollary [3.97 inequality (3.33)
and inequality ( -7 one can easily verify that (z,, ®,)neny C Z X 22 Furthermore, we obtain for each
neN, all t € [0,7] and P-a.s.

T
S () = 2t / A DB, (5)) ~ Bloar (D] ds+ [ 47640 (G(B,(5)) = G (5)] ds

— / e A [D,, 11 (s) — D, (s)] AW (5). (3.48)

t
Using inequality (3.34) and inequality (3.36)), we have for each n € N

E sup [B(za(t)) = B(za—1(D))l3; < C*E sup |zn(t) = zp-1() | Dasy »
te[0,T] te[0,T)

E [ 16(@a(t) = G@raO)3ydt < C°E [ 18,(0) = Bua(O . o2
0 0
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Hence, equation (3.48]) satisfies the assumptions of Lemma and Corollary Let Ty € [0,7).
to inequality (3.39)) and inequality (3.45)), there exist constants C7,Cs > 0 such that for each n € N

E sup ||z041(t) = za()l[Hasy ST = T0)* 22 B sup |[|B(za(t)) = Blzn-1(t))l|%
te(Th,T] te([Th,T]

b o(T — Ty 2 g / |G (t)) — (D1 (1))]2, dt
T

SCT—T1)> ™ E sup |zn(t) — Zn—l(t)”%)(Aé)
te[Tl,T]

T
_928— 2
YT - Ty 22 IE/||<I>n(t) S O y—"
T

Using inequality (3.40)) and inequality (3.46)), we get for each n € N

T
E/ 1@n41(5) = u()IIz s (@120 it < E(T = T1)* 72 E sup [IB(n(t) - B(zn1 ()5
€l11,
T

T
LT —T)¥E / 1G(®@0 (1)) — G( @1 (1) |I2, dt
T

< Oy (T —Ty)* 2 Etes[;lpﬂ 120 (t) = 201 ()| D as)
1,

Due

T
+ Cy(T — T1)1*25 E/ [®n(t) — (bn—l(t)Hi(Hs)(Qlﬂ(H);H) dt.
T

Hence, we obtain for each n € N

T
]Et S[;IPT] [2n+1(t) — Zn(t)||2D(A5) + E/ [Prt1(s) — (I)n(s)”QL(HS)(Ql/Z(H);H) dt
€11,
T

T
<C Et S[;lpT] |20 (t) — Zn—l(t)”i)(,qé) +E/ @ (t) — (I)n—l(t)Hi(HS)(Qlﬂ(H);H) dt|
€11,
T

where C' = max{C (T — T1)?72720 4+ (T — T1)?72%), Co((T — T1)*=2P=20 +- (T — T1)'=25)}. Therefore, we

find for each n € N

T
2
E sup |lzn4a1(t) - Zn(t)”%)(A(‘) + ]E/ [@nt1(s) — @n(s)”L(HS)(QlM(H);H) dt

te[Ty,T) P,
T
n 2 2
<C" |E sup Hzl(t)HD(Aé) + E/ H(pl(t)||L(HS>(Q1/2(”H);H) dt
te[Th,T] 7
1
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We choose T7 € [0,T) such that C < 1. Thus, we can conclude that (z,, ®p)nen C 25 x Z2 is a Cauchy
sequence on the interval [T, T]. Using equation (3.48)), we have for each n € N, all ¢ € [0,7T}] and P-a.s.

21 () = 20 (t) = ATz 4y (T1) — 20 (T1)] + / A% AT [B(2,(s)) — B(zn1(s))] ds

T1 Tl

T / AP ACD(G(B,(5)) — G(Byy_1(5))] ds — / A0 B,, (5) — By (5)] AW (s).

t t

Again, we find Ty € [0,71] such that (z,, ®,)neny C 25 x Z2 is a Cauchy sequence on the interval [Ty, T1].
By continuing this method, we can conclude that (z,,®pn)nen C Z} X Z% is a Cauchy sequence on the
interval [0, 7). Hence, there exist z € Z1. and ® € Z2 such that

z= lim z,, ®= lim ®,.
n—oo n—o0

Using equation (3.47)), one can easily verify that the pair of stochastic processes (z(t), ®(t)):eo,1) satisfy

equation ([3.37)). O

Remark 3.99. Note that the proofs of Theorem[3.93 and Theorem|[3.9 are mainly based on the martingale
representation theorem stated in Proposition[3.86. According to Remark[3.88, one can also consider backward
SPDEs driven by a real-valued Lévy process. However, we will focus on backward SPDEs driven by a Q-
Wiener process due to the fact that we can model noise terms dependent on a spatial variable, which is more
suitable for applications.

3.4.3. A Comparison of Strong, Weak and Mild Solutions

In this section, we give a comparison between different concepts of solution to SPDEs, where the noise term
(W (t))¢>0 is an H-valued Q-Wiener process with covariance operator @ € £ (H). We start with forward
SPDEs. Let us consider the following nonlinear system in H:

y(0) = € (3.49)

{dy(t) = [Ay(®) + B(y(t)) + f()] dt + G(y(t)) dW (2),

We assume that
e the operator A: D(A) C H — H is the generator of a Cy semigroup (e?);>0;

o B:H — H satisfies for every y,z € H

IB()llx < Cllylla,
1B(y) = B(2)lln < Clly — =,

where C' > 0 is a constant;

e the process (f(t))icjo,r) is Fi-adapted and takes values in H such that

T
E [ 1f(#)ll3 dt < oo
/
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o G:H — Lins)(QY*(H); H) satisfies for every y,z € H

IGW |2y @230y < Cllylln
1G(W) = Gl 2 s @2y < Clly — 2l

where C > 0 is a constant;
e ¢ is an Fp-measurable random variable with values in H.
Next, we introduce several concepts of a solution to system (3.49)).

Definition 3.100. A predictable process (y(t))iepo, 7] with values in H is called a strong solution of sys-
tem if (Y(t))iejo,r) takes values in D(A) for almost all t € [0,T] such that P-a.s. fOT [|Ay (¢) |l dt <

o0,

sup Ey(t)|3 < oo
t€(0,T]

and for all t € [0,T] and P-a.s.

y(t) = €+ / [Ay(s) + B(y(s)) + f(s))ds + / Gly(s)) AW (s).
0 0

Definition 3.101. A predictable process (y(t))ico, ) with values in H is called a weak solution of system

i 2
sup El[ly(t)[3 < oo
t€[0,T]

and for every ¢ € D(A*), allt € [0,T] and P-a.s.

t

(W(t), W) = (€ B + / [(y(5), A* s + (B(y(5)), B + (F(5), 0} ds + / (G y(s)) AW (s), V.

0

Definition 3.102. A predictable process (y(t))icjo,r) with values in H is a mild solution of system

i 2
sup El|y(t)[l3, < oo
te[0,T]

and for all t € [0,T] and P-a.s.

t t

y(t) = et + /eA(H) [B(y(s)) + f(s)] d8+/6A(t_S)G(y(8))dW(S)-

0 0

Existence and uniqueness results of these types of solution can be found in [23] [42] [73]. The following
theorem gives relationships between these solutions.

Theorem 3.103. If (y(t))icpo,r) is a strong solution of system , then it is a weak solution. The
process (Y(t))iepo,r] is a weak solution of system if and only if it is a mild solution.

Proof. The fact that a strong solution is also a weak solution follows immediately from the definitions. A
proof of the equivalence of weak and mild solutions can be found in [71, Theorem 9.15]. O
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Remark 3.104. Alternatively, one can show that a strong solution of system s a mild solution, see
[53, Proposition 2.1]. Furthermore, the previous theorem can be shown for SPDEs driven by Lévy noise, see
[71, Theorem 9.15].

To obtain the converse of the previous theorem, additional assumptions are required.

Theorem 3.105. Let (y(t)):epo,) be a weak solution of system . If (y(t))iepo,m) takes values in D(A)
for almost all t € [0,T] such that P-a.s. fOT |Ay(¢) || dt < oo, then it is a strong solution.

Proof. The proof follows immediately from the definitions. O

Alternatively, one can give conditions on a mild solution to be a strong solution.
Theorem 3.106 (Proposition 2.3,[53]). Let (y(t)):epo,r) be a mild solution of system . Suppose that
o § is an D(A)-valued random variable and (f(t)):epo, 1) takes values in D(A) for almost all t € [0,T7;

e for allt € (0,T] and every y € H, we have e**B(y) € D(A) and
[4e** B(y)ll3 < 91(8)1yll3
where g1 € L'([0,T1);
e forallt € (0,T] and every y € H, we have e**G(y) € Ls)(QY*(H); D(A)) and
HAeAtG(y)||£(HS>(Q1/2(H);H) < g2yl
where go € L*([0,T)).

Then (y(t))ieo,1) s also a strong solution of system .
Next, we consider the following backward SPDE in H:

{dz(t) = —[Az(t) + G(2(t), ®(t)) + g(t)]dt + D(t) dW (¢), (350)

z2(T) = Z.
‘We assume that
At)

e the operator A: D(A) C H — H is the generator of a Cyy semigroup (e”*);>0;

o G:H x Ligs)(QY?*(H); H) — H satisfies for every y,z € H and every &, ¥ € L(HS)(QI/Q('H); H)

1G> @)l < C [yl + 12110y @2 20030 -

16y, ®) = Gz, W)l < € [lly = 2l + 119 = W1, /2000 |

where C > 0 is a constant;

e (9(t))iepo,1) is a predictable process with values in H such that

T
E / LI, dt < oo
0
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e / is an Fp-measurable random variable with values in H.
Again, we introduce several concepts of a solution to system (3.50]).

Definition 3.107. A pair of predictable processes (2(t), ®(t))sepo,r) with values in H x L s (QY2(H); H)
is called a strong solution of system 0) if (2(t))ieo,1) takes values in D(A) for almost allt € [0,T)

such that P-a.s. fo | Az(t)||ndt < o0,

2 2
s BN < E [ 100120 vt dt < 0

and we have for all t € [0,T] and P-a.s.

T T
74 /[Az(s) +G(2(s), 8(s)) + g(s)] ds — /cp(s) AW (s).

Definition 3.108. A pair of predictable processes (2(t), ®(t))icjo, ) with values in H x E(HS)(Q1/2(H);H)
is called a weak solution of system if

2 2
s Bl < E [ 10012, et dt < 20

and we have for every ip € D(A*), allt € [0,T] and P-a.s.

T T
(= (1), Z+/ ), A" )+ (G(2(s), B(s)), )2 + (g(s) / 5) dVV (3), ).

Definition 3.109. A pair of predictable processes (z(t), ®(t))icjo. 1] with values in H x L g5 (QY*(H); H)
is called a mild solution of system @) if

T
su Ezt2<oo, E/@t2 172 (2.2 At < 00
s B0l 10012, /e
and we have for all t € [0,T] and P-a.s.
T T
(1) = AT-D 7 4 / ADG(x(5), B(s)) + g(s5)] ds — / ASDG(5) IV (s).
t t

The following theorem gives relationships between these solutions.

Theorem 3.110 (Theorem 3.4,[T]). If (2(t), ®(t))se(o, 1] is a strong solution of syst , then it is a
B}

weak solution. The pair of processes (2(t), ®(t))icjo, 1) i a weak solution of system zf and only if it
is a mild solution.

To obtain the converse of the previous theorem, additional assumptions are required.
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Theorem 3.111 (Theorem 4.1,[1]). Let (2(t), ®(t))scp0,1] be a weak solution of system . If (2(t))eejo,m
takes values in D(A) for almost all t € [0,T] such that P-a.s. fOT |Az(t)||ndt < oo, then it is a strong
solution.

Alternatively, one can give conditions on a mild solution to be a strong solution.
Theorem 3.112. Let (z(t), ®(t))iepo,) be a mild solution of system . Suppose that
o 7 is an D(A)-valued random variable and (g(t))icjo, 1) take values in D(A) for almost all t € [0,T7;

e forallt e (0,T], every z € H and every ® € E(HS)(QUQ(’H);’H), we have e*G(y, ®) € D(A) and
A€ G 2, @) lae < hE) (12l + 1@l sy 0220070

where h € L1([0,T)).
Then (z(t), ®(t))iejo,1) s also a strong solution of system .
Proof. Since the process (z(t))te[o,r) is predictable, we get for all ¢ € [0,7] and P-a.s.

A1) =E [AT 02| F] +E / AC=D1G(2(s), (s)) + g(5)] ds| Fo

t

Using the assumptions, one can easily verify that the terms on the right hand side takes values in D(A).
Thus, the process (z(t)):cqo,1) takes values in D(A) such that

T
E/||Az(t)||Hdt < .
0

Therefore, we can apply Theorem [3.111| and the claim follows. O
Remark 3.113. Under stronger assumptions, the previous theorem was also proven in [1, Theorem 4.2].

Existence and uniqueness results of mild solution can be found in [52]. Theorem [3.110|and Theorem [3.112)
gives requirements such that unique weak solutions as well as unique strong solutions exists.
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Chapter 4

Optimal Control of Uncertain Heat Distributions

In this chapter, we consider a control problem constrained by the stochastic heat equation with nonhomo-
geneous Neumann boundary conditions. Here, controls and noise terms are defined inside the domain as
well as on the boundary. We first recall some well known facts of the deterministic unsteady heat equation
with nonhomogeneous Neumann boundary conditions studied in [9]. The main idea is to reformulate this
equation as an evolution equation in a suitable Hilbert space using the theory of fractional powers to closed
operators provided in Section This approach gives us a motivation how to involve noise terms inside the
domain as well as on the boundary. The existence and uniqueness of a mild solution to the stochastic heat
equation can be obtained using results shown in Section Consequently, we are able to solve uniquely a
linear quadratic control problem through a stochastic maximum principle, which gives us explicit formulas
for the optimal controls. By a reformulation of these formulas, we finally obtain that the optimal controls
satisfy a certain feedback law. Here, we mainly use the results shown in [5].

Throughout this chapter, let (Q,F,P) be a given complete probability space endowed with a normal
filtration (F),~,-

4.1. Motivation

In this section, we introduce the deterministic unsteady heat equation with nonhomogeneous Neumann
boundary data. For more details, see [9, Part IV]. Through a reformulation as an evolution equation, we
get a motivation to involve noise terms in this equation. Let D C R", n € N, be a bounded domain with
C* boundary 0D and let T > 0. We introduce the following controlled partial differential equation with
nonhomogeneous Neumann boundary data:

%y(t,x) = Ay(t,z) + b(z)u(t,z) in (0,T) x D,
y(0,2) = {(x) in D, (4.1)
%y(u:r) =o(t, ) on (0,T) x 9D,

where y(t,x) € R is a heat distribution with initial value £(z) € R, u(t,x) € R represents a distributed
control and v(t,x) € R denotes the boundary control. The operator A is the Laplace operator in L?(D)
and 7 represents the outward normal to 0D.

Remark 4.1. In application, we often have

_J1 ifzeS
b(z){o if + € D\S,

where S is a subset of D.
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Next, we state a solution to system (4.1]). According to Section we introduce the Neumann realiza-
tion of the Laplace operator A: D(A) C L*(D) — L*(D) by

for every y € D(A). By Theorem the operator A: D(A) C L?*(D) — L*(D) is the generator of an
analytic semigroup of contractions (e t) . As discussed in the previous chapters, Theorem is the
main auxiliary result to involve nonhomogeneous boundary conditions. This theorem requires especially
that 0 is an element of the resolvent set of A, which does not hold due to Remark [2.55 However, the

operator A — X with A > 0 is still the generator of an analytic semigroup (e’”e“”) >0 Such that fractional

powers denoted by (A — A)® with @ € R are well defined. Moreover, we have 0 € p(A — A). For the
convenience of the reader, we will give an overview of main properties of the operator (A — A)%, which
follows immediately from results stated in Section [2.3

Corollary 4.2. We have

(i) for all o > 0, the domain D((A — A)%) equipped with the inner product

(Y, Z>D((/\7A)a) =((A=A) %, (A= A)QZ>L2(D)
for every y,z € D((A — A)®) becomes a Hilbert space;
(i) (A — A)2TBy = (A — A)¥(\ — A)Py for all a, B € R and every y € D(A") with v = max{a, 3, a + 8};
(iii) yllr2(py < Cll(A = A)?yllL2(py for every y € D((A — A)*), where C > 0 is a constant;
(iv) eAt: L2(D) — D((A — A)®) for allt >0 and all « € R;
(v) (A= A)eAty = (X — A)*y for every y € D((\ — A)®) and all o« € R;

(vi) the operator (A — A)¥eAt is linear and bounded for all t > 0 and all « € R. In addition, there exist
constants My, 0 > 0 such that for allt >0 and all @ > 0

1A = A)*eA|| 12y < Mot~

(vit) the operator (A — A)® is self-adjoint for all o € R.

Furthermore, we define the Neumann operator N: L?(9D) — L?*(D) by g = Nh with
, 0
Ag(x) = Ag(z) in D, a—g(az) = h(z) on 0D,
n

where A > 0 is introduced above. In [60, Chapter 2], the result N € £ (L*(0D); H*?(D)) was proven.
Due to Theorem we can conclude N € L(L?(8D); D((A — A)*)) if a € (0,3) and by the closed graph
theorem, we have (A — A)*N € L(L?(0D); L?*(D)). As shown in [J], we can rewrite system in the
following form:

%y(t Ay(t) + Bu(t) + (A — A)Nu(t),

y(0) = ¢,

where y(t)(z) = y(t, x), Bu(t)(xz) = b(x)u(t,x) and v(t)(z) = v(t,z) are interpreted as abstract functions.
For more details on abstract functions, we refer to [86], Section 3.4.1]. We note that the operator B is linear

(4.2)
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and bounded on L?*(D). One can show that system (4.2)) has a unique solution y € C([0,T]; L?(D)) given
by

t t
y(t) = eMe + /eA(t_S)Bu(s) ds + /(/\ — A Nu(s) ds.
0

0

cases u = 0 as well as v = 0. Hence, the existence of a unique solution to system in the general setting
follows immediately.

Remark 4.3. In [9], the existence and uniqueness of the solution to system proved for the special

4.2. A Controlled Linear Stochastic Heat Equation

In this section, we introduce the stochastic heat equation and we show some basic properties. Motivated
by system (4.2), we consider the following SPDE in L?(D):

{wu)zp@@)+BMﬂ+%A—thMﬂhﬁ+G@ﬁm4ﬂ+(A—AMVMWGL w3

y(0) =¢,

where the initial value ¢ € L?(Q; L?(D)) is Fo-measurable. The set of admissible distributed controls U
contains all F-adapted processes (u(t))¢eo,r) With values in L?(D) such that

T
E/mw@m@<m.
0

The space U equipped with the inner product of L?(Q; L?([0, T]; L?(D))) becomes a Hilbert space. Similarly,
the set of admissible boundary controls V' contains all F;-adapted processes (v(t))¢cjo,r] With values in
L?(0D) such that

T
E/M@ﬁmmﬁ<w
0

The space V equipped with the inner product of L?(Q; L?([0,7]; L?(0D))) becomes a Hilbert space. The
stochastic processes (W (t)):>0 and (W, (t))i>0 are Q-Wiener processes with values in L?*(D) and L?(9D),
respectively. We denote by Q € £ (L?(D)) and Q,, € L] (L?(0D)) the covariance operators of the processes
(W(t))e=0 and (Wy(t))i>0, respectively. The process (G(t))epo,r) is a predictable process with values in
L1s)(QY?(L*(D)); L*(D)) such that

T
2
IE.:/ ||G(t)||[«(Hs)(Ql/z(Lz('D));Lz('D))dt < .
0

Motivated by Section we use a mild solution to system (4.3) in the sense of Definition with
H = L?(D) and Hy, = L?(dD). As a consequence of Theorem [3.73 there exists a unique mild solution
(y(t))tejo,r) of system for any ¢ € L?(Q; L?(D)) and fixed controls v € U and v € V. Hence, the
process (y(t))e(o,r) takes values in L?(D) such that

sup Elly(t)]|72(p) < oo
t€[0,T)
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and we have for all ¢ € [0, 7] and P-a.s.

t t t
y(t) :eAtg+/ Alt=2) By(s ds+/ (A — A=) Ny(s )ds—i—/eA(t_s)G(s) dW (s)
0 0

t
+/ (A — A)e =N dWy(s). (4.4)
0

For the remaining part of this chapter, let the initial value ¢ € L?(Q; L%(D)) be fixed. To illustrate the
dependence on the controls u € U and v € V, we denote by (y(t;u,v))epo,r) the mild solution of system
(4.3). We get the following properties.

Lemma 4.4. Let (y(t;u,v))seo,r) be the mild solution of system corresponding to the controls u € U
and v € V. Then

(i) y(t;u,v) is affine linear in both w € U and v € V for all t € [0,T] and P-almost surely;

(i1) there exist constants c1,co > 0 such that for every ui,us € U and every vi,vy € V

T

T
sup Byt 1) ~y(tss, ) o) < 1B / a1 (6) = s ()2 lt + 2 E / o1 (£) =02 ()12 gy -
te[0,T

0 0

Proof. The claim (i) is an immediate consequence of equation (4.4). It remains to prove (ii). Let uj,us € U
and v1,vo € V be arbitrary. Recall that B € L(L?(D)) and N € E(LQ(aD) D((A—A)%)) ifa € (0,3). By
definition, we get for all ¢ € [0,7T] and P-a.s.

t ¢
yltsur,o0) — yltiuz, ) = [ A Blus(9) —ualo)]ds + [ (3= ANy (s) — valo)] ds.
0 0
Using Corollary .2 and the Cauchy-Schwarz inequality, there exist constants c¢1,c2 > 0 such that for all
@€ (3,3)

sup Ely(t; ur,v1) — y(t; u, v2)||72p)
te[0,T]

<2 sup E/ |44 Blu (s) —U2(5)H|%2(D)d8
te[0,T]

2

+2 sup E / [(A = A) @A (N — A)*N{vy(s) — va(s)]|| 2(pyds

t€[0,T]
: 2
<01E/||u1 —ug()||L2(D dt+ M3:_, sup E /t—so‘ A= A)*Nvi(s) — va(s)]| 2 (pyds
te[0,T] )
<ol / s (6) = wa ()3 + 2 8 / o1 (8) = v2(6) oy
which completes the proof. O
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4.3. A Tracking Problem of the Terminal State

In this section, we introduce the control problem. We state necessary and sufficient optimality conditions,
which we use to derive explicit formulas for the optimal controls. Let us introduce the cost functional
J: U xV — R as follows:

1
J(,v) = SENW(T:0,0) — yallFaoy + L / J(t) 3t + "2 / o) Beopydt,  (45)

where (y(t;u,v))iepo,7) is the mild solution of system corresponding to the controls u € U and v € V.
The function yq € L?(D) is a given desired state and s,k > 0 are weights. The task is to find controls
7w € U and v € V such that
J(@,v) = ue{i]rjlfev J(u,v). (4.6)
Then w € U and v € V are called optimal controls. The corresponding optimal state is denoted by
(@(t))tefo,r)- Using Lemma we can conclude that the cost functional J is coercive, strictly convex
and continuous in both w € U and v € V. Hence, the control problem is formulated as a convex
optimization problem on the Hilbert space U x V. By Corollary we get the existence and uniqueness
of the optimal controls w € U and v € V.
Note that the cost functional J is partial Fréchet differentiable. Indeed, this results follows from the fact
that J is a sum of squared norms and Lemma [£:4] The partial Fréchet derivatives of J can be obtained
similarly to Remark and thus, we get

T T

dF J(u, v)[i] :E/<y(T; u, ) _yd’eA(T—t)Ba(t)>L dt +51E/ ) 2y At (4.7)
0 0
T T

dy J (u, 0)[7] =E/ <y(T; u,v) = ya, (A = A)e“‘<T‘”Nﬁ<t)>L dt + i / );0(t)) 2op) dt,  (4.8)
0 0

where & € U and v € V. Since the sets of admissible distributed controls U and boundary controls V are
Hilbert spaces, we can apply Proposition |D.14] Therefore, the optimal controls w € U and v € V satisfy
the following necessary and sufficient optimality conditions:

0, (4.9)
d¥ J(u,v)[o] = 0 (4.10)
for every 4 € U and every v € V. In the remaining part of this section, we use these necessary and sufficient

optimality conditions to derive explicit formulas for the optimal distributed control w € U and the optimal
boundary control 7 € V.

Theorem 4.5. Let the cost functional J: U XV — R be given by . Then the optimal distributed control
u € U satisfies for almost all t € [0,T] and P-a.s.

a(t) = —— B AT (B [(T)| 7] - va), (4.11)

R1

where B* € L(L*(D)) denotes the adjoint operator of B € L(L?*(D)).
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Proof. Since the operator A is self-adjoint, the semigroup (et);>¢ is self-adjoint as well. Using Fubini’s
theorem and Proposition we obtain for every u € U

T T

E/<y(T;u,v) —yd,eA(T_t)Bﬂ(t)> dt = /IE [E [<y(T;u,v) —yd7eA(T_t)Bﬂ(t)>L2(D) ‘]—}” dt

L*(D)
0 0

St~

E <IE[ (T;u,v)|F) —yd,eA(T_t)Bﬁ(t)> dt

L*(D)

T
E/ (B AT (B [y(T; 0, 0) )] —yd),ﬁ(t)>L2(D) dt.
0

By equation (4.7)), we get

T
dF g JE/ B* AT=D(E [y(T;u,0)|F] - ya) +”~1“(t)’ﬂ(t)>mw) .
0

Using condition (4.9)), the optimal distributed control @ € U satisfies equation (4.11)) for almost all ¢ € [0, T
and P-almost surely. O

Theorem 4.6. Let the cost functional J: U xV — R be given by . Then the optimal boundary control
satisfies for almost allt € [0,T] and P-a.s.

5(0) =~ (A~ ' AT B [G(T)IF] o) (4.12)

where G* € L(L*(D); L*(0D)) denotes the adjoint operator of G = (A — A)®*N € L(L?(9D); L*(D)) with
a€ (3}

Proof. First, we prove the existence of an approximating sequence (4;(T;u,v)),cy C L*(€; D(A)) of the
random variable y(T’; u,v) —yq € L?(2; L?(D)) for fixed controls u € U and v € V. Let z be a L?(D)-valued
simple random variable, i.e. there exist functions f; € L*(D) for j = 1,2,..., N such that P-a.s.

