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Preface

Summary

The Schrodinger equation describes the motion of the microscopic particles that constitute our world
such as the electrons or atomic nuclei. Albeit being applicable to the smallest particle that we
know of, it has observable consequences in the macroscopic world. It determines the conductivity
of metals, it tells us which materials are magnetic and whether they show exotic behaviour such as
super-conductivity.

Unfortunately, solving the Schrédinger equation directly for any piece of material that is visible for
the human eye is practically impossible. Already a grain of sand contains 10%® (that is written out
10.000.000.000.000.000.000.000) electrons and atomic nuclei. This means that only specifying the
initial positions of the particles requires to safe an incredible amount of data; a procedure which is
unfeasible for any human or computer.

Due to the fundamental problem of applying quantum mechanics to practically relevant scenarios, a
number of effective and approximate methods have been developed. In essence, they all try to reduce
the dimension of the problem, i.e., the curse of the enormous amount of data required to simulate the
Schrédinger equation.

In this thesis, we try to analyze and expand one of those methods called Density Matriz Embedding
Theory (DMET). In a lot of physical systems, especially when considering solid states, we can already
learn a lot about its physics when describing its properties on a small fragment of the whole system. In
a system with interacting particles though, we cannot simply consider just a subsystem and describe
its properties without taking into account its interactions with the rest of the system.

The basic idea of DMET is to divide the considered system into two parts called impurity and enwvi-
ronment. The impurity is chosen to be so small that its wave function can be computed exactly. In
the environment, only those degrees of freedom directly interacting with the impurity are considered
and are included in our description. The physics on the environment itself is neglected.

In the following, we will explain in detail how this can be done specifically. In part I of this thesis,
we will set the stage for the considered systems and present well-known and established methods to
solve them. In the next part II, we will present DMET in great mathematical detail, which allows
us to illustrate the advantages of DMET, but also some problems and drawbacks. We proceed by
expanding DMET to the treatment of coupled electron-phonon system in part III and applying this
new method to the Hubbard-Holstein model. Part of this work has been published in [53]. Finally,
in part IV, we discuss some problems of DMET and, by combining DMET with functional theories,
solve these problems. These insights, together with the extensive discussion of the DMET algorithm,
will be published soon [59]. We illustrate this new method with an example system. This work will
be published in paper [44] soon. We conclude this thesis by a summary and outlook (part V).



Zusammenfassung

Die Schrodingergleichung beschreibt die Bewegungen aller mikroskopischen Teilchen, wie zum Beispiel
Elektronen, Atomkerne oder Licht-teilchen, die Photonen genannt werden und aus denen unsere Welt
zusammengesetzt ist. Diese Teilchen sind zwar winzig klein, aber trotzdem beeinflussen sie Materialen
auf eine Art, die wir in unserer makroskopischen Welt beobachten kénnen. Mithilfe der Schrédinger-
gleichung kann man zum Beispiel feststellen, ob ein Material magnetisch ist oder sogar exotische
Eigenschaften, wie Supraleitfahigkeit besitzt.

Leider ist es aber trotzdem praktisch nicht mdglich, Materialien die fiir uns sichtbar sind mit der ex-
akten Schrodingergleichung zu beschreiben: Schon ein Sandkorn enthélt 10%® (das sind ausgeschrieben
10.000.000.000.000.000.000.000) Elektronen und Atomkerne. Deshalb ist es nicht mdoglich, auch nur
die Orte der einzelnen Teilchen auf einem Computer abzuspeichern, geschweige denn ihre Bewegungen
und Wechselwirkungen zu berechnen.

Weil es aber fiir bestimmte Fragestellung (also zum Beispiel fiir die Frage: Ist dieses Material mag-
netisch?) notwendig ist, auch den Einfluss der mikroskopischen Teilchen zu beriicksichtigen, beschéftigt
sich ein grofter Teil der Vielteilchengquantenmechanik damit, entweder die Schrédingergleichung ap-
proximativ und effizient zu l6sen, oder die Elementalteilchen auf einem Umweg genau beschreiben zu
konnen.

In dieser Doktorarbeit beschéiftigen wir uns mit einer bestimmten Methode, um die Schrédingergle-
ichung zu nihern und effektiv zu l6sen. Die Methode, die hier genau unter die Lupe genommen wird,
heifst Density Matriz Embedding Theory, abgekiirzt DMET. Diese Methode nutzt aus, dass fiir viele
Systeme, vor allem fiir Festkorper, oft ausreicht, wenn ein Teil des gesamten Systems genau beschrieben
werden kann ohne die Physik des restlichen Systems kennen zu miissen. Auch um nur ein Subsystem
zu beschreiben, muss man aber die Wechselwirkungen mit dem Rest des Systems beriicksichtigen.

Die Grundidee von DMET ist dementsprechend, das System, welches bestimmt werden soll, in zwei
Teile zu teilen: Ein Teil ist die impurity, also das Subsystem, welches genauer beschrieben werden
soll, und der zweite Teil ist das environment, also der restliche Teil des Systems. Die impurity wird so
klein gewahlt, dass es moglich ist, fiir dieses Subsystem die Schrodingergleichung exakt zu 16sen. Von
dem environment werden nur die Anteile beriicksichtigt, die direkt mit der impurity wechselwirken
und der Rest wird vernachléssigt. Die Hauptaufgabe von DMET ist also, herauszufinden, welche Teile
des environments eigentlich mit der impurity wechselwirken und welche anderen Teile vernachléssigt
werden kdnnen.

In dieser Arbeit werden wir detailliert erkldren, wie DMET genau funktioniert. Auferdem werden wir
die Methode, die eigentlich fiir rein elektronische Systeme entwickelt wurde, erweitern, sodass auch
gekoppelte Elektron-Phonon Systeme damit behandelt werden kénnen.
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Part 1

Introduction and foundations






Chapter 1

Setting the stage

This thesis is mainly concerned with extending and developing efficient and accurate methods to
describe quantum many body systems at temperature zero. While the concepts are quite general, we
will mainly deal with toy models from solid state physics such as the Hubbard model or its extension
towards coupled electron-phonon systems, the Hubbard-Holstein model. These toy models play an
important role in solid state physics, because although being the most simple approximation for the
description of interacting quantum particles, they already show the complex behaviour of many body
quantum mechanics. Thus, fundamental features of actual systems, such as quantum phase transitions,
can be described qualitatively in terms of these minimalistic models.

