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We report on reflection and diffraction of beams of He and D2 from square-wave gratings of a 400-μm
period and strip widths ranging from 10 to 200 μm at grazing-incidence conditions. In each case we
observe fully resolved matter-wave diffraction patterns including the specular reflection and diffracted
beams up to the second diffraction order. With decreasing strip width, the observed diffraction efficiencies
exhibit a transformation from the known regime of quantum reflection from the grating strips to the regime
of edge diffraction from a half-plane array. The latter is described by a single-parameter model developed
previously to describe phenomena as diverse as quantum billiards, scattering of radio waves in urban areas,
and reflection of matter waves from microstructures. Our data provide experimental confirmation of the
widespread model. Moreover, our results demonstrate that neither classical reflection nor quantum
reflection are essential for reflective diffraction of matter waves from a structured solid, but it can result
exclusively from half-plane edge diffraction.
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Diffraction from a periodic array of half planes as depicted
schematically in Fig. 1(a) is a wave-optical phenomenon
that plays an important role in various fields of science and
technology, includingoptics [1], statistical quantummechan-
ics [2–5], atom optics [6,7], and ultrahigh frequency (UHF)
communication in urban areas [8–10]. For instance, in
models of UHF radio-wave propagation, building blocks
are approximated by arrays of absorbing half planes at near
grazing incidence [9,10]. Moreover, pseudointegrable sol-
utions found in polygonal quantum billiards have been
modeled by scattering of waves from infinite periodic
half-plane arrays at grazing incidence with respect to the
plane formed by the half-plane edges [3,4]. Furthermore, in
atom optics, reflection of ultracold atoms from a periodically
ridged surface was observed [6] and attributed to diffraction
of the atomic de Broglie waves from an array of half planes.
Itwas therefore dubbed the “Fresnel diffractionmirror” [6,7].
Consider a plane-wave incident onto an individual half

plane [Fig. 1(a)]. The part not blocked by the half plane
propagates along its incident direction towards the next half
plane. However, the clipping causes edge diffraction: a small
part of the (matter) wave propagates in other directions.
According to the uncertainty principle, clipping reduces the
uncertainty in coordinate space and hence increases the
uncertainty in momentum space observed in a diffraction
pattern.
The exact solution for the scattering of an electromag-

netic plane wave off a periodic array of parallel half planes

was first derived by Carlson and Heins in the absence
of diffracted beams [11,12]. Subsequently, the theoretical
analysis was extended to conditions where a diffracted
beam is present [13,14], and later the Walfisch-Bertoni
model (also referred to as the diffracting-screens model)
was introduced to describe propagation of UHF electro-
magnetic waves in urban areas [9,10].
Although the wavelengths in those scattering problems

vary by 10 orders of magnitude from 0.1 nm for atomic de
Broglie waves to 1 m for radio waves, a single scalable
parameter u is used to model the effect [3],

u ¼
ffiffiffiffiffiffi
2d
λ

r
sin

θin
2
: ð1Þ

FIG. 1. (a) Schematic of wave scattering from a periodic array
of parallel (zero-width) half planes at grazing incidence angle θin.
The grating plane (dashed horizontal line) is defined by the half-
plane edges. (b) Diffraction efficiencies enðuÞ for the specular
(n ¼ 0) and for diffracted beams up to the second order calculated
by the Bogomolny-Schmit solution given by Eqs. (2) and (3) [3].
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(Various prefactors such as
ffiffiffi
2

p
u [9], 2u [6], and 2

ffiffiffi
π

p
u [4,7]

have been used.) Here, the period of the half-plane array is
denoted by d, while λ and θin stand for the wavelength of
the incident beam and the incidence angle (measured with
respect to the structure surface plane as indicated in Fig. 1),
respectively.
Bogomolny and Schmit [3,4] extended the earlier theo-

retical description to the semiclassical limit of small
wavelength and grazing-incidence conditions where, in
addition to the specular reflection, multiple diffraction
beams propagate above the grating plane [see Fig. 1(a)].
For these conditions, which are well fulfilled in our
experiment, they derived an analytical formula for the
efficiencies en [3] (see Supplemental Material [15] and
Ref. [3] for details),

en ¼
4uun

ðuþ unÞ2
GðuÞGðunÞ; ð2Þ

where the subscript n denotes the diffraction order and

GðxÞ ¼ e2xζð12Þ
Y

l≥1
e
−2xffi

l
p Y

l≥0
l≠½x2 �

����
1þ ðx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ fu2g

p
Þ

1 − ðx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ fu2g

p
Þ
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Here, x ¼ ½x� þ fxg with fxg being the fractional part of x,
the constant ζð1

2
Þ ¼ −1.460354 is given by the Riemann

zeta function ζðsÞ, and un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ u2

p
¼ sinðθn=2Þ

ffiffiffiffiffiffiffiffiffiffi
2d=λ

p
.