N
2= fila,,
j=1

where 1 4, denotes the indicator function of A; € F. Since D(A) is dense in L?(D), there exists a sequence
(f;)ieN C D(A) for each j € {1,2,..., N} such that

. L z
Lim 1£; fJHm(D)
N .
We set P-a.s. z; = »_ fil4,. Then we obtain
j=1 '
. 2 .
ZligloE 2 — Zz‘||L2(D) =0.
Furthermore, it is well known that every random variable with values in LQ(D) can be approximated by

a sequence of L?(D)-valued simple random variables. Therefore, for y(T;u,v) — yq € L*(Q; L?(D)), there
exists a sequence (§;(T;u,v));cy C L*(Q; D(A)) such that for fixed controls v € U and v € V

lim Elly(T;u,v) = ya — 4:(T; u,0)[[22(py = 0. (4.13)
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Recall that the semigroup (eAt)tZO is self-adjoint. Using Fubini’s theorem and Corollary we have for
every v € V and each i € N
T

E / (3T .0), (A~ A)eA(T‘t)Nﬁ(t)>L2(D) dt

0

dt

Ot —5 “T—x

’ kﬂi(T; u,v), (A = A1 ATT0 () - A>aNﬁ<t)>L2<DJ

&=

{E Kgi(T; u,v), (A — A)lfaeA<T*t>gﬂ(t)>L2(D) ‘]-'t” dt

I
=

Il
=
Ot~y Oy T

<E [9:(T5u, )| Fe] s (A — A)liaeA(Tit)gﬁ(t»L?(D) a

(AT (A~ A B [T, 0)| ) ,gf;(t)>L2(D) dt

E

(A= A AT IR [ (T w,0)| R 0(E))
(g"(A— )2 (T 0) R0
Next, let the operator M(t): L?(D) — L?(9D) be defined by

M(t) _ g*(}\ - A)lfaeA(Tft)
for all t € (0,7]. Since the operator G*: L?(D) — L?*(9D) is linear and bounded and using Corollary |4.2
(iv) and (vi), the operator M(t) is linear and there exists a constant C' > 0 such that for all ¢ € (0,7] and
every g € L*(D)
IM(®)gll 2op) < CMy—o(T = 1) gllL2(D)- (4.14)
By inequality (4.14)), Fubini’s theorem and Proposition we obtain for every u € U, every v € V and
each i € N

T
E/ IM(®) (B [y(T; u,0)|Fi] = ya) = M(OE [5i (T5 . 0) | F| 72 ) d
0

T

< C2ME B [(7— 0 B ly(T5u,0) 7] - va — B (5(T50,0) F 2
0
T
<CcPM2, /(T — )% 2E [E [Hy(T;u,v) — Yd — gi(T;u,v)Hig(D) .7-}” dt
0
C2M127QT2(X_1 _ 9
= TE ly(T;u,v) = ya — 5:(T; u, U)||L2(D) :

Due to equation (4.13]), we can conclude that for fixed controls u € U and v € V

T
tim B [ M) (B [y(T3 0,05~ ) — MO [(T50,0) 1] 2oy = 0
0
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Therefore, we have for fixed controls v € U, fixed v € V and every v € V

T T
cu ) — — A)eAT- N = i 5:(T; — A)eA TN
]E/<y(T,u7v) ya, (A — A)e Nv(t)>L2(D) dt igr&E/<yl(T,u,v),(A Ae Nv(t)>L2(D) dt
0 0
T
= ZHI&E/ (M@E [9;(T; u,v)|F 2 0(8)) p2(opy dt

0
T
~E / (M) (B (T3 0, 0) ] = ya) ,5(0) 1oy -
0

Using equation (4.8)), we find for every o € V

T
dyJ (u, v)[0] = E/ (M) (E [y(T; u, v)| Fi] = ya) + r2v(t), 0(1)) 12 (o) dt-
0

Applying condition ([4.10)), we can infer that the optimal boundary control satisfies for almost all ¢ € [0, T
and P-a.s.

a(t) = —éM(t) EFT)|F] - va).

This implies equation (4.12)) and proves the theorem. O
Due to the previous theorem, we will always assume that o € (3, 3).

Remark 4.7. Note that the previous results can be easily obtained if system is driven by a square
integrable Lévy martingales as introduced in Section[3.3

4.4. Design of a Feedback Law

Based on Theorem |4.5and Theorem the optimal controls can be determined by calculating E [5(T")|F¢].
Since this leads to serious problems in applications, we avoid the calculation of the conditional expectation
by using the martingale representation theorem according to Theorem [3.86] Here, we assume that the
Q-Wiener processes (W(t))i>o and (Wy(t));>0 are independent. First, we apply Proposition to obtain
series expansions of the Q-Wiener processes (W (t));>0 and (W;(t))i>0. Let (ug)ken be an orthonormal
basis in L?(D). For arbitrary ¢ > 0, we have the following expansions:

Wt = 3 VA,
k=1

where (wg(t))i>0, £ € N, are mutually independent real-valued Brownian motions and the sequence of
nonnegative real numbers (A;)ren satisfies Qup = Aguy for each k € N. Similarly, let (UZ)keN be an
orthonormal basis in L?(9D). For arbitrary ¢ > 0, we have the following expansions:

Wa(t) = 3 /N (.
k=1

where (w?(t))i>0, k& € N, are mutually independent real-valued Brownian motions and the sequence of
nonnegative real numbers (AZ)keN satisfies Qbuz = )\zuz for each £k € N. On the probability space
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(Q,F,P), we assume that the filtration (F;)i>0 is given by F, = o {F} UF?} for all t > 0, where
Ft = o{Ups; o{wi(s) : 0 < s < t}} and F7 = o {Upe; o{wi(s): 0 <s<t}} for all ¢ > 0. Moreover,
we set F = Fr. Obviously, the process (E [5(T')|F¢])iefo,] is a continuous square integrable F;-martingale.
As a consequence of Theorem there exist predictable processes (®(t))ef0,r) and (Py(t))tefo,r) With

values in Lxrg) (QY%(L*(D)); L*(D)) and Lys) ( ;/2(L2(6D)); LQ(D)), respectively, such that

/H(I) H[:(HS) Q1/2(L2(D)) Lz(D))dt < o0,

2
p/wmm%m T
0

and we have for all ¢ € [0,7] and P-a.s.

E [y(T)|F] :E[E(T)H/@(S) dW(S)+/<I’b($) AWy (s). (4.15)
0 0

Remark 4.8. From the proof of Theorem we can easily obtain that the representation holds.
Especially, it is necessary to assume that the Q- Wiener processes (W (t))i>0 and (Wy(t))i>0 are independent.

Let the process (q(t)).c[o,r satisfy for all £ € [0,7] and P-a.s.

q(t) = MTIE (D) F] — ya)- (4.16)
Next, we introduce the adjoint state (p(t))c(o,r] satisfying for all ¢ € [0, T] and P-a.s.

T T

mwzwﬂﬂ@@ww@—/ AE=09M (5) dW (s) — /&“ﬂﬁﬂwmm@,

t t
where ®()(s) = eAT=%)d(s) and <I>£T)(s) = eAT=9)®,(s5). Then we obtain for all ¢ € [0, 7] and P-a.s.

q(t) = E [p(t)[F] (4.17)

and by equation (4.11]) and equation (4.12)), the optimal controls w € U and v € V satisfy for almost all
t € [0,T] and P-a.s.

a(t) = —%B*q(t), (4.18)
B(t) = _%g*“ — A g (), (4.19)

In the remaining part of this section, we reformulate the process (q(t)):cjo, 7] to obtain a feedback law of
the optimal controls. Therefor, we introduce the function P: [0, 7] — £(L?*(D)), which fulfills the following
Riccati equation:

d 1 . L. *
P = AP() + P)A — —POBBP(t) — —H (1)GG"H(1), (4.20)

where H(t) = (A — A)}=%P(t) and [ is the identity operator on L?(D).
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Definition 4.9. We call P: [0,T] — L(L*(D)) a mild solution of system if for all t € [0,T]
and every h € L*(D)

T
P(t)h = AT AT L /eA(S_t)P(S)BB*’P(S)eA(S_t)hds
K
! t
T
L AN (5)GG H(s)eA D h ds. (4.21)
K2

t

Remark 4.10. In [9, Part IV], the existence and uniqueness of mild solutions to the Riccati equations

9P(1) = AP(1) + P()A ~ P(1)BB*P(),
P(T) =1
and p
%P(t) = AP(t) + P(t)A — H*(t)GG H(t),
P(T) =1

are proved. Since equation is a generalization of these special cases, an existence and uniqueness
result can be easily obtained.

In the following remark, we state some important properties of the function P: [0,T] — L(L?(D)).
Remark 4.11. Recall that o € (3,3). According to [9, Part IV], we have
o P(t)h € D((A\— A)L1=%) for every h € L*(D) and all t € [0,T);
ot (A — A)1=2P(t) is a continuous function from [0,T) into L(L*(D));
o P(t) € L(L*(D)) is self-adjoint for all t € [0,T).

Lemma 4.12. Let P: [0,T] — L(L*(D)) be the mild solution of system . If z € D((A— A)t=%), then
we have for all t € [0,T]
Pt)N— A% = (A= A7 P(t)z.

Proof. The claim follows immediately from Corollary (vii) and the fact that P(t) is self-adjoint for all
t €10,T]. O

Next, we introduce the function a: [0, 7] — D((A—A)!~%) satisfying the following deterministic backward
integral equation for ¢ € [0, 7T]:

T

a(t) = /eA(S_t) (—;P(S)BB* - éH*(S)QQ*(/\ - A)l_o‘> a(s)ds — eAT Dy, (4.22)
t

We have the following existence and uniqueness result.

Theorem 4.13. There exists a unique solution a: [0,T] — (A — A)}=% of equation such that

T
/||a(t)||2D(()\—A)lfa)dt < 00.
0
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Proof. For all ¢ € [0,T], let us introduce the operator M(t): D (A — A)'=*) — L?(D) defined by
1 1
M(t) = ——P({t)BB* — —H*(1)GG*(\ — A)* @
K1 Ko

Then clearly M(¢) is linear and closed for all ¢ € [0,7]. Recall that the operators P(t), B, H(t) and G are
linear and bounded on L?(D) for all ¢ € [0,7). By Corollary (iii), there exists a constant ¢ > 0 such
that for all t € [0,T) and every y € D((A — A)17%)

1 * 1 * * —« —x
IMEBYll20) < PO BB Y2 + 1 (GG (A = A ylre ) < (A= ATyl L2y (4.23)

Next, we define for ¢ € [0, 7]

T

T@(0 = [ AIM(s)als) ds — ATy,

t

Let Ty € [0,T). We have that J maps L?([T7, ], (A = A)179)) into itself, which follows immediately
from Proposition [B.9] Corollary [£.2] inequality (4.23) and Young’s inequality for convolutions. Indeed, we
obtain

/||~7 I B(amay-o)dt

2

T T
<2 [ /H (= Ayt OpMsga)| s | derz [0 AT g di
T T
(7 /7T 2 T
<ot | [ [- 0" M@ ey ds | dir [ @ =072t Jual e,
|11 t Ty
Ar-T) | (T =Ty
2 (T —=T7)” TN —T1h)™" 2
R /”a(t)”D((AfA)l*a)dt‘*'ﬁ”yd”L?(D)
- Tl
Next, we show that 7 is a contraction on L2([T1, T]; D((A—A)'=%)). Let a1, as € L*([T1, T]; D((A—A)'=%)).

Similar as above, we get

ds | dt
L2(D)

MQ_QCQ(T—Tl)a . i
< - /Hal(t)—Clz(t)H2D((>\7A)lia)dt.
T:

T
[ 1@ - 7@ 0 - Ala)dt</ /HA A=A M(s)ar(s) — (5]

2 a
We chose Ty € [0,T) such that Mi-ac OET_TI) < 1. Applying the Banach fixed point theorem, we get a
unique element a € L2([T1,T]; D((A — A)!=)) such that J(a)(t) = a(t) for t € [Ty, T]. Next, we consider
for ¢ € [0, T1]

T,

J(@)(t) = e Va(Ty) + / A0 M(s)a(s) ds.

t
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Again, we find Ty € [0, T3] such that there exists a unique fixed point of J on L?([Ts, T1]; D((A—A)'=%)). By
continuing the method, we get the existence and uniqueness of a function a: [0,7] — (A — A)! = satisfying
J(a)(t) = a(t) for ¢t € [0,T). O

This enables us to prove the following representation theorem, where we closely relate to the proof of [21]
Theorem 7.8].
Theorem 4.14. Let the process (q(t))icjo,r) be given by . Then we have for all t € [0,T] and P-a.s.
q(t) = P()y(t) + a(t), (4.24)
where P: [0,T] — L(L*(D)) is the mild solution of system and a: [0,T] — D((A\ — A)17%) is the
unique solution of equation .

Proof. Let t € [0,T] be arbitrary. Substituting equations (4.18]) and (4.19) in equation (4.4)), we find for all
s € [t,T] and P-a.s.

S

1 1 r
y(s) = eA(S_t)y(t) - / eA(S_T)BB*q(r) dr — — /()\ — A)l_aeA(s_r)gg*()\ — A () dr
1 2
r i

+ /eA(s—r)G(r) dW(T) + /()\ — A)eA(s—r)N de(r).

Next, we define for all » € [¢,T] and P-a.s.
q(r) = E[p(r)|F]. (4.25)
Then by equation (4.17)), we get P-a.s. ¢(t) = ¢(t) and
Elg(r)|Fi] = E [E[p(r)|F;]| 7] = Elp(r)| 7] = q(r)
resulting from Proposition Thus, we have for all s € [t,T] and P-a.s.

E[f(s)|F] = eAe=0g(t) — / A BB g(r) dr — - / (A= A)1=2eAG=)GG* (A — A)1=2g(r) dr. (4.26)

K1 K2
t t

Using equation (4.16) and Corollary we obtain P-a.s.
T

o(t) = eAT-D ATz _ L / MT=0AT= BB (s) ds
K
! t
1 T
ke /(A — AT AT =667 (A — A)7G(s) ds — ATy,

t
By equation (4.21]) with h = 5(¢), we find P-a.s.

T
alt) = POFH) — ATy 4 = [ [ACDP() BB P(s)eA (1) - AT VAT BB (5)] s
1
t
T T
1 1
+ . AU (5)GG H (s)eAI7(t) ds — — /()\ — A)tma AT AT =9 GG* (N — A)1=G(s) ds
2 2
t t
= P(t)y(t) — Ty + 1 (1) + Lo(t), (4.27)
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where
1 T
L) = — / [eA(S’t)P(s)BB*P(s)eA(S’t)y(t) — AT AT BB*G(s)| ds,
lt
1 T
T() = — / A=D9 ()GG H(s)e A (¢) ds
2t
1 T
_ ; (/\ _ A)l—aeA(T—t)eA(T—s)gg*()\ _ A)l—ozqv(s) ds.
2

t

Using again equation (4.21)) with h = BB*q(s), we get P-a.s.

T
Ty (t) = L / eA=P(s)BB* [P(s)eA(s’t)y(t) - q(s)] ds

K1

T T
1 r— * r—S * ~
- H%//EA( OP () BB*P(r)eA" %) BB*{(s) dr ds

T T
_ ! //eA(r_t)H*(r)gg*’H(r)eA(r_s)BB*(j(s)drds.

T
1 -
n(t) = - [ A OPBE [Ple)ee (0~ 4(s)] ds
t
T T
1 r— * r—s * ~
— H%/BA( YP(r)BB P(r)/eA( )BB*{(s) ds dr
¢ ¢
1 T T
- —/eA(T_t)H*(r)gg*H(r)/eA(T_S)BB*('j(s) dsdr.
K1KR2
t t

Through interchanging the integration variables in the last two integrals, we find P-a.s.

T s
1 1
L) = / ACIPSBE” [P(5)eA (1) ~ d(s) - —Pls) / A= BB*(r) dr | ds
t t
T s
S / eACDH* (5)GG* H () / A6~ BB*§(r) dr ds. (4.28)
K1K2
t t

Next, we reformulate Z»(t). Corollary Proposition and equation (4.21)) with h = Z for an arbitrary
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Z € D((A— A)'~) yields for all s € [t,T]

T
1
(A= A)tmeeAT =)A=z — (N — A)1=P(s)z + — /(/\ — A2 AT P(r) BB*P(r)e ") 2 dr
1
. T
+ — (A — A=A (1 GG*H (r)e ") 2 dr,
2

S

Similarly, by using additionally Lemma 4.12} we obtain for all s € [t, T

T
AT AT=5) () _ g)l=az _ (\ = 4)1=aP(s)5 4+ — / AP (r)BB*P(r)(A — A)' e zdr
K1
T
1
+ — [ AN ()GGH(r) (N — A) AT 2 dr,

K2
S

By Corollary we get

()\ o A)lfaeA(Tfs)eA(Tfs)g _ eA(Tfs)eA(Tfs) ()\ 7 A)lfag.

Hence, we can conclude for all s € [¢, 7]

T T
1 1
. (A — A)=2AT=)P(r)BB*P(r)e "= z dr + o /(/\ — A A=Y (1) GG H (r)e AT 2 drr
. T
= /eA(T_S)P(r)BB*P(r)(/\ — A)teAT=S)z gy
1
. T
+ = / AW (MGGH(r) (A — A) AT 2 dr (4.29)
R2

S

Due to the fact that D((A — A)'~) is dense in L?(D), the previous equation holds for every z € L?(D).
Applying equation (4.21)) with h = GG*(A — A)1=2G(s), we get P-a.s.

T
T(t) = — / A0 (3 (5)9G H () IF(1) — H()G" (A — A)'~d(s)] ds

K2
t

T T
/ / (A = A)=2AT=DP (Y BB*P(r)eA ") GG* (X — A)'=%G(s) dr ds

t s

1
K1K2

&
S|

T T
/ / (A — A)2eAT= (1) GG H (r)eAT™IGGH (A — A)1%G(s) dr ds,
t

S
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where we also used Corollary By equation (4.29) and Fubini’s theorem, we have P-a.s.

T
To(t) = %2 / eAls=1) [H*(s)gg*ﬂ(s)eA<s—f)y<t) — H(s)GG* (N — A)l—aq(s)} ds
t T
—L/ AC=0P(r)BB*P(r /)\ A=A TIGGH (N — A)' G (s) ds dr
K1K2 /
T
_’:%/A(rt ()gg* /)\ AlaArsgg()\ A)la()deT‘

t t

Through interchanging the integration variables in the last two integrals, we find P-a.s.

A (M ()96 H(s)eACTIG() — H()G" (A = A)'=4(5)| ds

S
=
~—
Il
g|-
Tt~

— / A(s— t)P BB*'P(S)/(A A)l o As ng ()\ A)l e ( )drds
1
t

LT St 1aAsr l—a~ rds.
3/ H (596" H(s) (-4 GG (A — A)-oq(r) drds.  (4.30)

t

Using equations (4.28) and (4.30)), we obtain P-a.s.
) T
T (t) + Io(t) = —/eA(s_t)P(s)BB*

K1
t

P(s)eM 050~ a(s) ~ —P(s) [ A IBE ) dr

S

— iP(s) /(A — A eeAGTIGEH (N — A G(r) dr

K2

T

/ A(s— t gg (/\_A)l—oup(s)

1
eA(s_t)y(t) - /eA(S_T)BB*c}'(T) dr

%/)\ A)lmoeATgeH () — A)lo‘()dr]ds
t

T

L [ G*(\— A)1%G(s) ds.
K2
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By equation (4.26)), we get P-a.s.

T
L)+ Ta(t) = - [ VP BB [P()E[()IF] - ()] ds
"
+ o [ (9G0 (- 4) 7 [PIE(IF] — ()] ds
IT

+ L / e (1*(s) — H(s)) GGF (A — A)1%G(s) ds.
K2

t

Due to Corollary 4.2/ and Lemma we have for every Z € L?(D) and P-a.s.

T
< / e (U (s) — H(s)) GG (A — A) ' q(s)ds, Z>

L*(D)

T
= [{90" 0= )2 as). (= A P)AC0E) s

L?(D)

T
- / <QQ*(>\ — A)%(s), P(s) (A — A)l_aeA(S_t)2> ds = 0.

L*(D)

Hence, we can conclude that P-a.s.
T
/ A (1 (5) = H(s)) GG (A — A)'=q(s) ds = 0.
t

Therefore, we have P-a.s.

T

L)+ Tu(t) = o [ X OP) BB [P(s)B[p(o)|F] - 1(s)) ds
g
b [N (90 (- A POERGF — s (431)

t

Next, we set a(s) = ¢(s) — P(s)E[y(s)|F] for s € [t,T] and P-almost surely. Then for s = ¢, we get
a(t) = q(t) — P(t)y(t) resulting from equation (4.17) and equation (4.25). Therefore, we obtain equation
(4.24). Moreover, we get that a(t) satisfies the following deterministic backward integral equation:

T

a(t) = /eA(s—t) (—;P(S)BB* _ %H*(S)gg*()\ N A)l—a) CL(S) ds — eA(T—t)yd
1

2

as a consequence of equation (4.27) and equation (4.31)). O
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Remark 4.15. As a consequence of equation , equation and the previous theorem, the optimal
controls w € U and T € V satisfy the following feedback laws for almost all t € [0, T] and P-almost surely:

alt) = —%B*[P(t)y(t) +a(t)],
o(0) =~ 6" (= A PO +alt),

where the function P: [0, T] — L(L*(D)) is the mild solution of system and a: [0,T] — D((A—A)1~%)
is the unique solution of equation .

Remark 4.16. If system is driven by Lévy processes, then one can obtain the optimal controls stated
in the previous remark as follows:

Note that the design of the feedback law presented in this section is based on a martingale representation
theorem. Similarly to Remark such a martingale representation theorem can only be derived if the
filtration is generated by independent real-valued Lévy processes. Hence, a feedback law of the optimal
controls can be derived if system is driven by real-valued Lévy processes.
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Chapter 5

Optimal Control of Uncertain Stokes Flows

In this chapter, we consider a control problem constrained by the unsteady stochastic Stokes equations with
nonhomogeneous Dirichlet boundary conditions. Here controls appear inside the domain as distributed
controls and on the boundary as tangential controls. Motivated by [76], we first analyze the deterministic
unsteady Stokes equations with nonhomogeneous Dirichlet boundary conditions. Similarly to the previous
chapter, we reformulate these equations as an evolution equation in a suitable Hilbert space such that the
existence and uniqueness of a solution can be obtained using fractional powers of closed operators introduced
in Section Based on this approach, we extend the Stokes equations by an additional noise term. An
existence and uniqueness result of a mild solution to the stochastic Stokes equations is provided in Section
This enables us to solve uniquely a tracking problem using a stochastic maximum principle, which
gives us necessary and sufficient optimality conditions the optimal controls have to satisfy. Through a duality
principle, we can utilize these optimality conditions to calculate the optimal controls. As a consequence, it
remains to solve a coupled system of forward and backward SPDEs. The results presented here are mainly
based on [g].

Throughout this chapter, let (©, F,P) be a given complete probability space endowed with a normal
filtration (F),~-

5.1. Motivation

In this section, we consider the deterministic Stokes equations with nonhomogeneous Dirichlet boundary
conditions. Here, we restrict the problem to tangential boundary conditions. A general formulation can
be found in [76]. Let D C R™, n > 2, be a connected and bounded domain with C? boundary 9D and let
T > 0. We introduce the Stokes equations with nonhomogeneous Dirichlet boundary conditions:

3 y(t,2) ~ Ay(t,2) + Vplt,a) = f(t,z) in (0,7) x D,
div y(t,z) =0 in (0,7) x D, (5.1)
y(t,z) = g(t,x) on (0,T) x 9D,

y(0,2) =&(x)  in D,
where y(t,2) € R™ denotes the velocity field with initial value £(z) € R™, p(t,x) € R describes the pressure
of the fluid and f(¢,z) € R™ is the external force. The boundary condition g(¢,2) € R™ is assumed to be
tangential, i.e.
g(t,x) -n(x) =0 on (0,T) x 0D

in the sense of the inner product in R"™, where n denotes the unit outward normal to 0D. Next, we
reformulate system (5.1 as an evolution equation. According to Section let us introduce the following
Hilbert spaces:

H={ye (L*(D)":divy=0inD,y-n=0ondD},
V= {ye (HY(D))" : divy =0in D}
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and let A: D(A) C H — H be the Stokes operator given by
D(A) = (HX(D))" NV, Ay =—TiAy

for every y € D(A), where the operator II: (L?(D))" — H is an orthogonal projection. By Theorem
the operator —A is the generator of an analytic semigroup of contractions (e‘At)tZO. Hence, we can
introduce fractional powers of A denoted by A® with a € R according to Section [2:3] Furthermore, let us
define the following spaces for s > 0:
V(D) ={y e (H*(D))" : divy=0inD,y-n=0on dD},
V*(0D) = {y € (H*(0D))" : y-n =10 on D} .
For s < 0, the space V*(9D) is the dual space of V~*(9D) with V°(dD) as pivot space. Moreover, let
H?*(D)/R with s > 0 be the quotient space of H*(D) by R, i.e. H*(D)/R={y+c: y € H*(D),c € R}. We
set ||yl gs(py/m = infeer |y + cllgs(p) for every y € H*(D)/R. The dual space is denoted by (H*(D)/R)’
with H°(D)/R as pivot space.
Next, let us consider the system

—Aw+Vr=0 and divw=0 inD,
{ 52

w=g on 0D.
We have the following existence and uniqueness results.
Proposition 5.1 (cf. Theorem IV.6.1 (a),[d0]). If we assume that g € V3/2(9D), then there exists a unique
solution (w,m) € V(D) x HY(D)/R of system and the following estimate holds:
[wllvzoy + 1Tl oyr < Cllgllvsrop),

where C* > 0 is a constant.
Proposition 5.2 (cf. [l [76]). If we assume that g € V~/2(9D), then there exists a unique solution
(w,m) € VO(D) x (Hl(D)/R)/ of system and the following estimate holds:

lwllvoy + I7ll (1 (py/ry < C*llgllv-1/205p),
where C* > 0 is a constant.

We introduce the Dirichlet operators D and D, defined by
Dg=w and Dpg=m,

where (w,7) is the solution of system (5.2]). We get the following properties of the Dirichlet operators,
which is an immediate consequence of Proposition and Proposition [5.2

Corollary 5.3 (Corollary A.1, [76]). The operator D is linear and continuous from V*(9D) into V5+1/%(D)
for all —% <s< % If —% <s < %, then the operator D, is linear and continuous from V*(9D) into
(Hl/Q_S(D)/R)/ and zf% < s < %, then the operator D, is linear and continuous from V*(9D) into
H*~1/2(D)/R.

As a consequence of Corollary and Corollary we get D € L (VO((?D); D(AB)) for g € (0, %) By
the closed graph theorem, we have A°D € £ (V°(9D);V°(D)). We note that V(D) = H. Furthermore,
system (|5.1)) can be rewritten in the following form:

%y(t) —Ay(t) + ADg(t) + L (2),

y(0) = TI¢.

(5.3)
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For the sake of simplicity, we assume f(¢),£ € H for t € [0,T]. Hence, we obtain a linear evolution equation
and the solution is given by

t t
y(t) = e A + /Ae_A(t_S)Dg(s) ds + /e_A(t_S)f(s) ds.
0 0

For more details about linear evolution equations, see [9]. The following existence and uniqueness result is
stated in [76] for more general boundary conditions and f = 0.

Theorem 5.4. Let g € L*([0,T];V°(dD)) and f € L*([0,T]; H). If a € [0, %), then for any & € D(A%),
there exists a unique solution y € L2([0,T]; D(A%)) of system and the following estimate holds:

lyll L2 o.11:0(a0)) < CF (I€llpasy + Ngllz2o,r1:vo o)) + 1220, 17:80) )

where C* > 0 is a constant.

5.2. The Controlled Stochastic Stokes Equations

In this section, we consider the controlled stochastic Stokes equations. Here, controls appear as distributed
controls inside the domain as well as tangential controls on the boundary. We assume that the external
force f(t) in equation can be decomposed as the sum of a control term and a noise term dependent on
the velocity field y(t). Using the spaces and operators introduced in Section we obtain the stochastic
Stokes equations in D(A®):

y(0) =&, (5.4)

where the initial value § € L?(2; D(A®)) is Fp-measurable and the process (W (t)):>¢ is a Q-Wiener process
with values in H and covariance operator Q € £ (H). The set of admissible distributed controls U contains
all predictable processes (u(t)):eo,r] With values in H such that

{dy(t) = [~ Ay(t) + Bu(t) + ADv(t)] dt + G(y(t)) dW (t),

T
E/||u(t)||§th< .
0

The space U equipped with the inner product of L?(Q; L2([0,T]; H)) becomes a Hilbert space. Similarly, the
set of admissible boundary controls V contains all predictable processes (v(t))¢efo,r) with values in V°(9D)
such that

T
2
E [ 1o(®l}aom dt < oc.
0

The space V equipped with the inner product of L?(Q; L%([0,T); V°(9D))) becomes a Hilbert space. The
operators B: H — H and G: H — L(ys)(QY/?(H); H) are linear and bounded. Motivated by Section 5.1}
we use a mild solution to system in the sense of Definition with # = H and H, = V°(9D).
As a consequence of Theorem there exists a unique mild solution (y(t)):c[o,) of system for any
¢ € L*(Q; D(A)) and fixed controls u € U and v € V. Hence, the process (y(t)):ejo,r) takes values in
D(A®) with « € [0, ) such that

T
E/mwﬁmﬂm<m (5.5)
0
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and we have for all ¢ € [0, 7] and P-a.s.
t t t
y(t) = e e+ /e_A(t_s)Bu(s) ds + /Ae_A(t_s)Dv(s) ds + /e_A(t_s)G(y(s))dW(s).
0 0 0

In this chapter, it suffices to require that (y(t)):co,r) satisfies condition with @ = 0 and we assume
that the initial value & € L?(); H) is fixed. To illustrate the dependence on the controls v € U and v € V/,
let us denote by (y(t;u,v))ie[o,r] the mild solution of system . Whenever this process is considered for
fixed controls, we use the notation introduced above. We get the following properties.