Before we start with the technical details, however, we feel that it is worth the try to embed our
theory in a larger theoretical framework: what does it actually mean to model nature? is there a
good reason to use toy models? or, more specifically considering quantum mechanics: if the basics of
quantum physics (which can be described in the Schrédinger equation) are known, why should one
bother to study it further?

1.1 Describing and understanding nature

This thesis is about fundamental research in quantum physics. Fundamental research is driven by the
curiosity to explain and understand how and why the world that surrounds us works.

This goal, being as simple as it is abstract, raises a lot of questions: What do we understand as the
world that surrounds us? Are we, as human beings, able to describe it? How can we interpret the
results of this description to formulate the laws of nature? Are there actually any laws of nature?

To speak already about the world that surrounds us is a misleading statement as it implicitly assumes
that there is an objective world, which we can observe without influencing it. But already Heisenberg
uncertainty principle tells us that this is impossible: observing a system changes it, information
is physical [37] or, as Wheeler states: It from bit [69]. Additionally, our observation of nature is
limited because our senses are limited. Thus it is not possible for anybody to grasp all aspects of
one situation or system, let alone the whole world. Any attempt to formulate the laws of nature
necessarily incorporates incomplete information about the given problem [26].

The goal to describe and understand all the whole world that surrounds us in one single model of this
world is not possible to fulfill. Nonetheless, we can still try to approximately describe a part of the
world that surrounds us and try to make sense of it. In order to do so we have to specify the specific
part of the world, which is called the system, that we want to consider.

In physics, once a specific system is chosen, there are two different strategies towards understanding
and describing it: experimental and theoretical physics. These two different approaches influence and
complement each other on many different levels. Both approaches, have the goal to answer a specific
question and to verify or falsify a theory.

In experimental physics, the answers to the questions are obtained by inferring from a finite amount of
data relations and correlations in a reproducible manner. An experimental physicist has instruments
with various knobs in her lab. She uses these instruments and knobs to prepare, transform and
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measure a given system.

Opposed to this, the instruments of a theoretical physicist are mathematical theories build upon a
given set of axioms and plausible approximations applied within a specific context. A theoretical
model is exactly defined by the given set of approximations.

Although it is not possible from neither of the above mentioned approaches to objectively find the
laws of physics, we hope that at the point where both descriptions of nature - from observation to
models and from models to observation - yield the same result, our predictions and reasonings are
not completely off. Theoretical models can be built from insights on how a certain system behaves
in an experiment and all theoretical theories have to be verified by an experiment. Also, theoretical
predictions can be used for posing leading questions to an experiment. On the one hand, often
surprising results are found in experiments that lead to completely new theoretical models and hence,
a new understanding of the world. Major examples, which have sparked a lot of research activity in
many body quantum mechanics include the discovery of superfluidity [30], superconductivity [49] and
the quantum hall effect [64], which then lead to the investigation of topology in theoretical physics. On
the other hand, there also have been predictions of physics that later were tested and confirmed, such
as the Aharonov-Bohm effect [12] or the description of topological states that lead to an understanding
of exotic materials such as topological insulators, Chiral superconductors or Weyl semimetals [65].

Since the development of powerful computers the approaches in both, experimental and theoretical
physics, have changed drastically: In experimental physics, computers are used to capture and process
the data gained by the experiment. In this way, a lot more measurements can be performed and
processed. In theoretical physics there are two different ways to take advantage of computers. Instead
of solving formulas and equations exactly or approximately with pen and paper, we can also set up
models and formulas which can be solved numerically on a computer. Another way to do numerical
physics is to perform simulations of models on the computer which can yield additional and new
insights about the implemented model and whether the model is capable to describe aspects of the
real world.

This thesis can be assigned to the group of theoretical physics. More specifically, we will deal with
method development in quantum many body physics. Method development is a branch of theoretical
physics, where instead of testing the validity of a model by comparing to measurements, we try to
find new ways to solve already existing models more efficiently. In this thesis, we specifically will try
to find ways to solve models describing the ground state properties of quantum particles in a closed
system at temperature zero. In doing so, on the one hand we try to expand our method to be able
to treat more realistic settings. These might be able to describe experiments in more detail at some
point. On the other hand, through the approximations we employ on a specific model, we hope to
learn more about fundamental laws of nature.

The goal of this thesis is threefold:

1. To explain the different numerical techniques that have been developed to solve model systems
in many body quantum mechanics. Specifically, we will concentrate on one technique that we
hope to be able to brigde the model description of the world with the experimental description
of the world.

2. To investigate a model system that describes some important aspects of nature, solve it and
explain the implications that our results have for the understanding of physical procedures.

3. To expand this method in two novel ways: first, we will extend the method to be able to describe
not only electronic systems, but also coupled electron-phonon systems. Second, we will consider
the method itself and demonstrate a pathway towards the description of more realistic systems.
We will show that this expansion performs well for a specific example.

1.2 The system and methods

An isolated quantum mechanical system or setup that is not influenced at all by the outside world,
can be fully described by a complex object called the wave function ¥ of the system.

The wave function describes the quantum mechanical state of a system of elementary particles in

4
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position space,
\I’(I'l,...7I'M)7 (1]‘)

where each particle ¢ has a specific position in the three dimensional space r; = (2, y;, 2;). It can be
abstractly written as |¥) and is the solution of the stationary, non-relativistic Schrédinger equation

H|U) = E|U), (1.2)

where H is called Hamiltonian, the operator corresponding to the total energy F of the system.
Unfortunately, the wave function is an object that grows in dimension exponentially with the number
of particles in the system, so we cannot simply solve the Schrédinger equation for normal situations
in nature, where usually a lot of particles need to be considered. In order to solve this dilemma, there
are again two fundamentally different approaches (depicted schematically in figure 1.1).

