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1. Zusammenfassung

In dieser Thesis wird gezeigt werden, dass die “Image Charge MMM2D” (ICMMM2D)
eine geeignete Methode ist um langreichweitige Wechselwirkung in Kinetisches Monte
Carlo Simulationen zu beschreiben, die im VOTCA Paket durchgeführt werden. Es
wird sich zeigen, dass bekannte Methoden wie die Ewald-Summation nur bedingt für
spezielle Geometrie geeignet sind. Des weitern wird sich zeigen, dass ICMMM2D
Methode dielektrische Grenzflächen richtig handhabt und dazu genutzt werden kann
die Paarwechselwirkungsmartix in Plattengeometrien zu berechnen, welche benötigt
werden für die Berechnung der Raten im KMC Paket von VOTCA. Dies wird durch
den Vergleich der Ergebnisse des ICMMM2D, der Direktsumme der Coulomb Wech-
selwirkung und eines klassischen, dielektrischem Kontinuumsmodels gezeigt werden.
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2. Abstract

In this thesis will be shown that the Image Charge MMM2D (ICMMM2D) method
is an appropriate approach to deal with long range interaction in Kinematic Monte-
Carlo simulations that will be performed with the VOTCA-package. We will highlight
that it is not possible to use well-known methods such as Ewald summation in each
geometry. It will be shown that the ICMMM2D method treats dielectric boundaries
correctly and is possible to calculate the pair interaction matrixes for slab geometries
which are needed for the rate calculation in KMC package of VOTCA. This will be
done by the comparison of the results of ICMMM2D with the result of a direct sum
and a classical dielectric continuum model.
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3. Introduction

The invention of organic light emitting diodes (OLEDs) facilitated the development of
an active-matrix display (AMOLED). The key properties of organic semiconducting
materials useful for this application are their cost-effectiveness, enhanced processibil-
ity, and tunability of electronic properties [3]. Nevertheless, there is still need for
improvement and innovation, especially for stable blue OLEDs which currently pre-
vent further applications, such as white light sources due to there short lifetime. The
understanding of the elementary processes that are taking place in such devices is the
foundation towards new materials and improved designs.
In Figure 3.1 a schematic of a phosphorescent OLED is shown. A typical OLED
consists of a layer of organic material in between two electrodes, an anode and a
cathode, deposited on a substrate. By conjugation of molecules, electrical conduc-
tivity is reached through the overlapping π−orbitals and delocalization of respective
π−electrons in the organic material. Analogous to valence and conducting the band
in ordinary semiconductor one defines the highest occupied and lowest unoccupied
molecular orbitals (HOMO and LUMO) of organic semiconductors. Examples of ma-
terials are shown in figure 3.1. By injection electrons in the LUMO of the organic
material next to the cathode and withdrawing electrons from the HOMO at the an-
ode (injecting holes) an electric current starts to flow. These holes and electrons are
driven together by electric forces and form excitons, a bound state of an electron and
a hole . Radiation is a result of the decay of these excited states. The current-voltage-
luminescence characteristics are then related to an interplay between electron, hole,
and exciton mobilities, their relative energy offsets, as well as energetic disorder and
recombination rates.
Computer simulations are used to study the morphological order and molecular struc-

ture regarding device efficiency. This is a computationally demanding task which is
impossible to perform on a quantum mechanic level only, especially for layers of a few
hundred nanometers. One has to employ classical force-fields, first principle methods
to evaluate charge/exciton transfer rates, and a develop stochastic models based on the
master equation, as illustrated in Figure 3.2. This theoretical approach often relies on
experimental input, e.g. experimentally measured mobility values. Further weaknesses
are that these models often rely on approximations and parametrizations in quasi-
static conditions, but used to make predictions in non-equilibrium systems. A model
which does not require explicit simulation of atomistic morphologies and quantum-
chemical evaluated rates is constructed by matching mesoscopic system properties,
like distributions of molecular positions and orientation, electronic couplings, and site
energies. This so-called off-lattice model is used to describe large systems [11]. Quan-
tities like potential energy surface, reorganization energy, ionization potential, and
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Figure 3.1.: Multilayered structure of an OLED with corresponding energy levels and chemical
structures. Electrons/holes move upward/downward in energy due to an applied
voltage. Higher electron/hole energy levels correspond to smaller electron affini-
ties/ionization potentials. In this OLED, DPBIC (Tris[(3-phenyl-1H-benzimidazol-
1-yl-2(3H)-ylidene)-1,2-phenylene]Ir) is used in the hole-conducting layer; TBFMI
(Tris[(1,2-dibenzofurane- 4-ylene)(3-methyl-1/1-imidazole-1-yl-2(3/1)-ylidene)]Ir(III))
is the emitter (guest); BTDF (2,8-bis(triphenylsilyl)dibenzofurane) is the host material
and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, BCP) is the elec-
tron conductor. Adapted with permission from Kordt et al., 25, Advanced Functional
Materials 1955-1971 (2015). Copyright (2015) Wiley-VCH Verlag Gmbh [11].

electron affinity, as well as distributed multipoles and polarization, are calculated via
first principle methods for each molecule type. These are used to evaluate the classical
force-fields in a further step to simulate amorphous morphologies. In chapter 2, a per-
turbative approach is briefly discussed which is used to evaluate the electrostatic and
induction interactions of localized charge carriers with the environment via polarized
force-fields.
By taking all these quantities into account, it is possible to evaluate rates for
charge/exciton transport in a system of around 104 molecules by combining first princi-
ple methods and classical force-fields [11]. In organic semiconductors, Charge/exciton
transport happens through so-called hopping events, where a charge/exciton hops
form on site i to a different site j. For this, we need to know the site energy of inter-
acting sites particularly the energy difference between the sites. Because the systems
tend to favour a state of lower energy the energy difference is relevant. An important
ingredient of the charge transfer rate is the free energy difference between the final
and initial states of the system. A part of this energy is the Coulomb interaction of
charges. This interaction is long range and therefore is computationally demanding
and often needs special treatment in the periodic boundary conditions that are typi-
cally applied in molecular systems.
By hopping from site i to j, the configuration of the system has changed more precisely
the state of the system has changed. By precomputing the rates of a certain state,
we can formulate the master equation, a differential equation of first order, which
describes the time-dependent probability of the system to transit from one state to
another one, i.e. the time evolution of a system. By solving the master equation
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the charge carrier mobility and occupation probability of the considered systems are
determined. Concerning the system of interest, the only sufficient way to solve the
master equation is introduced in chapter 3 namely the Kinematic Monte Carlo (KMC)
method, due to a large amount of states which needed to be taken into account. By
solving the system via KMC, we reset the memory of the system in each step, what
means each calculation of a further configuration just require the present configuration
as a starting point. This resetting requires the evaluation of the rates in each step
over and over again.
Unfortunately, this is a computation demanding task, especially for a large system.
The extended computational cost is mainly due to the influence of Coulomb interaction
on the rates. A variety of methods has been developed to treat with Coulomb inter-
actions in such systems. However, difference geometries or neutrally charged systems
that we are considering need special treatment. Therefore, we are going to introduce
efficient schemes that are used to calculate the Coulomb interaction in such systems
to solve the master equation via KMC. Efficient schemes for treatment of Coulomb
interactions and their integration into the master equation is the topic of this thesis.
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Figure 3.2.: Possible workflows of parameter-free OLED simulations: polarizable force-fields and
electronic properties of isolated molecules obtained from first principles are used to
generate amorphous morphologies and evaluate charge transfer rates in small systems
(microscopic models). Coarse-grained models are parametrized either by matching
macroscopic observables, e.g., charge mobility, of the microscopic and coarse-grained
(lattice) models. The resulting analytical expressions for mobility are then used to
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tions of molecules. The master equations for this model can be solved using the kinetic
Monte Carlo algorithm, yielding macroscopic characteristics of a device. Adapted with
permission from Kordt et al., 25, Advanced Functional Materials 1955-1971 (2015).
Copyright (2015) Wiley-VCH Verlag Gmbh [11].