Lemma 5.5. Let (y(t;u,v))ieo,r) be the mild solution of system corresponding to the controls u € U
and v € V.. Then the process (y(t;u,v))ie(o,) is affine linear with respect to u and v and we have for every
uy, us € U and every vy,ve € V

T T T
E / ly(t: s, 01) — y(t: s, vo) [yt < € |E / lun (8) — ua(t)|% dt + E / lor(t) = v2(®) 2oomy dt |, (5:6)
0 0 0

where C > (0 458 a constant.

Proof. First, we show that (y(t;u,v))iep,r is affine linear with respect to u € U. We assume that £ = 0
and v = 0. Moreover, let a,b € R and uy,us € U. Recall that B: H - H and G: H — C(HS)(QI/Q(H);H)
are linear and bounded. Moreover, we have He*AtHﬁ(H) < 1 for all ¢t > 0. Using Theorem W (iii) and

Fubini’s theorem, there exists a constant C* > 0 such that for ¢ € [0, T

E||ly(t; auy + bug,0) — ay(t;ur,0) — by(t; ug, 0)||3
2

t
<E /E_A(t_S)G(ZU(t; auy +bug,0) —ay(t;ur,0) — by(t;uz,0)) dW (s)
0

H

t
<C* /IE ly(s;auy + bug,0) — ay(s;ui,0) — by(s;uQ,O))H?{ ds.
0

By Proposition we have
E|ly(t; auy + busg,0) — ay(t; uy,0) — by(t;uz,0)]|% =0

for ¢t € [0,T] and thus, we get
T
IE/ lly(t; aug + busg,0) —ay(t;u,0) — by(t;UQ,O)H%[dt =0
0

resulting from Fubini’s theorem. We obtain that (y(;u,0))ie[0,r7 With initial value £ = 0 is linear with
respect to u € U. For arbitrary Fo-measurable & € L?(); H) and arbitrary v € V, we can conclude that
(y(t;u,v))iejo,r) is affine linear with respect to w € U. Similarly, we obtain that (y(t;u,v))iep,r) is affine
linear with respect to v € V.

Next, we show that inequality (5.6) holds. Let ui,us € U and vq, v, € V. Recall that A*D: V°(0D) — H
is linear and bounded for all a € (0, 1). Due to Theorem m (iv), Theorem Theorem (iii) and

100



Chapter 5. Optimal Control of Uncertain Stokes Flows

Fubini’s theorem, there exist constants Cy,Cs, C3 > 0 such that for ¢t € [0,T]

E [ly(t;ur,v1) — y(t;uz, va) |13

< 3E/ HG_A(t—s)B[m(S) - u2($)]Hj{ ds+3E /t HAl_ae_A(t_s)AaD[Ul(s) - vZ(sHH ds
0

H
0
t 2
3B [ MGy (siun, 1) — y(ssua,va)) W)
0 H
t t 2
<CiE [ fur(s) ~ua()l ds+ CoE | [t =57 oa(s) = 0a(5) o) d
0 0

t

e / E [ly(s; 1, v1) — y(s; 4z, v2) || ds.
0

Using Corollary Fubini’s theorem and Young’s inequality for convolutions, we get for ¢ € [0, 7]

E ly(t;ur, v1) — y(t; uz,v2) |5
. 2

t
< C’lE/Hul(s) —uy(s)||3 ds + Co E /(t—s)“*1 [v1(s) — v2(8)lyo(op) ds
0 0
2

t S S
+Ca [ OB [ uatr) = ua)lf dr+ CE | [ (5= r)" ) = vallyagomydr | | ds
0 0 0

t 2

t
<y (14 Coc®) B [ ur(s) = ua(o) [ ds + CaB | (¢ =9 for(s) = 0a(s) o ds
0 0

t
CQCg@CStt2a 2
L GG i g / lo1(s) = 03(5) 2o o) ds.
0

«

By Fubini’s theorem and Young’s inequality for convolutions, there exists a constant C > 0 such that

T T T
E / ly(t: s, 01) — y(t; uz, v 3yt < © |E / lur(t) — ua(t)|% dt + E / o (8) = w2 (Ol 0o
0 0 0

5.3. A Tracking Problem

The control problem considered here is motivated by [4, 17, 56, [75] [79]. In this section, we state necessary
and sufficient optimality conditions the optimal controls have to satisfy. Let us introduce the following cost
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functional:

1
Juw) = / Iyt 0) — ya(t) [yt + "2 B / el de + "2 & / O oppy . (5.7)

where (y(t;u,v))tepo,r] is the mild solution of system (5.4) corresponding to the controls u € U and v € V.
The function y4 € L?([0,T]; H) is a given desired velocity field and k1, k2 > 0 are weights. The task is to
find controls w € U and v € V such that

J(u,v) = uefljr,lfev J(u,v).
The controls w € U and v € V are called optimal controls. Note that the control problem is formulated
as an unbounded optimization problem constrained by a SPDE. The functional J: U x V' — R given by
equation (5.7)) is coercive, strictly convex and continuous, which is a consequence of Lemma Hence, we

get the existence and uniqueness of optimal controls resulting from Corollary
Next, let us introduce the following systems in H:

{dzl(t) [— Az (t) + Bu(t)] dt + G(z1(t)) dW (t),
(5.8)
(0) =0,
{dzg(t) [—Azy(t) + ADu(t)] dt + G(z2(t)) dW (t),
(5.9)
z9 (0) = O7
where v € U, v € V and (W(¢)):>0 is a Q-Wiener process with values in H and covariance operator

Q € L7 (H). The operators A, B, D,G and the spaces U,V are introduced in Section and Section
respectively. Again, we use a mild solution to system ([5.8) in the sense of Definition with H = H,
Hy = VO(dD) and v = 0. As a consequence of Theorem with a = 0, there exists a unique mild solution
(21(t))tefo, 1) of system for fixed control u € U. Hence, the process (z1(t))¢cjo,7] takes values in H such
that

T
E [ a0t < oo
0
and we have for all ¢ € [0,7T] and P-a.s.

z21(t) = [ e 2D Bu(s)ds + [ e AETIG(21(s)) AW (s).
/ .

Similarly, there exists a unique mild solution (22(t))e[o,r) of system (5.9) for fixed control v € V. The
process (22(t)):e[o, 1) takes values in H such that

T
]E/||22(t)||§{dt < o0
0

and we have for all ¢ € [0,T] and P-a.s.

t

:/Ae_A(t_s)Dv(s) d8+/e_A(t_S)G(ZQ(S))dW(S).
0

0
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Remark 5.6. Resulting from Theorem the mild solution of system (@ satisfies even stronger regu-
larity conditions. Indeed the process (21(t))iejo, 1) takes values in D(A%) with a € [0, 3) such that

E sup |z1(8)[|D(aey < oo
t€[0,T)

To illustrate the dependence on the controls w € U and v € V, let us denote by (z1(t;u)):efo,r) and
(22(t;v))iejo, 1) the mild solutions of system and system , respectively. Whenever these processes
are considered for fixed controls, we use the notation introduced above. Similarly to Lemma [5.5] we get the
following result.

Lemma 5.7. Let (21(t;u))iejo,r) and (22(t;v))iepo, 1) be the mild solutions of system (@) and system
corresponding to the controls w € U and v € V, respectively. Then the process (z1(t;u))iejo, 1) s linear
with respect to u and the process (22(t;v))iefo,) i linear with respect to v. Moreover, we have for every
ui, us € U and every vy,ve € V

T T
E [ lla(tiu) - s (6wl < CE [ un(t) = ua(0)]
0 0

T T
E / ot 1) — za(t; 09) |3t < OF / o1 (8) = v (Ol o s
0 0

where C > 0 is a constant.

This enables us to calculate the partial Fréchet derivative of the mild solution to system (5.4]).
Theorem 5.8. Let (y(t;u,v))icior), (21(tu))iepo,r) and (22(t;v))icio,r) be the mild solutions of systems
, (@ and @) corresponding to the controls u € U and v € V, respectively. Then the partial Fréchet
derivative of y(t;u,v) at w € U in direction @ € U satisfies for fited v € V, t € [0,T] and P-a.s.

dyyy(t;u,0)[a] = 21 (t;a).

The partial Fréchet derivative of y(t;u,v) at v € V in direction © € V satisfies for fited u € U, t € [0,T]
and P-a.s.
dy y(t;u,0)[7] = 22(8;9).

Proof. First, we calculate the Fréchet derivative of y(t;u,v) at w € U in direction & € U. Let v € V be
fixed. Recall that the operators B: H — H and G: H — E(HS)(QUQ(H);H) are linear and bounded.
Moreover, we have He*AtHL(H) < 1 for all ¢t > 0. Using Theorem W (iii) and Fubini’s theorem, there

exists a constant C* > 0 such that for t € [0, T]

‘ 2

Elly(t;u+a,v) - y(tu,v) — 21(t0) | = E /e_A(t_s)G(y(S; u+1@,v) = y(s;u,v) = 21(s;@)) dW (s)
0

H
t

<C* /E ly(ssu+ i, v) — y(s;u,v) — 21(s;0)| 3 ds.
0

By Proposition we have E||y(t;u + @,v) — y(t;u,v) — 21(t;a)||% = 0 and hence, we obtain

T
E/ ly(t;u + @,v) —y(t; u,v) — 21 (¢; ﬂ)||%{dt =0
0
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as a consequence of Fubini’s theorem. Therefore, the partial Fréchet derivative of y(t;u,v) at v € U in
direction @ € U satisfies for every v € V, ¢ € [0,T] and P-a.s.
dy y(tu, v)[a] = 21 (t;3).

Due to Lemma the operator dfy(t;u,v) is linear and bounded on U. Similarly, we obtain the partial
Fréchet derivative of y(t;u,v) at v € V in direction ¢ € V. O

As a consequence of Remark [D.6] and Theorem [5.8] we can calculate the partial Fréchet derivatives of the
cost functional (5.7). Indeed, the Fréchet derivative at u € U in direction @ € U for fixed v € V satisfies

T

d¥ J(u,v)[a) = E/ (y(t;u,v) —ya(t), z1(t; @) gy dt + K1 /  dt, (5.10)
0

0

where (z1(t;@))¢efo,) is the mild solution of system (5.8) corresponding to the control @ € U. The partial
Fréchet derivative at v € V in direction ¥ € V for fixed u € U satisfies
T T
dF J(u, v)[i] :]E/(y(t uy0) = ya(t), 22(6:5)) dt+/<;2E/ (1)) yo oy i (5.11)
0 0

where (22(t;7))¢efo,r) is the mild solution of system (5.9) corresponding to the control o € V. Since the
cost functional J: U x V — R given by (5.7)) is convex, we can apply Proposition Hence, the optimal
controls w € U and v € V satisfy the following necessary and sufficient optimality conditions:

d¥ J(u,v)[u) = 0, (5.12)
d¥ J(@,v)[5] = 0 (5.13)
for every u € U and every v € V.

Remark 5.9. Note that the necessary and sufficient optimality conditions and can be easily
obtained if system is driven by a square integrable Lévy martingale as introduced in Section .

5.4. The Adjoint Equation

We use the optimality conditions (5.12) and (5.13) to derive explicit formulas for the optimal controls @ € U
and v € V. Therefor, we need a duality principle, which gives us a relation between the Fréchet derivatives
of the mild solution to system (5.4) and the adjoint equation, which is given by the following backward

SPDE in H:

dz"(t) = =[-A2"(t) + G"(2(1)) + y(t) — ya(t)]dt + D(t) dW (t),
(5.14)

{ 2*(T) =0,

where (y(t))¢e[o,r] is the mild solution of system and y4 € L?([0,T); H) is the desired velocity field.

The process (W (t))¢>0 is a Q-Wiener process with values in H and covariance operator Q € £ (H) and the

operator G*: L:(HS)(QI/2 (H); H) — H is linear and bounded. A precise meaning is given in the following

remark.

Remark 5.10. Recall that the operator G: H — L(HS)(QUQ(H);H) is linear and bounded. Therefore,

there exists a linear and bounded operator G*: E(Hs)(Ql/z(H);H) — H satisfying for every h € H and

every ¢ € E(HS)(QI/z(H);H)

(G(), @) £ sy (@2 (anysmny = (h GT(®)) i (5.15)
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Here, we use a mild solution to system in the sense of Definition with 4 = H. Recall that
there exists a unique mild solution (y(t)):c[o,r] of system for fixed controls u € U and v € V. As a
consequence of Theorem we can conclude that there exists a unique mild solution (2*(t), ®(t))¢cjo,1]
of system for fixed controls v € U and v € V. Hence, the pair of processes (2*(t), ®(t)):ejo, 1) takes
values in H x Lz5)(QY/?(H); H) such that

T
sup Bz (1) < oc. E [ 19012, qumqymy it <
t€[0,T] o

and we have for all ¢ € [0,T] and P-a.s.

T T T

(1) = / e~ AG=D G (B(s)) ds + / A1) (y(s) — ya(s)) ds — / e~ AG=DP(5) IV (5).

t t t

Furthermore, note that the mild solution of system ([5.4)) depends on the controls u € U and v € V. Thus,
we get this property for the mild solution of system (5.14]) as well. To illustrate the dependence on the
controls u € U and v € V, let us denote by (2*(t;u,v), ®(t;u,v))epo,r) the mild solution of system .
Whenever these processes are considered for fixed controls, we use the notation introduced above. For
the process (2*(t;u,v))se[o,7], one can show another important regularity property. Therefor, we need a
modification of Young’s inequality for convolutions.

Lemma 5.11. Let f € LP([0,T)) and g € L([0,T)) be arbitrary. We set fort € [0,T]

T
() = [ (s = t)g(s) s

If p,q,7 > 1 satisfy 1% + % = % + 1, then h € L"([0,T]) and

2Nl - o,m7) < Wl ze o, llgll o, -

Proof. The proof can be obtained similarly to the classical version of Young’s inequality for convolutions,
see [I3, Theorem 3.9.4]. O

Proposition 5.12. Let (2*(t;u,v), ®(t;u,v))iep0,m) be the mild solution of system corresponding to
the controls w € U and v € V.. Then (2*(t;u,v))ie(o,1) takes values in D(A®) with ¢ € [0,1) such that

T
E [ 12", 0)fbaedt < o
0

Proof. For the sake of simplicity, we omit the dependence on the controls. Since (2*(t)):c[o,7] is predictable,
we get for ¢t € [0,T] and P-a.s.

T T

S =E / e~ A= G (B(s)) ds + / e~ A6 (4y(5) — ya(s)) ds| i

t t
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Recall that the operator G*: E(HS)(QI/Q (H); H) — H is bounded. Using Theorem Proposition
and Lemma the process (2*(t)):efo, 1) takes values in D(A®) with € € [0,1) and there exists a constant
C* > 0 such that

T
E [ 12" @bt
0
2

T T T T
< 21E/ /||AEe_A(S_t)G*(@(s))HHds dt—|—2]E/ /||A86—A<S—f> (y(s) — ya(s)) ||%ds | dt
0 t 0
T

2

t

2 2

T T

<22 [ | (=076 @(s)luds | dt+202E [ | [(s=07us) = pals)luds |
0 t

0 t

T T T
< B [ IO, qurscaymdt + E [Tt + [ luatt) e
0 0 0

5.5. Approximation by a Strong Formulation

In general, a duality principle of solutions to forward and backward SPDEs can be obtained by applying
an It6 product formula. For Q-Wiener processes, this is provided by Corollary which is not applicable
to solutions in a mild sense. Hence, we need to approximate the mild solutions of systems ,
and by strong formulations. One method is given by introducing the Yosida approximation of the
operator A, see [23]. For applications regarding duality principles, see [36] [84]. However, we apply the
method introduced in [45 [53]. The basic idea is to formulate a mild solution with values in D(A) by
using the resolvent operator introduced in Section [2.1] Thus, we get the required convergences and the
mild solutions coincides with the strong solutions using results stated in Section [3:4.3] In this section, we
omit the dependence on the controls for the sake of simplicity. According to Section 23] let us denote by
R(\;—A) € L(H) the resolvent operator of —A with A € p(—A). We introduce the operator R(\) € L(H)
given by

R(A\) = AR(N;—A) (5.16)

for all A € p(—A). Then we get the following properties.
Lemma 5.13. Let the operator R(\) € L(H) be given by equation (5.16). Then we have
(i) R(\)y € D(A) for everyy € H;
(i) |RON) | zay <1 for all X > 0;
(iti) limy_oo R(N)y =y for everyy € H;
(iv) A*R(N)y = R(N\) A%y for every y € D(A%) with a < 1;
(v) R(X) is self-adjoint on H.

Proof. The assertion (i) is an immediate consequence of the definition of the resolvent operators R(\; —A).
Recall that (e~4%);> is an analytic semigroup of contractions. Hence, we obtain (ii) by Theorem and
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(iii) results from Corollary Using Corollary we get (iv). It remains to show (v). By Theorem
we have

R(NA) = /efAtefAt dt.
0

Since the operator A is self-adjoint, we can conclude that the semigroup (e’At)tZO is self-adjoint as well.
Thus, we get the result. O
5.5.1. The Forward Equations

Here, we provide approximations of the mild solutions to system (/5.8) and system (5.9)). We introduce the
following systems in D(A):

{dz1 (t,\) = [~ Az (£, \) + R(\)Bu(t)] dt + RO\G(R(N)z1(t, ) dW (2),
(5.17)
z1 (0, )\) = 0,
dza(t, \) = [—Aza(t, \) + AR(N)Du(t)] dt + RO\NG(R(N)z2(t, ) dW (¢),
(00 = 0 (5.18)

where w € U and v € V. The process (W(t))i>0 is a Q-Wiener process with values in H and covariance
operator Q € L] (H). The operators A, B, D,G and the spaces U,V are introduced in Section and
Section respectively. The operator R(\) is given by equation (5.16)) with A > 0.

Remark 5.14. Note that the approzimation scheme provided in [43, [53] differs to the approximation scheme
introduced by system or system . Here, the additional operator R(X) is necessary to obtain a
duality principle.

Similarly to Section we introduce mild solutions to system ([5.17) and system (5.18]).

Definition 5.15. a) A predictable process (z1(t, A))iejo,7) with values in D(A) is called a mild solution

of system if
T
E [ lla(t. ) baydt < oc
0

and we have for t € [0,T] and P-a.s.
t t
At ) = / ¢=A0=3) R(\) Bu(s) ds + / e~ A0=3) ROVG(R(N) 21 (5, A)) dW (s).
0 0

b) A predictable process (z2(t, \))iepo,7) with values in D(A) is called a mild solution of system
if
T
B [ st Wit < o0
0

and we have for t € [0,T] and P-a.s.

2(t,\) = / e~ A=) AR(N) Du(s) ds + / e AT RING(R(N)2a(s,\)) dW (s).
0 0
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Recall that the operator R()) is linear and bounded on H. As a consequence of Lemma (i) and
the closed graph theorem, the operator AR()) is linear and bounded on H as well. Hence, existence and
uniqueness results of mild solutions to system and system with fixed A > 0 can be obtained
similarly to Theorem[3.79] The following lemma provides strong formulations of the mild solutions to system

(5.17) and system (|5.18)).

Lemma 5.16. Let (21(t, A))icjo,r) and (22(t,\))efo,r) be the mild solutions of system and system
, respectively. Then we have for fited X > 0, t € [0,T] and P-a.s.

t t
21(t,A) = /( A)z1(s, M) + R(N) ds+/R A)z1(s, X)) dW (s),
0 0
t t
2ot A) = /( A)za(5,A) + AR Du(s) ds + /R Nza(s, ) dV (s).
0 0
Proof. The claim follows immediately from Theorem [2 Theorem and Lemma [5.13 O

We have the following convergence results.

Lemma 5.17. (i) Let (21(t))iefo,r) and (21(t, A))ico, 1) be the mild solutions of system (@) and system
, respectively. Then we have

A—00

lim E/ 21(t) — 218, N)||%dt = 0.
0

(ii) Let (22(t))refo,r] and (z2(t, N))iefo,r) be the mild solutions of system and system , respectively.
Then we have

A—00

lim E/ 2a(t) — 2a(t, N)||%dt = 0.
0

Proof. First, we show part (i). Let I be the identity operator on H. Recall that G: H — Lgs)(QY?(H); H)
is linear and bounded. By definition, we have for all A > 0, ¢ € [0, 7] and P-a.s.

t

21(t) — 2z1(t,\) = / e~ A= 1 — R(\)]Bu(s)ds
0

+ [ AIG( = ROV () dV ()
0

+ / e AU — R(N)]G(R(N)z1(s)) dW (s)
0

I / e—A(t—S)R()\)G(R()\) [21(5) — 21(s, A)]) AW (s).
0

The remaining part of the proof can be obtained similarly to [63] Lemma 3.1] using Corollary
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Next, we prove part (ii). By definition, we obtain for all A > 0, t € [0,7] and P-a.s.

2a(t) — 2a(t, \) = / Ae=AU=9)[ _ R(\]Du(s) ds

b [ MG - ROz W (5)
0

-

+ [ e AT — ROVIG(R(N)2a(s)) dW (s)

+ [ eI RONG(R(N) [22(s) — 22(s, A)]) AW (s).

o O —0

Thus, we get for all A > 0 and ¢ € [0, 7]
E [|22(t) — za(t, N3 < AT1 (1, A) + 4To(t, N) + 4 T3(t, N), (5.19)

where

t 2

T,(t,\) =E /Ae‘A(t_s)[I — R(\)]Du(s) ds
0

To(t,\) = E / e~ A=) G(IT — R(\)]2a(s)) AWV (s)

)

H
2

H
2

0
+E

)

[ AN = ROVGRO)as) W ()
0

H
2

Is(t,\) =E

¢
[ A IRONGERN) ) — 22(s.0)]) AW (5
0 H

Recall that D: V9(9D) — D(A®) for all a € (0,1). Using Theorem (iv), Theorem Lemma

(iv), Fubini’s theorem and Young’s inequality for convolutions, there exists a constant Cy > 0 such that for
all A >0 and all t € [0,

t t s 2
/L(s, A)ds < ]E/ (/ HAP%*A@*T) - R(A)]AaDv(r)HH dr) ds
0 0o \o
T
< IE/ 1[I — RO)JA*Du(t)||3; dt. (5.20)
0
Recall that He‘AtHc(H) < 1 for all ¢ > 0. Due to Theorem W (iii) and Fubini’s theorem, there exists a
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constant Cy > 0 such that for all A > 0 and all t € [0, T

Tr(s,\)ds

o\“

/ /H —AG=IG([T = R(\)]2a(r ”chs)(@uz(mmdms

2

/ / e — ROEBRO)20)|

T as
Las)(QY/2(H);H)

<G / I - ROz dt + B / I~ BONGRN) O E oy @ |- (5:21)

By Theorem (iii), Lemma (ii) and Fubini’s theorem, there exists a constant C'3 > 0 such that for

all A >0 and all t € [0,
¢

L(t0) £ s [ B Jaals) — a5, )
0
Due to inequality (5.19)), we get for all A > 0 and ¢ € [0, T

t
E ||z0(t) — 22(t, A5 < 4 T0(, N) + 4 o(t, N) +403/E [|22(5) — za(s, A)||%; ds.
0

Applying Corollary we obtain for all A > 0 and ¢ € [0, 7]

t t
E HZQ(t) — Zg(t, A)”?{ S 4 Il (t, A) +4 Ig(t, )\) + 16036403t [/Il(s, A) ds + /IQ(S, )\) dS] . (522)
0 0

Using equation (5.22)), Fubini’s theorem, inequality (5.20) and inequality (5.21)), there exists a constant
C* > 0 such that for all A > 0

E / l2a(t) — 2ot \)|% dt < C* / 1[I = ROA®Du(t) |3 dt + C*E / [T — ROV 2o ()| dt
0 0 0

+CE [ T = ROVIGRON) ()12, 0220000

By Lemma (iii) and Proposition we can infer

A—00

lim ]E/Hzg(t) — ()| di = 0.
0
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5.5.2. The Backward Equation

Here we provide an approximation of the mild solution to system (5.14). We introduce the following
backward SPDE:

{WWAF*+Af@M+RQWWMMM%W+RMMM%WNmﬁ+@@MMWW (5.23)

(T, \) = 0,

where A > 0. The process (y(t))¢ejo,r] is the mild solution of system and (W (¢))¢>0 is a Q-Wiener
process with values in H and covariance operator Q € L] (H). The function yq € L([0,T]; H) is the desired
velocity field. The operators A and G* are introduced in Section and Section [5.4] respectively. The
operator R(\) is given by equation with A > 0. Similarly to Section we introduce a mild solution

to system ([5.23)).
Definition 5.18. A pair of predictable processes (2*(t,N), ®(t, \))ejo, ) with values in the product space
f29)

D(A) x E(HS)(Ql/z(H);H) is called a mild solution of system if
T
s Bl Ny < o B [ 10 NI, oyt <
€10,
0

and we have for all t € [0,T] and P-a.s.

T T

25 (t, ) = / e AT RINGH (RN (s, \)) ds + /e_A(S_t)R(/\) (y(s) — ya(s)) ds
T

—/e_A(s_t)q)(s,)\) dW (s).

t

Recall that the operators R(A) and AR(A) are linear and bounded on H. Hence, existence and uniqueness
results of the mild solution to system ([5.23) can be obtained similarly to Theoremm The following lemma
states a strong formulation of the mild solution to system ([5.23)).

Lemma 5.19. Let the pair of stochastic processes (2*(t,\), ®(t, A))icjo,r] be the mild solution of system
. Then we have for fixzed A > 0, all t € [0,T] and P-a.s.

S A) = / (= A)2*(5, ) + ROVG*(RO)D(s, A)) + RO\ (y(5) — yals)) ds — / B(s, \) W (s).

t
Proof. The claim follows from Theorem [2.35] Theorem [3.112 and Lemma [5.13 O
We have the following convergence results.

Lemma 5.20. Let (2*(t), ®(t))icjo,r) and (2 (t, A), ®(t, N))rejo,r) be the mild solutions of system and
system , respectively. Then we have

T

. * * 2 : 2 _

Algr;%es[%%]ﬂillz (t) = 2"(t, )l =0, }LH;O]E/ 1@(t) = (¢, Mz 1, @121y B = 0
’ 0
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Proof. Let I be the identity operator on H. By definition, we have for all A > 0, all ¢ € [0,T] and P-a.s.

T
Z(t) =2t A) = /G’A(H) [G7(2(s)) = RA)G(R(A)®(s, )] ds

T T
+ [0 = RO )~ gl ds — [ A B(s) — (s )W (). (520

Recall that the operator G*: L(g)(QY/?(H); H) — H is linear and bounded. Hence, we get for all A > 0,
all t € [0, 7] and P-a.s.