H|T) = E|T)
Wave function methods Functional methods

R ™
¥ A,

wave function |¥) is key variable target: lower dimensional object

efficient for 1D systems established for realistic systems

Y

solve SE for a subsystem
accurate and convergable

Figure 1.1: Sketch of some of the possible approaches to solve an isolated quantum system which is fully determined
by the Schrédinger equation. We will elaborate on the precise meaning of the different pictures and methods in the
next section(s).

Either, we can try to find an efficient representation of |¥) which makes it lower-dimensional and
thus, solvable. There are a lot of methods trying to do so, the group of methods they form is called
wave function methods (figure 1.1, left hand side). A completely different approach is to find different
objects that are not the wave function and that can be described more easily. This group of methods
is called functional methods (figure 1.1, right hand side).

There is a third approach that belongs to a group of methods in between the two groups explained
before, the embedding methods (figure 1.1, bottom). Here, instead of computing the Schrédinger
equation of the full system, which is very costly, we divide the system up into small parts, compute
their respective Schrodinger equation and then patch the result back together. The trick here is to
divide the system up such that, in every single patch, the interactions of the rest of the system with
this patch is still included.

In this thesis we concentrate on a method belonging to the third group called Density Matriz Embed-
ding Theory (DMET). We will explain and develop it in detail. Being in between functional methods
and wave function methods, we hope that it can take advantage of the best of both worlds and can
be further improved by insights from the other two groups of methods. The connection between the
methods and our pathway throughout this thesis is depicted in figure 1.1.
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Chapter 2

Wave function methods

2.1 Lattice wave function

When simulating model systems on the computer, we have to choose a finite basis set as a computer
can only process quantized data. There are many different choices for basis sets with advantages
and disadvantages such as k-space vectors, atomic orbitals or Gaussians. In this work, we choose to
describe our model systems in terms of the discretized real space. This will prove to be advantageous
for the development of the embedding method that is the focus of this thesis.

2.1.1 Particle states on the discretized lattice

In this thesis, we choose to describe our physical system on a discretized real space lattice where the
total number of lattice sites is V. The particles that are in the system are then positioned on the
lattice sites.

In quantum mechanics, there are two different groups of particles. The first group are fermions,
which have a spin of half integer and the second group are bosons which have an integer spin. We
additionally restrict ourselves to a non-relativistic setting. In this case, the only fermionic particles
are electrons. Further, in this thesis we consider two different types of bosons: photons which describe
electromagnetic interactions, and phonons, describing the lattice vibrations of a solid. In the following,
we consider electrons as the only fermionic particle, and when mentioning bosons, we have in mind
either photons or phonons.

In the most general setting, on each lattice site 4, all possible configurations of the two groups of
particles can co-exist. We call these possible configurations local electronic or bosonic states on lattice
site i. The local electronic basis on site i is denoted with the abstract vector |v;), while the bosonic
local basis on site i is denoted by |7;). Here, |v;) and |7;) span the local Hilbert spaces, |v;) € Hel,
|Ti> S Hbos-

Electronic states

The local electronic basis on lattice site ¢ is determined by
w= |1 (21)

which means that on each lattice site, we can find four different electronic configurations: either no
particles, |0), a particle with spin up | 1) or spin down | }) or two particles, one with spin up and one
with spin down | 1}). The local electronic wave function then yields the probability to find any of

7
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these states

lei) = o, |vi), (2.2)
Pu = (P11 1 Pt 90 ) (2.3)

where ,, is a vector giving the probabilities a of finding the system in any of the possible states.

The reason that on each lattice site, there can only be found one single electron with a certain spin is
called Pauli’s exclusion principle. In order to understand that, we have to consider two lattice sites
1,2 with two local Hilbert spaces on them. The wave function of these two states is

‘801’2> = (PVl,V2|V1> ® |V2>7 (24)

where ® is the tensor product between two different states and ¢,, ., now denotes all possible com-
binations of configurations of the two states:

Puy,vg = {900,07 ©0,15 --» 0,1, 1,05 @T‘L,Ti} . (25)

Electrons are indistinguishable particles, so the ordering of the states does not matter: |v1) ® |v) =
|v2) ® |v1). Pauli’s exclusion principle states that, upon interchange of two electronic particles, the
wave function is anti-symmetric:

[91,2) = Puy V1) @ [V2) = =Py 1 |V2) @ [11). (2.6)

From this equality, one can follow that no two electrons can be in the same state on the same lattice
site by considering a situation where two particles in the same state occupy the same lattice site

[91,1) = Puy V1) @ V1) = =y, 0y V1) @ [11) =0, (2.7)

which automatically yields 0.

Bosonic states
Analog to the electrons, we can set up a bosonic local basis on lattice site i as:

|00)

IT:) = |1> : (2.8)
0)

bos

Different to the electrons, two bosons can have the same state at the same lattice site, leading to an
infinite local Hilbert space (called Fock space) for the description of only one local bosonic state.

A bosonic wave function of site i again yields the probability to find the system in a certain state:

|Xi> = X~ Ti>7 (29)

where x,, now is an infinite vector.

The wave function of two lattice sites 7 and 75 is then

IX1.2) = X172 |T1) @ [72). (2.10)

Bosons are, like fermions indistinguishable particles |11) ® |72) = |72) ® |71), but unlike the fermionic
case, the bosonic wave function is symmetric upon interchange of a particle:

IX1,2) = X1, |T1) @ |T2) = X7y 72| T2) @ |T1). (2.11)

This is why, different from electrons, two bosons can be in the same state on the same lattice site.



2.1. Lattice wave function

2.1.2 The most general many body wave function in a lattice

Having defined what a local (electronic or bosonic) wave function is, we can now try to set up the
most general many body wave function for our system.