Thus, en not only depends on θin but also on the nth-order
diffraction angle θn. The prediction by Eqs. (2) and (3) is in
excellent agreement with a numerical solution that was later
and independently reported by Kouznetsov and Oberst [7]
to predict reflection and diffraction of ultracold-atoms
scattering off an array of nanoscale ridges [6,7].
Figure 1(b) shows the calculated efficiencies as a

function of u exhibiting three characteristic features:
(i) in the limit u → 0, the specular efficiency e0 approaches

unity, while the other efficiencies decay to zero; (ii) the
smaller the diffraction order n, the higher the diffraction
efficiency en; and (iii) all curves show pronounced minima
at Rayleigh conditions (see [16] and references therein),
which are illustrated by the vertical dashed lines in Fig. 1(b).
When the incidence angle is equal to themth-order Rayleigh
angle, θin ¼ θR;m, and hence u ¼ uR;m, the mth-order dif-
fraction beam emerges parallel to the grating plane. Here,
uR;m ¼ sinðθR;m=2Þ

ffiffiffiffiffiffiffiffiffiffi
2d=λ

p ¼ ffiffiffiffiffiffiffijmjp
.

A comprehensive experimental verification of the
theoretical analysis has not been reported yet. In micro-
wave propagation studies, the attenuation of a radio signal
in urban areas caused by scattering from buildings is the
main concern and has been measured [8,9]. Efficiencies
of individual diffraction beams, however, have not been
analyzed in that context. In the cold-atom diffraction
experiments, on the other hand, specular reflection and
first-order diffraction have been observed [17]. However,
no quantitative analysis of nonspecular diffraction effi-
ciencies has been reported, because the parameter range
was limited to u < 1 [6,7].
Furthermore, atom diffraction experiments exhibit an

additional complication absent in scattering of electromag-
netic waves. The dispersion interaction (van der Waals–
Casimir-Polder interaction) between a neutral atom or
molecule and the solid half planes can significantly obscure
the phenomena of half-plane array diffraction. For an
idealized array of infinitely thin half planes, an interac-
tion-induced reduction of diffraction efficiencies was pre-
dicted [7,18]. In addition, any experimental implementation
will exhibit some finite width of the half planes.
Consequently, the interaction potential at the half-plane
tops can lead to “quantum reflection” [19–25] of the atoms
or molecules, resulting in increased efficiencies, which
cover up the ideal half-plane edge diffraction. Quantum
reflection from solids has been observed for ultracold
atoms [17,26] and Bose-Einstein condensates [27,28] as
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FIG. 2. (a) Schematic of the experimental setup. The grating normal is chosen as the z axis of our coordinate system. Incidence θin and
detection angle θ are measured with respect to the grating surface in the xz plane of incidence. (b) The reflection gratings are 50-mm-
long microstructured arrays of 4-mm-long parallel strips made out of 1-μm-thick photoresist patterned on a commercial gold mirror. The
center-to-center distance of the strips defines the period d ¼ 400 μm identical for all gratings used. Four gratings with strip width
a ¼ 10, 30, 100, or 200 μm have been used. For all four gratings, the gold surface between the strips is completely shadowed by the
strips for all incidence angles used in this Letter. A sketch of the a ¼ 10 μm grating is shown in (b). (c) Representative diffraction pattern
for a ¼ 10 μm and θin ¼ 0.984 mrad measured by rotating the detector around the y axis and integrating the signal for 8 s at each
angular position.
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well as thermal-energy beams of atoms [29–32], molecules
[33,34], and fragile helium clusters [35,36]. Furthermore,
matter-wave diffraction by quantum reflection from a grating
has also been observed with atoms, molecules, and clusters
[16,17,30,33–36], indicating the coherent nature of quantum
reflection.
Here, we confirm the single-parameter model of wave

scattering from a periodic half-plane array at grazing-
incidence conditions. We measure diffraction efficiencies