T T
25 (t) — 2% (t, \) / AB=OG* ([T — R(\)]®(s)) ds + / e AT — R(N)]G*(R(N)®(s)) ds

T
+ [ e ACTIRMNGH(R(N)[@(s) — (s, A)]) ds + /6’A(H) I = RN (y(s) — yals)) ds

e AT B (5) — B(s, )] dW (s).

/
J

Note that the assumptions of Lemma [3.92] are fulfilled. Thus, inequalities (3.27) and (3.28) hold. Let
€ [0,T). We obtain for all A > 0

t:&‘pﬂ E|l2*(t) — " (VI3 < 4e(T = T1) [L(A) + Zo(V)] (5.25)
/ 12(6) = D8 NI2,,,. @yt < 4e(T = T1) [L(A) + To(M)]. (5.26)

where

T
LN = ]E/ [1G*([1 = ROV]@@)I[3; + I = ROVIGT (RS + Il = RO (y(t) = a(®)) [17] dt

=& [ IRNG* (RO)[2(0) — (5, ) .
T

Using Lemma (iii) and Proposition we can conclude

lim Z;(\) = 0. (5.27)

A—00

By Lemma (ii), there exists a constant C* > 0 such that for all A >0

)< C*E /||q> V[ y——ra (5.28)
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Due to inequality (5.26) and inequality (5.28]), we get for all A > 0

T
E [ 100 = N guracmym
T

T
< 4e(T — 1) Ty (N) + 4c C*(T — Ty) IE/ 198 = Bt N2, (172 ey -

T

We chose Ty € [0,T') such that 4¢cC*(T —T1) < 1. Thus, we have for all A > 0

T
4C(T - Tl)Il(A)
2
IE/ ||(I)(t) - (I)(tvA)H[)(HS)(Ql/Q(H);H)dt -1 4CC*(T _ Tl) .
T

Due to equation ([5.27]), we can conclude
T
AILII;OE/ |®(t) — <I>(t,)\)||2£<HS)(Q1/2(H);H)dt =0. (5.29)
T

Using inequality (5.25)), inequality (5.28)), equation (5.27) and equation ([5.29)), we have

lim sup E|z*(t) —2*(t,\)|% = 0.
A— o0 te[Ty,T]

By equation (5.24)), we get for all A > 0, all t € [0,7}] and P-a.s.
Ty
25(t) — 2 (5, A\) = e AT 25 (Ty) — 2% (T4, N)] + /e_A(s_t) [G*(®(5)) — R(NG*(R(N\)®(s,\))] ds

t
T1 Tl

+ / e A0 — R(N)] (y(s) — ya(s)) ds — / e~ AETI@(s) — (s, )] AW (s).

t t

Again, we find Ty € [0, T3] such that

Ty
. * * 2 : 2
Jm s B0 - (NG =0,  m E / [8(1) — B( N2, @1 oyt = 0.
T
By continuing the method, we obtain the result. O

5.6. Design of the Optimal Controls

Based on the results provided in the previous sections, we are able to show a duality principle. Since we
formulated a control problem with simultaneous distributed controls and boundary controls, we obtain two
equations. The first equation gives us a relation between the mild solution of system and the mild
solution of the adjoint equation . The second equation provides a relation between the mild solution
of system and the mild solution of the adjoint equation .
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Theorem 5.21. Let (y(t;u,v))icio,r) and (2*(t;u,v), ®(t;u,v))icio,r) be the mild solutions of system
and system corresponding to the distributed control w € U and the boundary control v € V', respec-
tively. Moreover, let (21(t;%))iejo,r) and (22(t;0))icjo,r) be the mild solutions of system @) and system
corresponding to the controls 4 € U and © € V, respectively. Then we have for all « € (0, i)

E E

Ot —y O

(y(t; u,v) = ya(t), 21t 1)) g di (2" (t; u, v), Bu(t)) 4 dt, (5.30)

E E

(y(t;u,v) — ya(t), 22(t;0))  dt <A1*°‘z*(t;u,v),Aan)(t)>Hdt. (5.31)

Ot — g T

Proof. For the sake of simplicity, we omit the dependence on the controls. First, we prove the result for
the approximations derived in Section Let (21(t, A))tcjo,r) and (z2(t, A))¢ejo,7) be the mild solutions of
system (5.17]) and system (5.18]), respectively. Using Lemma we have for all A > 0, ¢ € [0,T] and P-a.s.

St A) = / (—A)z1(s,\) + RO\ Bii(s) ds + / ROVG(RON) 21 (s, ) dW (s), (5.32)
0 0

2ot A) = / (—A)za(s, \) + AR\ Di(s) ds + / ROVG(R()2a(s, ) VW (s). (5.33)
0 0

Next, let the pair of stochastic processes (2*(t, A), ®(t, A))¢cjo,7) be the mild solution of system (5.23]). Due
to Lemma we get for all A > 0, all ¢ € [0,T] and P-a.s.

2 A) = / (= A)2*(5, ) + RONVG*(RO)D(5, A)) + RO\ (y(5) — yals)) ds — / B(s, ) dW(s).  (5.34)

t

By definition, the process (2*(, A))¢c[o,r] is predictable. Using Proposition we have for all A > 0, all
t €[0,7] and P-a.s.

T

(6N =E / (—4)="(s,A) + RONG (RIN®(s, A) + BO\) (y(s) — yals)) ds| F

0
t

- /(—A)Z*(S, A) + RA)G(RA)®(s, ) + R(A) (y(s) — yals)) ds.
0

Due to the martingale representation theorem given by Theorem with (M (t)):efo,1) satisfying for all
t €[0,T] and P-a.s.

T
M) =E /(—A)Z*(SJ) + RG(R(A)®(s,A)) + R(A) (y(s) — yals)) ds| Fi |
0

there exists a unique predictable process (¥(t, \))ic(o,r) With values in £zg)(QY/?(H); H) such that for all
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A>0,allt€0,7] and P-a.s.

=E [/ (s, A) + ROGT(RA) (s, A)) + R(N) (y(s) — yd(S))dS]

/ (5, 2) + ROVG*(ROV)B(s, 1) + R(N) (y(s) — yals)) ds + / W(s, \) dW(s).  (5.35)

Since the pair (2*(t, A), ®(, \))1ejo,1) satisfies equation (5.34) uniquely, we can conclude ¥(t,\) = (¢, \)
for all A > 0, almost all ¢ € [0, 7] and P-almost surely. Applylng the It6 product formula given by Corollary
to equation (5.32)) and equation (5.35]), we get for all A > 0, all ¢ € [0, T] and P-a.s.

<Zl (tv >‘)’ z* (ta /\)>H =1 (t’ )‘) + IQ(ta )‘) + I3(ta /\) + I4(tv )‘)7

where
Ty(t,A) = /t [(z1(s,A), Az" (5, A)) iy — (27 (5, A), Az1(s, A)) ] ds,
0
To(t,)) = / [(ROVGRO)21(5, ), (5, M) @y — (5 X), ROVE (ROVR(3, A) | ds,
0
Is(t,A) = /t<z*(8, A), R(N)Bu(s)) y ds — /t (21(s,A), R(A) (y(s) — wa(s))) g ds,
0 0

t

/ (z1(5,A), (s, \) dW (s)) +/<z*(s,)\),R()\)G(R(A)zl(s,)\))dW(s))H
0

0

By definition, we have z*(T,A) = 0 for all A > 0 and P-almost surely. Hence, we obtain for all A > 0 and
P-a.s.

0=1,(T,\) + Lo(T, ) + Is(T, ) + Zu(T, \). (5.36)
Since the operator A is self-adjoint, we have for all A > 0 and P-a.s.
(T, \) = 0. (5.37)
Using Lemma (v) and equation (5.15)), we obtain for all A > 0 and P-a.s.
(T, \) = 0. (5.38)

By equations (5.36]) — (5.38]) and EZ,(T,\) = 0 for all A > 0, we get for all A > 0

0=EZ3(T, \).
Hence, we have for all A > 0
T T
]E/ A)z1(t,A), y(t) —ya(t)) g dt = ]E/ (R(AN)z*(t, \), Bu(t))  dt. (5.39)
0 0
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Next, we show that the left hand side and the right hand side of equation ([5.39)) converges as A — co. By
the Cauchy-Schwarz inequality and Lemma (ii), we have for all A > 0

T 2

E/(m(t),y(t) —va(t)) dt—E/<R(/\)Zl(t7/\),y(t) —ya(t)) y dt
0 0

<2[E [ (11 = ROJa(0)9(6) = a0} | +2[E [ (RO = 216 0).0(8) = yalt)

<t (B [l@ae+ [laia | (B 17~ RO @ dt+B [0 2015 d

Using Lemma (iii), Proposition and Lemma [5.17, we can conclude

T T

i & [ (RO)21 (6, 0(0) ~ valt)) =B [ G1(0),0) ~ yalt) . (5.40)

A—00
0 0
Recall that the operator B: H — H is bounded. Similarly as above, there exists a constant C* > 0 such
that for all A >0

T T 2

E / (2*(t), Bu(t)) y dt — E / (RON)Z*(t, \), Bii(t)) ; dt
0 . 0 . ,
<2|E “(t), Bi(t)) y dt| +2|E — 2*(t,\)), Bi(t)) 5 dt
[ [ 1o H

(E/u ||Hdt)( /||f R(A >|Hdt+ggg]ﬂznz()—z*(t,mnfl)-

By Lemma |5 - 5.13| (iii), Proposition and Lemma |5 - we can infer
T T

Alim ]E/(R()\)z*(t,)\),Bﬁ(t»Hdt = ]E/(z*(t),Bﬂ(t))Hdt.
—00

0 0
We conclude that the left hand side and the right hand side of equation (5.39)) converges as A — oo and

equation ([5.30]) holds.

Next, we show that equation ([5.31)) holds. Again, we apply Corollary|3.69|to equation (5.33]) and equation
(5.35)). Similarly to equation (5.39), we find for all A > 0 and all o € (0, ;)

T T
E/ (R(X)z2(t, N), y(t) —ya(t)) y dt = E/ (RN A" 2" (t, \), AO‘Df)(t)>H dt. (5.41)
0 0
Similarly to equation (5.40]), we can conclude

T

T
lim ]E/(R()\)ZQ(tJ\),y(t) —ya() g dt:lE/<zz(t)7y(t) — ya(t)) g dt.
0

A—00
0
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Recall that the operator A*D: V(D) — H is bounded for all & € (0,%). Hence, the stochastic pro-

cess (A*Do(t))iepo,r) takes values in H such that EfOT |A“Do(t)||%dt < oo. Since D(A'™%) is dense
in H, there exists a sequence of processes (vp(t))tepo,r), m € N, taking values in D(A'~%) such that

Efo [[om ()1 41- aydt < oo for each m € N and

lim ]E/HA&Da(t) ()|t = 0.

m—r o0

Due to Proposition the process (2*(t))teo,r) takes values in D(A'=%) for all o € (0,%). By Lemma
5.13)(ii) and (iv), Lemma[2.34] the Cauchy-Schwarz inequality and Fubini’s theorem, there ex1sts a constant
C* > 0 such that for all A > 0, all & € (0, %) and each m € N

2

T T
IE/ (A2 (), v (1)) dt—]E/<R(/\)A1_az*(t,)\),vm(t)>H dt
0 0
T 2 T 2
<9 E/([I—R(A)}z*(t),Alf% (1), dt| +2 ]E/ (), A (1)) dt
0 0

E/va(t)\lémm)dt IE/II[I—R(A)]Z*(t)llfg dt+tes[l(1JpT]E 12 (8) = =" (6 M1

Using Lemma (iii), Proposition [B.7 and Lemma [5.20] we can infer for each m € N

A—00

T T
lim E/(R(A)Al’“z*(t, A)s U (t) lE/ (A2 (t), v (1)) dt.
0

Due to the Moore-Osgood theorem [81, Theorem 7.11], we get

T T
: 11— * e oY~ : : 11— %
Jim E / (ROVA™2*(1,X), A*Di(1)) , dt = limm_Tim B / (ROVAY 2% (8, ), v (1)), dt
0 0
T

= lim lim ]E/<R(/\)A1*az*(t,A),vm(t)>Hdt

m—00 A—00
0
T
IE/ A1 “z*(t), A“Do(t )>Hdt.
0
We conclude that the left hand side and the right hand side of equation (5.41)) converges as A — oo and

equation ([5.31]) holds. O

Based on the optimality conditions given by equation (5.12)) and equation (5.13)), we deduce formulas for
the optimal controls using the duality principle derived in the previous theorem.
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Theorem 5.22. Let (2*(t;u,v), ®(t;u,v))iep0,m be the mild solution of system corresponding to the
controls u € U and v € V.. Then the optimal controlsw € U and v € V satisfy fm" all a € (0, ), almost all
t €10,T] and P-a.s.

1

u(t) = - B*z*(t;w,v), (5.42)
1
1

o(t) = - K* A= (t;7,7), (5.43)
2

where B* € L(H) and K* € L(H;V°(dD)) are the adjoint operators of the operators B € L(H) and
K = A*D € L(V°(0D); H), respectively.

Proof. Let (y(t;u,v))efo,r) and (z1(t;u))iefo,r) be the mild solutions of system (5.4) and system (5.8)
.10 p.12)),

corresponding to the controls u € U and v € V, respectively. Using equation (5.10)) and equation (|5.12
the optimal control w € U satisfies for every @ € U

T

T
E/ (Y(t;4,0) — ya(t), z1(t; @) 5 dt + k1 E/ dt
0

0

I
e

By equation ([5.30)), we obtain for every @ € U

T
IE/(z*(t;u,v),Bﬂ(t»Hdt+51E0/(u(t),ﬂ(t»HdtO.

0

Hence, we get for every o € U
T
E/ (B* 2" (t;w,v) + k1 u(t), a(t)) ; dt = 0.
0

Therefore, the optimal control w € U satisfies equation (5.42)) for almost all ¢ € [0, 7] and P-almost surely.

Let (22(t;v))sepo,r) be the mild solution of system (5.9) corresponding to the control v € V. Due to
equation (5.11) and equation (|5.13)), the optimal control v € V fulfills the following equation for every
veV:
! T T

E/ (y(t;w,0) — ya(t), 22(t; 0)) gy dt + Ko ]E/(@(t), 0(t))yoop) dt = 0.
0 0

By equation (5 , we have for all a € (0, 1) and every 0 € V

T T
IE/ (A2 (t;u,0), A*Do(t)) dt—s—ngE/ (1)) yo(ap) dt = 0.
0 0

~—

Hence, we get for all « € (0, i and every v € V

E [ (K*A'"™%2*(t;u,0) 4+ k2 0(t), B(t)) dt = 0.

V0(9D)

St~

Therefore, the optimal control v € V satisfies equation 1' for all a € (0, i), almost all ¢ € [0,T] and
P-almost surely. O
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Remark 5.23. Let us denote by ((t))iejo,r) and (Z*(t), ®(t))iejo,r) the mild solutions of system and
system corresponding to the optimal controlsw € U and v € V, respectively. As a consequence of the
previous theorem, the optimal velocity field (§(t)):cjo, ) can be computed by solving the stochastic boundary
value problem imposed by the following system of coupled forward-backward SPDFEs:

dy(t) = |—Ag(t) — 1 ppes (t) — L ADK* A=z (t)| dt + G(g(t)) dW (1),
K1 %)

dz*(t)

5(0)

Remark 5.24. If system is driven by a Lévy process, then one can obtain the optimal controls stated
in the previous theorem as follows:

We assume that system is driven by an additive Lévy noise, i.e. the Hilbert-Schmidt operator G does
not depend on the velocity field. Hence, the partial Fréchet derivatives are given by system (@ and system
(@, whereby the diffusion term vanishes. Furthermore, the adjoint equation has a deterministic
structure in the sense that ®(t) = 0. The duality principle stated in Theorem then a consequence
of a suitable product formula. The derivation of the optimal controls follows immediately from the previous
theorem.

— [-AZ*(t) + G* (®(t)) + Y(t) — ya(t)] dt + D(t) dW (¢),
¢, #(T)=0.
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Chapter 6

Optimal Control of Uncertain Fluid Flows

In this chapter, we consider a control problem constrained by the unsteady stochastic Navier-Stokes equa-
tions with homogeneous Dirichlet boundary conditions. Motivated by [44], we first analyze the deterministic
Navier-Stokes equations with homogeneous Dirichlet boundary conditions, which are usually considered as
no-slip boundary conditions. Similarly to the previous chapters, we reformulate these equations as an evo-
lution equation in a suitable Hilbert space such that the existence and uniqueness of a solution can be
obtained using fractional powers of closed operators introduced in Section Based on this approach, we
extend the Navier-Stokes equations by an additional noise term. Due to the properties of a bilinear operator
related to the convection term arising in the Navier-Stokes equations, we get a restriction on the dimension
of the domain. However, we will figure out that an existence and uniqueness result of a local mild solution
to the stochastic Navier-Stokes equations holds especially in two-dimensional as well as three-dimensional
domains. The control problem considered here is motivated by common control strategies such as tracking
a desired velocity field or minimizing the enstrophy, see [22, 46} [50, 59] [68], [83] [87]. We provide the existence
and uniqueness of the optimal controls, which enables us to solve uniquely the control problem through
a stochastic maximum principle. Since the control problem is formulated as a nonconvex optimization
problem, we only obtain a necessary optimality condition as a variational inequality. However, we still can
utilize this necessary optimality condition using a duality principle to derive the optimal controls. As a
consequence, it remains to solve a coupled system of forward and backward SPDEs. Finally, we show that
the optimal control satisfies a sufficient optimality condition. The results presented here are mainly based
on [0} [7].

Throughout this chapter, let (Q, F,P) be a given complete probability space endowed with a normal
filtration (F),~-

6.1. Motivation

Throughout this chapter, let D C R™, n > 2, be a connected and bounded domain with C* boundary 0D.
We consider the following Navier-Stokes equations with homogeneous Dirichlet boundary condition:

Srult,2) + (y(t,2) - V)ylt,2) + Vplt,2) — vAy(t,2) = f(t,2) in (0,7) x D,
div y(t,z) =0 in (0,T) x D, (6.1)
y(t,x) =0 on (0,T) x 0D,
y0.0) =) D,

where y(t,z) € R™ denotes the velocity field with initial value £(z) € R™ and p(¢,z) € R describes the
pressure of the fluid. The parameter v > 0 is the viscosity parameter (for the sake of simplicity, we assume
v=1) and f(¢,z) € R" is the external force.

Next, we reformulate system as an evolution equation. For more details, we refer to [44]. According
to Section let us introduce the following Hilbert spaces:

H={ye (L*(D)":divy=0inD,y-n=0ondD},
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v={ye (H}D))" : divy=0inD}
and let A: D(A) C H — H be the Stokes operator given by
D(A) = (H*(D))" NV, Ay=-TIAy

for every y € D(A), where the operator II: (L?(D))" — H is an orthogonal projection. By Theorem
the operator —A is the generator of an analytic semigroup of contractions (e~4?);>o. Hence, we can
introduce fractional powers of A denoted by A® with @ € R according to Section 23] Furthermore, we
define B(y,z) = (y - V)z for some y,z € H. If y = z, we write B(y) = B(y,y). Applying the projection
II, system can be formulated in the following abstract form:

%y(” —Ay(t) — B(y(t)) + ILf(t),

y(0) = IIE.

For the sake of simplicity, we assume f(t),£ € H for all ¢ € [0,T]. We consider this equation in integral
form

(6.2)

y(t) = e~Aig — / A [B(y(s)) — f(s)) ds
0

for all ¢t € [0,T]. Moreover, we have the following properties of the nonlinear term in equation (6.2]).
Lemma 6.1 (cf. Lemma 2.2,[44]). Let 0<d <+ 2. Ify € D(A™) and z € D(A*2), then we have

A= B(y, 2|y < M A%yl [|A°22] 5

with some constant M = ]\75@170‘2, provided that a1, >0, § + ag > % and 6 +ay +az > 7+ %
Corollary 6.2. Let aq, s and 6 be as in Lemma , Ify,z € D(A®), B = max{ai,as}, then we have
[A7°(B(y) = B(2))|| ; < M([[ A%yl A2 (y = )|l + 1A% (y = 2) | A2 2] y)-
Proof. Using Lemma [6.1] we get
[A=°(B(y) = B(2))||; = [A°(B(y,y —2) + Bly — 2,2))||
< 4Bl = Dy + |4~ Bl - 22,
< M(|A% yll g 1A% (y = 2 g + 1A (Y = 2) g 1A% 2]l )
O

As a consequence, the bilinear operator B satisfies a growth condition and a Lipschitz condition only
locally. Thus, we cannot prove the existence and uniqueness of a solution to system (6.2)) over the whole
time interval [0,7] in general. However, we have the following local result.

Theorem 6.3. Let o € (0,1) and 6 € [0,1) be given parameters such that 1 > §+a > 3 and 6+20 > 2+ 1.
Furthermore, let the function f: [0,T] — D(A®) satisfy

T
/ LFED s, d < o0
0
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with B € [0,a] such that o — 3 < L. Then for any £ € D(A®), there eists a unique continuous solution
y: [0,T) = D(A®) of system satisfying

sup [|y(t)||p(a~) < 00
te[0,7]

for a certain point of time T € [0,T].

Proof. The proof can be obtained similarly to [44] Theorem 2.3]. O

6.2. The Controlled Stochastic Navier-Stokes Equations

In this section, we introduce the controlled stochastic Navier-Stokes equation with homogeneous Dirichlet
boundary conditions. We show that there exists a unique mild solution up to a certain stopping time and we
state some basic properties. Let us assume that the external force f(t) in equation can be decomposed
as the sum of a control term and a noise term dependent on the velocity field y(t). Hence, we obtain the
stochastic Navier-Stokes equations in D(A%):

dy(t) = —[Ay(t) + B(y(t)) — Fu(t)]dt + G(y(t)) dW (1),
y(0) =¢,

where ¢ € L%(Q; D(A%)) is Fo-measurable and (W (t));>0 is a Q-Wiener process with values in H and
covariance operator Q € £ (H). We introduce the space L% (Q; L7 ([0, T]; D(A?))) containing all F;-adapted

processes (u(t));e(o,r] with values in D(AP) such that E(fOT ||u(t)||;3(A3) dt)F/" < oo with k,r € [0,00) and
B € [0,a]. The space L% (Q; L"([0,T]; D(A?))) equipped with the norm

(6.3)

k/r

T
Hu”]z’;:(Q;LT([O,T];D(Aﬁ))) =E /||u(t)‘|7b(Aﬂ)dt
0

for every u € L% (€; L™([0,T]; D(A?))) becomes a Banach space. The set of admissible controls U is a closed,
bounded and convex subset of the Hilbert space L%(Q; L%([0,T]; D(A?))) such that 0 € U. Moreover,
we assume that the operators F': D(A?) — D(AP) and G: H — L(gs)(Q'/*(H); D(A®)) are linear and
bounded. In general, we can not ensure the existence and uniqueness of a mild solution over an arbitrary
time interval [0, 7] since the nonlinear operator B satisfies a growth condition and a Lipschitz condition
only locally, which is a consequence of Lemma [6.1]and Corollary Thus, we need the following definition
of a local mild solution.

Definition 6.4 (cf. Definition 3.2, [25]). Let 7 be a stopping time taking values in (0,T] and (Tm)men be
an increasing sequence of stopping times taking values in [0,T) satisfying limy, oo Ty = 7. A predictable
process (y(t))iejo,r) with values in D(A®) is called a local mild solution of system if for fized
méeN
E sup [ly(t)]|Haey < o0
t€[0,7m)

and we have for each m € N, all t € [0,T] and P-a.s.

tATm tATm
Yt A Ty) = e~ AT g _ / Ade=AWNTI=9) A= B(y(s)) ds + / e~ AWNTI=3) By (s) ds
0 0
+ Ir, (G(Y) (E A Tm),
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where
t

I (GO = [ Loy (990G (s 7)) AV (). (6.4
0
Remark 6.5. Note that the stopped stochastic convolution (I, (G(y))(t A Tm))icjo,r) s well defined due to
Lemma [3.60.

The proof of the existence and uniqueness of a local mild solution to system can be shown in two
steps. First, we consider a modified system to get a mild solution well defined over the whole time interval
[0,T]. Second, we introduce suitable stopping times such that the mild solution of the modified system and
the local mild solution of system coincides. We introduce the following auxiliary system in D(A®):

dym (t) = —[Aym () + B(mm (ym (1)) — Fu(t)] dt + G(ym (1)) dW (1),
(6.5)
where m € N and 7,,: D(A%) — D(A?) is defined by
Yy [yllp(aey < m,
Tm(y) = . () (6.6)
mHy”D(Aa)y ||y||D(AQ) > m.
Then we have for every y,z € D(A%)
17 ()| DAy < min{m, [[y|pae)}, (6.7)
[70m (y) — T (2)l D(any < 2[ly — 2l p(an)- (6.8

We get the following existence and uniqueness result.

Theorem 6.6. Let the parameters a € (0,1) and § € [0,1) satisfy 1 > 6+« > & and § +2a > % + 1.
Furthermore, let u € L%(; L2([0,T); D(A®))) be fived for B € [0,a] such that « — B < 3. Then for fived
m € N and any ¢ € L*(Q; D(A%)), there exists a unique mild solution (Ym(t))eefo,m) of system in the
sense of Definition . Moreover, the process (Ym(t))tcjo,r) has a continuous modification.

Proof. Using Lemma Lemma inequality and inequality , we have for every y, z € D(A%)
1A B ()l < mM |lyll pa),
IAT[B(mm(y)) = B(mwm ()]l < 2mM |ly — 2| pas).

Therefore, the assumptions of Theorem hold and we get the existence and uniqueness of a mild solution
to system %D The fact that the process (¥ (t))ie[o,r] has a continuous modification is a consequence of
Remark [3.8 O

As a consequence of the previous theorem, the mild solution (ym,(t))¢cjo,7] of system (6.5)) takes values in
D(A®) such that

E sup |[ym(t)|D(aay < 00
t€[0,T)

and we have for all ¢ € [0,7] and P-a.s.

t ¢
Ym(t) = e~ Ate — /A‘Se*A(t*S)A*‘SB(Wm(ym(s)))ds + /6*A(t*S)Fu(s) ds
0

0
t

+ / e A G (ym(s)) dW (s). (6.9)
0

Thus, we obtain the following existence and uniqueness result of a local mild solution to system (6.3]).
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Theorem 6.7. Let the parameters o € (0,1) and § € [0,1) satisfy 1 > 6 +a > 1 and § +2a > 2 + L.
Furthermore, let u € L%(; L*([0,T); D(AP))) be fiwed for B € [0,0] such that o — 8 < 3. Then for any
¢ € L*(Q; D(A®)), there exists a unique local mild solution (y(t))icjo,r) of system . Moreover, the
process (Y(t))tejo,r) has a continuous modification.

Proof. Due to Theorem [6.6] we get the existence and uniqueness of a mild solution (¥, (t))¢cjo, 7] to system
(6.5)), which has a continuous modification. Next, we define a sequence of stopping times (7,,)men by

Ton = I0E{t € (0,T) : [y (8) || p(acy > m} AT (6.10)

P-a.s. with the usual convention that inf ) = +00. The fact that 7, is a stopping time results from Remark
By definition of the map m,,,, we get T, (ym (t)) = ym(t) for all t € [0, 7,,) and P-almost surely. Using
equation and Lemma [3.66] we obtain for fixed m € N, all ¢ € [0,T] and P-a.s.

tATm tATm
Ym(t A 7o) = e AT / Ade AN =) A=SB(y (s)) ds + / e~ AN =9) By (5) ds
0 0

+ I, (G) (E A7),

where Z,_(G(y))(t) is given by equation (6.4). Since the sequence of stopping times (7, )men is increasing
and bounded, there exists a stopping time 7 such that 7 = lim,, . Ty, resulting from Lemma (ii).
Moreover, we have P-a.s. 0 < 7 < T. We set for each m € N, all t € [0, 7,,) and P-a.s.

y(t) = ym(t). (6.11)
Then the process (y(t)):e[o,r) is the unique local mild solution of system (6.3). O

Remark 6.8. (i) Note that the previous theorem is especially valid for n = 2 and n = 3. Hence, we get
the existence and uniqueness of a solution to the stochastic Navier-Stokes equations for two-dimensional as
well as three-dimensional domains up to a certain stopping time.