4. Intermolecular Interactions

We are interested in finding a appropriate formalism to calculate the energy difference
for a charge that is hopping from site i to j. In soft matter intermolecular forces
are electrostatics, dispersion and induction. In the perturbative description of these
interactions, the electrostatic interactions is mediated between classical charge distri-
butions. Through distortion of electron clouds in electric fields, dipoles are created
within molecules. The interaction of these dipoles with the surrounding molecules is
called induction. The effect that manifest through the fluctuations of the electron
densities and the correlation of these in two different molecules is called dispersion.
An accurate way to do describe the electrostatic interaction in molecular systems is
the Thole model [14]. It relies on introducing a force field via multipole expansion
and taking into account induction. In the following we will mostly look at the effect
of charge-charge interaction and add the effect of the electric neutral environment
through a precalculated density of states.

4.1. Pertrubation Theory

Because intermolecular forces are fairly weak, it is common to describe them using
perturbation theory. We will see that starting from a quantum mechanical description
we can find the classical expressions by averaging over different orders of perturbation.
Furthermore, multipoles and distributed multipoles will be introduced because we
are mainly interest to calculate dipole-dipole interactions. To do this, we need to
assume that there wave functions do not overlap due to a large distance between them.
The unperturbed Hamiltonian of a combined system H ′ regarding the electrostatic
interaction between molecule A and molecule B is:

H ′ =

∫ ∑
a∈A

∑
b∈B

eaδ(r− a)ebδ(r’− b)

4πε0|r− r’|
d3rd3r’ =

∫
ρ̃A(r)ρ̃B(r’)

4πε0|r− r’|
d3rd3r’ (4.1)

where we use the charge density operator of molecule X: ρ̃X(r) =
∑

x∈X exδ(r− x).
Now one can write the unperturbed states as simple product functions ΨA

mΨB
n , which

we shorten to |mn > and are eigenfunctions of H0. This is our starting point to use
Rayleigh-Schrödinger perturbation theory for closed-shell molecules to derive the sec-
ond order ground state energy, labeled m = n = 0. By averaging over the Hamiltonian
we are going form a quantum mechanical Coulomb interaction to classical interpreta-
tions as electrostatic interaction, induction and dispersion energy.

< 00|H0
0 |00 >= W00 +W ′00 +W ′′00 + ... (4.2)

7
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where
W 0

00 = WA
0 +WB

0 , (4.3)

W ′00 =< 00|H ′|00 >, (4.4)

W ′′00 = −
∑
nm

< 00|H ′|mn >< mn|H ′|00 >

W 0
mn−W 0

00

. (4.5)

This is the perturbative approximation to the interaction energy, where the first-
order energy in eq. 4.4 is the expectation value of the electrostatic interaction of the
ground state |00 >. The second-order terms can be identified as induction energy and
dispersion energy in the manner:

W ′′ = UAind + UBind + Udisp (4.6)

where

UAind = −
∑
m6=0

< 00|H ′|m0 >< m0|H ′|00 >

WA
m −WA

0

(4.7)

UBind = −
∑
m 6=0

< 00|H ′|0n >< 0n|H ′|00 >

WB
n −WB

0

(4.8)

Udis = −
∑
m 6=0

< 00|H ′|mn >< mn|H ′|00 >

WA
M +WB

n −WB
0 −WA

0

(4.9)

A common way to calculate the electrostatic, induction and dispersion energy is to
develop it into multipoles, but it may be mentioned that for short distances between
molecules the sum in 4.6 does not converge and different techniques much are used.
For the dispersion energy, the calculation is even harder, due to the factorization of
the denominator is unlikely to the matrix elements referring to A and B not possible.
There are two used ways to handle the problem one is the average-energy approxima-
tion and the second is based on the work in the field of quantum electrodynamics by
Casimir and Polder (1948). For further details see [12].

4.2. Multipole Expansion

In terms of classical electrostatics the simplest multiple is the total charge q =
∑

i ei,
where ei is the charge of particle i. If the system is placed in an electric potential field
V (r), the energy becomes

Ues =
∑
i

eiV (i), (4.10)

where we are using the vector i to describe the position of particle i. In the case
we assume an uniform electric field with the constant at the origin V0, the arbitrary
magnitude F and directions x, y, z it fallow

Ues = qV0 −
∑
k

3∑
i

eiakFk = qV0 − ~µ · F. (4.11)
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The quantity ~µ is called dipole moment. In case of two positive and two negative
charges one finds the quadrupole moment

Ωkj =
∑
i

ei(
3

2
ikij −

1

2
i2δkj) (4.12)

where i and k are out of (x, y, z). In the same manner one can expand these multipoles
to any rank:

ζ
(n)
jk...z =

(−1)n

n!

∑
i

eia
(2n+1) δ

δiz
...

