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Abstract: This paper presents a consensus protocol that achieves max-consensus in multi-
agent systems over wireless channels. Interference, a feature of the wireless channel, is exploited:
each agent receives a superposition of broadcast data, rather than individual values. With this
information, the system endowed with the proposed consensus protocol reaches max-consensus
in a finite number of steps. A comparison with traditional approaches shows that the proposed
consensus protocol achieves a faster convergence.

1. INTRODUCTION

Consensus is a useful concept in cases where several agents
need to achieve agreement over a variable of common
interest, Ren et al. (2007). Each agent retains a local guess
of this variable, which is referred to as its information
state. The ingredients of a consensus strategy are, first, an
exchange of information between agents (communication),
then, an update of information states according to a
suitable algorithm (computation).

This paper focuses on a specific consensus called max-
consensus (Olfati-Saber and Murray (2004), Abdelrahim
et al. (2017), Giannini et al. (2016)). The convergence of
max-consensus algorithms has been studied, e.g., via max-
plus algebra techniques in Nejad et al. (2009), showing that
an agreement is achieved in a finite number of steps.

Convergence rate is an important property. Many applica-
tions, as Molinari and Raisch (2018), show that getting to
an agreement as fast as possible is a main issue, also for
safety reasons.

Traditionally, communication and computation have been
treated as two distinct aspects. However, Goldenbaum
et al. (2013) claim that, in a wireless communication
framework, a considerable increase of convergence rate can
be achieved by merging these two aspects. Following this
path, Molinari et al. (2018) propose an average-consensus
protocol which harnesses the interference of the wireless
channel, thus achieving a much faster agreement. In the
proposed scheme, all agents broadcast their values simul-
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taneously, instead of creating orthogonal channels. Via
an appropriate consensus protocol, the received interfered
signals can lead to an agreement. The broadcast property
of the wireless channel has been harnessed for achieving
max-consensus via randomized protocols in Iutzeler et al.
(2012). To the best of our knowledge, no deterministic
broadcast protocols for max-consensus have been proposed
so far.

In the remainder of the paper, a general consensus prob-
lem over wireless channel is described in Section 2. A
broadcast max-consensus protocol is presented in Section
3 and proven to converge asymptotically to an agreement.
Achieving consensus in a finite number of steps is possible
by using the consensus algorithm presented in Section 4.
Simulations are then analyzed in Section 5. Finally, in
Section 6, concluding remarks are provided.

1.1 Notation

We use N, R, R>0, and R≥0 to denote the set of positive
integers, the set of real numbers, the set of positive
real numbers, and the set of nonnegative real numbers,
respectively. The vector 1n ∈ Rn denotes the all-ones
vector of dimension n ∈ N. The transpose of a matrix A ∈
Rn×m is denoted by A′. The cardinality of a finite set S is
denoted by |S|. The indicator function IA(x) : X → {0, 1}
on a set X is defined to be

IA(x) :=

{
1 if x ∈ A,

0 else,
A ⊆ X.

An undirected graph is a pair (N ,A), where N is a set of
nodes, while A is the corresponding set of arcs. If an arc
connects nodes i, j ∈ N , then (i, j) ∈ A. Given a graph,
we define a path to be a sequence of nodes, in which each
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real numbers, and the set of nonnegative real numbers,
respectively. The vector 1n ∈ Rn denotes the all-ones
vector of dimension n ∈ N. The transpose of a matrix A ∈
Rn×m is denoted by A′. The cardinality of a finite set S is
denoted by |S|. The indicator function IA(x) : X → {0, 1}
on a set X is defined to be

IA(x) :=

{
1 if x ∈ A,

0 else,
A ⊆ X.

An undirected graph is a pair (N ,A), where N is a set of
nodes, while A is the corresponding set of arcs. If an arc
connects nodes i, j ∈ N , then (i, j) ∈ A. Given a graph,
we define a path to be a sequence of nodes, in which each
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Abstract: This paper presents a consensus protocol that achieves max-consensus in multi-
agent systems over wireless channels. Interference, a feature of the wireless channel, is exploited:
each agent receives a superposition of broadcast data, rather than individual values. With this
information, the system endowed with the proposed consensus protocol reaches max-consensus
in a finite number of steps. A comparison with traditional approaches shows that the proposed
consensus protocol achieves a faster convergence.

1. INTRODUCTION

Consensus is a useful concept in cases where several agents
need to achieve agreement over a variable of common
interest, Ren et al. (2007). Each agent retains a local guess
of this variable, which is referred to as its information
state. The ingredients of a consensus strategy are, first, an
exchange of information between agents (communication),
then, an update of information states according to a
suitable algorithm (computation).

This paper focuses on a specific consensus called max-
consensus (Olfati-Saber and Murray (2004), Abdelrahim
et al. (2017), Giannini et al. (2016)). The convergence of
max-consensus algorithms has been studied, e.g., via max-
plus algebra techniques in Nejad et al. (2009), showing that
an agreement is achieved in a finite number of steps.

Convergence rate is an important property. Many applica-
tions, as Molinari and Raisch (2018), show that getting to
an agreement as fast as possible is a main issue, also for
safety reasons.