A wave function |¥) describes the quantum mechanical state of a closed system (that is, a system
that is not in any way influenced from anything outside of the system). The energy operator is the
Hamiltonian H which describes all the dynamics and interactions of the particles in the system. This
Hamiltonian can be generally written in the form

H=T+V+W (2.12)

where T' describes the kinetic energy in the system, V some arbitrary external potential and W the
interactions of the particles in the system. When considering closed systems, all observables can be
derived from the many body wave function |¥) which is the ground state of the eigenvalue problem

H|U) = E|T) (2.13)
called the Schroédinger equation.

Generalizing Eqns. (2.4) and (2.10), the wave function on all lattice sites of the discretized grid is
represented as

4 4 o0 %S}
) =" Y D i 1) @ @ un) @ 1) @ ® [Ty, (2.14)
Vi VN 1 TN

Here, N is the total number of regarded lattice sites. The |v;) are the fermionic and the |;) are the
bosonic bases as have been defined before.

The full wave function Eq. (2.14) is defined on the Hilbert space which is build from the tensor product
of all the (fermionic and bosonic) Hilbert spaces on the local sites
HN =Hy, QHu, ® .. @ Hypy @ Hry @ Hey @ 0o @ Moy, (2.15)
and has the dimension
dim (Hy) = LY (2.16)

where L = Lg) - Lbos = (4 - Lpos) is the total amount of local basis states per lattice. Note that
the wave function |¥) describes all possible configurations of fermionic and bosonic states without
fixing either the electronic or the bosonic particle number. The Hilbert space H, which contains all
possible particle configurations is often called Fock space F.

In this first part of the thesis, we will concentrate on the fermionic wave function, neglecting all
bosonic degrees of freedom. In this setting, the wave function reads

4 4
W) =" o nl)lvn). (2.17)

and is defined on the fermionic Fock space
Flem —qyferm — 9y @, @ ... @ Hyy. (2.18)

In this wave function Eq. (2.17) all possible combinations of all possible local basis sets are taken
into account and the dimension of the wave function is 4V. Note that this way of writing the wave
function is strictly local, the |v;) are only defined on lattice site ¢. While this might seem like an
unnecessary complicated way of writing a wave function, we need this definition for the explanation
of the tensor network method in section 2.2.

In order to describe an actual physical system, not all of the configurations {|1 ® 12 ® ... ® vy)} need
to be taken into account. There are two main reasons for that:

A priori: The fermionic wave function needs to obey Pauli’s exclusion principle which means
that all the wave functions not fulfilling this requirement need to be excluded. Additionally, the
wave function will reflect certain symmetries corresponding to the chosen Hamiltonian. These
symmetries arise through the conservation laws of the Hamiltonian.

9



Chapter 2. Wave function methods

A posteriori: In the wave function above, all particles on all lattice sites couple to each other,
given by the coupling tensor ¥,, ., . .yiri,....7yv. 1D & system with short range interactions
though, a lot of the entries in the tensor are zero or very small and do not have to be considered.
Specifically, the interaction strength between two particles often decreases rapidly with growing
distance between the particles. With the Tensor Network Method, we can find a basis that only
takes into account those elements of W, ., .y, 7y that are not negligible.

2.1.3 Lattice wave function with creation operators

In a fermionic system, the wave function needs to be anti-symmetric, which means that certain
combinations of Eq. (2.17) need to be excluded. One way to exclude those combinations from the
beginning which has proven to be very clean and practical for the formulation of problems in Fock
space, is to describe the wave function in terms of particle creation and annihilation operators [6,

pp.7].
&l Flerm _y plerm, (2.19)
) Q.. @.8wN) > VM + 1) @...8 1+ 1)@ ... [vn)

going from a state of M particles to a state of M + 1 particles in the system, which obey the anti-
commutation relations

J

{éj,éf} = {é1,8} = 0. (2.21)

{c é*} —&-elvéle =4y (2.20)

We further define |0) as the vacuum state, applying the particle annihilation operator to it yields the
absolute 0:

&]0); =0, (2.22)

where |0); is the vacuum state on lattice site ¢. With these definitions we can then set up a general
many body wave function that obeys Pauli’s principle as

4N
W) = Z ai )i, (2.23)

where |®) is called a Slater determinant, which is a fully anti-symmetrized many body wave function
with particle number M:

pn=11i=1
1 QD% 90]1\4
=——det|... ... ..||1n)®..x|vN). 2.24
VAT . . 1) lun) (2.24)
YN o PN

Unlike the wave function defined in Eq. (2.17), the combinations which are excluded a posteriori due
to Pauli’s principle do not enter at all.

2.1.4 Exploiting symmetries

In many physical settings, a Hamiltonian with certain symmetries is chosen. These symmetries then
leed to conservation laws such as particle number conservation, the conservation of the square of the
total spin of the system < $2 > or the conservation of the z-component of the total spin of the system
< S, >. In this thesis we will analyze the Hubbard model, in which, for example, all three of the
above mentioned conservation laws are fulfilled.

10



2.1. Lattice wave function

When it is known that the Hamiltonian obeys these laws, this can also be included in the wave function
in order to simplify it. This is why, in most of the standard wave function methods such as Hartree
Fock, Configuration Interaction, Coupled Cluster etc. the wave functions are set up on a basis set
that is defined on a subset of Eq. (2.16) and only includes physically sensible configurations.

2.1.5 Wave function in the mean field approximation
System which do not consider particle interactions can be described by the mean field Hamiltonian

T=Y tyele; = eqtlba, (2.25)
¥ a

which only includes the kinetic energy term of the general Hamiltonian H from Eq.(2.12). Here,
al, -]-‘ — F; (2.26)

) tto(1)) @ - ® |ton) — \/m > sign(o)|te1)) @ - @ |tom) @ |ponis1)),

UES €S,

e} = 510}, aa = (a})

are particle creation and annihilation operator in the eigenbasis of the Hamiltonian 7. They obey the
same relations (Eqns. (2.20,2.22)) as the creation and annihilation operators in the lattice basis. The
wave function of Hamiltonian Eq (2.25) can then be written as

D) = H allo (2.27)

|¥) is again a Slater determinant of M particles .