δ

δik

δ

δij
(
1

i
). (4.13)

Going back to a quantum mechanical description the multipole expansion in terms of

the Hamiltonian has the form :

H ′ = qBV A + µ̃BαV
A
α +

1

3
Ω̃B
αβV

A
αβ + ... (4.14)

= TqAqB + Tα(qAµ̃Bα − µ̃AαqB) + Tαβ(
1

3
qAΩ̃B

αβ − µ̃Aα µ̃Bβ +
1

3
Ω̃A
αβq

B) + ...,

where Tnαβ...ν = 1
4πε0
∇α∇β...∇ 1

R is the quantum analogous to 4.13 and V A(r) =∫ ρ̃A(r)
4πε0|r−r’|d

3r’ is the potential of molecule A relative to the center of mass A.
By averaging over this expression one find classical the electrostatic, induction and

dispersion energy again, but now in terms of multipoles. At this point the trans-
formation into spherical coordinates and the use of spherical harmonics R and I is
convenient,

1

|R + b− a|
=
∞∑
l=0

l∑
m=−l

(−1)mRl,−m(a− b)Ilm(R). (4.15)

,where a,b are the vectors relative to the center of mass of the molecules A and B.

4.3. Distributed multipoles

The multipoles expansion series with the multipoles positioned in one center of mass of
the moleculare are not accurate. To improve the accuracy, we can divide the molecule
into regions, each described by its own multiple moments. This method is known as
distributed multipole expansion. Such a region consisted of an atom or a group of
atoms. The interaction between two molecules A and B then takes the form

H ′ =
∑
a∈A

∑
b∈B

[T abqAqb + T abα (qaµ̃bα − µ̃aαqb] (4.16)

+ T abαβ(
1

3
qAΩ̃b

αβ − µ̃aαµ̃bβ +
1

3
Ω̃a
αβa

b + ....].

The sum runs over the sites a of molecule A and sites b of molecule B and qa, µ̃aα are
the operators for the charge, dipole of site a and so on [12]. From here we can exactly
apply the perturbation theory as before.



5. Kinetic Monte Carlo

5.1. Master equation

In the previous chapter, we have looked at an appropriate approach to deal with the
electrostatic interaction of molecular system. Now we would like to have a look at the
dynamics of charges because they change the state of a system. In organic semicon-
ductor, charge transport is a series of so-called hopping events between adjusted sites.
The hopping probability is proportional to a transition rate between different states.
Due to a large number of molecules and atoms, there is no way to provide a quantum
mechanical solution.
A stochastic model based on a master equation is a viable approach to proceed fur-
ther. The systems of interest can be modelled as being in a probabilistic combination
of states at any given time, and the corresponding switching between that states can
be determined by a transition rate matrix. States are constituted of a combination
of electrons which are sitting on occupied molecular sites. The time evolution of such
systems is being described by a so-called master equation, or are a set of differential
equations over time of the probabilities Pα that the system occupies each of different
states α and has the following form:

d

dt
Pα =

∑
β

[WαβPα(t)−WβαPβ(t)] (5.1)

where Pα is the probability for the system to be in a certain state α, Wαβ is the
transition rate form state β to α. In a physical system, which is in an equilibrium
state the detailed balance principle is fulfilled, and one speaks of a reversible Markov
chain [10]

WαβPα(t) = WβαPβ(t). (5.2)

In the case of amorphous semiconductors, each site corresponds to a molecule.
In practice, one has to solve a system of coupled, linear, first order, ordinary
differential equations (ODE) to evaluate the molecule position and the transfer rates
ωij . Typically, the center of mass of a molecule is chosen as the position of the
hopping site. Given the rate ωαβ the occupation probabilities Pα can be determined
[10].
For large systems an analytic solution of the master equation is impossible. Therefore
one relies on approximations such as Mean Fields or the Kinetic Monte Carlo method.

10
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5.2. Mean-field solution

In a system with many charge carriers, a given state α of a system is definded through
sites occupied by charges. The number of rates grows exponentially with the number of
charges, even advanced ODE solvers become impractical unless further approximations
are made. One of the most used is the mean-field approximation. When the master
equation is rewritten in terms of site-occupation probability pi all correlations between
the occupation probabilities of different sites are neglected [4]. The rewritten master
equation, electron transform rates and occupation probabilities has the form:

d

dt
pi(t) =

∑
j

[ωijpi(t)(1− pj(t))− ωjipj(t)(1− pi(t))]. (5.3)

with a constraint on the total probability being the number of charges carries:

n =
∑
i

pi. (5.4)

It is possible to solve these nonlinear, differential equations with ODE algorithms, but
these algorithms are much more complicated. The Kinetic Monte Carlo method is
often more efficient and does not neglect correlation between the different sites [?].

5.3. Solving the Master equation via Variable Step Size
Method

5.3.1. The integral from of the master equation

The fundamental concept of kinetic Monte Carlo (KMC) are Markov chains. Markov
chains are statistic models, which allow the prediction of future without knowing the
history [6]. In case of KMC just the present configuration is needed to be known.
To solve the master equation with Kinetic Monte Carlo methods casting the master
equation into an integral form is a frequently used approach. A matrix W is assumed
with zero diagonal (Wαα = 0) and a diagonal matrix R

Rαβ =

{
0, if α 6= β∑

γWγβ, if α = β.

}
(5.5)

is defined .The probabilities of the configuration Pα are stored in a vector P, we can
rewrite master equation as a time-dependent Schrödinger-equation with an imaginary
time and Hamiltonian R - W,

dP

dt
= -(R -W)P. (5.6)

By assuming that R and W are time-independent and introducing a new matrix Q,

Q(t) = e(−Rt), (5.7)
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one can rewrite the solution of the master equation in the integral form [9],

P(t) = Q(t)P(0) +

∫ t

0
dt′Q(t− t′).WP(t′) (5.8)

Due to the fact that 5.8 is implicit in P, one can substitute P(t′) over and over again
and get

P(t) = [Q(t) +

∫ t

0
dt′Q(t− t′)WQ(t′) (5.9)

+

∫ t

0
dt′
∫ t′

0
dt′′Q(t′ − t′′)WQ(t′ − t′′)WQ(t′′) + ...]P(0)

The integral from has a useful interpretation, suppose that the system at t = 0 is in
the configuration α with probability Pα(0). The first term describes that the system
is still in state α up to time t, i.e. no reaction has taken place, with probability
Qαα(t)Pα(0) = e(−Rααt)Pα(0). The matrix W specifies the change in probability when
a reaction happens. The second term represents the contribution to the probabilities
when a reaction took place at t′ and no reaction took place between times 0 and t′.
The terms of higher order are subsequent continued for further events so that we are
able to describe the time evolution based on our starting configuration P (0).