Traditionally, communication and computation have been
treated as two distinct aspects. However, Goldenbaum
et al. (2013) claim that, in a wireless communication
framework, a considerable increase of convergence rate can
be achieved by merging these two aspects. Following this
path, Molinari et al. (2018) propose an average-consensus
protocol which harnesses the interference of the wireless
channel, thus achieving a much faster agreement. In the
proposed scheme, all agents broadcast their values simul-
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(DFG) within their priority programme SPP 1914 ”Cyber-Physical
Networking (CPN)”.

taneously, instead of creating orthogonal channels. Via
an appropriate consensus protocol, the received interfered
signals can lead to an agreement. The broadcast property
of the wireless channel has been harnessed for achieving
max-consensus via randomized protocols in Iutzeler et al.
(2012). To the best of our knowledge, no deterministic
broadcast protocols for max-consensus have been proposed
so far.

In the remainder of the paper, a general consensus prob-
lem over wireless channel is described in Section 2. A
broadcast max-consensus protocol is presented in Section
3 and proven to converge asymptotically to an agreement.
Achieving consensus in a finite number of steps is possible
by using the consensus algorithm presented in Section 4.
Simulations are then analyzed in Section 5. Finally, in
Section 6, concluding remarks are provided.

1.1 Notation

We use N, R, R>0, and R≥0 to denote the set of positive
integers, the set of real numbers, the set of positive
real numbers, and the set of nonnegative real numbers,
respectively. The vector 1n ∈ Rn denotes the all-ones
vector of dimension n ∈ N. The transpose of a matrix A ∈
Rn×m is denoted by A′. The cardinality of a finite set S is
denoted by |S|. The indicator function IA(x) : X → {0, 1}
on a set X is defined to be

IA(x) :=

{
1 if x ∈ A,

0 else,
A ⊆ X.

An undirected graph is a pair (N ,A), where N is a set of
nodes, while A is the corresponding set of arcs. If an arc
connects nodes i, j ∈ N , then (i, j) ∈ A. Given a graph,
we define a path to be a sequence of nodes, in which each
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adjacent pair is connected by an arc. A graph is said to
be connected if there exists a path between any distinct
pair of nodes. Given a node i ∈ N , its set of neighbors is
denoted by Ni and we have Ni = {j ∈ N | (i, j) ∈ A}.

2. PROBLEM DESCRIPTION

We consider a discrete-time multi-agent system with n ≥ 1
agents communicating over a wireless network modeled
by the graph (N ,A) where N = {1, . . . , n}. In what
follows, let k ∈ N be the time index. The system has
a variable of common interest which the agents have to
agree on. Each agent i ∈ N has its initial estimate of
this variable, i.e., xi0 ∈ R≥0, which we refer to as its
initial information state. The objective of the consensus
protocol is to enable all agents to reach an agreement
over their information states. To this end, each agent, say
agent i, will dynamically update its information state, i.e.
xi : N → R≥0, according to the consensus protocol and
to the information received from its neighbouring agents.

Let ∀i ∈ N , xNi
: N → R|Ni|+1

≥0 be a vector containing the

information states of agents in the set Ni ∪ {i} at instant
k ∈ N, i.e.

xNi
(k) = [xi(k), xj1(k), . . . , xjmi

(k)]′, (1)

where j1, . . . , jmi
∈ Ni and mi = |Ni|. Accordingly, a

general discrete-time consensus protocol is

xi(k + 1) = fi(xNi(k)), (2)

where fi : R|Ni|+1
≥0 → R≥0 and, ∀i ∈ N , xi(1) = xi0 .

Let x(k) be the vector of all information states, i.e. ∀i ∈
N , [x(k)]i = xi(k). Then, we say that the multi-agent
system converges to max-consensus if

∀i ∈ N , lim
k→∞

xi(k) = x∗ = max(x(0)). (3)

Moreover, if the system converges to max-consensus in a
finite number of steps, then the strategy is referred to
as finite-time max-consensus. This is formally achieved if
∃k̄ ∈ N, such that ∀k > k̄,

∀i ∈ N , xi(k) = x∗ = max(x(0)). (4)

Definition 1. Given k ∈ N, an agent i ∈ N is said to be
maximal at k ∈ N if xi(k) = max(x(k)).

2.1 Traditional Max-Consensus Protocols

Widely-considered max-consensus protocols are of the
form

xi(k + 1) = max(xNi
(k)). (5)

Nejad et al. (2009), under the assumption of a time-
invariant and connected network topology, show that the
consensus protocol (5) ensures max-consensus in a finite-
number of steps. The wireless communication is usually
based on orthogonal channel access methods, which es-
tablish interference-free transmission links between neigh-
bours and provide each agent with the knowledge of indi-
vidual information states of the neighbors.

However, by the data processing inequality (Cover and
Thomas, 2012, p. 32), the amount of information contained
in max(xNi

(k)) is in general less than the amount car-
ried by the vector xNi

(k) itself. Therefore, reconstructing
neighbors’ information states appears a suboptimal strat-

egy if the goal is to reconstruct only the maximum value
of the information states.