(it) In case of additive noise in system (6.3), i.e. G(y) = G, we have

E sup [y(t)% ey < 00
t€(0,p]

for a certain stopping time p with values in [0, T] and independent of m € N. The proof can be found in
10, [37)].
(1) If, in addition to the assumptions of Theorem we require

¢
E sup /(t — )74 Vy(s)| ds < oo,
telo,r) 5

then the solution of system is a global mild solution in the sense that P(t =T) =1, see [2]].

In the remaining part of this chapter, we always assume that the parameters a € (0,1), 6 € [0,1) and
B € [0, a] satisfy the assumptions of Theorem and the stopping times (7, )men are given by equation
(6.10). Moreover, we assume that the initial value & € L?(Q; D(A%)) is fixed. To illustrate the dependence
on the control u € L%(Q; L*([0, T]; D(AP))), let us denote by (ym (t;u))sefo,7] and (y(t; u))iefo,r+) the mild
solution of system and the local mild solution of system , respectively. Note that the stopping times
(T )men depend on the control as well. Whenever these processes and the stopping times are considered
for fixed control, we use the notation introduced above. We have the following continuity property.
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Lemma 6.9. For fized m € N, let (ym(t;u))icio,r) be the mild solution of system corresponding to
the control u € L%(Q; L2([0,T); D(AP))). If ui,ug € L% (4 L2([0,T); D(AP))) for k > 2, then there exists a
constant ¢ > 0 such that

Ets[%%] | ym (t;u1) — ym(t§u2)”}1€)(Aw) <cllu; — u2||Lk k(Q;12([0,T); D(AB)))
€10,

Proof. Recall that the operators F': D(A%) — D(A®) and G: H — L y75)(Q'/?(H); D(A®)) are linear and
bounded. By definition, we have for all ¢ € [0,7] and P-a.s.

Ym (5 u1) = ym (; u2) /A56 A=A B (ym(5;w1))) = BT (ym (3 u2)))] ds
0
+ [ e AU Fluy (s) — ua(s)] ds
/

+ efA(tfs)G(ym(S; Ul) - ym(s; u2)) dW(S)
/

Let T1,, € (0,T]. Using Theorem [2.35] Corollary inequalities (6.7) and 7 the Cauchy-Schwarz
inequality and Proposition m (ii), there exist constants C7,Cy, C3 > 0 such that

E sup ||ym(t;u1)—ym(t;ug)H’B(Aa)

t€[0,T1,m]
. k
<3*1E  sup / HAO‘He*A(t*S)Aﬂ; [B(m (Ym(s;u1))) — B(Tm (ym (85 ug)))]H ds
t€[0, Ty m] H
k
+3F1E  sup / HAafﬁefA(tfs)AﬁF[ul(s) — ua(s)] ’ ds
t€[0,Ty m] H
. k
+3E sup | [ e D AG g (510) — (550 AW )
tE[O,Tlﬂn] -
< (TG GTIE sw g (tun) =y (02 [ aey
tG[O;Tl,nL]
k/2

L4 / Jear (8) — wa(8) 4,
0

We chose T ,,, € (0,T] such that Cllejs,lfafa) + Cngkﬁ < 1. Hence, we get
- k/2

Esup  [[ym(tiun) = ym(tu2)[Hae) < crmE / s (8) = ua (D) Ham dt |
t€[0,T1,m]
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e Tk(l_fié)_c 7 Next, we consider for all ¢ € [T} ,,,T], P-a.s. and for i = 1,2
1Ty, 2

1,m

where ¢, =

t t
ym(tui) = e ATy (T4 ) — / APem A=) AT B (Y (5513))) ds + / e A7) Fug(s) ds
Tl,m Tl,m

t

+ / A=) Gy (53 02)) WV (5).

Tim

Again, we find Ta ,,, € [T1,m, 7] and a constant ca ,, > 0 such that

T k/2
E  sup  lym(t;u1) — ym(tu2)[[Dany < comBE /Ilul(t) — uz(t)| a5y dt
te[Th,m,T2,m]
0
By continuing this method, we obtain the result. O

Remark 6.10. By definition, we have for all t € [0,7}) and P-a.s. y(t;u) = ym(t;u). Hence, a similar
result of the previous lemma holds for the local mild solution of system .

In the following lemmas, we show some useful properties of the stopping times.

Lemma 6.11. For fived m € N, let (ym(t;u))icjo,r) be the mild solution of system corresponding to

the control uw € L%(Q; L2([0,T); D(AP))) and let the stopping time 7% be given by equation . Then we
have

lim P (7! # 72) = 0.
Ul —uU2
Proof. By the extended version of Markov’s inequality and Lemma [6.9] with k = 2, we get for all € > 0

1
P( sup |lym (t;ur) — ym (G u2)| pae) = 5) < S E sup lym(t;un) = ym(t5u2)[Haey
t€[0,77] € t€[0,7]

T
C
< S B [ a0~ ua@)an . (6.12)
0

Next, we assume lim,,, ., P (7% < 742) > 0. Due to the definition of the stopping times, we can conclude

tim B ({{lym (72 10)l| pasy > 1} 0 {lym (7t 09) [ paey < ) >0,

Ul —ru
Therefore, there exists £g > 0 such that
Jim P ([lym (Tt s un)l peasy = lym (Tt u2) | paey > €0) > 0.
This implies that limy, —u, P (|ym (7455 u1) — Ym (72455 u2) || p(aey = €0) > 0, which is a contradiction to in-
equality (6.12]). We get limy,, .y, P (7% < 7%2) = 0. Similarly, we obtain lim,, ., P (7% > 742) =0. O

Lemma 6.12. For fived m € N, let (ym(t;u))ico,r) be the mild solution of system corresponding
to the control u € L%(S%; L?([0,T); D(AP))) and let the stopping time 7% be given by equation . If
uy, up € LEFH(Q; L2([0,T); D(AP))) for k > 1, then

i P (7—77# 75 T#L1+9u2)

=0.
6—0 ok

Proof. The claim follows similarly to Lemma [6.11 O
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6.3. A Generalized Control Problem

In this section, we introduce the control problem. We provide the existence and uniqueness of an optimal
control and we calculate the Gateaux derivatives of the cost functional related to the control problem.
This requires the Gateaux derivative of the local mild solution to system , which is given by the local
mild solution of the linearized stochastic Navier-Stokes equations. Moreover, we show that the Gateaux
derivatives of the cost functional up to order two coincide with the Fréchet derivatives up to order two.
As a consequence, we can obtain necessary and sufficient optimality conditions. Let us introduce the cost
functional J,,,: L%(Q; L%([0, T); D(A®))) — R given by

Jn(u) = 5 B / 147 (o5 0) — a0y e + 3 B / 42 u(e) (6.13)

where m € N is fixed and v € [0,a]. Moreover, the process (y(t;u))¢cjo,rv) is the local mild solution of
system (6.3)) corresponding to the control u € L%(; L2([0,T); D(AP))) and yq € L%([0,T); D(A?)) is a given
desired velocity field. The task is to find a control u,, € U such that

Im (W) = 525 Im (). (6.14)

The control @,, € U is called an optimal control. Note that for v = 0, the formulation coincides with a
tracking problem, for more details see [50, 59} 68 [87]. For v = % and yg = 0, we minimize the enstrophy, see
[22, [46] [83]. Hence, we are dealing with a generalized cost functional, which incorporates common control
problems in fluid dynamics.

Remark 6.13. (i) Note that by definition of the local mild solution, we only can ensure that the first addend
of the cost functional given by s well defined up to the stopping time 71 for fized m € N.

(ii) In case of additive noise in system , we can replace the stopping time T, in equation by a
certain stopping time p* independent of m € N.

(#ii) If the assumptions of Remark (iii) are fulfilled, then we can replace the stopping time 7% in equation
by the deterministic terminal point of time T .

6.3.1. Existence and Uniqueness of the Optimal Control

Since the velocity field as well as the stopping times are nonconvex with respect to the control, we formulated
the control problem as a nonconvex optimization problem. To obtain the existence and uniqueness of the
optimal control @, € U, we show that Corollary [D.I8 can be applied. For that purpose, we first show the
following continuity result.

Lemma 6.14. Let (y(t;u))efo,r«) be the local mild solution of system (6.5) corresponding to the control
u € U, where the stopping times (T )men are defined by equation Then for fited m € N, the

functional ’
fm(u) =E / 1A (y (1) — ya(t))| dt
0

is continuous with respect to the control u € U.

Proof. Let the process (ym(t;u))tcjo,r) be the mild solution of system (6.5) corresponding to the control
u € U and let ui,up € U. We define the stopping times 7, = 72! A 7% and 7, = 7,0 V 72, Moreover, let
the control w € U be given by

— {ul it 7y =T,

(5 1fﬂ:ﬁff
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Using Corollary equation || and the Cauchy-Schwarz inequality, there exists a constant K >0
such that

|fm(u1) - fm(u2)|

= |E / A7 (g (8 01) = a(£) I dt — E / 147 (85 02) = ya(0) 17 dt
0 0

<E / A (i (102) = a8 7 = 147 (o (85 02) = )11 | dt + E / 1A (o (8:72) = a(0)) 13 dt
0 Tm

1/2
<K (E sup ||ym (t; u1) ym(t;w)llf:)(AQ))
t€[0,T]

T
+ 2/1@(7;:; A <t < v ) (Cm? 4 Jga(®) [any ) di
0

Due to Lemma with k = 2, we have limy, .y, Esup,cio 7y |[ym (¢ u1) — ym(t;u2)||%(Aa) = 0. By Lemma
we get lim,, ., P(T4 A T8 <t < 74V 142) = 0. Using Proposition we obtain

lim ‘fm(ul) - fm(u2)| =0.

Ul —>uU2
Hence, the functional f,,(u) is continuous with respect to the control u € U. O

As a consequence, we get the following existence and uniqueness result.

Theorem 6.15. Let the functional J,,: L%(Q; L2([0,T); D(AP))) — R be given by (6.15). Then there exists
a unique optimal control u,, € U.

Proof. The space L%(S%; L2([0,T]; D(A?))) is a Hilbert space and thus, a uniformly convex Banach space
and by definition, the set of admissible controls U C L%(Q; L%([0,T]; D(A”))) is bounded and closed such
that 0 € U. Due to Lemma [6.14] the functional

.

fm(w) =E / A7 (y(t; ) — ya(E) |1 dt
0

is continuous and obviously, we have f,,(u) > 0 for every u € U. Applying Corollary with p = 2, the
claim follows. O

Remark 6.16. As shown in [7], the previous theorem can be proven for the stochastic Navier-Stokes equa-
tions with multiplicative Lévy noise, i.e. in system , we replace the Q-Wiener process by a square
integrable Lévy martingale as introduced in Section [3.3

6.3.2. The Linearized Stochastic Navier-Stokes Equations

We introduce the following system in D(A%):

{dZ(t) = —[Az(t) + B(2(1), y(t)) + B(y(t), 2(t)) — Fo(t)] dt + G(=2(t)) dW (2), (6.15)

2(0) =0,

129



Chapter 6. Optimal Control of Uncertain Fluid Flows

where v € L%(Q; L*([0,T]; D(AP))), the process (y(t))se[o,r) is the local mild solution of system and
the process (W (t))i>o is a Q-Wiener process with values in H and covariance operator Q € L] (H). The
operators A, B, F, G are introduced in Section [6.1] and Section [6.2] respectively.
Similarly to Section we first consider the following modified system in D(A%):

dzm(t) = —[Azm(t) + B(zm (1), Tm (Ym (t))) + B(mm (ym(t)), 2m (1)) — Fo(t)] dt + G(2(t)) dW (2), (6.16)

zm(0) =0, '
where the process (ym(t))iefo,r] is the mild solution of system and m,: D(A*) — D(A®) is given by
equation (6.6). By Theorem (6.6, we get the existence and uniqueness of the mild solution (Y, (t)):eo, 1) to
system or fixed m € N and fixed control u € L%(Q; L?([0,T]; D(A”))). Recall that the initial value
€ € L?(Q; D(A®)) is fixed as well. Similarly to Theorem we obtain the existence and uniqueness of a
mild solution (2, (t)).ejo,r) to system for fixed m € N and fixed v € L%(; L2([0,T]; D(A?))). As a
consequence, the process (2m(t))efo,) takes values in D(A%) such that

E sup ||zm(t)||%,(Aa) < o0
t€[0,T]

and we have for all ¢ € [0,T] and P-a.s.

ont) = — / ABeAC9) 478 [B(200(5), T (5 (5))) + B (), 5m(5))] ds + / e~ A=) Fy (s) ds
0

[}

¢
+ / = AU=9) Gz () AWV (5).
0
Due to Theorem we get the existence and uniqueness of the local mild solution (y(t)).e[o,r) to system
for fixed control u € L%(Q; L%([0,T]; D(A?))). Similarly to Theorem we obtain the existence
and uniqueness of a local mild solution (2(t))¢ejo,r) to system (6.15) for fixed v € L%(Q; L2([0, T]; D(AP))),

where the stopping times (7,,)men are given by equation (6.10). Therefore, the process (z(t)):cqo,r) takes
values in D(A®) such that for fixed m € N

E sup ||z(t)][Dany < o0
te(0,7m)

and we have for each m € N, all ¢ € [0,T] and P-a.s.

2Z(ENTm) = — / Al AUNTI=9) A=3[B(2(s),y(s)) + Bly(s), 2(s))] ds + / e~ AUNTL=3) [y (5) ds
0 0

+ I, (G(2) (E A7),

where
t

I (GE)E) = [ Loy (5)e A IG a(s A 1) dIW ()
0
Next, we show some useful properties. Note that the mild solution of system depends on the con-
trol u € L%(;L2%([0,T); D(A?))). Hence, the mild solution of system depends on the control
u € LZ(Q; L2([0,T); D(AP))) as well as on the control v € L%(Q; L2([0,T]; D(A?))). Let us denote by
(2m (t;u,v))sef0,r) the mild solution of system . Similarly, we indicate by (z(t;u,v)))ie[o,-+) the local
mild solution of system corresponding to the controls u,v € L%(€; L?([0,7]; D(A?))). Whenever
these processes are considered for fixed controls, we use the notation introduced above.
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Lemma 6.17. For fited m € N, let (2, (t;u,v))icio,1) be the mild solution of system corresponding
to the controls u,v € L%(; L%([0,T]; D(AP))). If v € LA%(Q; L2([0,T]; D(AP))) for k > 2, then there exists
a constant ¢ > 0 such that

E sup Hzm(t;U,U)”’B(Aa) < 5||v||]lef(Q;p([o,T];D(Aﬁ)))- (6.17)
te[0,T]
Proof. Let the stochastic process (ym(t;u))¢cjo,r) be the mild solution of system corresponding to
the control u € L%(Q; L%([0,T]; D(A®))). Recall that the operator F: D(A?) — D(A”) and the operator
G: H — Lys)(QY?(H); D(A¥)) are bounded. Let T} ,,, € (0,T]. By Theorem Lemma Proposi-
tion m (ii), inequality and the Cauchy-Schwarz inequality, there exist constants Cy,Cs, C3 > 0 such
that

E sup [|zm(t;u, v) | hae

te[oyTl,m]
k

t
<4F1E  sup /HAOﬁée*A(t*S)A*‘sB(zm(s;u,v),ﬂ'm(ym(s;u)))” ds
te[0,T1 m] J H

k

t
+4*'E  sup /HAO‘H@*A(t*S)A*&B(Wm(ym(S;U)),Zm(55U7U))HHds
0

tE[O,Tl,"L]
. k
+4* 1 sup /HAO‘*ﬁe*A(t*S)AﬁFv(s)H ds
te[O,Tl,'m] H
0
k

t

+41E  sup /e_A(t_s)AaG(zm(s;uw))dW(s)
te[07T1,7n]

H
k/2

T
< (ami v or)E sup  zn(ti,0) pae) + Co B / [0 a0
€10, 77, m
0

We chose T4, € (0,T] such that ClTk(l_a_(s)

1,m

+ CgTﬁ/nf < 1. Then we have
k/2

T
2
E sup Hzm(t;u,v)H]B(Aa)§C1,mE /||U(t)HD(AB)dt ;
t€[0,T1,m] A

where ¢, = l_cle(l_Si(;)_Csz/Q. By definition, we have for all ¢ € [T} ,,,, 7] and P-a.s.

1,m

Zm(t;u,v) = e~ At=Tim), (Th i u,v)

- / A3 A=) A (B (2 (531 0), T (o (55 0))) + B (i (510)), 2on (530, 0))] dis

T1,m

t t
+ / e A=) Puy(s) ds + / e A G (2 (530, 0)) AW (s),
T1,m T1,m
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Again, we find Ts ,,, € [T1,m, T such that

- k/2
E s et o)l < conk | [ 0@ dt]
te[Tl,m»TQ,mr]
0
where ¢z, > 0 is a constant. By continuing the method, we obtain inequality (6.17). O

Lemma 6.18. For fized m € N, let (2,,(t;u,v))ieo,1) be the mild solution of system corresponding to
the controls u,v € L%(Q; L%([0,T]; D(A?))). Then we have for every u,vi,ve € L%(; L2([0,T]; D(A#))),
all a,b € R, allt € [0,T] and P-a.s.

Zm(t;u,avy + bvg) = a zp (t;u,v1) + b 2, (E; u, v2).

Proof. Let the process (ym(t;u))tcjo,r) be the mild solution of system (6.5) corresponding to the control
u € L%(Q; L*([0,T); D(A?))). To simplify the notation, we set for all ¢ € [0, 7] and P-a.s.

Zm(t) = zm(t;u,avy + bve) — a zp (6w, v1) — bz (8w, v2).

Recall that the operators F': D(A?) — D(A®)and G: H — L(¢(Q'/?(H); D(A%)) are linear and bounded.
Let T m € (0,7). By Theorem Lemmal 6.1 Propositionw (ii) with & = 2 and inequality (6.7)), there
exist constants C7,Cy > 0 such that

2

t
E sup ||2m(t)||%)(,4a) <3E sup / "Aa+5efA(tfs)AféB(gm(S)’ Wm(ym(s; u)))H ds
t€[0,T1 m] tel0.Trml \ 5 H

. 2
+3E sup /HA0‘+56—A(t—5)A_5B(7rm(ym(3;u)),ém(s))H ds
tG[O,Tl,m] A
0
. 2
+3E sup /e_A(t_S)AO‘G(Zm(s)) dW (s)
tE[O,T1,m]
H
< (Cle}?a_% + CoTy ) E - sup ||5m(t)||%(Aa)'
tE[(Llem]

We chose T ,, € (0,T] such that Cle);2a725 + C5T' m < 1. Then we have

E sup ||5m(t)||%(,4u) =E sup |zm(t;u,av; +bve) —azy(t;u,v1) — bzm(t;u,vg)H%(Au) =0.
t€[07Tl,’NL] te[oyTl,'m]

Similarly to Lemma we can conclude that the result holds for the whole time interval [0, 7. O

Lemma 6.19. For fived m € N, let (2,,(t;u,v))icjo,1) be the mild solution of system corresponding
to the controls u,v € L%(%; L?([0,T); D(A?))). Then there exists a constant € > 0 such that for every
uy,uz € LE(Q; L2([0,T]; D(AP))) and every v € Li-(; L*([0,T]; D(A?)))

Etes[%PT] [2m (5 w1, 0) = 2in (U2, 0) [ Haey < € ”vH%4F(Q;L2([O,T];D(Aﬁ)))”ul — Uzl Lz (Q.r2(0,1):D(4%)))- (6.18)
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Proof. To simplify the notation, we set for every y,z € D(A®)

B(y,z) = B(z,y) + B(y, 2).

Since the operator B is bilinear on D(A®) x D(A®), the operator B is bilinear as well and using Lemma
[6.1] we get for every y,z € D(A®)

HAf‘SE(y, 2)

= < 2M ||yl pcasyllzll peasy- (6.19)

Let the stochastic process (ym (t; u;))¢cjo, 7] be the mild solution of system corresponding to the control
u; € L%(; L*([0,T); D(AP))) for i = 1,2. Recall that the operator G: H — L) (QY?(H); D(A%)) is
linear and bounded. Let T} ., € (0,T]. By Theorem the inequalities , (6.8) and , Proposition
(ii) with k& = 2 and the Cauchy-Schwarz inequality, there exist constants C7,Cy, C5 > 0 such that

E  sup Hzm(t;ul,v)*Zm(t%uzav)ﬂ%mu)
te[O;Tl,'m]

t

<3E sup / "AaJr‘se*A(t*S)A*éE(wm(ym(s;ul)),zm(s;ul,v) - zm(s;ug,v))H ds
t€[07T17m] H

t
+3E sup / HAa+5e_A(t_s)A_5§(7rm(ym(s; 1)) = T (Ym (85 u2)), 2m (8; U2, v))HH ds
0

t€[0,T1,m]
. 2
+3E sup /e_A(t_s)AaG(zm(s; U1, V) — Zm (85 ug,v)) dW (s)
te[0,T1,m]
H
< (Cle’;fo‘_% + CoTim) E - sup  ||zm(tur,v) — 2im(t ug, v)||2D(Aa)

te[0,T1,m]

1/2 1/2
+Cs (E sup ||z (; us, v)|4D(Aa)> (E sup  |[ym(t;u1) — ym(t; ufz)ll%(m)) :
te[O>T1,7n] tE[O;Tl,'m]

Using Lemma with £ = 2 and Lemma |6.17] with & = 4, we can conclude that there exists a constant
C3 > 0 such that

E sup lzm(t;u1,0) = 2m(t uz, ) [ Hae)

te(0,Ty,m]
< (01T12;n2a_26 +CoTy ) B sup 2 (5 u1,0) — 2 (t; ug, U)H2D(A“)
t€[0,T1,m]
T 2\ 1/2 T 1/2
4+ (B | [ ot B [ s 6) = ua(t) oy
0 0
We chose Ty ,, € (0,7T] such that ClTﬁ;fo‘_% + CoT4 4, < 1. Then we infer
E  sup ||z (t;u1, v) — 2m(t; ug, )| aay
tE[O,TLm]
T 2\ 1/2 T 1/2
< e | B | [ It B [ )~ wa@l et |
0 0
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where ¢y, = e TZ,QQC 525 TR Similarly to Lemma [6.17] we can conclude that the result holds for the
—CiTy —C2T1,m
whole time interval [0, 7. O

Remark 6.20. By definition, we have for allt € [0,7%) and P-a.s. z(t;u,v) = zp(t;u,v). Hence, one can
easily obtain similar results for the local mild solution of system .

6.3.3. The Derivatives of the Cost Functional

First, we show that the local mild solution of system (6.15|) is the Gateaux derivative of the local mild
solution to system (6.3 with respect to the control variable.

Theorem 6.21. Let (y(t;u))iejo,r) and (2(t;u,v))ieo,r«) be the local mild solution of system and sys-
tem corresponding to the controls u,v € L%(Q; L*([0,T); D(AP))), respectively. Then for fized m € N,
the Gateauz derivative of y(t;u) at u € L%(Q; L%([0,T); D(AP))) in direction v € L%(Q; L2([0, T); D(AP)))
satisfies for all t € [0,7}) and P-a.s.

dgy(t;u)[o] = 2(t;u,0).

Proof. First, we assume that u,v € L4(Q; L2([0, T]; D(AP))). Since the operator B is bilinear on the space
D(A®) x D(A®) and the operators F': D(A%) — D(A®) and G: H — L(gs)(QY/*(H); D(A%)) are linear,
we find for all § € R\{0}, all t € [0, 7% A 7%+6%) and P-a.s.

[y(t;u + Ov) — y(t;w)] — 2(t;u,v)

| =

t
1
= / ASe—Alt=s) 46 (y(s; u+ 6v), g[y(s, u+ 6v) —y(s;u)] — z(s;u, v)) ds
0

t

- [t a7 (s 00 ylsia] — (s ) ylsi) )
0
t

— [ A% AU ATIB(y(s;u + 0v) — y(s;u), 2(s;u,v)) ds

+ [ e At (;[y(S; u+0v) —y(s;u)] — 2(s;u, v)) dW (s). (6.20)

S . O—

Next, let 0 = Ty < Tim < ... < T1,m = T be a partition of the time interval [0, T], which we specify below.
Since the stopping time 74 A 7419V takes values in [0, 7], we have for almost all w € 2 and all § € R\{0}

-1
]lT;,‘L/\T:;erSUE[O,TLm](w) + E ]lT;,ﬁ/\T#fe“E(Tj.m,THl,m](w) = 1. (6.21)

Jj=1
To simplify notation, we set 1o = ]lT,%L/\T:,LfG”E[O,Tl,m] and 1; = 17::»7##“e(Tj,m,THl,m] forj=1,..,0 -1

Furthermore, let (Yo, (t;u"))iepo, 77 and (2, (t; u*, v*))¢ejo,r) be the mild solutions of system and system
(6.16) corresponding to arbitrary controls u*,v* € L%(Q; L%([0,T]); D(A?))), respectively. By definition,
we have for every u*,v* € LZ(Q; L2([0,T]; D(A?))), all ¢ € [0,7%") and P-a.s. y(t;u*) = yp,(t;u*) and
2(tu,v*) = zp(t;u,v*). Recall that G: H — L(gs)(QY?(H); D(A%)) is bounded. By equation ,
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Theorem Lemma Proposition m (i) with & = 2 and the Cauchy-Schwarz inequality, there exist
constants C1, Cq,C5 > 0 such that for all § € R\{0} and for j =1,...,1 -1

1 2
E|1; sup [y(t; u+0v) — y(t;u)] — 2(t; u, )
t€[0,T1,m] 0 D(A®)
1 2
< (C’le:nz“_z‘S + CoTy ) E|1;  sup  ||2[y(Gu+6v) — y(tu)] — 2(u,v)
, tel0,Ty,.,) 110 D(A%)
1/2 1/2
+ Cs <]E sup zm(t;u,v)||%(Aa)> (IE sup  |lym (t;u + 6v) —ym(t;u)H%(Aa)) .
te[07T1,7n] tE[O;Tl,'m]

We chose T, € (0,T) such that C1T7,2* 7 + CoTy < 1. Then we find for all § € R\{0} and for
j=1,..,0—-1

2
E|1, suwp ] [y(t: w4 00) — y(t50)] — =(t0,0)
te(0,T1,m] 110 D(A®)
1/2 1/2
< cim (IE sup IIZm(t;u,v)llé(Aa)> <E sup IIym(t;U+9v)ym(t;U)II}SW)) ;
t€[0,T1,m] t€[0,T1,m]

where ¢, = I_CITQ,QEE%_@ﬂ . Using Lemma with £ = 4 and Lemma [6.17] with £ = 4, we can
1,m »m
conclude for j=1,...,1 -1

2
1
ImE (1, sup ||=[y(t;u+0v) —y(t;u)] — 2(t;u, v) =0. (6.22)
0—0 t€[0,T1,m] D(A®) |
Similarly, we get
1 2
lim E |1, sup ‘[y(t; u+ 0v) —y(t;u)] — z(t; u,v) =0.
=0 tefo.ru Arictovy |10 D(A>)
By definition, we have for all ¢ € [T} ,,,, T], P-a.s. and for ¢ = 1,2
y(t AT ug) = e AT =Ton AT [y(Ty A 78 wg) — Lo (G(y)) (Tam A T8
tAn% tAnw
_ / A(Se_A(t/\T::Li —s)A—éB(y(s; Uz)) ds + / e—A(t/\-r;fj_s)Fui(S) ds
T1,m ATt T4 i AT
+ L (G(y)) ATy,

where u; = u + 6v and us = v and

m

Z(E AT u,v) = e~ AUAT, =T mATy) [Z(lem AT u,v) — L (G(2))(Thm A T:jl)]

tATY

- / A% AUNTL =) A3 [B(x(s3u,v), y(s; ) + Bly(siu), 2(s;u,v))] ds
Ty, m ATY,

tATY

m

+ / e AT =) Byy(s) ds + L (G(2))(t A Tyy,).