5.3.2. The Variable Step Size method

A KMC algorithm can be directly derived from the found integral formalism. From a
given state a range of configurations with the correct probability is generated by these
algorithms. The idea is to set-up a given starting configuration, specify the transition
rates between all states, let a jump event occur, update the system and time while
resetting the memory of the system until the stop condition is fulfilled.

Figure 5.1.: Visualization of Variable Step Size Method
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To do this in a mathematical accurate fashion one has to start from an initial
time t = 0 and an initial configuration α. The probability that the system stays in
configuration α is given by

QααPα(0) = e[−Rααt]Pα(0) resp. Qαα = e[−Rααt] (5.10)

Obviously, the probability distribution that a reaction had taken place at time t is
given by 1 − Qαα. According to the probability distribution, we can find a time t′

when the first reaction takes place by solving

e[−Rααt′] = r1 (5.11)

where r1 is a uniform deviate on the unit interval [9]. Typically the time interval ∆t
is given by

∆t =
1∑

βWβα
ln r (5.12)

We know form eq. 5.9 that the transition possibility Wβα is given by all possible
reactions that are transforming configuration α to β when a reactions happen at time
t′. This on the other hand means that the probability of the system to be in state
β at time t′ + dt is Wβαdt. We can generate a new configuration α′ at time t′ by
picking it out of β with probability Wα′α/

∑
βWβα. This process corresponds to

resetting the memory of the system because we are in the same situation as when the
simulation started. We continue these steps with t′′, r2 and configuration α′′ until the
end conditon is fulfilled.

5.3.3. Enabled and disabled events

Unfortunately, the VSSM algorithm scales with the system size exponentially because
we need to sum over all possible configurations even the ones that will not physically
be relevant. By introducing enabled events which leads to physically realised states,
the performance can be improved. Enabled events are in terms of organic semicon-
ductors hopping events between adjusted sites with hopping probability Wβα 6= 0. A
linearly scaling is achieved by storing these enabled events in one event list.
A further modification can be made to improve the efficiency, by considering that it is
not necessary to evaluate all enabled events for each reaction, only the ones which are
affected by a reaction will be sufficient. In the context of charge transport, an electron
on a site, i, can hop to a neighbouring site, j. In doing so, all events associated with
i are disabled, and all events associated with j are enabled.
These improvements lead to an algorithm which does not rely on calculating all en-
abled events in each iteration step over and over again. Instead, it just updates the
list of enabled events, from previously disabled events after a reaction takes place.
Concerning the charge transport problem, the interpretation will be that after a hop
took place from α to β the hopping partners of α and β will be updated.
Considering this activation and deactivation procedure, we can implement an algo-
rithm which treats charge transfer efficiently. Charge movement is assumed to occur
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between sites i = 1.....N . The transport rate Wβα is interpreted as hopping rate ωij
between different molecule sites i and j.
By assuming a system of N sites with n < N charge carriers of one type, either elec-
trons or holes, only the sites i which are occupied matter. For these sites escape rates
to neighbours m can be defined in the way:

ω =
m∑
j

ωij . (5.13)

In analogy to Wα′α/
∑

βWβα a definition of the hopping probability form site i to j is
given by ωi/

∑
koccupied

ωk and the destination of a hop is chosen randomly by ωij/ωi
[11]. The scheme of VSSM method for multiple charge carrier will be:

STEP 1: Initialize a system of molecules with known escape rates.

STEP 2 : Inject charge carriers randomly.

STEP 3: Select an occupied site i which is proportional to ω =
∑m

j ωij by
randomly drawing a number out of a uniform distribution.

STEP 4: Select a site j where the charge carrier is hopping to with the probability
that is proportional to the hopping rate ωij .

STEP 5: Accept the hop if the site j is unoccupied or do not jump if the site j is
occupied.

STEP 6: Update the time by drawing a second uniformly distributed random
number τ . t = t + ∆t , where ∆t = −(

∑
βWβα)−1lnτ . Go back to STEP 3 if the

stop condition is not fulfilled.

Nevertheless, there is a relevant part that we did not discuss the neighbour list.
Since the systems of interest are treating with charge carriers, there will be Coulomb
interaction we have not considered so far. The characteristic long-range interaction
through the 1/r potential will affect carriers far away from the supposed hop and
thereby lead to a large cut-off. Even if we assume forbidden events by prohibiting
an occupied site to be occupied by a second charge carrier due to strong repulsive
Coulomb force, there are still a large number of sites to be considered in the neighbour
list, as well as escape rates needed to be updated in each iteration step. In the following
sections, different ways to treat this problem efficiently will be described.



5. Kinetic Monte Carlo 15

Figure 5.2.: Schematic visualization of two-level Monte Carlo method with multiple
charge sites



6. Electrostatics

To determine the Coulomb interaction and finally the rates it is necessary to solve
the Poisson equation for particular boundary conditions. This amounts to finding the
electric potential φ for a given charge distribution ρ. Apparently, the solution for the
Poisson equation takes different forms for different geometries. The general form of
the Poisson’s equation is:

−∇Φ(r) = 4πρ(r) (6.1)

In this equation Φ(r) is the electrostatic potential, at point r. For N point charges
the charge distribution and the electrostatic potential has the following form:

ρP (r) =

N∑
i=1

= qiδ(r− ri) (6.2)

Φ(r) =
N∑
i=1

q

4π|r− ri|
. (6.3)

This sum takes into account periodic boundary conditions, what makes it difficult to
calculate. By using the Fourier sum with the corresponding Fourier coefficients,

f(r) = 1/V

∞∑
k=−∞

f̃(k)eikr , f̃(k) =

∫
drf(r)e−ikr, (6.4)

where k = 2π
L is the reciprocal vector, V the box size, one will find a much simpler

form for the Poisson’s equation:

k2Φ(k) = 4πρ(k). (6.5)

There are many possible ways to solve the Poisson equation in the order of O(N2)
or Cholesky solvers of order O(S), but we are interested in those which are able to
solve it fast for big systems. Therefore Fast Fourier Transformation (FFT) is a decent
choice with a computational time of order O(Nlog(N)). For the FFT we consider a
discrete Fourier transform (DFT) of a vector (x0, ....., x2n−1) of dimension 2n is given
by:

fm =
2n−1∑
k=0

xk · e−
2πi
2n
mk m = 0, ..., 2n− 1. (6.6)

Where we differentiate indices with even numbers :

x′k = x2k k = 0, ..., n− 1 (6.7)

16
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and uneven numbers:
x′′k = x2k+1 k = 0, ..., n− 1. (6.8)

The according n−dimensional DFT are f ′k and f ′′k . This leads to:

fm =
n−1∑
k=0

x2ke
(− 2πi

2n
m(2k)) +

n−1∑
k=0

x2k+1e
(− 2πi

2n
m(2k+1)) (6.9)

=

n−1∑
k=0

x′ke
(− 2πi

2n
mk) + e(−πi

n
m)

n−1∑
k=0

x′′ke
(− 2πi

2n
mk)

=

{
f ′m + e−

πi
n
m , if m < n

fm−n − e−
πi
n

(m−n) , if m ≥ n

}
.