of He atomic and D2 molecular beams reflecting off a
square-wave grating of period d ¼ 400 μm composed of
narrow strips of width a ¼ 10, 30, 100, or 200 μm. With
decreasing a, the grating approaches the ideal periodic
array of infinitely thin half planes. Given the λ ¼ 136 pm
de Broglie wavelength of both He and D2 in our experiment,
adjusting the incidence angle θin from 0.4 to 1.6 mrad allows
us to vary the u parameter from 0.5 to almost 2, thereby
covering the conditions where three new additional diffrac-
tion orders emerge from the grating surface progressively.
Figure 2(a) shows a schematic of the experiment. The

matter-wave diffraction apparatus has been described in
detail before (see Supplemental Material [37] or previous
publications [30,34]). In brief, it allows generation of
intense continuous atomic or molecular beams exhibiting
narrow velocity spread [38]. Tight beam collimation by
three narrow slits reduces the angular peak width to
100 μrad full width at half maximum. This, in combination
with the precisely rotatable detector, makes it possible to
observe high-resolution matter-wave diffraction patterns.
For grazing-incidence conditions, the instrument allows us
to resolve various diffraction orders despite the very large
ratio of grating period to wavelength: d=λ ≃ 3 × 106. An
example angular spectrum (diffraction pattern) is shown in
Fig. 2(c). In addition to the gratings, we prepared a sample
of blank (not structured) photoresist of the same type and
thickness (1 μm), allowing us to compare the reflectivity
measured with the gratings to the reflectivity of the
unstructured photoresist.
The numbers above each peak in the angular pattern in

Fig. 2(c) indicate the diffraction order n. By fitting each
peak to a Gaussian, we determine the peak area An.
Similarly, the incident beam area Ain is determined from
the angular profile measured when the grating is fully
removed from the beam path. For each grating, we
measured about 50 diffraction patterns like the one
displayed in Fig. 2(d) over an incidence angle range
0.4 < θin < 1.6 mrad. For each pattern, the nth-order
diffraction efficiencies en ¼ An=Ain were determined.
Figure 3 shows the measured efficiencies as a function
of the incident angle θin for five diffraction orders n ¼ 2, 1,
0, −1, and −2.
For comparison, the Bogomolny-Schmit model predic-

tion from Fig. 1(b) is plotted again in Fig. 3 (red solid
lines). For the smallest strip width a ¼ 10 μm, the agree-
ment with the measured efficiencies appears to be very
good for any n including the specular beam (n ¼ 0).
Especially, the measured data exhibit the predicted hier-
archy (the larger the n, the smaller the efficiency) and the
pronounced minima at Rayleigh angles that represent
the fingerprint of half-plane diffraction. Furthermore, for
the smallest u in our measurements (u ≃ 0.5), not only e0
but also e1 and e2 increase with decreasing u in agreement
with theory. Thus, we cannot directly check the prediction
of e0 approaching unity and en (n > 0) vanishing in the

FIG. 3. Observed diffraction efficiencies (open symbols) for
He atoms scattering from a square-wave grating compared with
theory (red solid lines) calculated for an array of half planes. The
efficiencies are plotted on a logarithmic scale as a function of
incidence angle θin for diffraction orders n ¼ 2, 1, 0, −1, and −2
for different grating strip widths of 10, 30, 100, and 200 μm. The
third graph also includes the reflection probability of He atoms
from the blank photoresist (full black circles, labeled “mirror”) as
well as the calculated quantum reflection (QR) probability (red
dashed line [39]). The dotted vertical lines indicate the Rayleigh
incident conditions θR;m and uR;m for m ¼ −1, −2, and −3
sequentially, where the mth-order diffraction beam emerges from
the grating plane. The corresponding uR;m values according to
Eq. (1) are labeled atop the graph.
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limit u → 0. However, by applying the reciprocity princi-
ple, we conclude from the behavior of e−1 and e−2 that e1
and e2 vanish when u gets close to zero [40]. The only
discrepancy between experiment and theory found for a ¼
10 μm is the measured efficiencies being slightly larger
than the calculated ones, mainly for parts of the data for
n ¼ 0 and n ¼ −1.
As a increases, the diffraction efficiencies are found to

increase dramatically (except for e�2 at a ¼ 200 μm) and
decay much slower with increasing u. Concurrently, the
pronounced minima at Rayleigh conditions smear out
and are indiscernible for a ¼ 200 μm. In the third graph
of Fig. 3, the specular reflectivity data measured with
the blank photoresist have been added for comparison.
Its slope resembles the specular efficiency data observed
for a ¼ 200 μm, but it is larger by an approximately
constant factor of 2–3. This behavior is consistent with
the assumption that the total reflection probability scales
with the reflecting area atop the strips. The reflecting area
of the blank surface is twice the one of the a ¼ 200 μm
grating for which the totally reflected flux is branched
among the specular and diffraction peaks. In previous
work, we have identified quantum reflection as the process
giving rise to coherent reflection from a grating [30] or a
blank surface [31] for the present grazing-incidence con-
ditions. The red dashed line presents the calculated quan-
tum reflection probability (see Supplemental Material [39]
for details).
For a > 10 μm, quantum reflection from the flat tops