The connections between this eigenbasis of the Hamiltonian CLT and the local lattice basis & is given
by

N
110) =@M ell0), (2.28)
i=1
as defined in Eq.(2.24), yielding
M N
B) = “ T[S #telio (2.29)
p=11i=1

yielding the same form as Eq. (2.24). A Slater determinant has one possible (physically sensible)
particle distribution and usually a specific S, spin configuration of the many body wave function. It
is per construction the exact ground state wave function of the Hamiltonian in Eq. (2.25).

There are methods, which, starting from the ground state of this mean field system, use perturbation
theory to describe a general wave function belonging to an interacting system. These methods are
extensively used in quantum chemistry. Depending on the degree of perturbation, they are called
Configuration Interaction singles (CIS, perturbation theory of first order), Configuration Interaction
doubles (CID, perturbation order of second order). A similar and very powerful technique is the
Coupled Cluster method, where the interacting wave function is described with an exponential ansatz
of a Slater determinant,

0) = eT|D). (2.30)
Here, T is called the cluster operator and can be expanded, similar to the CI methods:
T=T+Ty..., (2.31)

where T} corresponds to all the single excitations in the system, T corresponds to all the double
excitations in the system and so on.

These methods are very efficient for system whose wave function can be approximated well with one
single Slater determinant; they fail when the interactions in the system become very large.

11



Chapter 2. Wave function methods

2.2 Tensor networks for one-dimensional systems

In this chapter, we will briefly explain the concept of the DMRG method, an efficient wave function
method for the diagonalization of one-dimensional (lattice) systems in terms of Tensor Networks.
While focusing on the one-dimensional lattice case here, the Tensor Network method can also be
used to treat higher dimensional lattice systems. Additionally, expansions towards the treatment
of quantum chemistry problems with continuous basis sets exist. We roughly follow the review by
Schollwéck [55].

2.2.1 The wave function as a Matrix Product state

As mentioned before, not all elements of ¥, ,, .., of the wave function Eq. (2.17) need to be taken
into account: while this object contains all interactions of all particles with one other, for a lot of
physical systems, many entries in ¥, ,, ..., are either zero or very small which means that correlation
between the two particles coupled by those entries is zero or very small.

Correlation, in other words, can be understood as the dependence between two particles. In many
physical system, the amount of correlation between two particles depends strongly on their distance
between each other; often the correlation decreases exponentially with distance. This is for example
valid for all gapped systems, while for metals, the correlation is usually very strong.

In other words, a lot of elements in the vector ¥,, ., .., can be neglected because their absolute
value is small and the observables of interest will still be rather close to their original values.

The goal of the Tensor Network Method now is to find a smart way to neglect those elements that
are not important by neglecting those coupling elements between two sites that are small. In order
to do so, we rearrange our wave function such that already in the form of the wave function, we can
distinguish between the different local basis states and the indices connecting them. Instead of writing
the wave function as one vector (which is a rank 1 tensor) of the dimension 4~ as defined in Eq. (2.14),
we write it as a tensor of rank L, where each lattice site of the wave function contributes with one to
the rank of this tensor as is depicted schematically in figure 2.1. In order to see how we then further

vy vV ... ... VN

Figure 2.1: In the tensor network method, the wave function, which in many other methods can be represented as
a vector of length 4% is written as a tensor of rank L. The total dimensionality of this object does not change through
this rewriting.

decompose this tensor, consider first a system with only two lattice sites 1 and 2. The wave function
(which in the tensor network method can be understood as a rank 2 tensor, that is, a matrix) can be
written as

(O) =D > Cuialra)ee) (2.32)

vy V2

where all physical information about this system is contained in the matrix ¥,, ,,. For a system with
no correlation between those sites

\IIVl,Vz = AI/lAI/2 (233)

can be written as the tensor product of two vectors of the dimension 4 x 1. Assuming correlation
between the two sites we can write the wave function as:

4
Vot = Z Am,mAZ- (2.34)
m=1

12



2.2. Tensor networks for one-dimensional systems

The wave function can be re-written in terms of two matrices, where one dimension of the matrix
is taking care of the local basis and the other dimension is the coupling from the first to the second
site. We can generalize the way of writing the wave function in Eq. (2.34) to a wave function that is
defined on L lattice sites. Then, for each lattice site we get a rank 3 tensor Ay1,'. Here, the index v;
is accounting for the physical state the system has at lattice site ¢. For an electronic problem,

T4

el

as before. The indices m; and m;_; on the other hand are so-called virtual indices; they account for
the correlation of the considered physical state on lattice site ¢ with the state on the lattice site before
(i — 1). In this way, each lattice site is only directly coupled to the neighbouring lattice sites and we
get a chain of tensors of rank 3, as is depicted in figure 2.2.

Although the Matrix Product State (MPS) form is only taking into account nearest neighbour inter-
actions, we want to be able to describe all kinds of wave functions (more or less efficiently). This is
why we have to be able to account for correlation between (in principle) all particle sites with each
other. In the MPS formulation, long range correlation therefore has to be taken into account implic-
itly through the local bond indices, that is through the correlation between neighbouring particles.
In order to explain this implicit coupling more clearly, we consider a wave function that is defined on
four lattice sites and can be written in the MPS form as:

4 4?2 4
Uswasis = D D D Avemy Al A2, AT (2.36)

m1:1 m2:1 m;;:l

The coupling between the first lattice site 11 and the second lattice site v is, as, before: both lattice
sites can be in 4 different physical states and combining all possible combinations of physical states
yields a matrix 4 x 4 = 16 possible combinations. The situation changes when now considering the
coupling between the second lattice site vo and the third lattice site v3. Although locally, on each
site we have four different possible configurations, the physical configuration of lattice site v5 is also
influenced by the coupling with lattice site vy, yielding to a virtual index my of maximally 42 = 16
different, configurations.