By calculating f ′m and f ′′m (m = 0, ...., n − 1) fm as well as fm+n are determined in
half the steps [8]. Considering small molecular system, FFT is not the best choice.
The small system size leads to a large amount of Fourier modes which needed to be
calculated and so we lose the advantages of the method.

6.0.1. Ewald summation

A well-known technique to evaluate the Coulomb interaction in periodic boundary
conditions is the Ewald summation. The idea of Ewald summation is to calculate
the Coulomb interaction of charge carriers efficiently by splitting the interaction in a
short- and long-range sums. The short-range sum is calculated in real space and the
long-range part is calculated in reciprocal space by using fast fourier transformation.
The electrostatic potential in a periodic system has the the form:

Φ(ri) =
∑
j,n

qj
|rij + nL|

, (6.10)

where we sum over all charge carriers j and over all periodic images n. A further
assumption will be to say that the delta function of point charges can be represented
by a superposition of Gaussian functions which are smoothly varied to each other.
These functions are called screened charge and screen background and have the shape.

ρGauß(r) = −qi(α/π)3/2e(−αr2). (6.11)

Starting form these assumptions we can write the charge distribution as periodic sums
of Gausssians:

ρ(r) =
N∑
j=1

∑
n

qj(α/π)3/2e−α|r−(rj+nL)2|. (6.12)

Fourier transforming the charge density yields

ρ(k) =
N∑
j=1

qje
−ik·(r−rj)e(−k2/4α) (6.13)
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and can be inserted in the Poisson’s equation

k2Φ(k) = 4π

N∑
j=1

qje
(−ik·(r−rj))e(−k2/4α) (6.14)

This expression can be back transformed to real space and finally inserted into the
electrostatic potential:

U =
1

2

∑
i

ρ(ri) =
1

2V

∑
k 6=0

4π

k2
|ρ(k)|2e(−k2/4α). (6.15)

At this point we twice counted the interaction between a continuous Gaussian charge
cloud of charges qi and point charges qi located at the center of the Gaussian, this can
be done by an correction of potential energy at the origin of a Gaussian charge cloud:

ρGauß(r) = qi(α/π)3/2e(−αr2). (6.16)

Using spherical symmetry and the Poisson’s equation the expression:

−1

r

∂2

∂r2
rΦGauß(r) = 4πρGauß(r) (6.17)

double partial integration yields to:

ΦGauß(r) =
qi
r
erf(
√
αr) (6.18)

The limit r > 0 gives us the correction, or the self-interaction term:

Uself = (α/π)
1
2

N∑
i=1

q2
i (6.19)

We derive all equations to write the short-range electrostatic potential Φshort−range
due to a point charge qi surrounded by a Gaussian with the net charge −qi:

Φshort−range(r) =
qi
r
− qi
r
erf(
√
αr) =

qi
r
erfc(

√
αr) (6.20)

With this result we can finally write the total electrostatic contribution to the potential
energy.

UCoul =
1

2V

∑
k 6=0

4π

k2
|ρ(k)|2e(−k2/4α) (6.21)

− (α/π)
1
2

N∑
i=1

q2
i

+
1

2

∑
i 6=j

qiqjerfc(αrij)

rij
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For an efficient way of computing the energies, one combines the Ewald summation
with FFT in the so-called Particle mesh Ewald (PME) method. The basic idea remains
the same as in Ewald summation. We split the potential in a long and a short-range
part, but calculate the charge density field on a discrete lattice (meshing part), which
is more efficient via fast fourier transformation. This leads to an algorithm with
efficiency O(N log(N)) in comparison to the direct computation of O(N2). However,
for certain geometries, the Ewald sum is not converging, and furthermore, the method
is in principle designed for charge neutral systems. Therefore, different approaches
must be considered. One class of algorithms which is converging is the MMM family.
The basic difference between the approaches is that one can multiply each summand
by a continuous factor c(β, rij , nklm) such that the sum is convergent for β > 0 but
c(0, .., ..) = 1, instead of defining a summation order as it was done in the Ewald sum.
The energy is then defined as the limit of β against 0 of the sum [2].

6.0.2. 2D slab geometry

Figure 6.1.: A schematic view of image charges. The dielectric interfaces are characterized by the
εt − epsilonm and εm − εb boundaries. Image charges along thez direction are due to
polarization effects. An infinite number of image charges arises along the z direction due
to multiple reflections under the two parallel dielectric interfaces. Also shown are the
image charges under the periodic boundary conditions along the x axis. The dotted
lines are only provided to visualize the positioning of the image charges summation
[13]. Tyagi et al, THE JOURNAL OF CHEMICAL PHYSICS 127, 154723 (2007) ,
Copyright American Institute of Physics (2007)

2D periodic replicated dimensions with a finite third dimension (2D+h) are of spe-
cial interest regarding the simulation of capacitors, membranes or thin films. There
is in principle the possibility to use Ewald summations, but through the finite dimen-
sion, there is no straightforward way to use the fast fourier transformation. There is a
formalism which explicitly considers one finite length as shown in [7] it is often more
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efficient to use a 3D model with an ’electrostatic correction term’. The problem with
this approach is that the accuracy is limited by the used implementations of PME and
therefore heavily sensitive to the parameter α.
In order to get a better error control and better accuracy, the so-called MMM2D al-
gorithm is a better choice. Starting from two planar, parallel interfaces that enclose a
set of charges and there replicated image charges, as shown in figure 6.1, to satisfy the
boundary conditions of the electric field. The top and bottom interface of the main
cell scale down the image charges by the factor:

∆t =
εm − εt
εm + εt

and ∆b =
εm − εb
εm + εb

(6.22)

where εm is the background permittivity in the main cell and εb,εt are the corre-
sponding top and bottom media. Considering a charge q, which gets reflected at the
top(bottom) interface yields an image of magnitude q∆t(resp. q∆b). The second re-
flection yields another image charge q∆t∆b (resp. q∆b∆t) in the opposite cell, and so
on.
The key idea of MMM2D is to seperate the interaction of two particles into a near
and far formula.
Assuming a simulation box of size Lx×Ly×Lz that is periodic in x and y dimensions
and finite in the z direction. The finite direction is subdivided into k cells which
yields to a single cell width of λ = lz/k. In general k is chosen in a way that just
neighboring cells are interacting through the near formula. To describe MMM2D we
assume εm = εt = εb, as shown in in figure 6.1. The Coulomb potential of a unit
charge is evaluated in Cartesian coordinates with |z| > 0, in periodic image charges
in the x and y direction, can be written as:

Φ(x, y, z) = 4uxuy
∑
p,q>0

exp−2πfpq |z|

fpq
cos(wpx)cos(wqy) (6.23)

+ 2uxuy

∑
p>0

exp−2πfp|z|

fpq
cos(wpx) +

∑
q>0

+
exp−2πfq |z|

fpq
cos(wqy)

− 2πuxuy|z|

where (x, y, z) = (xij , yij , zij), p and q are integer, ux = 1/lx, uy = 1/ly, fpq =√
(uxp)2 + (uyq)2 with fp = pux, fq = quy and wp = 2πuxp, wq = 2πuyq.

The far formula convergences for |z| → ∞ and divergences for |z| → 0. To handle this

problem we introduces the near formula in the case of 0 < |z| < 2λ, i.e. neighboring
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cells.

Φ(x, y, z) = 4ux
∑
l,p>0

[K0(ωpρl) +K0(ωpρ−l)]cos(ωpx) (6.24)

− 2ux
∑
n≥1

b2n
2n(2n)!

Re[(2πuy(z + iy))2n]

− ux
∑
n≥1

(
−1/2

n

)
Ψ(2n)(NΨ − uxx) + Ψ(2n)(NΨ + uxx)

(2n)!
(uxρ0)2n (6.25)

− 2uxlog(4π
uy
ux

) +

NΨ∑
k=1

(
1

rk
+

1

r−k
+′

1

r0

)

where ρl =
√

(y + lly)2 + z2, rk =
√

(x+ klx)2 + y2 + z2, K0 denotes the Bessel func-
tion of second kind, bn denotes the Bernoulli numbers and Ψ(n) stands for the Hankel
function of order n. NΨ is a tuning parameter and commonly chosen to be 2. The
interaction between a charge and its own image charges along x and y, is calculated
by the near formula, whereas the last term has to be left out by the prime. The total
electrostatic energy of a set of N charges can be obtained by pairwise addition and
using the near and far formula.
The pairwise calculation using the far formula of the energy results in a N2 scaling.
Fortunately product decomposition is a property of the far formula, which improves
the computation of the interaction between two sets of charges to linear scaling. Com-
puting eight factors Ξ±s/c,s/c(p, q) for a group of charges and frequency components
(p, q):

Ξ±s/c,s/c(p, q) =
∑
qi∈L

qiexp(±2πfpqzi)sin/cos(wpxi) × sin / cos(wqyi) (6.26)

In order to take dielectric layers into account we are use the method of image charges
(ICMMM2D). We assume that two interfaces are located at z = 0 (bottom) , z = lz
(top) and surround N charges particles in central dielectric layer. The charges are
labeled qi form 1 to N. This leads to image charges along the z direction and in
addition repeated image charges of image charges due to the two planar dielectric
layers. For each of the lower and upper layers, the separation of image charges into
two sequences. Assuming a charge qi at position zi results into the two sequences
regarding the lower dielectric domain:

charge qi∆b, qi∆∆b, qi∆
2∆b, ....

position −zi, −(2lz + zi), −(4lz + zi), ...
and
charge qi∆, qi∆

2, qi∆
3, ....

position −(2lz − zi), −(4lz − zi), −(6lz − zi), ...,
where ∆ = ∆b∆t. Similar for the upper layer.

Now we consider how to incorporate all the interactions of the charges with the image
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Figure 6.2.: A schematic view of the simulation cell for k = 3. The original cell is divided into three
layers. The top dielectric εt region is divided into two cells, L+1 and L+2. Similarly,
the bottom dielectric region εb is divided into two regions L−1 and L−2. Note that
L−2 and L+2 extend to −∞ and ∞ , respectively. Tyagi et al, THE JOURNAL OF
CHEMICAL PHYSICS 127, 154723 (2007) , Copyright American Institute of Physics
(2007) [13].

charges in an efficient way. We subdivide the original charges into layers of height
λ to sets L0,ii = (1, 2, ...k) and the upper and lower layers into layers L−/L+ =
L−1 + L−2/L+1 + L+2,as illustrated in figure 6.2. The thickness of the layer next to
the center cell is λ, whereas the second layer extends from λ to infinity. By summing
over all charges in the lower layer L−, we find geometric sums and define :

Lp,q(z) =

∞∑
m=0

∆mexp[−2πfpq(z + 2mlz)] =
e(−2πfpqz)

1−∆exp(−4πlzfpq)
(6.27)

Note that the layers next to the boundary, i.e. L0,1 and L−1 require the use of the
near formula, but however the interaction of L0,1 with L−2 requires the far formula.
Furthermore for all interactions of L0,i (i = 2, 3, 4, .., k) with L− the calculation via
far formula is needed as well as for L+ [13].
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7.1. Single charge in 2D+h

Figure 7.1.: A Dielectric continuum model of an organic overlayer on a substrate with point charge
q = e in the organic layer. 1, 2, and 3 are the permittivities of each layer and k1 and
k2 are the reflection coefficients at the dielectric boundaries. The image charges shown
are from the n = 0 term of 7.4.Helander et all, Physical Review B 81,153308 (2010) ,
Copyright The American Physical Society (2010) [5].

In this chapter we compare the direct calculation, the ICMMM2D technique as well
as analytic solution. We like to evaluate single and two particle Green’s functions
which are needed to efficiently construct energy difference required to run KMC code.
First of all, we like to study the behaviour of the ICMMM2D algorithm for different
sizes of periodic boxes along the x- and y-directions. We expect that the potential
energy will get lower for larger system sizes. Figure 7.2 shows a gain of potential
energy by expanding the system in the periodic directions. The gain of energy means
that image charges along the z-direction have a greater influence in comparison to the
replicated charges in x and y in an extensive system even through the reduction of
the image charged by the refection coefficients. We use to compare the ICMMM2D
with the direct sum of the Coulomb interaction based on the electrostatic potential of
a collection of N charges:

Etotal =
1

4πε0

∞∑
i=1

Qiφi, where φi =
1

4πε0

∞∑
j=1(i 6=j)

Qj
rij
, (7.1)

23
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Figure 7.2.: Comparison of ICMMM2D for different system sizes concerning the x- and y- direction

Etotal = 1
4πε0

∑∞
i=1Qiψi , with ψi = 1

4πε0

∑∞
j=1(i 6=j)

Qj
rij

where rij = ri − rj .
Despite we are in a 2d+h geometrie, we will use an Ansatz which is used in 3D

PBC.