of the grating strips accounts for the increased diffraction
efficiencies. According to the classical Fraunhofer-
Kirchhoff diffraction theory for an amplitude grating, e0
and e�1 increase continuously when the ratio a=d increases
towards 1=2 [1]. The second-order diffraction efficiencies,
on the contrary, exhibit a maximum for a=d ¼ 0.25 and
vanish at a=d ¼ 0.5. These features are well manifested in
our results; with a increasing to d=2we find e0 approaching
40% of the blank surface reflection probability, and we
observe very small values of e�2 for a ¼ 200 μm. This
behavior indicates that the helium atoms are reflected from

the grating dominantly by half-plane diffraction and quan-
tum reflection for a ¼ 10 and 200 μm, respectively, with a
transition between the two regimes for intermediate strip
widths.
To check this interpretation, we repeated the experiment

with a D2 molecular beam of identical de Broglie wave-
length. D2 has a 3.9 times larger polarizability than He.
Therefore, we expect the stronger van der Waals interaction
of D2 with the grating strips to result in (i) reduced quantum
reflection [30,33] and (ii) attenuation of the half-plane array
diffraction efficiencies [7,18]. Figure 4 shows a comparison
of the observed D2 and He specular reflection efficiencies
e0. Both effects are clearly visible in the data. For the
smallest strip width a ¼ 10 μm, the D2 data are about 50%
less than the He data and appear now below the theory
curve. At a ¼ 200 μm, the D2 specular efficiency is found
to be only about 20% of the corresponding He data for large
incidence angle, while both datasets converge in the small
angle limit as expected.
In our present experiment, quantum reflection probabil-

ities are larger than those due to half-plane array diffraction.
This is due to the fact that we have used ground-state
He atoms and D2 molecules, which interact weakly with a
surface, in combination with a rather sparse grating with
a relatively large period of d ¼ 0.4 mm. Reduction of
the latter is easy to implement and will make it possible
to increase the reflectivity significantly. Furthermore, half-
plane array reflection results from diffraction at the half-
plane edges. Hence, unlike classical reflection and quantum
reflection, it occurs independent of the interaction potential
between the atom or molecule and the half-plane surface.
This is analogous to diffraction of atoms and molecules by a
nanoscale transmission grating [41], where localization of
the wave function by nanoscale slits and the corresponding
decrease (increase) of uncertainly in real space (momentum
space) result in diffracted beams. While van der Waals
interaction of the atoms and molecules with the grating bars
(i.e., the half planes in the present experiment) influences the
diffraction intensities [7,42], it is not the origin of diffraction
[43]. Consequently, half-plane diffraction can be applied in

FIG. 4. Specular beam efficiencies observed for He and D2 scattering from the gratings of different strip widths a as indicated. The
efficiencies are plotted on a logarithmic scale as a function of incidence angle θin. As in Fig. 3, red lines represent the prediction by
Eqs. (2) and (3), and the dotted vertical lines indicate Rayleigh conditions θR;m and uR;m ofmth-order beam emergence form ¼ −1, −2,
and −3.
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future experiments toweakly boundmolecules, such as theHe
dimer and trimer [48], for which classical and quantum
reflection are inhibited or inefficient [35].
In conclusion, we measured diffraction efficiencies up to

the second order of He atoms with 136 pm de Broglie
wavelength scattering from a 400-μm-period square-wave
grating at grazing incidence. By varying the grating strip
width from 200 μm down to 10 μm, we observe a transition
from quantum reflection to the regime where edge dif-
fraction from half planes dominates. Our data provide a test
bench for models of quantum reflection from microstruc-
tured surfaces that need to account for half-plane edge
diffraction. In addition, our results provide the first exper-
imental validation, including n ≠ 0 diffraction efficiencies,
of the single-parameter model of diffraction from a half-
plane array in the semiclassical limit, which is used in
diverse fields such as radio-wave propagation in urban
areas (Walfisch-Bertoni model) or pseudointegrable poly-
nomial billiards (Bogomolny-Schmit model).
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