2.2 Interference model

Let Ni = {j1, . . . , jmi
} ∈ N be a set of agents that

transmit their respective information states to agent i ∈
N at discrete-time step k ∈ N. If orthogonal channel
access methods are not used, then interference occurs.
Accordingly, agent i ∈ N receives the signal ζi(k) which
is a superposition of xj1(k), . . . , xjmi

(k). This is often
modeled by an affine model of the wireless multiple access
channel (MAC), as in Molinari et al. (2018), i.e.

ζi(k) =
∑
j∈Ni

hij(k)xj(k) + vi(k), (6)

where ∀k ∈ N, hij(k) ∈ (0, 1] ⊂ R are referred to as
channel coefficients, and ∀i ∈ N , ∀k ∈ N, vi(k) is the
receiver noise. In the following, we ignore both channel
coefficients and receiver noise, as in Goldenbaum et al.
(2012); accordingly, (6) reduces to an ideal MAC

ζi(k) =
∑
j∈Ni

xj(k). (7)

This shows that the nature of interference is superposition.

2.3 Nomographic Representation

By the superposition theorem of Kolmogorov (1963), any
multivariate function f : Rn → R has a nomographic
representation

fi(x1, . . . , xn) = ψi(

n∑
j=1

φj(xj)), (8)

where the univariate functions ψi : R → R and φj : R → R,
j = 1 . . . n, are referred to as post-processing function and
pre-processing functions, respectively.

By (8), and according to the interference model in (7),
each function can be computed over the wireless channel
by harnessing its interference property. In the context of
a consensus problem, if each agent i ∈ N has to compute
(2), a procedure, which aims to merge communication and
computation over the channel, is presented in Algorithm 1
and has to be run ∀k ∈ N. Computing a function over the
wireless channel, by using its nomographic representation
and the interference, results in a much faster and more
efficient solution. A quantitative analysis can be found in
Goldenbaum et al. (2013).

Algorithm 1

∀j ∈ N , agent j broadcasts the pre-processed value of
its current information state, φj(xj(k));
∀i ∈ N , agent i receives the superposed signals from
neighbors, zi(k) =

∑
j∈Ni

φj(xj(k));

∀i ∈ N , agent i computes ψi(φi(xi(k)) + zi(k)), thus
getting the desired fi(xNi

(k)).

2.4 Approximated Nomographic Representation

However, Buck (1982) states that, in general, functions do
not have a continuous real-valued nomographic represen-
tation. In Limmer et al. (2015) the idea of a nomographic
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pair of nodes. Given a node i ∈ N , its set of neighbors is
denoted by Ni and we have Ni = {j ∈ N | (i, j) ∈ A}.
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We consider a discrete-time multi-agent system with n ≥ 1
agents communicating over a wireless network modeled
by the graph (N ,A) where N = {1, . . . , n}. In what
follows, let k ∈ N be the time index. The system has
a variable of common interest which the agents have to
agree on. Each agent i ∈ N has its initial estimate of
this variable, i.e., xi0 ∈ R≥0, which we refer to as its
initial information state. The objective of the consensus
protocol is to enable all agents to reach an agreement
over their information states. To this end, each agent, say
agent i, will dynamically update its information state, i.e.
xi : N → R≥0, according to the consensus protocol and
to the information received from its neighbouring agents.

Let ∀i ∈ N , xNi
: N → R|Ni|+1

≥0 be a vector containing the

information states of agents in the set Ni ∪ {i} at instant
k ∈ N, i.e.

xNi
(k) = [xi(k), xj1(k), . . . , xjmi

(k)]′, (1)

where j1, . . . , jmi
∈ Ni and mi = |Ni|. Accordingly, a

general discrete-time consensus protocol is

xi(k + 1) = fi(xNi(k)), (2)

where fi : R|Ni|+1
≥0 → R≥0 and, ∀i ∈ N , xi(1) = xi0 .

Let x(k) be the vector of all information states, i.e. ∀i ∈
N , [x(k)]i = xi(k). Then, we say that the multi-agent
system converges to max-consensus if

∀i ∈ N , lim
k→∞

xi(k) = x∗ = max(x(0)). (3)

Moreover, if the system converges to max-consensus in a
finite number of steps, then the strategy is referred to
as finite-time max-consensus. This is formally achieved if
∃k̄ ∈ N, such that ∀k > k̄,

∀i ∈ N , xi(k) = x∗ = max(x(0)). (4)

Definition 1. Given k ∈ N, an agent i ∈ N is said to be
maximal at k ∈ N if xi(k) = max(x(k)).

2.1 Traditional Max-Consensus Protocols

Widely-considered max-consensus protocols are of the
form

xi(k + 1) = max(xNi
(k)). (5)

Nejad et al. (2009), under the assumption of a time-
invariant and connected network topology, show that the
consensus protocol (5) ensures max-consensus in a finite-
number of steps. The wireless communication is usually
based on orthogonal channel access methods, which es-
tablish interference-free transmission links between neigh-
bours and provide each agent with the knowledge of indi-
vidual information states of the neighbors.