Ty m AT,

135



Chapter 6. Optimal Control of Uncertain Fluid Flows

Again, we find T3, € [T1 1, T such that for j =2...,1—1

2
1
limE |1, sup —[y(t;u+ 0v) — y(t;u)] — 2(t;u,v) =0
=0 4Ty To,m] |10 D(A®)
and
. 1 ’
limE |1 sup ‘[y(t; u+6v) —y(t;u)] — 2(t;u,v) =0.
0=0 tE[T1 T AR T0Y) 0 D(A%)
Using equation (6.22)) for j = 1, we obtain
1 2
limE |1, sup ‘[y(t; u+ 0v) —y(t;u)] — z(t; u,v) = 0.
0—0 te[0,7n ATHOY) 0 D(Ax)
By continuing the method, we obtain for j =0,1,....,1 — 1
1 2
lim E sup ‘[y(t; u+ 6v) —y(t;u)] — 2(t;u,v) =0.
6—0 te[O ru ATEFOV) 0 D(A«)

Due to equation (6.21]), we have

2

Liy(tiu+ 00) — y(t;w)] — 2(t;u,v)

lim E sup ‘ 7

0—0 te[0,78 AT u+9'u)

D(A~)
-1

Z 1m]E

Jj=0

2

sup %[y(t; u+6v) —y(tu)] — z(tu,v) =0.

te[o,r;;l/\'r:;”“)

D(A%)

Therefore, the Gateaux derivative of the velocity field (y(t;u))sejo,r) at u € L%(€; L?([0,T]; D(A?))) in
direction v € Li(€; L?([0,T]; D(A?))) satisfies for all t € [0, 7% A 74F9%) and P-a.s.
dSy(t;u)[v] = 2(t;u,v). (6.23)

Note that by Lemma [6.11] we have
hm IE”( 4 Tty — 0,

Moreover, the operator dy(t;u) is linear and bounded due to Lemma with £k = 4 and Lemma
Since the space L4 (Q; L2([0,T]; D(AP))) is dense in L%(Q; L?([0, T]; D(A?))), the equation (6.23) holds for
u,v € L%(; L2([0,T]; D(A?))), which is a consequence of Lemma with k = 2, Lemma and Lemma
6.19 O

This enables us to derive the Gateaux derivative of the cost functional.

Theorem 6.22. Let J,,: L% (S L2([0,T); D(AP))) — R be defined by . Then the Gdteaur derivative
at u € L%(Q; L([0,T); D(AP))) in direction v € L%(S%; L2([0,T); D(AP))) satisfies

T

45, (uw)o] = E / (A (y(t5) — yalt)), AV 2(t 0, 0)) yy dt + E / (APu(t), APu(t)),, dt,
0 0

where the process (z(t;u,v))ie(o,7v) is the local mild solution of system ( corresponding to the controls
u,v € L%(; L2([0,T); D(AP))).
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Proof. We define the functionals ®1, ®2: L%(2; L2([0,7]; D(4%))) — R by

1\9\»—*

F 1
= 5B [ 1476 - ) . -3 / A%u(t) .
0

First, we derive the Géateaux derivative of the functional ®; at u € L%(%; L2([0,T]; D(A?))) in direction
v € L%(% L2([0,T); D(AP))). We get for all § € R\{0}

u

Tm

51010+ 00) = ()]~ [ (40 (y(t50) = pa(0). A75(t50,0)
0
where
L(0) = |55 / 147 (905 + 60) — (e ) |
0
T /\T“+0” )
I,(0) = |E A (y(tu) —ya(t), AV Fly(tu+0v) —y(tu)] — 2(tu,0) | ) dif,
X ; .
T3(6) = |5 B / A7 Cytt500-+ 00) — a3 |
L.(0) = ;eﬂa / 47 (yt0) — wa(e)) I ]

U

m

T,(60) = |E / (A (y(t ) — yalt)), AV (1, v)) g ]

T /\T“+9v

Let the process (ym (t;u*))tcjo,r) be the mild solution of system (6.5]) corresponding to an arbitrary control
u* € L%(Q; L2([0,T); D(AP))). We have for every u* € L%(Q; L2([0,T]; D(A?))), all t € [0,7% ) and P-a.s.
y(t;u*) = ym(t;v*) and ||y(t;u*)| p(aey < m. Using Corollary we obtain for all § € R\{0}

7,(0) <

CcT
o B sup [y (t5u + 00) — g (b 0) [ 4o |-
20 e

Due to Lemma [6.9) with k£ = 2, we can conclude
lim 7, (0) = 0. (6.25)
0—0

Using the Cauchy-Schwarz inequality and Corollary there exists a constant C* > 0 such that for all

0 € R\{0}
9 1/2
D<Aa>> '

';[y(t; u+ 0v) —y(t;u)] — 2(t;u,v)

I (0) < C* <]E sup

teo,ru ATETOY)
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Due to Theorem [6.21] we can infer

lim Z,(#) = 0. (6.26)
6—0

Using Corollary and Fubini’s theorem, we get for all # € R\{0}
1
T3(0) < / 5 B (7 AT <t < ko) <2C’2m2 +2 ||yd(t)\|2D(m)> dt| .
0

Due to Lemma with £ = 1, we have

lim ]P’ (7’ A T“w” <t< Tu+0v) =0
6—0 9

for all ¢ € [0, T]. By Proposition we can infer

lim Z5(0) = 0. (6.27)
0—0
Similarly, we find
lim Z4(0) + lim Z5(0) = 0. (6.28)
0—0 0—0

Using inequality (6.24) and equations (6.25]) — (6.28]), we get
. s
elir% 5[4)1(11 + 6v) — Dy (u)] — IE/ (A7 (y(t;u) —ya(t)), A z(t;u,v))  dt| = 0.
—
0

Therefore, the Gateaux derivative of ®;: L%(Q; L%([0,T]; D(A®))) — R at u € L%(%; L2([0,T]; D(A?))) in
direction v € L%(€; L*([0,T]; D(AP))) is given by

S0, (u)[o] = E / ya(t)), AV 2(t u, ) dt. (6.29)
0

Let the stochastic process (2, (t;u,v))sepo, 77 be the mild solution of system corresponding to the
controls u,v € L%(; L2([0,T]; D(A?))). We have for all ¢ € [0,7%) and P-a.s. z(t;u,v) = 2, (¢;u,v). Using
Lemma EI, the functional d%®; (u) is linear. Moreover, by the Cauchy-Schwarz inequality, Corollary
Lemma [6.17] with & = 2, there exists a constant C* > 0 such that

FU U

<|2E / | Ay () [3dt + 2 / | A7 ya(t)| 3t | E / A7 28w, 0) |t

|2%®, (u)[v]|”

<C* HU||L§,(Q;L2([0,T];D(Aﬂ))) :

Hence, the functional d®; (u) is bounded.
Note that the functional ®o: LZ(Q; L2([0,T]; D(A”))) — R is given by the squared norm in the Hilbert
space L%(Q; L%([0,T]); D(A?))). Similarly to Remark [D.6| (i), we get that the Gateaux derivative of @ at
(I

u € LE(Q; L%([0,T]; D(A®))) in direction v € L%(Q; L%([0, T]; D(A®))) is given by

T
d9®y(u)[v] = E / v(t)),, dt. (6.30)
0
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Obviously, the functional d“®,(u) is linear and bounded.
Using equation (6.29) and equation (6.30), the Gateaux derivative of J,, at u € L%(Q; L2([0, T); D(AP)))
in direction v € L%(Q; L2([0, T); D(AP))) is given by

d% J (u)[v] = d9® (u)[v] + d¥®y(u)[v]
T T
=E [ (A (y(t;u) —ya(t)), A z(t;u,v)) g dt + E (t)> dt.
/ [

Since d“®,(u) and d“®;(u) are linear and bounded, the functional d“.J,,(u) is linear and bounded as
well. O

Recall that the set of admissible controls U is a closed, bounded and convex subset of the Hilbert space
LL(Q; L%([0,T); D(AP))) such that 0 € U. Moreover, the cost functional .J,,: U — R given by equation
satisfies the assumptions of Proposition Hence, the optimal control w,, € U satisfies the
necessary optimality condition

dC Jon ()[4 — U] >0 (6.31)

for fixed m € N and every u € U. Due to Theorem [6.22] we get the variational inequality

Um
Tm

T
E / (A (y(t:Tm) — ya(1)), AT 2(E: T, 1 — T ) gy dE + ]E/ AP(u(t) =T (1)), dt >0 (6.32)
0 0

for fixed m € N and every u € U. We will use this inequality to derive an explicit formula for the optimal
control uw,, € U.

Remark 6.23. If system is driven by a square integrable Lévy martingale (introduced in Section ,
then one may obtain the necessary optimality condition as follows:
Note that it is also necessary to replace the Q-Wiener process by a square integrable Lévy martingale in
system . Especially, a generalization of Lemma with k = 4 is required as an auziliary result to
obtain Theorem |6.21] To prove this lemma, we need a generalization of the maximal inequality stated in
Proposition (i) for k = 4. Such an inequality can be found in [49, Proposition 1.3 (i)], which requires to
calculate the quadratic variation of a square integrable Lévy martingale. In general, the quadratic variation
of a right-continuous square integrable martingale (M (t));>0 with values in an arbitrary Hilbert space H is
defined by

[M], = Jim, D IM(tigr At) = Mt AB)|[3, (6.33)

“tep;

for all t > 0 and P-almost surely, where P; contains the points of time 0 < to < t1 < ... < t; satisfymg

lim; o0 t; = 00 and lim;_, o 6(P;) = 0 with §(P;) = Supy, e p, (tiv+1 —ti). The convergence of equation
is in LY (Q, F,P). Let ({(M)¢)t>0 be the predictable variation of (M(t));>o introduced in Theorem . If
(M(t))e>0 is real-valued and continuous, then

[M]; = (M),

for all t > 0 and P-almost surely, see [63, Theorem 18.6]. One can easily adopt the proof to obtain this
result for a Hilbert space valued process. However, for a square integrable Lévy martingale, the quadratic
variation and the predictable variation do not coincide in general. Hence, the determination of the quadratic
variation to a square integrable Lévy martingale might be the most challenging task here.
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Next, we state the second order Gateaux derivative of the cost functional (6.13)). Moreover, we show that
the Gateaux derivatives and the Fréchet derivatives coincide, which will enable us to obtain a sufficient
optimality condition.

Corollary 6.24. Let J,,: L%(Q; L*([0, ], D(AP))) — R be defined by (6 . Then the Gateauz derivative
of order two at u € L? (Q;LQ([ ,T); D(A?))) in directions vy, vy € L2 (Q ([0, T); D(AP))) satisfies

d (o (w))?[v1, v] IE/ (AV2(t;u,v1), AV2(t u,v2)) dt—|—E/<ABv1 ), APuy(t )>Hdt,
0

where the processes (z(t;u,v;))tejo,rw) form the local mild solution of system corresponding to the
controls u,v; € L%(; L*([0,T]; D(AP))) fori=1,2.

Proof. The result can be obtained similarly to Theorem [6.22 O

Corollary 6.25. Let J,,: L%(9; L?([0,T]; D(A?))) — R be defined by . Then the Fréchet derivative
at u € L%(Q; L([0, T); D(AP))) in direction v € L%(%; L2([0,T]; D(A ))) satisfies

u
Tm

T
dFJm(u)[v] = IE/ (A" (y(t;uw) —ya(t), A 2(tu,v)) g dt + ]E/ t)>H dt,
0

0

where the process (2(t;u,v))ie(o,7v) is the local mild solution of system corresponding to the controls
u,v € L%(; L2([0,T]; D(A))). Moreover, the functional d¥ J,,(u)[v] is continuous with respect to .

Proof. Using Theorem we have that the Gateaux derivative at u € L%(Q; L([0, T]; D(AP))) in direc-
tion v € LZ(Q; L2([0,T]; D(A®))) satisfies

u

T’"L

T
d% T (u)[v] = IE/ (A (y(t;u) — ya(t)), A7 z(t;u, v) dt+E/ )> dt.
0 0

If v € LL(Q; L2([0, T); D(AP))), then the process (z(t;u,v))te[oﬁm is continuous with respect to the con-
trol u € L% (% L2([0,T); D(AP))) resulting from Lemma By Lemma with & = 2, Lemma
and the fact that the space L4(Q;L2([0,T]; D(AP))) is dense in LZ(Q; L ([ T); D(AP))), we can con-
clude that the process (z(tu,v))e[o,r») 18 continuous with respect to u € L2 2(Q; L%([0,T); D(AP))) for
v € L%(Q; L*([0,T]; D(AP))). The fact that (y(t;u))ico,r») is continuous with respect to the control
u € L%(; L?([0,T]; D(AP))) is an immediate consequence of Lemma with £ = 2. Using additionally
Lemma one can show that u — d%.J,, (u) is a continuous mapping from L%(Q; L2([0, T]; D(A?))) into
L(L%(9; L%([0, T); D(A?))); R). Hence, we can apply Corollary [D.5 and the clalm follows. a

Corollary 6.26. Let J,,: L3(Q: L*((0.T): D(A%))) —+ R be defined by {B.13). Then the Fréchet derivative
of order two at u € L%(%; L*([0,T); D(AP))) in directions vy,vs € L% (% L*([0,T); D(AP))) satisfies

7

T

d¥ (T (u)?[v1,v2] = E | (AV2(t;u,v1), AV2(tu,v2)) y dt + E <Aﬁ1}1 t), APuy(t t)),, dt,
[ / H

where the processes (z(t;u, v;))iejo,ruy are the local mild solution of system corresponding to the con-
trols u,v; € L%(Q; L*([0,T); D(AP))) fori = 1,2. Moreover, the functional d* (J,,,(u))?[v1, v2] is continuous
with respect to u.

Proof. The result can be obtained similarly to Corollary O
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6.4. The Adjoint Equation

We will use the necessary optimality condition (6.32) to derive an explicit formula the optimal control
Uy € U has to satisfy. Therefor, we need a duality principle, which provides a relation between the local
mild solution to system ([6.15) and the corresponding adjoint equation, which is given by the following
backward SPDE in D(A%):
2 (8) = =107,y (D)= Az, (1) = A2 Bj (y(t), A2y, (1)) + G (AP, (1))
+ A (y(t) — ya(t))] dt + @y (1) AW (2), (6.34)
zn(T) =0,

where m € N and the process (y(t))¢cjo,) is the local mild solution of system . The stopping times
(T )men are defined by equation and yq € L2([0,T]; D(A?)) is the given desired velocity field. The
operator A and its fractional powers are introduced in Section The process (W (t))i>o is a Q-Wiener
process with values in H and covariance operator Q € £ (H). The operators B (y(t),) : H — D(A%) for
t € [0,7,) and G*: L(s)(QY/*(H); D(A%)) — H are linear and bounded. A precise meaning is given in
the following remark.

Remark 6.27. (i) By Lemma we obtain that the operator A=°[B(-,y) + B(y,-)]: D(A%) — H is linear
and bounded for every y € D(A%) such that ||y||p(aey < m. Therefore, there exists a linear and bounded
operator Bi (y,-) : H — D(A®) satisfying for every h € H and every z € D(A®)

(A7°[B(z,y) + B(y, 2)], h) i = (2, B5 (y, 1)) p(an).-
We can rewrite this equivalently as
(A°[B(z,y) + Bly, 2)], hym = (A2, A* B} (y, ) (6.35)

for every h € H and every z € D(A®). By the closed graph theorem, the operator A“Bj (y,-) : H — H s
linear and bounded.

(ii) Recall that ||y(t)||p(aey < m for allt € [0,7,,) and P-almost surely.

(iii) Due to the fact that the operator G: H — L55)(Q/?(H); D(A®)) is linear and bounded, there exists
a linear and bounded operator G*: E(HS)(QUQ(H);D(AO‘)) — H satisfying for every h € H and every
b € Lins)(QY?(H); D(A%))

(G(h),®) sy (@12 (a):D(am)) = (h, G*(®)) &
We can rewrite this equivalently as
(AC‘G(h),A“@)L(HS)(QW(H);H) = (h,G*(®))m (6.36)

for every h € H and every ® € E(HS)(Ql/Q(H);D(Aa)).

Here, we use a mild solution to system in the sense of Definition with # = H. By Theorem
we get the existence and uniqueness of a local mild solution (y(t)):c[o,r) to system (6.3) for fixed control
u € L%(Q; L*([0,T); D(AP))). As a consequence of Theorem we can conclude that there exists a unique
mild solution (2}, (t), @, (t))tejo,7) of system for fixed control u € L%(Q; L2([0,T]; D(A?))) and fixed
m € N. Hence, the pair of processes (275, (t), @ (t))tejo,7] takes values in D(A?) x L1s)(QY?(H); H) such
that

Et:[%%] 2 (DB a5y < o0,
T

2
B [ 190012 0t <
0
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and we have for all ¢ € [0, 7] and P-a.s.

1[077m)(s)Aae_A(s_t)AaB§ (y(s A Tm)s A‘sz;(s)) ds
Ljo,r ) (8)e 2 ETNGH (A2 P, (5)) ds
]l[oim)(s)AA’e*A(s*t)A“’ (y(s A1) — ya(s)) ds

+

e AP, () dW (s).

Ty Ty T T

Since the local mild solution of system depends on the control u € L%(; L2([0,T]; D(A?))), we get
this property for the mild solution of system as well. To illustrate the dependence on the control
w € L% L2([0,T); D(AP))), let us denote by (27, (t; u), @y, (;u))tefo,r) the mild solution of system .
Whenever these processes are considered for fixed controls, we use the notation introduced above.

Remark 6.28. (i) As a consequence of Theorem we get the additional restrictions a,d < % and

v+ < % Therefore, we can not solve the control problem fory = % through a stochastic maximum
principle directly. However, we will show in Section [6.7 that we easily overcome this problem in the case of
additive noise in system .

(ii) If yg € L>([0,T]; D(A")), then the restriction v + & < % vanishes.
Lemma 6.29. Let (2}, (t), @1 (t))ico, 1) be the mild solution of system . Then we have for fized m € N

T
B s[5, Olbs =0 and E J 12001 1720yt =0
E[Tm,

Tm

Proof. By definition, we obtain for all ¢t € [1,,,,T] and P-a.s.
T
25 (t) = — / e AP, () dW (s).
t
The claim follows by Lemma [3.96 O

6.5. Approximation by a Strong Formulation

As shown in Section through a duality principle one can utilize an optimality condition to obtain an
explicit formula the optimal control has to satisfy. A duality principle of solutions to forward and backward
SPDESs can be obtained by applying an It6 product formula. Since this formula is not applicable to solutions
in a mild sense, we derive an approximation similarly to Section Recall that the operator R(A) € L(H)
is given by

R(\) = AR(A;—A) (6.37)
for all A € p(—A), where AR(X\; —A) is the resolvent operator of —A introduced in Section Especially,
we use Lemma [5.13] which is directly applicable here. Furthermore, we omit the dependence on the controls
in this section.
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6.5.1. The Forward Equation

Here, we provide an approximation of the mild solution to system (6.16]). We introduce the following system
in D(A'T®):

Az (t, ) = =[Azn (t, A) + BR(A)B(R(A)2m (8, A), Tm (Ym ()

+ R(A)B(Tm (ym (1)), R(A)zm (t, X)) — RN Fv(t)] dt + RA)G(R(AN) 2 (t, X)) dW (),  (6.38)
z2m(0,) =0,

where m € N and v € L%(Q; L2([0, T); D(AP))). The operator R()) is given by equation (6.37) with A > 0
and the operators A, B, F,G are introduced in Section [6.1] and Section [6.2] respectively. The mapping
Tm: D(A%) — D(A%) is given by and the process (ym(t))tcjo, 7] is the mild solution of system (6.5]).
The process (W (t));>0 is a Q-Wiener process with values in H and covariance operator Q € £ (H).

Definition 6.30. A predictable process (zp (t, A))iejo,r) with values in D(A'™*) is called a mild solution

of system if
E sup ||Zm(t7>\)H2D(A1+a) < 00
te[0,T]

and we have for all t € [0,T] and P-a.s.

Zm(t,A) = — /ASB_A“_S)R(A)A_‘S [BIR(A)2m (8, A)s Tm (Ym (8))) + B(mm (Ym (5)), R(A)2m (s, A))] ds

(e}
-~

+/6_A(t_s>R(A)FU(S) ds_|_/e—A(t—s)R()\)G(R()\)zm(S,)\))dW(s).

Recall that the operators R(A) and AR(A) are linear and bounded on H. Hence, for fixed m € N and
fixed A > 0, an existence and uniqueness result of a mild solution to system (6.38)) can be obtained similarly
to the mild solution of system ([6.16). In the following lemma, we state a strong formulation of the mild

solution to system (|6.38)).

Lemma 6.31. Let (2,,(t, A))ieo, 1) be the mild solution of system . Then we have for fired m € N,
fized A >0, allt € [0,T] and P-a.s.

Zm(t,A) = — /Azm(s, A) + A° RN AT [B(R(N)zimn (8, A)s T (ym () + B (Y (5)), R(N) 2 (5, A))] ds

0
t t

+0/R()\)Fv(s) derO/R()\)G(R()\)zm(s, ) dW (s).

Proof. The claim follows immediately from Theorem [2.35) Theorem [3.106| and Lemma [5.13 O
We get the following convergence result.

Lemma 6.32. Let (2,(t))icjo,r) and (zm(t, A))iejo, ) be the mild solutions of system and system
, respectively. Then we have for fited m € N

Ali—E{)loE sup_||zm (t) — zm (t, )‘)HQD(AQ) =0.
te[0,T7]

143



Chapter 6. Optimal Control of Uncertain Fluid Flows

Proof. Let I be the identity operator on H. We define the operator

B(y,z) = B(z,y) + B(y, z)

for every y, z € D(A®). Since B is bilinear on D(A%) x D(A®), the operator B is bilinear as well and using
Lemma we get for every y,z € D(A%)

|47 Bw.2)| | < 2Mlylipeas Izl b (6.39)

Recall that the operator G: H — Lz5)(QY/*(H); D(A®)) is linear and bounded. By definition, we find for
all A >0, all ¢ € [0,T] and P-a.s.

t

Zm(t) = zm(t,A) = — /A‘SS*A“*S)A*&E(M(ym(S)), (I = R(N)]zm(s)) ds
0

- / AP AT~ ROJAB(mn (g (5)), RO 2 (5)) dis

0
t

= [ A5 A IROVAT Bl () RO [ () — 25 W] s
0

+ / e A=) — R(\)]Fu(s) ds

0
t

+ / e~ A=) G([I — R(N))zm(s)) dW (s)

0
t

+ / e~ AT — RONG(R(N)zm(s)) dW (s)

0
t

+/6—A(th)R()\)G(R()\) [2m(5) — Zm (s, \)]) AW (s).
0

Let 11, € (0,7]. Then we get for all A > 0

E [Sup | 2 (£) = 2m (£ M Daey < TT(N) + 7 Ta(A) + 7 Zs(N), (6.40)
te 07T1,7n

where

¢ 2

L()=E sup / AP A=) RO\ A B (i (g (5)), ROV [z (5) — 2 (3, N)]) s

t€[0,T1,m]

D(A%)

t 2

+E sup / e AEIRNG(RN) [2m(8) — 2m (s, N)]) dW (s)

te[oyTl,'m]

)

D(A%)
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. 2
_ 5 —A(t—s) 4—3 7 _
Iy(A)=E  sup Ae A7 B(mm (ym(8)), [I — R(A)]zm(s)) ds
t€[0,T1,m]
D(A«)
. 2
5 —A(t—s)[7 _ B
+E sup Ale [ — RO)JAT B(mm (ym(5)), R(A)2m(s)) ds
tG[O,TLm]
o

D(A=)

. 2
+E sup /e*A(t*S)[I — R(N)]Fov(s)ds ,
0

tE[O,Tlﬂn] D(Aa)
t 2
Z3(\) =E sup / e AE=IG([I = R(N))zm(s)) dW (s)
tE[O,Tl,m] D(Aa)
t 2
+E sup / e~ A= = ROVIG(R(N)2m(5)) W (s)
te[0,T,m]

D(A~)

By Theorem Corollary [2.32] Lemma Proposition [3.65] (ii) with k& = 2, inequality and

inequality (|6.39)), there exist constants C7,Cs > 0 such that for all A >0

Ti(\) < (G722 4 CyTy ) E sup ]Hzm(t) — Zm(t, )| e - (6.41)
te 07T1,7n

Similarly, there exists a constant C* > 0 such that for all A > 0

LOVSCE sw (11— ROA 0 + OB swp 7= ROVA Bl (0), ROz (1)

t€[0,T1.m] t€[0,T1,m] H
T1,m
LC'E / Il — RO AP Fo(o)|?, dt,
0
T1,m T1,m
LW CE [ = ROl dt +C B [ 7= ROAGROVzm O 0100000 -
0 0
Using Lemma (iii) and Proposition we can conclude
lim Zo(A\) + lim Z3(\) = 0. (6.42)
A—r00 A—ro0

Due to inequality (6.40) and inequality (6.41]), we find for all A > 0

E sup [zm(t) = 2m(t M piaey S Kim B sup  [l2i(t) = 2 (8 M aey + 7 T2(V) + T Ts(N),
tE[O,TL-m] tE[O,Tl,"L]

where K ,, = 7ClT12,;12a726 + 7CoTy 1. We chose Ty, € (0,T] such that Kj ,,, < 1. Then we obtain for
all A >0

7T\ + 7 Ts(\)
E sup |zm(t) — zm(t, )‘>||2D(Aa) < K .
te[0,T4,m] 1,m
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By equation ([6.42)), we get

lim E sup Zm () — zm (t, A 2 oy = 0.
JmE s (=l by

Similarly to Lemma we can conclude that the result holds for the whole time interval [0, T]. O

6.5.2. The Backward Equation

Here we provide an approximation of the mild solution to system (6.34). We introduce the following
backward SPDE in D(A'*?):

dz (8, 0) = =i 7, (8) [~ Az}, (8, A) = A*R(N)AYB; (y(t), RO A 25, (1, A))
T+ ROVG (A2 RO)® (1) + ATRONAY (y(t) — ya(t)) ] dt + @6, ) AW (D), (6.43)
z: (T, \) =0,
where m € N. The operator R(A) is given by equation (6.37) with A > 0 and the operators A, Bf, G* are
introduced in Section and Section respectively. The process (y(t)):c[o,-) is the local mild solution of
system (6.3 with stopping times (7., )men defined by (6.10) and yq € L%([0,7]; D(A")) is the given desired

velocity field. The process (W(t)):>0 is a Q-Wiener process with values in H and covariance operator

Q € L (H).

Definition 6.33. We call a pair of predictable processes (2, (t, \), @ (t, N))iefo,r) with values in the space
D(A'?) x E(HS)(Ql/z(H);H) a mild solution of system if

T

E S[%pT] ||z:n(t,)\)||%(A1+5) < o0, IE/ H(I)m(ta)‘)HZL(HS)(QUZ(H);H)dt < 0
telo,
0

and we have for all t € [0,T] and P-a.s.