We can write any general wave function of L lattice sites as an MPS in this form:

4 42 4N/2 4
- my MN/2-1 MN—1
Uiy = D00 e D S Ay A AT AT (2.37)
mi ma myy/2 MN-1

vy Vo .. .. UN

Y

vy vy ... ... U
ror 00 Y

¢o0e9

Figure 2.2: As a second step, in the Tensor Network notation, we decompose the tensor of rank N into N-tensors
A; of rank 3. Again, this decomposition is just a rewriting and does not change any physical properties of the model.

Then the virtual indices m; (also called bond indices) indicate the correlation between the whole
system to the left of the bond (v; until v;) and the whole system to the right of the bond (v;41 until

vy). The number of bond indices grow with each site: the sum over m; goes from 1 to four (me:l),

4N/2 . .
hppt ) in the middle of

the chain. If the total amount of sites is odd, the sum over my/3_1 and my/o41 is simply the same.
From the middle of the chain on, the amount of bond indices again decrease until my_; which again

2
the sum over my goes from one to 42 (222:1) until the sum of my/o: (Z
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Chapter 2. Wave function methods

only goes from one to four (ZjnN—1:1>

When re-writing the wave function from a vector to this rank IV tensor, the total dimensionality, as
before, is 4V so nothing really is gained from the alternative expression. We call this representation
of a wave function a Matrix Product state or MPS.

Singular value decomposition In order to make the explicit calculation of the MPS feasible for
larger systems, some approximations must be made, specifically, the dimensionality of the bond indices
must be reduced. As the amount of indices in each sum is 4%, indicating the correlation of the system
to the left of the bond (r; until v;) and the system to the right of the bond (v;41 until vy), we
hope that for systems with low correlation between its particles, some entries in the sums can be
neglected. A measure for this gives the singular value decomposition. We will explain the singular
value decomposition [33, pp. 564] by considering the MPS in Eq. (2.37) more closely. Specifically, we
are interested in the coupling between two (arbitrary) elements of the MPS wave function that we can
re-write in a new form:

4" 4°
— m; my
\I]Viayi+1 = E AVi,mz:Au,;+1 - E LViamigmiRVi+1' (238)

m¢:1 mizl

B ¥

Figure 2.3: Singular value decomposition: When regarding two neighbouring sites, the correlation between the
particles on the sites can be measured via the singular value decomposition. The matrix connecting site ¢ and 741 is
diagonal; the entries are the singular values. Their amplitudes are a measure for the correlation between the particles
in the system.

Here, 01 > 03... > 0, are the singular values of the two matrices and the procedure is depicted in the
sketch 2.3. The matrices L,, ,, and R}, are orthogonal matrices in the sense that

> Ly L™ =0y, (2.39)
S RIRY =0y, (2.40)

Our goal is to approximate the sum in Eq. (2.38) by only taking into account those addends belonging
to singular values o; which are bigger than a certain value §. The addends belonging to singular values
below this threshold will be neglected, yielding a sum that goes over less indices, ms < 4°

ms
Vyviis = O Lugm,om, R (2.41)

m;=1

0+ 0-0-0-0+0
- 640 - 0+0

Figure 2.4: Gauge freedom of the MPS formulation: The MPS notation is not unique, but a certain gauge can be

chosen, depending on whether the singular values are absorbed on the right hand side lattice or the left hand side
lattice

The MPS written in Eq. (2.37) is not unique. This is due to the general gauge freedom in the
formulation of many body quantum mechanics. Specifically, here the gauge freedom manifests itself
in the auxiliary indices: we can absorb the singular values o,,, in Eq. (2.41)either to the right lattice
site or to the left lattice site as is schematically depicted in figure 2.4

14



2.2. Tensor networks for one-dimensional systems

2.2.2 The Hamiltonian as a Matrix Product operator

In order to find the ground state MPS, we also need to write the Hamiltonian chosen to describe our
physical system in a similar way as the MPS, namely, as a Matrix Product Operator (MPO), which

is depicted in figure 2.5.

Figure 2.5: Similar to the decomposition of the wave function into a MPS, also an operator can be decomposed
into a Matrix Product Operator (MPO). The difference here is that there are two physical indices (one in going, one
outgoing) which then forms a chain of 4th order tensors.

Any operator acting on a Hilbert space of dimension dim (1) = N can be written as:

4 4 4
H="3" 3" > Hies e ) va)cfvr) (| (pa (s (2.42)

V1,41 V2,142 VLKL

where H[J2- I is then a tensor of rank 2L. Similar to the tensor of rank L which describes the

transition matrlx U, . ., defining the wave function Eq. (2.37), this tensor can be decomposed into
a chain of L tensors of rank 4 which is then called a Matrix Product Operator (MPO):

42 4L/2
MI)HZ ML_ vy V2, w1 VL/2,WL/2-1 VL,WL—1
Bt ZZ S W W W Wk (2.43)
w1 w2 wr /2 WL-1

Here, the w; again correspond to the correlation of the left part of the chain (going from 1 to 7) with
the right part of the chain (going from ¢ + 1 to L). Unlike an MPS though, we have two physical
degrees of freedom per tensor: one dimension of the tensor (v;) corresponds to the physical state of
the in going MPS and the other dimension of the tensor (u;) corresponds to the physical state of the
MPS after applying the MPO onto in going MPS.

2.2.3 The variational principle in the Tensor Network method: Density
Matrix Renormalization Group

We want to find the ground state MPS, that is, the MPS that minimizes:

min [<\If|mx1/> - E<xp|\1/>] . (2.44)

—F =0

Figure 2.6: Energy minimization in the Density Matrix Renormalization group style: We optimize the whole MPS
by only optimizing one single tensor (belonging to one lattice site) at a time. Due to the chosen gauge, this can be
rewritten into an eigenvalue problem.