E =
1

4πε

1

2

N∑
i=1

N∑
i=1

†∑
n

qiqj
|rij + nL|

, (7.2)

where L is a vector that consists the box expansion and ε = εvacuumεsubtract. The
sum over n is running over all lattice point2 n = (nxLx, nyLy, nzLz) with integers
nx, ny, nz. The † symbolizes that we omit i = y for n = (0, 0, 0) in the main cell to
avoid double counting. The derived sum conditionally converges for a defined way of
summing up the independent terms (spheric, cubic, cylindric, etc.). We are going to
use a cubic system to perform the calculations. Even in a cubic system, one is just
able to calculate the direct sum for a few replicas and heavily relies on a cut-off for n
because the algorithm scales with O(n6

cutN
2
particle). The performed calculations show

that it was sufficient to choose n = 11. In order to come closer to the slab geometry
we can choose different replica box numbers along the finite z and infinit x and y
direction. And take into account that the charge in z direction is changing through
the respective reflection coefficients. In principle we split the sum in 4 terms which are
corresponding charge sequences used in the ICMMM2D. charge qi∆b, qi∆∆b, qi∆

2∆b,
....

position −zi, −(2lz + zi), −(4lz + zi), ...
and
charge qi∆, qi∆

2, qi∆
3, ....

position −(2lz − zi), −(4lz − zi), −(6lz − zi), ..., To simulate a particle in between
metal, we need to take the images charges at the boundaries into account. To perform
a similar calculation in espresso, we need to set the parameters. ICMMM2D requires
as parameters the charge position, the charge itself, the reflection coefficients k1, k2,
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and a prefactor C = 1
4πεvaccumε2

.

k1 =
ε2 − ε1
ε2 + ε1

and ak2 =
ε2 − ε3
ε2 + ε3

(7.3)

where ε1 and ε3 are the permittivities of the layer along the z-direction which sur-
round the subtract layer with permitivitty ε2. In VOTCA we are able to simulate a
few hundred nanometers of a semiconductor. Therefore an appropriate choice of the
layer thickness along the z-direction is 300Å. In theory, the potential energies of the
ICMMM2D calculations will converge against the direct sum value for large x and y
expansions, due to the small interactions of the replicas in this directions. Because
ICMMM2D is optimized for smaller applications, the calculations will need longer
for each magnitude enlargement. Hence we choose 10000Å as the length in x− and
y−direction and k1 = 0.5 and k2 = −1. In figure 7.3 we see that even when we just
use the direct sum without taking the reflection coefficiants into account the results
fit in-between the slap but the potential is as expected stronger at the boundaries.
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Figure 7.3.: Comparison of direct sum and ICMMM2D algorithm for a test particle moving along

the z direction
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Figure 7.4.: Comparison of direct sum that includes reflection coefficants and ICMMM2D algorithm

for a test particle moving along the z direction
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By taking in figure 7.4 the reflections coefficiants into account we see that the
screening of the ICMMM2D and the direct sum at the boundaries is better. A different
approach is to construct a classical dielectric model consisting of three dielectric layers,
with permittivities of ε1, ε2 and ε3, in contact with each other to test the screening of
the ICMMM2D method. The system is composed of a subtract slab (z < 0), an organic
layer of thickness d(0 < z < d) and the vacuum film (z > d). The typical approach to
deal with dielectric boundaries it as mentioned before the method of image charges
as shown in figure 7.1. Therefore we assume in a z-direction a periodic repetition of
duplicates, based on the original box. The Each boundary lead to reflection coefficients
that are defined as Based on the position and charges presented in the chapter ’2D
slab geometrics’ it is simple to calculate a 1-dimensional solution for the Coulomb
interaction of a particle with its image

∆E =
e2

16πε0ε2

∞∑
n=0

(k1k2)2

(
k1

z + nd
+

k2

(n+ 1)d− z
+

2k1k2

(n+ 1)d

)
(7.4)

charges.
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Figure 7.5.: Comparison of analytical and ICMMM2D algorithm for a test particle moving along

the z direction

The plot 7.5 shows that the analytic and the ICMMM2D approach are much better
in treating with the different dielectric interfaces compared to the direct sum. The
direct sum is taken into account the enlargement of the distance between the particles,
but the reduction of the charge due to reflection coefficients are neglected. However
we are able to improve the result of the algorithm. Therefore we have to remember
that we are using the concept of image charges to simulate boundaries and exploiting
the systems periodicity. We are not able to place two image charges in the cells
left and right of the main cell cause higher order terms are canceling and we get an
infinite term. This can be handled by changing the image charge position form the
left cell to the right in the case that the test particle crosses the middle of the cell.
The plot A.1 in the appendix uses k1 = k2 = −1 and one observes a much better
fitting of the direct sum. At this point should be mentioned that the direct sum and
the analytical approach avoids the energy artefacts due to the artificial divergence of
classical electrostatics near the vacuum interface of the dielectric continuum model [5].
This effect affects the smaller system more than a larger system. Additionally, the
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direct sums and the ICMMM2D algorithm are converging into interactions which are
observed for just two image charges in large classical systems.
So far we noted that a charge carrier is behaving as expected in between the applied
boundaries, but we are interested in the way a carrier interact with further carries.
The interaction will be important because we are interested in the calculation the
interaction matrix even for the analytic solution. Therefore the next step will be to test
the how the algorithm handles more particles and calculate a pair interaction matrix.
So far we noted that a charge carrier is behaving as expected in between the applied
boundaries, but we are interested in the way a carrier interact with further carries.
The interaction will be important because we are interested in the calculation the
interaction matrix even for the analytic solution. Therefore the next step will be to test
the how the algorithm handles more then just one particle to see if the implementation
does not just treat the boundaries of the system correctly. Therefore the injection
of a second particle with charge e at fix position is the next test case, whereas the
calculation of the interaction remains the same as before. The comparison of 7.7 a) and
b) shows that we get a sufficient approximation of a semiconductor, due to applying
the direct sum on the electrostatic properties but for further comparison, we need to
rely on the analytic approach. But on the other hand, the direct sum leads to the
same results as the other applied methods if we choose k1 = k−2,i.e. we considering a
symmetrical systems. This means that we have found a tool to compare the calculation
of the ICMMM2D interaction matrix at least for same reflection coefficients. But what
is a good approach to deal with the pair interaction in semiconductor? The idea is
to expand the analytic approach which yields matching result for the semiconductor
case into x- and y-direction.