2t N) == [ L) (8)A% AT RN AYBS (y(s ATim), RN A®25, (s, N)) ds

T
Lio 7, (8)A7e” AR AY (y(s A in) — ya(s)) ds — /e_A(S_t)q)m(s, A) dW (s).

t

T
/
T
+ / Ljo.r)(8)e 2T R(NG* (A2 R(N) @, (s, \)) ds
t
T
«f
t

Recall that the operators R(A\) and AR(\) are linear and bounded on H. Hence, an existence and
uniqueness result of a mild solution to system (6.43) can be obtained similarly to the mild solution of
system ([6.34)) for fixed m € N and fixed A > 0. Moreover, we get the following result.

Lemma 6.34. Let the pair of processes (2, (t,A), @i (t, N))iefo,r) be the mild solution of system .
Then we have for fited m € N and fized A > 0

T
Et ?upT] ||Z:.;.L(t, A)HzD(AH—(S) = 0 and E/ ||(I>m(t, A)HZ(HS)(QUQ(H);H) dt = O
E(Tm,

146



Chapter 6. Optimal Control of Uncertain Fluid Flows

Proof. The claim follows similarly to Lemma [6.29 O
The following lemma gives us a strong formulation of the mild solution to system (6.43)).

Lemma 6.35. Let the pair of processes (2, (t, N), @i (t, X))iepo,r) be the mild solution of system .
Then we have for fited m € N, fized A > 0, all t € [0,T] and P-a.s.

/1[0 oy (8) [A25, (5, 0) + A*R(NA“B} (y(s A Tim), RN A2, (s, N)) ] ds
T

+ / Lio,r,) () R(N)G* (A2 *R(N) o (s, \)) ds

Ljo,7,,) (8) AT R(N)A” (y(s A ) — ya(s)) ds

D, (s, ) dW(s).

Proof. The claim follows from Theorem Theorem and Lemma O
We get the following convergence results.

Lemma 6.36. Let (2, (t), ®m(t))ieo,m) and (25, (t, X), @i (t, X))iefo,r) be the mild solutions of system
and system , respectively. Then we have for fited m € N

lim E sup ||z 25 ()3 =0,
Jim B sup[15,(6) — 5,0 Dl

lim E / 19 (t) = B (b 2, o 201y = 0

Z (1) — 25, (8, A)
11[0 o) (8)A%e™AETDABY (y(s A1), A%225(5)) — RONA®B; (y(s A Tm), RN A2, (s, 0))] ds

Ljo.r)(8)e 2 ED[G*(A722D,,(s)) — R(\)G* (A2 R(N) @, (s, \))] ds

Lo, 7,0 () AT 47O — R(NJA (y(s A7) — ya(s)) ds
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Recall that the operators A*Bj (y(t), ) : H — H for t € [0,7,,,) and G*: L(35)(QY/*(H); D(A%)) — H are
linear and bounded. Hence, we find for all A > 0, all ¢t € [0,T] and P-a.s.

2 () = 25 (8 A) = —

m

Ljo.r,)(8) A% ATV AYBS (y(s A1), [I — R(N)]A% 25, (s)) ds
— [ Lor) () A% AL = RNJA®B; (y(s A7) ROV A2}, (s)) ds
— [ Lo, (5) A% AR A B (y(s A i), RONA[25,(5) — 27, (3, V)]) s
+ [ Lo, (s)e”ACTIGH (AT — RO @y (s)) ds
+ [ Liory(8)e™ A — ROVIG* (A2 *R(N) @1 (s)) ds
+ [ om0 (s)e” ACTIRNG (AT RN @1 () = Pra(s, A)]) ds

+ [ Lo, (5)ATe AT = RINJAY (y(s A7) — ya(s)) ds

T T T Ty Ty Ty T

T
— / e AETID,, (5) — Bp(s, \)] AW ().

Note that each integrand of the Bochner integrals on the right hand side satisfies the assumptions of Lemma

and Corollary respectively. Let 11, € [0,T). Using inequality (3.39) and inequality (3.45)), we
get for all A > 0
E_sup lz(t) = 2t Vs €71 +7 () +7Z5(0), (6.44)
te[T1,m,T)

where

TiA) = T = Ty B sup [Wjo.r,) () [|[ROVAB; (y(t A7), RO A 25, (8) = 23,8, M)

tE[Tl,"“T]
T
+e(T—Tim) " 2E / Lio,.7,) () [|RONG* (AT R(N) [®a (£) — o (2, /\)])Hi] dt,
T1m
To(N) = 6T = Ty 2B sup [Wjo.r, () |4 B; (y(t A 1), [T = RVA 25, ()] ]
te[T1,m,T]
HT =T 0B _sup (80,700 (8) |1 = ROVIA® B (y(t A7), RN A 25, (0) 1]
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T
Ty(\) = o(T = Ty m)' "> E / Lo, (1) [| G (A2 = ROV @ ()|, dt
Tl,mT
+e(T=Tim) ¥E / Ljo,r,) (1) [[[T = ROVIG* (A2 RO @, (1)) [, dt
T1,m
+ (T =Tum) "7 E [ o,r,(0) 1T = ROVIAT (y(t A7) = ya(t))| dt.
T1,m

By Lemma (ii), there exist constants Cy,Cy > 0 such that for all A >0

LN < CUT = Tum)* P E sup |l25,(8) = 25, (6 M pas)
te [Tl,'m 7T]

3

T
+Co(T —Tim) " E / [P () — Pra (2, /\)||3:(HS)(Q1/2(H) my At (6.45)
T1,m

Moreover, there exists a constant C* > 0 such that for all A > 0

L) <C'E swp ||[[ - ROA 0]
tE[TLm,T]

FCE sup (Mg p(6) [T ROIAB (y(t A7), ROV A5 (1) [

tE[Ty pm,T)
T T
* * * —2a 2
I3(\) < C*E / 1[I = RO\ @ (1)||3; dt + C*E / [T = ROV)IG* (A2 *R(N) (1)) |, dt
T1l,m T1,m
T
+C"E / g7,y (8) [T = ROVIAY (y(t A7) — ()3 dt.
T1,m
Using Lemma (iii) and Proposition we can conclude
lim Zo(A\) + lim Z3(\) = 0. (6.46)
A—00 A—o0
Due to inequality (3.40) and inequality (3.46[), we get for all A > 0
T

T1,m
where

L) =T ~Tinf ™ B _swp (110,700 (8) [ROVA®B; (5t A 73n), ROV A 25, (8) = 25, (8 N)]) 3]

T
FolT = Tim)E [ 1o, (OIROG (A2 RO)(0(0) — Bt V) [y,

Tl,m
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Ts(\) = &(T — T1.n)>2*E  sup []1[0,%)(15) |A“B; (y(t A 7om), [T = ROV)]A% 22, (1)) ||§{]
te[Th,m,T)

FUT=T10)" B _swp (110,700 () [II7 = ROVIA B (9 A7), RVAS25, (D) 1]
telTr,m,

T
To(A) = o(T — Ty ) E / 10,0y () [ G* (A2 = ROV (1)),

T1,m

+ o(T = Tym) E / Lm0y (&) [T = RVIG* (A2 RO D, (1)

T1,m
T

+e(T =T1n) E [ Lpo ) (t) [T = ROVIAY (y(t A Tm) = ya(0))II7 dt.
T1,m

Again, there exist constants C1, Cy > 0 such that for all A > 0

LN <CUT = Tim)* > E - sup |25,(8) = 25 (6, Ml pgas)

tE[T1,m7T]
+Co(T — Ty ,m) E / [ @ () — (2, )\)H?:(HS)(QIN(H);H) dt. (6.48)
T1,m
Similarly to equation (6.46)), we get
lim Zs(A\) + lim Zg(A) = 0. (6.49)
A—00 A—00
By inequalities (6.44)), (6.45)), (6.47) and (6.48)), we have for all A > 0
T
E sup |z,(1) — Z:n(th)HQD(A“) +E / [P (t) — ‘bm(t7A)HZ(HS)(QU%H);H) dt
tE[Tl’m,T] T
1,m

T
* * 2 2
< Kim [E_swp 1500 = 2,06 W pcan) + B / O SO A"
e Tl,'m

+ TIo(N) + TZ3(N) + TZs(N) + TZs(N),
where
K1 m = max {C1(T = Ty,m)? 2% + C1(T — T1,m)* 2, Co(T — T1m) 2 + Co(T — T1m) } -
We chose T, € [0,T) such that K3 ,,, < 1. Thus, we get for all A > 0
* * 2 2
Ete[;:lp T |27 (8) = 2 (2, )\)”D(Aé) +E / [ @ (t) — P2, )‘)Hﬁ(ys)(Ql/z(H);H) dt
o T1,m

_TLN) + TN +TZ5(00) + 7Z6()
= 1— Ky '
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Due to equation (6.46|) and equation ([6.49)), we have

. * % 2 —
T B sup]25,(0) = (6 M) s = 0,

te[T1,m,T]
T
. 2
i B[ 10000 = @A) guramym dt =0,
Tl,m
Similarly to Lemma we can conclude that the result holds for the whole time interval [0, T]. O

6.6. Design of the Optimal Control

Based on the results provided in the previous sections, we are able to show a duality principle, which gives
us a relation between the local mild solution of system ([6.15)) and the mild solution of system (6.34]).

Theorem 6.37. Let the processes (y(t;u))icio,rvy and (2(t;u,v))ie(o,7u) be the local mild solutions of sys-

tem and system , respectively, corresponding to the controls u,v € L%(§%; L?([0,T]; D(A?))).
Moreover, let the process (z;kn( u), ®p (t;u))ico, ) be the mild solution of system corresponding to

the control u € L%(%; L*([0,T]; D(A))). Then we have for fized m € N

u
Tm

E/ (A7 (y(t;u) —ya(t)), A z(t;u,v)) y dt = E/ (zp (t;w), Fu(t)) 4 dt. (6.50)
0

0

Proof. For the sake of simplicity, we omit the dependence on the controls. First, we prove the result for
the approximations derived in Section Let (zm(t, A))eefo,r) be the mild solution of system (6.38). Using
Lemma [6.31} we have for all A > 0, all ¢ € [0,T] and P-a.s.

(t /\ /AZm s /\) + A°R ()\)A g [B(R()\)zm(s, )\)7 Wm(ym(s))) + B(ﬂ'm(y'rn(s))v R()‘)zm(sa /\))] ds

+ 0/ RO\ Fu(s)ds + 0/ RO)G(R(AN)zm (5, \)) dW (s). (6.51)

Next, let the pair of stochastic processes (2, (£, A), @, (¢, X))se[o,r] be the mild solution of system (6.43). By
Lemma [6.35] we get for all A > 0, all ¢ € [0, T] and P-a.s.

zn (t,A) = Ti0,r,,)(5) [Az;‘n(s, A) + A°R(N\)A“Bj (y(s ATm), R()\)A‘Sz;‘n(s, )x))] ds

T
+ [ Lio,r) (S)RAGF (AT R(N) @y, (5, N)) ds + / T10,r,,)(8)ATR(N)AY (y(s A 7o) — ya(s)) ds

D, (s, \) dW (s). (6.52)

Tt Tt “\ﬂ
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By definition, the process (z;;,(t, A))sejo, 1) is predictable. Using Proposition we find for all A > 0, all
t € [0,T] and P-a.s.

—-E [/]1[07 Az (s, A) + A“R(N\)A“Bj (y(s ATm), R ()\)A5 zr (s, )x))] ds|F
0
+E { / Loy (5)ROVG* (A2 RO\ By (s, \)) ds + / Loy (8)AYRO)AY (y(5 A7) — ya(s)) ds| s
0 0

Lio,7,)(8) [Az3, (5, ) + A*R(A) A B; (y(s A ), RN A 25, (s, 1)) ] ds

o\»ﬁ

t

1,7, ()R G™ (AT R(N) Py (s, ) ds — /ﬂ[o,m)(S)A”R(A)A” (y(s A7) — ya(s)) ds.
0

By Theorem with (M (t))sepo,r) satisfying for all ¢ € [0,T] and P-a.s.

o\»\*

M(t)

T
=-E [/ Lio,r)(5) [Azp, (s, A) + A*R(N)A“B; (y(s A7), R(N) A%z (s, )] ds| F
0

)

+E { / Loy () ROVG (A2 RO By (s, X)) ds + / Loy () AV ROVAT (y(5 A 7o) — ya(s)) ds| 7o
0 0

there exists a unique predictable process (U, (t, A));ejo,7] with values in £(gs)(Q'/?(H); H) such that for
all A >0, all ¢ € [0,T] and P-a.s.

zr (t, )

_ E[
|

10,7, (5) [Az;'fn(s, A) + A*R(N) A Bj (y(s ATm), R()\)A‘szfn(s, )\))] ds

St~

1io,r,,)(5) [Az:n(s, A) + A*R(N) A Bj (y(s ATm), R(/\)A‘Szfn(s, )\))] ds]

_|_

St~

T
1io,r,.)(8) R(N)G™ (A2R(N)®,,(s,\)) ds + / Lo, (8)ATR(N)AY (y(s A ) — yals)) ds]
0

+

L OY—

t

/11[0 r) ()R G (AT R(N) @ (5, 1)) ds — /ﬂ[o,m)(S)A”R(A)A” (y(s A7) — yals)) ds
0 0

+ \Ilm(s, A) dW (s). (6.53)

o
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Since the pair (z;;,(t, A), @ (t, A))ieqo, 1) satisfies equation (6.52) uniquely, we have W, (¢, A) = ®,,(t,\) for
all A > 0, almost all t € [0, 7] and P-almost surely. Applying Corollary to equation ([6.51)) and equation
(6.53]), we get for all A > 0, all ¢ € [0,T] and P-a.s.

<Zm(t, )\), Z;(t, )‘)>H = Il (t, )\) + Ig(t, )\) + Ig(t, )\) + Z4(t, )\) + I5(t, )\)7

where
t

T10,r,)(8) (Zm (5, N), Azpp (5, N)) y ds — / (Zm (5, A), Az (8, N)) gy ds,
0

Ti(t,\) =

Io(t,\) = | 1po,7,)(8) <zm(s, A), AR(\)A“Bj (y(s ATm), R(/\)A‘;zfn(s, /\))>H ds
0

— L O

—/<Z;L(57A),A53(>\)A75 [B(R(N)zim (8, A)s Tim (Ym (5))) + B(mm (ym (), RNz (s, N)]) y ds,
0
IB(tv )‘) = / <R(/\)G(R(A)Zm($7 A))7 ‘I)M(Sa A)>£(HS)(Ql/2(H)7H) ds
0
- /]I[O}Tm)(s) (zm(5,A), RO)G*(AT>**R(N\) @y (5, )\))>H ds,
0

Ti(t, ) = / (25 (5, \), ROVFo(s)) g ds — / Loy () ({5, A)s AV ROVAT (y(5 A7) — ya(5))) s,
0 0

t

To(t,\) = / (oo (5, 0), By (5, A) W (5)) 5 + / (2t (5, 2), ROVG(RN) 20 (5, A)) AWV (5))
0 0

By Lemma [6.34] we obtain for all A > 0 and P-a.s.
0="21(Tm, \) + Zo(Tim, A) + Z3(Tim, A) + Za(Tim, A) + Zs (T, A). (6.54)
Since the operator A is self-adjoint, we have for all A > 0 and P-a.s.
Ty (Tm, A) = 0. (6.55)

Recall that y(t) = mm (ym(t)) for all t € [0,7,,) and P-almost surely. Using Lemma [2.34] Lemma and
equation (6.35)), we find for all A > 0 and P-a.s.

Zo(Tim, A) = 0. (6.56)
Due to Lemma (iv), Lemma and equation , we obtain for all A > 0 and P-a.s.

Zs3(Tm, A) = 0. (6.57)
By equations - and the fact that E I5(7,,, A) = 0, we get for all A > 0

0 =EZy(7m, \).
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Hence, we have for all A > 0

Tm Tm

B [ (ROVA72n (80 A7 (5(8) = )yt = B [ (R0 (0, Folt) e (659
0 0
Next, we show that the right hand side and the left hand side of equation (6.58]) converges as A — oo. Let
(Ym(t))eefo,r) and (2m(t))ecjo, ) be the mild solutions of system (6.5) and system (6.16)), respectively. By
definition, we have for all ¢ € [0,7,,) and P-a.s. y(t) = ym(t), |[Ym(t)|paey < m and 2(t) = 2y, (t). Using
Lemma we obtain
lim B sup ||2(t) = 2 (t, A) [ Haa) = 0 (6.59)
A—00 te0,7m)
By the Cauchy-Schwarz inequality, Lemma (ii) and Corollary there exists a constant C* > 0 such
that for all A >0
2

Tm Tm

E / (A72(8), A7 (y(t) — ya(t))) y dt — E / (ROVAY 20 (£, 0), A7 (5() — ya(t)))
0 0

<2[E / (I — ROVJAT=(8), A7 (y(t) — ya(t)))  dt
0

Tm

]E/ (ROA(2(t) = 2m(t, M), A7 (y(8) = ya(t))) pr dt

0

( / Az(t)|7 dt+E  sup ||Z(t)—2m(ta)\)||§>(,4a))~
te[0,7m)
0
i),

Using Lemma [5.13)| (iii), equation (6 and Proposition we can conclude

A—00
0

i / (RO)A 2 (60), 47 (00) = 3a() dt = [ (A7(0), 47 (4(8) = yalt)) .
0

Recall that the operator F': D(A?) — D(AP) is bounded. Similarly as above, there exist constants C* > 0
such that for all A > 0
2

Tm Tm

E/(zj‘n(t),Fv(t»Hdt—]E/<R()\)z;(t,)\),Fv(t)>Hdt
0 0

Tm Tm

<2 E/ Zn (t), Fo(t)) y dt| +2 E/(R(A)(zfn(t) —zn (8, N), Fo(t)) g dt

0

0
T

(]E/I [I = RNz, (1)l dt + E sup IIan(t)an(t,/\)VD(Aa))-
0

t€(0,T]

By Lemma [5.13| (iii), Lemma and Proposition we can infer

Tm Tm

lim E/(R(A)z;(t, A),Fv(t)}Hdt:IE/<z;"n(t),Fv(t)>Hdt.

A—00
0 0
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We conclude that the right hand side and the left hand side of equation (6.58) converges as A\ — oo and
equation ({6.50)) holds. O

Based on the necessary optimality condition formulated as the variational inequality (6.32]) and the duality
principle derived in the previous theorem, we are able to deduce a formula the optimal control has to satisfy.

Theorem 6.38. Let (z;;,(t;u), o (t;u))icio,r) be the mild solution of system corresponding to the
control u € L%(Q; L2([0,T); D(AP))). Then for fited m € N, the optimal control u,, € U satisfies for almost
allt € [0,T) and P-a.s.

Un(t) = —Py (F*A™ 2 (t0m)) (6.60)
where Py: L% (S L2([0,T); D(AP))) — U s the projection onto U and F* € L(D(AP)) is the adjoint
operator of F € L(D(AP)).

Proof. Using inequality (6.32)) and Theorem the optimal control @,, € U satisfies for every u € U

T,E:m’ T
E / (25, (6T, F(u(t) — T (1)) dt +E / (AP, (t), AP (u(t) — T (1)), dt > 0.
0 0

By Lemma we have 1, Tgm)(t)z;;(t;ﬂm) = z} (t;uy,) for all t € [0,7] and P-almost surely. Due to
Lemma [2.29 (iv), Lemma we obtain for every u € U

Um
Tm

B [ (aiu(t). Fult) = tn(0) dt =B
0

(Lo ) (2 (6T, F(ult) =T (1))l

=E [ (APA22 (t0m), APF(u(t) — U (1)), dt

H

=E [ (APFT AT (6), A (u(t) — T (1)) dt.

Ot~y O — g O —

Hence, we find for every u € U
T
E/ (—F* A2 23, (6T) = T (8), u(t) = T () ) < 0.
0

By Proposition we obtain equation (6.60). We note that the mild solution of system (6.34)) is a pair
of predictable processes (zy,,(t;u), @ (t;u))iejo,r) such that especially Esup,¢io 77|12, (4 “)H%(Aa) < oo for

every u € L%(Q; L2([0,T); D(AP))). Hence, we get F*A=282* (u,,) € L%(Q; L%([0,T); D(A?))), which
justifies the application of the projection operator Py . O

Remark 6.39. Let us denote by (Y(t))ieo7) and (Z,(t), P (t))iejo,r) the local mild solutions of system
and the mild solution of system , respectively, corresponding to the optimal control u,, € U. As
a consequence of the previous theorem, the optimal velocity field ((t)).co,7) can be computed by solving the
following system of coupled forward-backward SPDEs:

dy(t) = —[Ay(t) + B(y(t)) + FPy (F* A7z}, (1))] dt + G(y(t)) dW (¢),
dz,(t) = ~Lo,7,,) (1) [~ AZ;, (1) — A B; (g(t), A°Z;, (1)) + G*(A72@ (1)) + A® (3(t) — ya(t))] dt
+ ©,,,(t) AW (2),
y(0) =&, 7, (T) =0.

155



Chapter 6. Optimal Control of Uncertain Fluid Flows

Corollary 6.40. Let the control w,, € U be given by equation . Then we have for fited m € N

T
B [ [t (O]t = 0.

Proof. Let (zy,(t;Wm), ®m(t;%m))icjo,r) be the mild solution of system (6.34) corresponding to the optimal
control u,, € U. By Lemma we have Esup, ¢ wm 7 |2 (8 um) |15 a5y = 0. Moreover, note that the
operators in equation are linear and bounded. Using Corollary there exists a constant C* > 0
such that

T
* p— * — 2 * * —
/ [ ()| D amydt = / | P (F*A 2ﬁzm(t?”‘“n))HD(M)altSC E sup 2, (6%m) [ as) = 0.

T te[ry™,T)
T Trm!

O

Finally, we show that the optimal control w,, € U given by equation satisfies a sufficient optimality
condition.

Theorem 6.41. Let u,, € U be given by equation . Then ., € U is an optimal control of the control
problem .

Proof. Note that the set U is a convex subset of the Hilbert space L%(§%; L?([0,T]; D(A?))). By Corollary
the cost functional J,, given by equation (6.13]) is twice continuous Fréchet differentiable. Recall that
U, € U satisfies the necessary optimality condition ([6.31]), which are also valid for the Fréchet derivative
due to Theorem and Corollary Moreover, we have for every v € L%(Q; L%([0, T]; D(A?)))

Um,
Tm

0" () E/Wm*tmeMﬁ+E/wﬁ Imﬁ>E/W)HmMﬂt
0

Hence, the assumptions of Proposition are fulfilled and the optimal control u,,, € U given by equation
is a local minimum of the cost functional J,,. Due to Theorem we can conclude that this
minimum is also global. O

6.7. The Case of Additive Noise

As described in Remark the control problem for vy = % can not be solved through a stochastic
maximum principle directly. Here, we give a possible simplification, which enables us to overcome this
problem.

We introduce the stochastic Navier-Stokes equations with additive noise in D(A®):

dy(t) = —[Ay(t) + B(y(t)) — Fu(t)| dt + G dW (1),
y(0) =¢,

where u € L%(Q; L2([0,T]; D(A))), € € L?(9; D(A®)) is Fy measurable and the process (W (t));>0 is a Q-
Wiener process with values in H and covariance operator () € Ef (H). The operators A, B, F are introduced
in Section and Section respectively. Moreover, we assume that G € L5 (Q'/?(H); D(A)). Note
that system (6.61) is a special case of system . Hence, the existence and uniqueness of a local mild
solution to system is an immediate consequence of Theorem We denote by (y(t;u))sefo,r) the
local mild solution of system to illustrate the dependence on the control u € L%(2; L2([0, T]; D(AP))).

(6.61)
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Remark 6.42. Similarly to Section one first considers the following system in D(A*):

(6.62)

dym (t) = =[AYm(t) + B(mm(ym(t))) — Fu(t)] dt + G dW (1),
Ym(0) = &,

where m € N and m,,: D(A*) — D(A®) is given by equation (6.6). If the parameters o € (0,1) and
0 €10,1) and 8 € [0, a] satisfy the assumptions of Theorem then there exists a unique mild solution of
system for fivzed m € N, fired uw € L%(%; L2([0, T); D(A"))) and any & € L?(2; D(A%)) in the sense
of Definition . Similarly to the proof of Theorem the sequence of stopping times (T )men s defined
by

T = (€ (0,7) ¢ llym ()| pacy > m} AT (6.63)

P-a.s. and the stopping time T is given by T = liMy, o0 Ty -

Following Section we consider again the cost functional J,,: L%(Q; L2([0, T]; D(A?))) — R given by

Jnu) = S E / |47 (1) — ya(e)) % di + S E / )2 )l (6.64)

where m € N is fixed and v € [0,a]. Moreover, the process (y(t;u))¢cjo,7) is the local mild solution of
system (6.61)) corresponding to the control u € L%(Q; L2([0,T); D(AP))) and yq € L%([0,T]); D(A)) is a
given desired velocity field. The task is to find a control @,, € U such that

I (Tm,) = 525 Im (1),

where the set of admissible controls U is a closed, bounded and convex subset of the Hilbert space
L%(Q; L%([0,T]; D(AP))) such that 0 € U. The control @, € U is called an optimal control. The exis-
tence and uniqueness of the optimal control follows from Theorem [6.15

Next, we state the necessary optimality condition. Similarly to Section[6.3] we first introduce the following
linearized system in D(A%):

{d(((t); - ;[Az(t) + B(2(1), y(1)) + Bly(t), 2(1) — Fo(t)] d, (6.65)

where v € L%(Q; L2([0, T]; D(A?))), the process (y(t))te[o,r) is the local mild solution of system (6.61). The
operators A, B, F' are introduced in Section and Section respectively. Note that system (6.65) is a
special case of system . Hence, the existence and uniqueness of a local mild solution to system @
follows immediately. We denote by (z(t;u,v)):e[0,-+) the local mild solution of system to illustrate
the dependence on the control u,v € L%(Q; L2([0, T]; D(A?))). Furthermore, for fixed m € N, the Gateaux
derivative of y(t;u) at u € L%(Q; L([0,T); D(AP))) in direction v € L%(; L%([0, T]; D(A?))) satisfies for
all t € [0,7%) and P-a.s.

diy(tyu)[v] = 2(t;u, ),

which can be obtained similarly to Theorem [6.21] Therefore, the Gateaux derivative of the cost func-
tional J,: L%(9; L2([0,T]; D(AP))) — R given by (6.64) at u € L%(Q;L%([0,T]; D(A®))) in direction
v € L%( L2([0,T]; D(AP))) satisfies

T T
d Jm IE/ ya(t)), A z(t; u, v) dt+]E/ o(t)),, dt.
0 0
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This result follows immediately from Theorem [6.22] The Gateaux derivative of order two as well as the
Fréchet derivatives can be obtained from Corollaries - According to inequality (6.31]), the optimal
control w,, € U satisfies the following necessary optimality condition for fixed m € N and every u € U:

A% T (T ) [w — Tpm) > 0.

To utilize this necessary optimality condition, we first introduce the adjoint equation in D(A%):

(7)o, (6.66)

m

{den (t) = ~Ljo,7,.) (1)[=Az, (1) — A2 Bj (y(t), A2, (1)) + A® (y(t) — a(t))] dt,

where m € N and the process (y(t)):e[o,) is the local mild solution of system . The sequence of
stopping times (7,,)men is defined by equation and yq € L*([0,T]; D(A)) is the given desired
velocity field. The operator A and its fractional powers are introduced in Section Moreover, the
operator Bj (y(t),-) : H — D(A®) for t € [0,7,,) is linear and bounded. A precise meaning is given by
Remark (i). The existence and uniqueness of a mild solution to system can be obtained using
the Banach fixed point theorem without additional restrictions on the parameters a € (0,1) and ¢ € [0,1)
and 3,7 € [0,a] if we require that yq € L>([0,T]; D(A")). Let us denote by (2, (t;u))tcjo,r) the mild
solution of system to illustrate the dependence on the control u € L%(Q; L2([0, T]; D(AP))). Note
that the process (2;,(t;u))iep0,) is not Fi-adapted. Furthermore, we can easily derive a duality principle
similarly to Theorem As a consequence, for fixed m € N, the optimal control @,, € U satisfies for
almost all ¢ € [0,7] and P-a.s.