We do that by always only optimizing with respect to a single tensor of the MPS, belonging to a
specific local site

0

] (<qf|ﬁ|\p> - E(\I/|\I/)> =0 (2.45)
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Chapter 2. Wave function methods

at a time and then sweeping through the whole system by performing this optimization for each site
(figure 2.6). In order to find the global minimum of the MPS, several sweeps are usually necessary.
This problem corresponds to a generalized eigenvalue problem which can be simplified to a normal
eigenvalue problem by choosing a clever gauge as is depicted in figure 2.7.

EPCP RIS

Figure 2.7: Sketch of the DMRG-gauge, where one site is chosen to not absorb any singular values. The sites to
the right and to the left each absorb singular values, leaving them diagonal in the before mentioned fashion.

We decide that the specific site ¢ + 1 that is minimized will not absorb any singular values, whereas
all sites to the left (site ¢ until 1) will absorb the singular values coming from the right, and all sites
to the right (sites i + 2 until L) to always absorb the singular values coming from the left. This is the
Density Matrix Renormalization Group (DMRG) form of writing a MPS.

Then, the calculation of the MPS wave function is very easy, as, due to their orthogonality, all sites
but the one being minimized yield a unitary matrix, as is schematically depicted in figure 2.8.

Figure 2.8: Using the gauge freedom of the MPS, the overlap of two states on the same lattice site is simply a unity
matrix.

2.3 Summary

In this chapter, we have given an overview over different ways to formulate lattice wave functions. We
presented various, commonly used and successful methods to solve those lattice wave functions. The
different techniques can be divided into three groups:

e Exact solution of the wave function

The Full-Configuration-Interaction method (which is also called Exact Diagonalization), diago-
nalizes the wave function of interest exactly. Being exact, it can be applied to any possible wave
function. The disadvantage of this method is that its numerical costs grow exponentially with
the number of considered particles. As such, it can only be used to solve the wave function of
small systems with only a few particles in them.

e Wave function methods that have a Slater determinant as the starting point

A lot of quantum chemistry methods, such as Coupled Cluster or Configuration-Interaction
Singles or Doubles are very efficient methods starting from the mean field description of the
system of interest and then doing efficient perturbation theory on this basis. They are very
successful in describing systems that can be approximated well by one single Slater determinant,
they fail when the there are strong interactions present.

e Tensor network methods in one dimension

The Tensor Network method uses that a wave function on the lattice can be written in terms of
local Hilbert spaces. Here, the wave function is split up into tensors of third order, describing
only one lattice site; interactions between the sites are considered through a so-called virtual
index. This method is effective for systems with short range interactions as in this case the
correlation between two particles decreases drastically with their distance. With the Tensor
Network method, locally strongly interacting particles can be described very well.
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Chapter 3

Functional Methods

In the following chapter, we give an overview over existing functional methods and their advantages
and drawbacks. This part of the thesis roughly follows an excellent talk, given by Klaas Giesbertz in
the scope of the Young Researchers Meeting (YRM) in 2018 while adapting the presentation to lattice
models. Part of this talk has been published in the book [52, pp.125].

3.1 Hierarchy of different functional methods

In order to describe the properties of any quantum mechanical system, instead of solving the Schrédinger
equation directly (as has been presented in the previous section), one can also bypass this high di-
mensional problem and try to calculate the observables of interest directly.

An object that usually is of great interest in this context is the ground state energy E. From the
Schrodinger equation, we know that this property is a functional of the wave function:

E[U] = (U|H|D). (3.1)
The Hamiltonian is defined here as
H=T+V+W= Z tijc;, acj o+ Zve’(tnw + Z w”cwc;L oCi,oCio (3.2)
1,J,0 i,7,0,0"

where T'is the kinetic energy, V an arbitrary external potential and W is some two-particle interaction.
é;o and ¢; , are the creation and annihilation operators of an electron with spin o on lattice site 7, as

defined in section 2.1.3. We further define the spin dependent density operator as n;, = élgéi,a.

Examining the total energy (U|H|¥), we see directly that it does not depend on the whole wave
function, but can be formulated in terms of objects that have a lower dimension than |¥):

(U|H|®) = Vn] + ThH] + W) (3.3)
Specifically, the external potential V[n] is a functional of the density n;:

Vin] = (0|V|¥) = an ext (3.4)
=> el i (3.5)
The kinetic energy T'[y] is a functional of the one particle reduced density matrix ~;;:

Tly) = (U|T|¥) = thg%] (3.6)

=S e, (3.7)
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Chapter 3. Functional Methods

and the interaction energy W{[v] is a functional of the two particle reduced density matrix I';;:

W = Z wisijkt (3.8)
ikl
Dijt = Y ek o€l y18j.0tio (3.9)

3.1.1 Two particle reduced density matrix functional theory

From the definitions in Eqns. (3.4), (3.6) and (3.8), it follows that instead of trying to find the ground
state wave function U that fulfills

H|U) = E|W), (3.10)
where F is the lowest energy of the regarded system, one can as well just find the two particle reduced
density matrix (from now on called 2RDM), that contains also the information about the density and

the one particle reduced density matrix.

Ey = min(U|H|¥)

7
= min (V[I] + T[L] + W[L)) (3.11)
— min E[T] (3.12)

Unfortunately though, there is a condition that makes this process harder than it seems: We can only
consider physical 2RDMs, that means, the I' needs to belong to a certain wave function U:

P={I':30 T} (3.13)
min [T = Ep. (3.14)

The T" that are in P are called the N-representable 2RDMs and it is very complicated to implement
the conditions the 2RDMs need to fulfill in order to be N-representable numerically.

3.1.2 One particle reduced density matrix functional theory

Because the conditions the 2RDMS have to fulfill in order to represent a physical wave function are
complicated, one can also decide to search for the functional of the one particle reduced density matrix
(from now on called 1RDM) instead of trying to find the 2RDM functional.