However, by the data processing inequality (Cover and
Thomas, 2012, p. 32), the amount of information contained
in max(xNi

(k)) is in general less than the amount car-
ried by the vector xNi

(k) itself. Therefore, reconstructing
neighbors’ information states appears a suboptimal strat-

egy if the goal is to reconstruct only the maximum value
of the information states.

2.2 Interference model

Let Ni = {j1, . . . , jmi
} ∈ N be a set of agents that

transmit their respective information states to agent i ∈
N at discrete-time step k ∈ N. If orthogonal channel
access methods are not used, then interference occurs.
Accordingly, agent i ∈ N receives the signal ζi(k) which
is a superposition of xj1(k), . . . , xjmi

(k). This is often
modeled by an affine model of the wireless multiple access
channel (MAC), as in Molinari et al. (2018), i.e.

ζi(k) =
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hij(k)xj(k) + vi(k), (6)

where ∀k ∈ N, hij(k) ∈ (0, 1] ⊂ R are referred to as
channel coefficients, and ∀i ∈ N , ∀k ∈ N, vi(k) is the
receiver noise. In the following, we ignore both channel
coefficients and receiver noise, as in Goldenbaum et al.
(2012); accordingly, (6) reduces to an ideal MAC

ζi(k) =
∑
j∈Ni

xj(k). (7)

This shows that the nature of interference is superposition.

2.3 Nomographic Representation

By the superposition theorem of Kolmogorov (1963), any
multivariate function f : Rn → R has a nomographic
representation

fi(x1, . . . , xn) = ψi(

n∑
j=1

φj(xj)), (8)

where the univariate functions ψi : R → R and φj : R → R,
j = 1 . . . n, are referred to as post-processing function and
pre-processing functions, respectively.

By (8), and according to the interference model in (7),
each function can be computed over the wireless channel
by harnessing its interference property. In the context of
a consensus problem, if each agent i ∈ N has to compute
(2), a procedure, which aims to merge communication and
computation over the channel, is presented in Algorithm 1
and has to be run ∀k ∈ N. Computing a function over the
wireless channel, by using its nomographic representation
and the interference, results in a much faster and more
efficient solution. A quantitative analysis can be found in
Goldenbaum et al. (2013).

Algorithm 1

∀j ∈ N , agent j broadcasts the pre-processed value of
its current information state, φj(xj(k));
∀i ∈ N , agent i receives the superposed signals from
neighbors, zi(k) =

∑
j∈Ni

φj(xj(k));

∀i ∈ N , agent i computes ψi(φi(xi(k)) + zi(k)), thus
getting the desired fi(xNi

(k)).

2.4 Approximated Nomographic Representation

However, Buck (1982) states that, in general, functions do
not have a continuous real-valued nomographic represen-
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approximation is suggested. However, as in the suggested
nomographic approximations for the max-function the er-
ror is always positive, it accumulates over time in a consen-
sus algorithm and will therefore lead to divergence. In the
following, we suggest how to circumvent this problem, i.e.,
how to use the superposition principle without the need of
a nomographic representation of the max-function.

3. ASYMPTOTIC MAX-CONSENSUS PROTOCOL

Computing the average function over an ideal MAC of
form (7) by exploiting the interference is straightforward,
since the function is trivially nomographic (Molinari et al.
(2018)). In the following, we present a max-consensus
protocol which makes use of the average function to
achieve an agreement. The strategy is inspired by the
following observation.
Proposition 1. Given a set of agents N and a non-empty
subset M ⊆ N , ∀k ∈ N, ∀i ∈ N ,

xi(k) <

∑
j∈M xj(k)

|M| =⇒ xi(k) < max
j∈N

(xj(k)).

Proof. ∀k ∈ N, ∀i ∈ N , xi(k) <

∑
j∈M

xj(k)

|M| =⇒ ∃j ∈
M, j �= i : xj(k) > xi(k), which immediately implies
xi(k) < maxj∈M(xj(k)) ≤ maxj∈N (xj(k)).

Clearly, for max-consensus, any non-maximal agent does
not need to broadcast its information state. In general,
however, agents do not know whether they are maximal.
We therefore settle for necessary conditions that can be
locally evaluated. The result of this local evaluation for
agent i at time k is stored in the boolean variable ỹi(k).
If this variable is 1, this means that agent i satisfies the
respective necessary condition at time k and it is said to
be a maximal candidate at time k. If (and only if) this
is true, the agent will be allowed to broadcast at the next
time instant. This will be expressed by an authorization
variable yi, where yi(k) = ỹi(k − 1).

Let ∀i ∈ N , Nm
i (k) = {j ∈ Ni | yj(k) = 1} ⊆ Ni be

the set of neighboring agents of i authorized to broadcast
at time k. If |Nm

i (k)| > 0, by Proposition 1, at time-step
k ∈ N, each agent i ∈ N for which

xi(k) <

∑
j∈Nm

i
(k) xj(k)

|Nm
i (k)| , (9)

cannot be a maximal candidate at time-step k ∈ N.
Therefore yi can be updated as follows:

∀i ∈ N , yi(k + 1) = ỹi(k) =

= IR≥0

(
xi(k)−

∑
j∈Nm

i
(k) xj(k)

|Nm
i (k)|

)
. (10)

3.1 Protocol Design

Under the assumption of a noiseless and non-fading chan-
nel, the following communication protocol, which makes
use of an ideal MAC of order 2 (see Goldenbaum et al.
(2013)), is employed. At every time-step k ∈ N, each
agent j ∈ N broadcasts two orthogonal signals, τj(k) =
yj(k)xj(k) and τ ′j(k) = yj(k).