Ton(t) = — Py (F* A~PE (25, (1:7,)| ) (6.67)
where Py: L%(%; L?([0,T); D(AP))) — U is the projection onto U and F* € L(D(AP)) is the adjoint

operator of F' € L(D(AP)). This result follows immediately from Theorem As described in Section
the optimal control @,, € U given by equation (6.67) satisfies also a sufficient optimality condition.

Remark 6.43. Note that we can easily generalize these results if system is driven by a square integrable
Lévy martingale as introduced in Section [3.3
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A. Some Gronwall-type Inequalities

In this section, we state the Gronwall inequality and their modifications. Let T > 0. We start with the
classical version.

Proposition A.1 (Corollary 6.60, [69]). Let a: [0,T] — [0,00) be an increasing function and let the
functions x,b: [0,T] — R be integrable such that b(t) > 0 for almost all t € [0,T] and

T
b(t)|z(t)] dt < 0.
If
x(t) < alt) + /b(s)x(s) ds
fort € [0,T], then
x(t) < a(t) exp b(s)ds
/

fort e [0,T].

As a consequence of the previous Proposition, we get the following Gronwall inequality of backward type.
A proof for Stieltjes integrals can be found in [69, Corollary 6.61].

Corollary A.2. Let a: [0,T] — [0,00) be a decreasing function and let the functions x,b: [0,T] — R be
integrable such that b(t) > 0 for almost all t € [0,T) and

T
/b(t)|:r,(t)| dt < .
0

If
fort € 10,7, then

fort e [0,T].
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Proof. By a change of variables, we get for ¢ € [0, T
t
(T —1t)<a(T—-1t)+ /b(T —8)x(T — s)ds.
0

We set Z(t) = z(T —t), a(t) = a(T — t) and b(t) = b(T —t) for t € [0,T]. Applying Proposition we
obtain for t € [0, 7]

Z(t) < a(t) exp /l;(s) ds
0

Thus, we have for ¢ € [0, 7]

t

T
(T —t) < a(T —t)exp /b(T —s)ds p = a(T —t)exp / b(s)ds p .
0 T—t

Therefore, the claim follows. O
The following inequality is applicable for nonmonotonic functions.

Proposition A.3 (Theorem 1, [90]). Let a,x: [0,T] — [0,00) be integrable functions such that a(t),z(t) > 0
fort € [0, T] and let the function b: [0,T] — [0,00) be nondecreasing and continuous such that 0 < b(t) < M
for allt € [0,T]. Suppose that 8 > 0. If

(1) < alt) + b(t) / (t — 5)P1a(s) ds
0

fort € 10,7, then

i (b(t)r(ﬂ))n (t _ s)nﬁfla(s) ds
I'(np)

n=1

¢
z(t) < a(t) + /
0
fort € 0,T], where I'(-) is the gamma function.
The previous result has some useful consequences.
Corollary A.4. Let a,x: [0,T] — [0,00) be integrable functions such that a(t),z(t) > 0 for t € [0,T] and

letb>0. If

t

x(t) < alt) + b/x(s) ds

0
fort € 10,7, then

z(t) <a(t)+b /eb(t_s)a(s) ds
0

fort € [0,T7].

160



Appendix

Proof. Using Proposition with b(t) = b for all t € [0,T] and 8 =1, we get for ¢t € [0, T

t

o+ [ 15

0

bFl
L(n)

(t - s)"_la(s)] ds.

n=1

Since I'(n) = (n — 1)! for each n € N, the claim follows. O

Corollary A.5. Let a,x: [0,T] — [0,00) be integrable functions such that a(t),z(t) > 0 for t € [0,T] and
let b> 0. If

fort €10,T], then

fort €0,T7].

Proof. The claim can be obtained similarly to Corollary O

B. The Bochner Integral

Here, we introduce the Bochner integral and we will state some basic properties. For more details, we refer
to [27, B8]. Throughout this section, let X be a Banach space and let (2,X, 1) be a measure space with
finite measure .

Let f: 2 — X be a simple function, i.e.

n
= § xk]]-Akv
k=1

where (Ag)k=1 n C X. Then the Bochner integral is defined by

=1,...,

/fdu Zwku (Ar)

k=1

/Afdu:/QnAfdu.

Next, we extend the definition of the Bochner integral.

.....

and for every A € 3, we set

Definition B.1. a) A function f: Q — X s called (strongly) measurable if there exists a sequence of
simple functions (fn)nen such that p-a.e. lim, o0 ||f — frllx = 0.

b) We call f: Q — X weakly measurable if for every x' € X', the real-valued function w — (', f(w)) is
measurable.

On separable Banach spaces, we have the following equivalences, which are consequences of Pettis mea-
surability theorem.
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Proposition B.2 (Corollary 3.10.5,[27]). Let X be a separable Banach space and let f: Q — X. Then the
following conditions are equivalent:

(i) [ is measurable;
(i7) f is weakly measurable;
(iii) for every open (or closed) set A in X, we have f~1(A) € ¥.

Remark B.3. Whenever we are dealing with separable Banach spaces, we use property (iii) of the previous
Proposition to characterize that a function is measurable.

Definition B.4. A measurable function f: Q — X is called Bochner integrable if there exists a sequence
of simple functions (fn)nen such that

lim /Q If = Fullxcd = 0.

n—oo

We call the sequence (fn)nen an approximating sequence.

For every Bochner integrable function f:  — X with approximating sequence (f,)nen, we define for
every A e X

/ fdp = lim fndp.
A n— oo A

The definition is independent of the approximating sequence. Furthermore, a characterization of Bochner
integrable functions is given as follows.

Theorem B.5 (Theorem 3.10.9, [27]). A measurable function f: Q — X is Bochner integrable if and only
if Jo Ifllx dp < oo.

Corollary B.6 (Corollary 3.10.10 and Corollary 3.10.11, [27]). If f: @ — X is Bochner integrable, then

o= [y

and the Bochner integral of f is absolutely continuous with respect to the measure p, i.e.

lim / dup = 0.
w(A)—0 Af :

We denote by L'(Q, 3, i) the space of integrable real-valued functions with respect to the measure space
(Q,3, u). Then we get the following dominated convergence theorem for Bochner integrals.

Proposition B.7 (Theorem 3.10.12, [27]). Let f,: Q@ — X, n € N, be Bochner integrable functions and
f:Q— X such that lim, o p{|| fn — fllx > €} =0 for all ¢ > 0 and there ezists g € L*(Q, 3, 1) such that
p-a.e. || fullx < g for each n € N. Then f: Q — X is Bochner integrable and

lim fndu = / fdu.
Q Q

n—oo
In this context, we also recall the monotone convergence theorem for nonnegative real valued functions.

Proposition B.8 (Theorem 2.2.6, [27]). Let f,: @ — [0,400], n € N, be an increasing sequence of
measurable functions converging to a function f: Q — [0,4+00]. Then f is measurable and

lim fndu = / fdu.

162



Appendix

The following property is useful, when dealing with closed linear operators A: D(A) C X — Y, where Y
is another Banach space.

Proposition B.9 (Theorem 3.10.16, [27]). If f: Q@ — X and Af: Q — Y are Bochner integrable, then

A/Qfd,u:/QAfdu.

Finally, we introduce LP-spaces for Banach space valued functions. For p € [1,00), we set
LP(X) = {f: Q — X: f is Bochner integrable such that/ I I dp < oo}
Q

and
LZ(Q;X)={f: Q— X: [ is measurable and there exists M > 0 such that p-a.e. ||f]x < M}.
Moreover, let N = {f: Q — X: p-a.e. f=0}. We define the LP-space as quotient spaces as follows:
LP(Q; X) = LP(Q; X) /N for p € [1,00), L¥(;X) = L2 X) /N

If we equip the space LP(Q; X) for p € [1,00) with the norm

1/p
1l = ( /Q ||f||5}du) ,

then LP(£; X) becomes a Banach space. Similarly, if we equip the space L (2; X) with the norm

[fllLe(@ix) = nf{M > 0: p{|[f[x > M} =0},

then L>°(£2; X') becomes a Banach space. Furthermore, simple functions are dense in LP(2; X) for p € [1, 00).

C. Nuclear and Hilbert-Schmidt Operators

In this section, we state some basic facts of linear and bounded operators on Hilbert spaces. We will mainly
focus on nuclear operators and Hilbert-Schmidt operators. Here, we closely follow [23] [45] [7T], [73]. Let U
and H be two separable Hilbert spaces.

The space of all linear and bounded (or continuous) operators is denoted by L(U;H). Then L(U;H)

equipped with the operator norm
[Tl

HTHL(L{;H): sup
vettz20 (%[l

for every T € L(U; H) becomes a Banach space. For the sake of simplicity, we set L(U) = L(U;U).
Remark C.1. Note that we can define linear and bounded operators even if U and H are Banach spaces.

The adjoint operator of T' € L(U;H) is denoted by T* € L(H;U). It is uniquely determined by the
following equation for every z € U and every y € H:

(T, y)n = (&, T"Yu-

We call an operator T' € L(U) self-adjoint if T'= T™*. The operator T' € L(U) is nonnegative (semidefinite)
if (T, 2)y > 0 for every x € U.
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Definition C.2. An operator T € L(U;H) is called nuclear or trace class if it has the representation
Tz = Z n (bn, T)14
n=1

for every x € U, where the sequences (ay)nen C H and (by)nen CU satisfy > ooy llan |l l|bnllu < oo.

The space of all nuclear operators is denoted by L1 (U; H). Similarly as above, we set £1(U) = L1 (U;U).
The space L1 (U;H) equipped with the nuclear norm

1T 2, @) = inf {Z lanll2lbnlle: T = Z%(bm@u}
n=1 n=1

for every T € L1(U;H) becomes a separable Banach space. We get the following basic properties.
Proposition C.3 (Proposition A.4, [T1]). Let V be another separable Hilbert space.
(i) If S € L1(U;H) and T € L(H; V), then TS € L1(U;V) and

1SN 2, @svy < ISHey @I T N 2z
(i) If S € LIU;H) and T € L1(H; V), then T'S € L1(U;V) and
1S 2y @wvy < ISle@irpl TNy :v)-

For T € L1(U), we can introduce the trace of T' by

o0

Tr(T) => (Ttn, tn)u,

n=1
where (uy,)nen is an orthonormal basis of U.

Proposition C.4 (Remark B.0.4, [73]). If T € L1(U), then Tr(T) is well defined and independent on the
choice of the orthonormal basis. Moreover, we have

Tr(D)| < TNl 2, @)-

We denote by £ (U) the subspace of L (U) containing all self-adjoint nonnegative nuclear operators. We
have the following result, which is especially valid for all T' € £ ().

Proposition C.5 (Proposition 2.1.5, [(3]). If T € L(U) is a self-adjoint nonnegative operator such that
Tr(T) < oo, then there exist an orthonormal basis (uy)neny of U and a sequence (An)nen of nonnegative real
numbers such that for each n € N

Tup = Ay

and 0 is the only accumulation point of (Ap)nen-

Definition C.6. An operator T € L(U;H) is called Hilbert-Schmidt if

[eS)
Y I TunllF, < oo,
n=1

where (Up)nen 18 an orthonormal basis of U.
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The space of all Hilbert-Schmidt operators is denoted by L gy (U; H) and we set L(gs)(U) = Ls) (U U).
Let (un)nen be an orthonormal basis of U. The space Lgg)(U; H) equipped with the inner product

o0

(S, 1) sy sH) = Z(SUmTUn>H

n=1

for every S,T € L(ggs)(U;H) becomes a separable Hilbert space. If (h,)nen is an orthonormal basis of #,
then (hy ® Um)n,men defined by hy, ® tp = by (U, )y is a complete orthonormal basis of L gg)(U;H).

Proposition C.7 (Proposition A.3, [71]). The norm corresponding to the inner product on L gs)(U;H) is
independent on the choice of the orthonormal basis of U. Moreover, we have T' € Ligs)(U;H) if and only
if T* € Ligs)(H;U). In this case, it holds that

HT||£(H5) (Z/f,?‘[) = ||1—M< ||£(Hs)(7'[;u)'

Proposition C.8 (Proposition C.4, [23]). Let V be another separable Hilbert space. If S € Lipg)y(U;H)
and T € Ligsy(H; V), then TS € L1(U;V) and

||TS||£1(Z/{;V) S ||S||L(HS)(U;H)||T||L(Hs)(7‘l;v)'

Proposition C.9 (Proposition 2.3.4, [73]). If T € L(U) is self-adjoint and nonnegative, then there exists a
unique self-adjoint nonnegative operator TY? € L(U) such that T'/?>T'/? = T. If additionally Tr(T) < oo,
then TY? € L gs)(U) with ||T1/2‘|L(Hs>(u) =Tr(T) and ST'? € Ls)(U;H) for every S € LU H).

Remark C.10. Let T € L(U) be a self-adjoint nonnegative operator such that Tr(T) < oco. Due to
Proposition there exist an orthonormal basis (un)nen of U and a sequence (A,)nen of nonnegative real
numbers such that Tu, = A\yu, for each n € N. Using Proposition [C.9, there exists a unique self-adjoint
nonnegative operator T2 € L(U) such that TY?TY? = T. We obtain T ?u, = v/ Iun for each n € N.
Hence, we can conclude that the subspace T1/2(Z/l) of U equipped with the inner product

S 1
<l’ y TY2(U) — Z /\7 €T, Un yaun>1/{

for every x,y € TY?(U) becomes a Hilbert space and (v/Xntn)nen is an orthonormal basis of TY/?(U). By
definition, we obtain that the inner product on L yg) (TY2(U); H) is given by

(R, S) £ oy (rrr20yit) = D An (R, Sun)a = (RTY2, STY?) 2 iy
n=1
for every R, S € Lgs)(TY?(U);H). Moreover, we have LU;H) C Lius)(TY?(U);H) as a consequence of
Proposition [C.9

D. Optimization in Infinite Dimension

In this section, we consider convex as well as nonconvex optimization problems of functionals defined on
Banach spaces. We introduce the concepts of Gateaux and Fréchet derivatives. Moreover, we state results
on the existence of unique extrema, which represents a solution of an optimization problem. Finally we
state necessary and sufficient optimality conditions such a extrema has to satisfy. For more details, we refer
o [111 511 57, [93]. Throughout this section, let X,Y and Z be Banach spaces.
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Differential Calculus in Banach Spaces

We start with a formal the definition.
Definition D.1. Let f: M C X — Y be an operator with M # 0 open.
(i) We call f Gdteaux differentiable at x € M if the limit

de(.’L‘)[h] — lim f(.’L‘ + th) — f(x)

t—0 t

exists for all h € X and d° f(z) € L(X;Y). We then call d° f(z)[h] the Gateauzx derivative of f at
x € M in direction h € X.

(ii) We call f Fréchet differentiable at x € M if the limit
If(@+h) = f(z) —d" f(=)[A]]ly

=0
Il x —0 |l x

exists and d¥ f(x) € L(X;Y). We then call d¥ f(x)[h] the Fréchet derivative of f at x € M in
direction h € X.

(i1i) We call f Gateaux/Fréchet differentiable on M if f is Gateauz/Fréchet differentiable at every
reM.

Remark D.2. (i) Let f: M C X — 'Y be an operator with M # () open. The Gateaux derivative of order
n > 2 denoted by d°(f(z))" with x € M is defined as the Gateaur derivative of d°(f(x))"!, whenever it
exists. Similarly, we define the Fréchet derivative of order n > 2.

(ii) Let Mx C X, My C Y be nonempty and open and let f: Mx X My — Z be an operator. For fixed
y € My, the partial Gateaux derivatives of f at x € Mx in direction h € X is defined by

4 f(,y)[h] = tim L&Y = f(@9)

t—0 t

)

whenever the limit exists. The partial Gateaux derivatives of f aty € My is defined analogously. Similarly,
we define the partial Fréchet derivatives.

In contrast to the Gateaux derivative, there exists a chain rule for the Fréchet derivative. This is the
main difference of both type of derivatives.

Proposition D.3 (Theorem 4.1.1,[57]). Let g: Mx C X =Y and f: My CY — Z be Fréchet differen-
tiable on the open sets Mx and My , respectively. Then the Fréchet derivative of the composition f o g at
x € Mx in direction h € X 1is given by

d" f o g(w)[h] = d" f(g()) [d"g(z)[R] .

Obviously, every Fréchet differentiable operator is Gateaux differentiable. The converse is in general
not true. However, we can state conditions such that the Gateaux derivative and the Fréchet derivative
coincides. Therefor, we need the following preliminary result known as the mean value theorem.

Proposition D.4 (Theorem 4.1.2 (b),[57]). Let M C X open and let f: M C X — Y be Gdteaux differen-
tiable on the interval

[z, +h]={z+th:t€[0,1]} C M.
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If 2+ d% f(2) is continuous from [z, x + h] into L(X;Y), then
1f(z+h) = f2)lly < sup 1S f (@ + th) |l e 1]l x
teo,

and for every T € L(X;Y)

[ f(z+h)— f(z) —Thly < Sﬁ)p} 149 f(z + th) — Tl cexav 1B x -
te[0,1

Note that the previous proposition holds especially for T = d¢ f (z). Thus, we get immediately the
following result.

Corollary D.5 (Corollary 4.1.1,[57]). Let M C X open and let f: M C X — Y be continuous and Giteaux
differentiable on M. If x +— d€ f(x) is continuous from M into L(X;Y), then f is Fréchet differentiable on
M and for every x € M

d" f(x) = d°f ().
Remark D.6. Here, we show some classical examples of Fréchet differentiable operators:
(i) Let g: X =Y be defined by
9(x) =Tz +y,
where T € L(X;Y) and y €Y is fized. Then we get for every x,h € X

glx 4+ h) —g(x) =Th.
Thus, we can conclude that for every x € X

lg(x + h) — g(x) — Thiy
bl x —0 Al x

=0.

Therefore, the operator g is Fréchet differentiable on X and the Fréchet derivative of g at x € X in
direction h € X 1is given by
d¥ g(x)[h] = Th.

(ii) LetY be a Hilbert space and let f: Y — R be given by
F@) = lyly-
We obtain for every x,h € X
Fly+h) = fly) =y +hy+h)y — g9y =2{y,h)y + [a]3-

Hence, we can infer that for everyy € Y
[fly+h)—fly) —2(y, M)y
IAlly =0 12]ly

Therefore, the functional f is Fréchet differentiable on'Y and the Fréchet derivative of f aty € Y in
direction h € Y 1is given by

=0.

d” f(y)[h] = 2(y, h)y.

(iii) Let' Y be a Hilbert space. Moreover, let g: X — Y and f:Y — R be as in (i) and (i), respectively.
Thus, the composition fog: X — R is given by

fog(x)=|Tz+y|3.

Using Proposition[D.3, the functional f o g is Fréchet differentiable on X and the Fréchet derivative
of fog at x € X in direction h € X is given by

d" f o g(x)[h] = d" f(g(x)) [d"g(z)[h]] = 2(g(x), Th)y.
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Convex Optimization Problems

Let f: M C X — R be a functional with M # (). We consider the following optimization problem:

@) = inf f(a), (D.1)

xeM

where T € M is called the minimum of f. First, we state conditions on the optimization problem ensuring
the existence and uniqueness of such a minimum T € M. Therefor, we introduce the concept of lower
semi-continuous functionals.

Definition D.7. Let f: M C X — R be a functional. Then:

(i) f is called lower semi-continuous at x € M if

f(z) < liminf f(y).

y—T

(i1) f is called sequentially lower semi-continuous at x € M if for every sequence (xp)neny C M such
that lim,, o T, = x, we have

f(z) < liminf f(x,);

n—oo

(1ii) f is called weak sequentially lower semi-continuous at x € M if for every sequence (Tn)neny C M
such that lim, o (z', ) = (¢, z) for every element ' € X', we have

f(z) < liminf f(x,).

n—oo

Remark D.8. Note that every continuous functional f: M C X — R is lower semi-continuous. Moreover,
we can conclude that f is lower semi-continuous if and only if f is sequentially lower semi-continuous.

Under additional assumptions, we get the following equivalence.

Lemma D.9 (Proposition 38.7 (2), [93]). Let f: M C X — R be convex with M closed and convex. Then
f is (sequentially) lower semi-continuous if and only if [ is weak sequentially lower semi-continuous.

We have the following existence result on a solution to problem (D.1)).

Proposition D.10 (Theorem 7.3.5, [57]). Let X be a reflexive Banach space and suppose that the functional
f: M C X — R is weak sequentially lower semi-continuous with M bounded, closed and convex. Then there
exists T € M such that

f(@) = inf f(a).

xeM

If the functional is defined on an unbounded set, then we can overcome this problems as follows.

Definition D.11. A functional f: M C X — R is coercive over M if

| ()] = oo,

llz] x =00
where x € M.

Proposition D.12 (Theorem 7.3.7, [57]). Let X be a reflexive Banach space and suppose that the functional
fi M C X — R is coercive and weak sequentially lower semi-continuous with M closed and convex. Then
there exists T € M such that

@) = inf f(a).

zeM
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The uniqueness of a solution to problem (D.1]) can be achieved under additional requirements.

Corollary D.13. Let X be a reflexive Banach space and suppose that the functional f: M C X — R is
coercive, strictly convex and weak sequentially lower semi-continuous with M closed and convex. Then there
ezists a unique element T € M such that
T) = inf .

f(@)= inf f(z)
Proof. Using Proposition [D.12] we get immediately the existence of a minimum. To prove uniqueness, we
assume that T;,To € M with Ty # Ty satisty f(Z1) = f(T2) = infyen f(z). For all ¢t € (0,1), we have
tT1 + (1 —t)T2 € M due to the fact that M is convex. Since f is strictly convex, we get for all ¢ € (0,1)

f@) =tf(@m) + (1 - 1) f(@2) > f(tZ1 + (1 - 1)T2),
which is a contradiction to the assumption. O

Note that the previous corollary remains still true if M = X. In this case, we get the following necessary
and sufficient optimality conditions.

Proposition D.14 (Proposition 42.10, [93]). If f: X — R is convex and Gateauz differentiable on X, then
T € X is a minimum of f if and only if

a f(@)[] = 0
for every h € X.

Nonconvex Optimization Problems

Let f: M C X — R be a functional with M # (). We study again the optimization problem

where T € M is the minimum of f. In Corollary note that the uniqueness of a minimum is mainly
based on the assumption that the functional f is strictly convex. In contrast to this result, we consider
here more general problems, where f is not necessarily convex. However, the existence and uniqueness of a
minimum can still be obtained for a certain class of optimization problems.

First, we introduce uniformly convex Banach spaces. These spaces were first introduced in [19]. It is also
shown that the function spaces LP and the sequence spaces [P for p € (1, 00) are specific examples.

Definition D.15. A Banach space X is called uniformly convex if for every ¢ € (0,2], there exists
0(g) > 0 such that for every x,y € X

Ty <1-4(e).

lelx = llyllx =Lz —ylx > =

HX

This definition has a simple geometric interpretation. It states that the mid-point of two elements of the
unit sphere cannot approach the surface of the sphere unless the distance of these elements goes to zero.

Remark D.16. We have the following basic results:

(i) The Milman—Pettis theorem states that every uniformly convexr Banach space is reflexive, see [T2].
The converse is in general not true, see [Z]]].
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(ii) Let X be a Hilbert space. If z,y € X satisfy |z|x = |lyllx =1 and ||z — y|| > & with € € (0,2], then
by the parallelogram law, we have

o +yll% = llz +ylx +llz —ylx — llz - vl%
< 2l|zllx + 2llyl% — Iz — yl%
<4 — g2,
We set 6(e) = 1 — 2v/4—e2. Then we get H%ﬂnx < 1-—46(e). Therefore, every Hilbert space is
uniformly convex.

We have the following existence and uniqueness result of a minimum to the optimization problem intro-
duced above, where we assume that the functional f: M C X — R is given by

f(@) = g(@) +llzl% (D.2)
withg: M C X - Rand p > 1.

Proposition D.17 (Partie (A), Théoreme 4.2,[11]). Let X be an uniformly convexr Banach space and let
M C X be bounded and closed. Moreover, let g: M C X — R be a lower semi-continuous functional, which
is bounded from below. Then there exists a dense subset My C M such that for every y € My and allp > 1
we get the existence of an element x(y) € M satisfying

9@(y) +llz(y) = ylx = inf (9(z) + |z —yll%)-

If p > 1, then x(y) is unique. Furthermore, the mapping y — x(y) is continuous on M.
The previous proposition has a simple consequence.

Corollary D.18. Let X be a uniformly convexr Banach space and let M C X be bounded and closed such
that 0 € M. Moreover, let g: M C X — R be a continuous functional, which is bounded from below. Then
for all p > 1, there exists T € M such that

- =P — 3 p
9(@) + 7l = inf (9(x) + [l2l%).

If p > 1, then T is unique.

Proof. Using Proposition there exists a dense subset My C M such that for every y € My and all
p > 1 we get the existence of an element z(y) € M satisfying

9@ () +llz(y) — ylx = nf (9(z) +llz —yll%)-
Furthermore, the mapping y — x(y) is continuous. Since My is a dense subset of M and 0 € M, there exists
a sequence (Y, )nen C My such that lim,, o ||yn]|x = 0. Let T € M be given by
T = lim z(yn). (D.3)

n—oo

Due to the continuity properties, we get
9(@) + [E% = tim (g(elyn) + () — vall%)

= lim inf (g9(z)+ ||z — ynl%)

n—oo xeM

= inf 2.
inf (g(a) + lal%)
The uniqueness of T is a consequence of Proposition and the uniqueness of the limit in (D.3). O
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Next, we state a necessary optimality condition.

Proposition D.19 (Theorem 1.46, [51]). Let M # 0 be a convex subset of X and let f: M C X — R be
well defined on an open neighborhood of M. Then T € M is a minimum of f if

d°f(@)[x -7 >0 (D.4)
for every x € M, whenever f is Gateauzr differentiable at T € M .

Remark D.20. In the previous proposition, we can consider d€ f(T) as an element of the dual space X'.
In the sense of dual pairing, inequality can be rewritten equivalently by

(d°f(@), 2 —T) > 0
for every x € M. Thus, inequality 1s often called variational inequality.

If X is a Hilbert space, then the variational inequality (D.4)) can often be solved using a projection
operator. Therefor, we need the following result.

Proposition D.21 (Lemma 1.10 (b), [51]). Let M be a closed and convex subset of the Hilbert space X
and let P: X — M be the projection on M, i.e.

P(z) — z||x = min ||y —
1P(2) — zllx = min |ly - 2] x

for every x € X. Then z = P(x) for x € X if and only if for every y € M
(x —z,y—2)x <0.
Finally, we state a sufficient optimality condition.

Proposition D.22 (Theorem 4.23, [86]). Let M be a convex subset of the Banach space X. Moreover, let
the functional f: X — R be twice Fréchet differentiable on an open subset containing T € M such that the
mapping x — d¥(f(z))? is continuous at T. If T satisfies

" f(@)[z ~7] > 0
for every x € M and there exists a constant § > 0 such that
" (f(x))*[h, h] > d|Ih]%
for every h € X, then there exist constants €,0 > 0 such that
f@) = f(@) +ollz — 7%
for every x € M with |z — 7| x <e.

Remark D.23. From the previous proposition, we only obtain that the minimum T € M is local. If we
require additionally that f: X — R is given by equation with p > 1 such that the assumptions of
Corollary [D.18 hold, then we can conclude that the minimum is also global.
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