7.2. Pair interaction matrix on the example of CBP

To evaluate the total electrostatics in the Thole model, we are interested in expanding
the pair interacting matrix Gij regarding multipoles. The pair interacting matrix is
nothing as a matrix which consists of all interactions of carrier vector i and j and
gives the total energy of the system by summing over all charges:

Etotal =
1

2

∑
ij

qTi Gijqj . (7.5)

As test case we choose a system of 500 CBP molecules with 5000 sites which can
interact with each other as shown in 7.9
Due to the constructing of Gij , it is evident that the matrix needs to be symmetric.

From a computational point of view, it is enough to determine the upper triangle
or lower half triangle part. To test if the ICMMM2D algorithm preserves the right
predictions, it will be enough to check if the matrix is symmetric because we examine
the static behaviour before. Due to slow performance 3d analytic approach and the
direct sum we need to reduce the system size. We do not need to treat the diagonal
elements of Gij in this thesis because they need a special treating due to the self-action
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Figure 7.6.: semiconductor boundaries k1 = 0.5, k2 = −1
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Figure 7.7.: metal boundaries k1 = k2 = −1

Figure 7.8.: Comparison of analytical, direct sum and ICMMM2D algorithm for a test particle

moving along the z direction with a fix charge carrier in the center box

nature. We can use ~qi and ~qj which consists of 4999 components which are 0 and one
which is 1.Even so, in order the present them we going to use each 1000 element so
that we will see a 5x5 matrix. The ICMMM2D matrix,

MICMMM2D =


g1,1 −0.04716 −0.04805 −0.04950 0.00552

−0.04717 g1000,1000 −0.1156 −0.09630 −0.07362
−0.04806 −0.15569 g2000,200 −0.08597 −0.06694
−0.04951 −0.09630 −0.08597 g4000,4000 −0.03476
0.00552 −0.07362 −0.06694 −0.03476 g5000,5000
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Figure 7.9.: System of 500 CBP molecules

and the direct sum matrix

Mdirectsum =



g1,1 −0.06171574 −0.0689306 −0.1488697 −0.3166535
−0.1520251 g1000,1000 −0.118146 −0.1722671 −0.2951772
−0.1516867 −0.1264734 g2000,200 −0.1439937 −0.2731144
−0.1516867 −0.1264734 −0.1264734 g4000,4000 −0.2731144
−0.0937269 −0.08631007 −0.1065622 −0.1396134 g5000,5000

.


We observe for the ICMMM2D, and the direct sum results are in the same order of
magnitude but that the direct sum matrix is not symmetric. This means that we
get different result taking for exchanging the vectors qi and qj . Therefore we are not
able to apply the method to adding carriers with the opposite sign to the system
anymore to simulate dielectric contrast anymore. Unfortunately, the expansion of
the analytic approach has the same problem that the solution is not equal under
exchanging carriers. Dos Santos et al. provide a different method with the calculate
the pair interactions in 2d+h geometries. [1] Unfortunately, they just provide a solution
for the energy if we assume the same dielectrica at the boundaries. To get a more
general solution, we need to a little effort into it. We will start from the electrostatic
potential at r = (x, y, z) that satisfies the Poisson equation:

∇2G(r, ri) =
4πqi
ε2

∞∑
nx,ny=−∞

= δ(r− ri + nxLxx + nyLyy). (7.6)
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The periodic delta function can be Fourier transformed to:

∞∑
nx,ny=−∞

δ(x−xi+mxLx)δ(y−yi+myLy) =
1

LyLx

∞∑
nx,ny=−∞

e
i[ 2πmx

Lx
(x−xi)+

2πmy
Ly

(y−yi)],

(7.7)
where n are the Fourier modes. The Green function now takes the form:

G(r, rj) =
1

LxLy

∞∑
nx,ny=−∞

gn(zi, z) exp
i[ 2πmx

Lx
(x−xi)+

2πmy
Ly

(y−yi)] . (7.8)

By intersecting eq. 7.8 into 7.6 one find:

∂2gm
∂z2

− k2gm(zi, z) =
−4πqi
εsubtract

δ(z − zi), (7.9)

where k = 2π
√
m2
x/Lx. The general solution has the form Ae−kz + Bekz. By using

that the potential will be vanishing as z− > ±∞ and need to be dacay exponentially
in the outsight the box. The symmetry of the green function in combination with the
applied boundaries are defining:

gn(zi, z) =
2πqi

εvacuum
[e−k|z−zi| + ∆e−k(z+zi) + ∆e−2kLzek(z+zi) + ∆2e(−2kL)ek|z−zi|],

(7.10)
where ∆ is the usual reflection .
With this method we are able to calculate an symmertic matrix, but we observe the
same problem as for the fast fourier transformation. There is a high number of fourier
modes that needed to be calculated due to the small system size and this methode
needs further proceeding.

MGreen =



g1,1 0.02345 0.02345 0.02345 0.02345
0.02345 g1000,1000 0.00058 0.02345 −0.0002
0.02345 0.00058 g2000,200 0.02346 0.023460
3.75315 0.02345 0.02346 g4000,4000 −0.02345
0.02345 −0.0002 0.02346 0.02345 g5000,5000

.





8. Conclusion and Outlook

I showed that one needs to rely on scholastic models to calculate the charge carrier
mobility and the charge carrier density probability. To solve this problem regarding
time evolution the stochastic model of choice is the master equation which is frequently
addressed by KMC methods. But in order to do so the calculation of hopping rates
in each time step is essential. These calculations are computational demanding due
to the long-range character of the Coulomb interaction.
In this thesis, I showed that the ICMMM2D algorithm is efficient choice to calcu-
late the Coulomb interaction in slab geometries. The treatment of dielectric contrast
tested by comparing the results with the analytic solution, whereas a comparison with
the direct sum showed an appropriate treatment of multiple carriers. The ICMMM2D
algorithm leads to acceptable result regarding calculating pair interactions with a sig-
nificant decrease in computational time. The matrix consisting of all pair interaction
can be easily expanded into multipoles as it is shown in chapter 1. This expansion can
be used to build a Thole mode which is needed to perform the rate calculation in the
KMC algorithm in VOTCA. In the end, we could perform more efficient simulations
in 2d+h geometries due to the efficient performance of the ICMMM2D regarding error
estimation and accuracy.
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A.1. Figures
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Figure A.1.: Solution for k2 = k1 = −1
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