Each agent i ∈ N receives two mutually orthogonal signals
from its neighbors,

zi(k) =
∑
j∈Ni

yj(k)xj(k) =
∑

j∈Nm
i

(k)

xj(k) (11)

and

z′i(k) =
∑
j∈Ni

yj(k) =
∑

j∈Nm
i

(k)

1 = |Nm
i (k)|. (12)

By making use of these two signals, each agent i ∈ N , at
every time k ∈ N, can compute the average of information
states of agents in Nm

i (k), i.e.

ui(k) =





zi(k)

z′i(k)
=

∑
j∈Nm

i
(k) xj(k)

|Nm
i (k)| if Nm

i (k) �= ∅
0 else.

(13)

Notice that interference has been exploited for computing
ui(k).

3.2 Controller Design

Each agent i ∈ N is endowed with the following consensus
protocol:

∀k ∈ N :

{
xi(k + 1) = max(xi(k), ui(k))

yi(k + 1) = IR≥0
(xi(k)− ui(k))

, (14)

where yi(1) = 1, xi(1) = xi0 , and ui(k) computed as in
(13). Note that ui(k) depends on both xi(k) and yi(k). In
vector-form, (13)-(14) become

w(k + 1) = g(w(k)), (15)

where

w(k) =

[
x(k)
y(k)

]
, (16)

and, ∀i ∈ N , [y(k)]i = yi(k) and g : Rn ×{0, 1}n → Rn ×
{0, 1}n the corresponding nonlinear map. Using Lyapunov
theory, e.g. (Åström and Wittenmark, 2013, p. 87), the
convergence of (15) to max-consensus can be formalized.
To this end, we need to study some properties of the
system.
Proposition 2. Given a network topology (N ,A) and a
consensus dynamics (15), ∀x(1) ∈ Rn

≥0, ∀i ∈ N , ∀k ∈
N, xi(k) ≤ xi(k + 1) ≤ max(x(1)).

Proof. By (13), ∀i ∈ N , ∀k ∈ N, ui(k) ≤ max(x(k)).
Hence with (14), the iteration (15) generates a non-
decreasing bounded sequence xi(0) ≤ xi(1) ≤ · · · ≤ xi(k) ≤
xi(k + 1) ≤ max(x(k + 1)), 1 ≤ i ≤ n. This implies
xi(k) ≤ xi(k + 1) ≤ max(x(k + 1)) = max(x(1)).

Proposition 3. If (N ,A) is a connected graph, w∗ =[
x∗

1n

]
, where x∗ = x∗1n, x∗ = max(x(0)), is an equilib-

rium point for (15),

Proof. Clearly, w∗ =
[
x∗′,y∗′]′ is an equilibrium point if

and only if, ∀i ∈ N ,

x∗
i = max(x∗

i ,u
∗
i ) (17)

y∗
i = IR≥0

(x∗
i − u∗

i ) (18)

where
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u∗
i =





∑
j∈Nm

i
x∗
j

|Nm
i | if |Nm

i | �= 0

0 else.

(19)

For x∗ = x∗1n and y∗ = 1n, Nm
i = Ni. As (N ,A) is

connected, |Ni| ≥ 1. Therefore, u∗
i = x∗ and (17)-(18) are

satisfied.

Corollary 1. Given a connected network topology (N ,A),
then ∀x(1) ∈ Rn

≥0 , w∗ is the unique equilibrium point of

(15).

Proof. The proof is by contradiction. Hence, assume that
w∗ = [x∗′,y∗′]′ with x∗ = x∗1n and y∗ �= 1n is an
equilibrium point. The latter implies that y∗

i = 0 for at
least one i ∈ N . Hence, from (18), x∗

i < u∗
i and (17) is

violated. This establish that w∗ with y∗ �= 1n is not an
equilibrium point. Now consider the case x∗ �= x∗1n and
y∗ = 1n. Choose i such that x∗

i = min(x∗). As x∗ �= x∗1n,
x∗
i < x∗. On the other hand, by Proposition 2, an agent

that is maximal at k = 1 remains so ∀k ∈ N. Hence, there
exists l ∈ N such that x∗

l = x∗ > x∗
i . Then, as (N ,A) is

connected, there exists (i, j) ∈ A such that x∗
j > x∗

i . As
y∗ = 1n, N

m
i = Ni and therefore u∗

i > x∗
i . This violates

(17) and therefore contradicts the assumption.

Proposition 4. A connected network topology (N ,A) is
given. Then, ∀x(1) ∈ Rn

≥0 , ∀k ∈ N,
∑
i∈N

(xi(k + 2)− xi(k)) = 0 =⇒ x(k) = x∗. (20)

Proof. By Proposition 2, {xi(k)}k∈N is a non-decreasing
sequence of nonnegative entries. Therefore,

∑
i∈N (xi(k +

2)− xi(k)) = 0 if and only if x(k) = x(k + 1) = x(k + 2),
which implies (because of (14)), ∀i ∈ N , xi(k) ≥ ui(k) and
xi(k+1) ≥ ui(k+1) and therefore y(k+1) = y(k+2) = 1n.
Therefore, w(k + 1) = w(k + 2), which is possible if and
only if w(k + 1) = w∗ due to Corollary 1. w(k + 1) = w∗

is equivalent to x(k + 1) = x∗ and y(k + 1) = 1n. The
latter implies that x(k) = u(k) and therefore x(k) = x(k+
1) = x∗.

By Proposition 4 and Proposition 2,

x(k) �= x∗ =⇒
∑
i∈N

(xi(k + 2)− xi(k)) > 0.

Proposition 5. Given a connected network topology
(N ,A). For every initial state x(1) ∈ R≥0, the consen-
sus protocol (13)-(14) converges asymptotically to max-
consensus.

Proof. By (14), yi(k + 1) = 1 ⇐⇒ xi(k) ≥ ui(k) and
xi(k + 1) = xi(k) ⇐⇒ xi(k) ≥ ui(k). Therefore, yi(k +
1) ⇐⇒ (xi(k + 1) = xi(k)), which can lead to rewriting
yi(k) as yi(k) = IR≥0

(xi(k − 1) − xi(k)). Hence, we can
rewrite (15) such that the system dynamics is described by
the state v(k) given by v(k) = [x(k)′, x(k − 1)′]

′
, and by

the nonlinear map g̃,

v(k + 1) = g̃(v(k)). (21)

The equilibrium w∗ of (15) corresponds in (21) to the

equilibrium v∗ =
[
x∗′

, x∗′
]′

= x∗12n. The following

analysis is based on (Åström and Wittenmark, 2013, p. 88)

(a) (Ñ , Ã) and x(1)(0).
(b) (Ñ , Ã) and x(2)(0).

Fig. 1. Topology and initial conditions for the examples.

and (Magni and Scattolini, 2014, p. 22), which formalize
the Lyapunov method for discrete-time systems. Let

V (v(k)) = 2nmax(v(k))− 1′
2nv(k)

= 2nx∗ −
∑
i∈N

xi(k) + xi(k − 1) (22)

be a candidate Lyapunov function for (21). The following
properties hold:

a) V (v) is continuous in R2n
≥0;

b) V (v∗) = 0;
c) By Proposition 2, V (v) is positive definite on any

trajectory of v satisfying (21) unless v = v∗;
d) By Proposition 4, ∀v(k) �= v∗,

∆V (v(k)) = V (v(k + 1))− V (v(k))

=
∑
i∈N

(xi(k − 1)− xi(k + 1)) < 0.

Since V (v(k)) is a generalized energy function for (21) and
it strictly decreases along the trajectories of the system, by
(Åström and Wittenmark, 2013, p. 87), the state v(k) will
asymptotically converge to v∗.

Corollary 2. Given a connected network topology (N ,A),
the following holds

∀x(1) ∈ Rn
≥0, ∀i ∈ N ,

xi(1) < max(x(1)) =⇒ ∃ki ∈ N : yi(ki) = 0. (23)

Proof. By Proposition 5, ∀i ∈ N , lim
k→∞

xi(k) = x∗ =

max(x(1)). As a consequence, ∀i ∈ N ,

xi(1) < max(x(1)) =⇒ ∃ki ∈ N : xi(ki) > xi(ki − 1),

which implies yi(ki) = 0 (see proof of Proposition 5).

Example 3.1. Let a multi-agent system be modeled by
a connected communication topology (Ñ , Ã) which is rep-
resented in Figure 1a. The vector of initial information
states is x(1)(1) = [4, 3, 3, 3]′. A simulation of (13)-(14) is
shown in Figure 2a.

We have shown that the suggested consensus protocol
achieves asymptotic convergence to the max consensus
for arbitrary initial information states if the network
topology is represented by a connected graph. Moreover,
extensively numerical experiments have indeed verified
that in most cases finite time convergence is achieved. This
is demonstrated in the following example.
Example 3.2. A multi-agent system with communication
topology (Ñ , Ã), as in Example 3.1, is given. However,
the vector of initial information states is now x(2)(1) =
[4, 3, 1, 3]′. The system shows finite-time convergence, as
shown in Figure 2b.
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u∗
i =





∑
j∈Nm

i
x∗
j

|Nm
i | if |Nm

i | �= 0

0 else.

(19)

For x∗ = x∗1n and y∗ = 1n, Nm
i = Ni. As (N ,A) is

connected, |Ni| ≥ 1. Therefore, u∗
i = x∗ and (17)-(18) are

satisfied.
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(15).
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i < u∗
i and (17) is
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x∗
i < x∗. On the other hand, by Proposition 2, an agent
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l = x∗ > x∗
i . Then, as (N ,A) is

connected, there exists (i, j) ∈ A such that x∗
j > x∗

i . As
y∗ = 1n, N

m
i = Ni and therefore u∗

i > x∗
i . This violates
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i∈N (xi(k +
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xi(k+1) ≥ ui(k+1) and therefore y(k+1) = y(k+2) = 1n.
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′
, and by

the nonlinear map g̃,

v(k + 1) = g̃(v(k)). (21)

The equilibrium w∗ of (15) corresponds in (21) to the

equilibrium v∗ =
[
x∗′

, x∗′
]′

= x∗12n. The following

analysis is based on (Åström and Wittenmark, 2013, p. 88)

(a) (Ñ , Ã) and x(1)(0).
(b) (Ñ , Ã) and x(2)(0).

Fig. 1. Topology and initial conditions for the examples.
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b) V (v∗) = 0;
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=
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Since V (v(k)) is a generalized energy function for (21) and
it strictly decreases along the trajectories of the system, by
(Åström and Wittenmark, 2013, p. 87), the state v(k) will
asymptotically converge to v∗.

Corollary 2. Given a connected network topology (N ,A),
the following holds
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xi(1) < max(x(1)) =⇒ ∃ki ∈ N : yi(ki) = 0. (23)

Proof. By Proposition 5, ∀i ∈ N , lim
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xi(k) = x∗ =

max(x(1)). As a consequence, ∀i ∈ N ,

xi(1) < max(x(1)) =⇒ ∃ki ∈ N : xi(ki) > xi(ki − 1),

which implies yi(ki) = 0 (see proof of Proposition 5).

Example 3.1. Let a multi-agent system be modeled by
a connected communication topology (Ñ , Ã) which is rep-
resented in Figure 1a. The vector of initial information
states is x(1)(1) = [4, 3, 3, 3]′. A simulation of (13)-(14) is
shown in Figure 2a.

We have shown that the suggested consensus protocol
achieves asymptotic convergence to the max consensus
for arbitrary initial information states if the network
topology is represented by a connected graph. Moreover,
extensively numerical experiments have indeed verified
that in most cases finite time convergence is achieved. This
is demonstrated in the following example.
Example 3.2. A multi-agent system with communication
topology (Ñ , Ã), as in Example 3.1, is given. However,
the vector of initial information states is now x(2)(1) =
[4, 3, 1, 3]′. The system shows finite-time convergence, as
shown in Figure 2b.
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(a) Asymptotic convergence of xi(k).
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(b) Finite-time agreement in 6 steps.

Fig. 2. Evolution of information states for the Examples
3.1 (top) and 3.2 (bottom).

4. FINITE-TIME MAX-CONSENSUS PROTOCOL

By using orthogonal channel access methods and the stan-
dard max-consensus protocol (5), max-consensus is always
achieved in a finite number of steps if the underlying graph
is connected (Nejad et al. (2009)). With the consensus
protocol (14), max-consensus is achieved by exploiting in-
terference. However, in general, consensus will be reached
asymptotically.

Based on the consensus protocol in Section 3.1, we can
suggest a switching consensus dynamics that will exploit
the superposition property of the wireless channel and
achieve finite-time max-consensus for arbitrary vectors of
initial states.

• if k = 2Ti(k) :


xi(k + 1) = max(xi(k), ui(k))

yi(k + 1) = Πk
t=Ti(k)

yi(t)

Ti(k + 1) = k

, (24a)

• else:

xi(k + 1) = max(xi(k), ui(k))

yi(k + 1) = IR≥0
(xi(k)− ui(k))

Ti(k + 1) = Ti(k)

. (24b)

An additional state variable, Ti : N → N, has been added
to the system and has initial conditions Ti(1) = 1. The
initial conditions xi(1) and yi(1) are the same as in (14).

The controller switches between two dynamics: it keeps
(24b) (which has the same dynamics as (14)) in every
time step with the exception of k = 2p, p ∈ N, when the
protocol has dynamics (24a). In this case, Ti is updated
by Ti(k + 1) = 2Ti(k). Moreover, yi(k + 1) is computed
so that any agent that has not been a maximal candidate
in all of its last Ti(k) time steps will not be a maximal
candidate at time k + 1.
Proposition 6. Let (N ,A) be a connected graph. Then,
the switching consensus protocol (24) achieves finite-time
max-consensus for any x(1) ∈ R≥0.

Proof. System (24) has the same dynamics as (14) in
all time steps except for k = 2p, p ∈ N, in which

the system dynamics is (24a). If, at time k ∈ N, all
non-maximal agents are not authorized to broadcast (i.e.
∀i ∈ N , xi(k) < x∗ =⇒ yi(k) = 0), all agents in set
L1(k) = {i ∈ Nj | xj(k) = x∗} will get to max-consensus

at step k + 1. By Corollary 2, ∃k̃ ∈ N large enough, such
that, ∀i ∈ N ,

xi(Ti(k̃)) < x∗ =⇒ ∃ki ∈ [Ti(k̃), k̃] : yi(ki) = 0.

As a consequence and according to (24a), ∀i ∈ N ,

xi(Ti(k̃)) < x∗ =⇒ yi(2Ti(k̃) + 1) = 0,

which implies that

∀i ∈ L1(2Ti(k̃)), xi(2Ti(k̃) + 2) = x∗.

As |N | is finite, within a finite number of recursions, max-
consensus is achieved.

5. SIMULATION

5.1 Scenario

The multi-agent system with communication graph (Ñ , Ã)
and with initial state x(1)(1) as in Figure 1a converges
asymptotically to the agreement. As claimed in Section 4,
by using (24), any system with a connected communication
topology achieves finite-time consensus. The agents in
(Ñ , Ã) are therefore endowed with the switching consensus
dynamics (24). In Figure 3, the agents’ information states
are plotted and shown to achieve agreement in k̄ = 9 steps.
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Fig. 3. System in Figure 1a endowed with (24) achieves
finite-time agreement.

5.2 Randomized Scenarios

A multi-agent system endowed with consensus protocol
(24) and with network topology (Nl,Al), with initial state
vector xl(1), as in Figure 4a, is simulated. The network size
is |Nl| = 20, and its communication topology is connected.
Each entry of the initial information state vector xl(1)
is drawn from a uniform distribution U(0, 2π). Figure 4b
shows that agents get to consensus in a finite number of
steps, i.e. ∀i ∈ Nl, xi(k̄) = max(xl(0)). In this example,
k̄ = 21.

5.3 Comparison with traditional solution

In the following, by traditional protocols, we denote those
strategies which use orthogonal channel access methods
such as TDMA (Time Division Multiple Access) for com-
munication and a consensus dynamics like (5). With
TDMA, the transmission is multiplexed in time-domain.
Each agent will then be allowed to transmit its infor-
mation state in a pre-assigned time slot (this will avoid
interference between signals coming from different agents).
Accordingly, for a network modeled by topology (N ,A),
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(a) (Nl,Al) and xl(0).
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(b) Finite-time convergence of xi(k).

Fig. 4. System with dynamics (24).

Fig. 5. Ratio of steps required for converging with tradi-
tional (k̄t) and broadcast protocols (k̄b).

|N | time slots should be assigned one-to-one to all nodes
within one sampling interval. Intuitively, each run of (5)

corresponds to |N |
2 runs of (24), since the latter uses a

communication protocol based on the broadcast of only
two orthogonal signals, as presented in Section 3.1. A
comparison (via randomized analysis) between traditional
protocols and the one proposed in this paper in terms of
steps required for converging is presented in Figure 5.

Given a topology and an initial state vector, k̄t denotes
the number of steps required to achieve consensus with
traditional protocols; k̄b represents, for the same problem,
the number of steps required to achieve consensus with

broadcast protocol (24). Their ratio is r = k̄t

k̄b
. For net-

works with more than circa 20 agents, adopting broadcast
solutions gives faster convergence. In case |N | = 100,
broadcast algorithm (24) achieves consensus between 5
and 20 times faster than traditional approaches.

6. CONCLUSION

In this paper, a consensus protocol for reaching max-
consensus in a finite number of steps is suggested. Its
main characteristic is that it employs the broadcast and
superposition properties of the wireless channel. This can
drastically reduce the number of required messages. Indeed
simulations show that this algorithm exhibits considerably
faster convergence than traditional approaches. The wire-
less channel has been modeled by an ideal MAC. Future

work will analyze the impact of nonidealities, such as
channel coefficients and receiver noise.
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(b) Finite-time convergence of xi(k).

Fig. 4. System with dynamics (24).

Fig. 5. Ratio of steps required for converging with tradi-
tional (k̄t) and broadcast protocols (k̄b).

|N | time slots should be assigned one-to-one to all nodes
within one sampling interval. Intuitively, each run of (5)

corresponds to |N |
2 runs of (24), since the latter uses a

communication protocol based on the broadcast of only
two orthogonal signals, as presented in Section 3.1. A
comparison (via randomized analysis) between traditional
protocols and the one proposed in this paper in terms of
steps required for converging is presented in Figure 5.

Given a topology and an initial state vector, k̄t denotes
the number of steps required to achieve consensus with
traditional protocols; k̄b represents, for the same problem,
the number of steps required to achieve consensus with

broadcast protocol (24). Their ratio is r = k̄t

k̄b
. For net-

works with more than circa 20 agents, adopting broadcast
solutions gives faster convergence. In case |N | = 100,
broadcast algorithm (24) achieves consensus between 5
and 20 times faster than traditional approaches.

6. CONCLUSION

In this paper, a consensus protocol for reaching max-
consensus in a finite number of steps is suggested. Its
main characteristic is that it employs the broadcast and
superposition properties of the wireless channel. This can
drastically reduce the number of required messages. Indeed
simulations show that this algorithm exhibits considerably
faster convergence than traditional approaches. The wire-
less channel has been modeled by an ideal MAC. Future

work will analyze the impact of nonidealities, such as
channel coefficients and receiver noise.

REFERENCES

Abdelrahim, M., Hendrickx, J.M., and Heemels, W.
(2017). Max-consensus in open multi-agent systems
with gossip interactions. In (CDC), 2017 IEEE 56th,
4753–4758. IEEE.
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