Knowing the 1IRDM functional, the external energy V' and the kinetic energy T of the system can be
described exactly, but the interaction part needs to be approximated:

Ey = mq}n(llf|ﬁ|\ll>

— i (V] + 71 + i (21179} (3.15)

In addition to having to approximate W[|¥}], also the IRDMs do not automatically represent physical
systems. Like in the case above, one needs to make sure that the 1IRDM that is found to minimize
the energy FEj belongs to an actual wave function representing a physical system:

p={y:3¥ =} (3.16)
min E[y] + min (¥|W|¥) = E,. (3.17)
vep [ W)=y

The conditions the 1IRDMs have to fulfill are not as many and less complicated then the conditions
for the 2RDMs, which is why for some problems it is more sensible to choose this approach.
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3.2. Density functional theory

3.2 Density functional theory

In Density Functional Theory (DFT) [11, 7], we define the energy functional in terms of the density
n which yields

Ey = ngnopm\\m

= min (U|H|T)

|T)—n
= min (V[n] + min (/T + W|x11>) (3.18)

Here, only the potential energy functional as defined in Eq. (3.4) is found exactly while the functionals
decribing the kinetic and the interaction energy of the system need to be approximated.

There are two advantages of DFT which makes it very successful and used in a lot of different fields:
The first advantage is the small dimensionality of the density. The density is just a function of space
n(r) so its computation is much more feasible than the calculation of any other property such as the
1RDM or especially the 2RDM. The second big advantage of DFT is that every density which yields
the correct number of particles belongs to a physically sensible wave function, i.e. all densities are
ensemble N-representable which was shown by Hohenberg and Kohn in 1964 [23].

3.2.1 The Hohenberg Kohn theorem for non-degenerate ground states

The Hohenberg Kohn theorem for non-degenerate ground state[23] states, that there is a one-to-one
correspondence between the local external potential of a given interacting system V and its wave
function |¥), as well as there is a one to one correspondence between the wave function of this system
and its ground state density n(r):

1:1

V(r) W) bl n(r) (3.19)

This means that all ground state quantities of a many-body system are determined by its ground state

density. In other words, knowing the ground state density of a system and the belonging functionals,
one can describe every (many body) property of the system.

0) = |¥[n]) = (O) = (¥[O|¥) = (O)[n] (3.20)

3.2.2 Kohn Sham DFT

By itself, the Hohenberg-Kohn theorem is lacking practical applicability, as the exact properties of the
many body system as functionals of the ground state density are in general unknown which means in
other words, the term
Fln] = min (U|T + W|¥) (3.21)
[U)—n
needs to be approximated. DFT has become such a highly successful method due to an additional
insight, made by Kohn and Sham [36] that is schematically represented in figure 3.1.

The Hohenberg Kohn theorem states that any system is unambiguously defined by its density. Beside
that, Kohn and Sham later showed that additionally, to each density n(r), one can find one interacting
system with belonging wave function ¥ and external potential V(r), but also one non-interacting
system with a (different) belonging wave function ® and a different external potential V(r).

While the interacting system is hard to solve, the non-interacting system can be solved more easily,
but has the same density as the interacting system.

The non-interacting system can be described by a single Slater determinant which can effectively be
solved by solving uncoupled one-body equations of motions. Thus, the density of the non-interacting
system reads:

D (Eiy +05) @t = et (3.22)

ni =Y |l (3.23)
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interacting non-interacting

Figure 3.1: One-to-one correspondence between interacting and non-interacting system: A system consisting of

interacting electrons w;; and an external potential v$** (left hand side), if fully determined by the many body wave
function |¥), but also by its density n;. There exists one and only one non-interacting system (right hand side),
with the same density n;, but a different Kohn-Sham potential that is defined as vg(r) = vs[n(r), vext(r)]. In the

non-interacting case, the full system is determined by the Kohn-Sham potential.

In order for the interacting and the non-interacting system to have the same density, the external
potential of the non-interacting system needs to include the terms accounting for the interaction and
correlation in the non-interacting system:

v =Pt — X[ (). (3.24)

K3 K2 ? Ve

The second term in this equation accounts for the electrostatic potential created by the density n;
(Hartree term) and the term exchange and correlation interaction (exchange-correlation term), both.
While the Hartree term is known, the exchange correlation term is in general not known and needs to
be approximated.

In Kohn-Sham DFT, the term v [n, v$*!] can be found self-consistently: An initial guess for the Kohn-
Sham potential vg is made, from which, with equations (3.22), the density n; can be calculated. As the
density enters directly in the Kohn-Sham potential (Eq. (3.24)), a new guess for v{ can be computed,
yielding a new density and so on. Repeating this procedure until self-consistency gives an estimate
for the (interacting) density.

Once the Kohn-Sham potential is known, also the density (of the non-interacting and the interacting
system) is known. More importantly though, the energy functional of the interacting system can be
approximated by the non-interacting system:

E[n] = T[n]+ V[n]+ W[n] = Ts[n] + Z 0" + Brge[n)]. (3.25)

In Kohn-Sham DFT we have thus an explicit expression for the kinetic term T[n]. As this kinetic
term in DFT is dominating (and usually also more error prone), this already helps improving the
functional a lot.

The only term that needs approximation in Kohn Sham DFT is the exchange correlation term, which
is part of the Hartree-exchange correlation which accounts for all interactions in the system:

Bixe[n] = Fn] — Ts[n] (3.26)
;"] = 7@;{7;:[74 (3.27)

There are many different techniques and approximations to find the exchange-correlation potential
v¥°[n], the fundamental one being given by the Local Density Approximation (LDA), which can be
expanded towards the inclusion of gradients (GGA). There are also a lot of hybrid functionals, which
use parameters from other methods in order to fit the functional to experimental values [36, 51, 4, 5, 40].

3.3 Summary

In this chapter, we have given an overview over the hierarchy of different functional methods. We
have explained that in order to avoid the computation of the wave function, we can instead formulate
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3.3. Summary

the energy of a system in terms of its 2RDM, or, with approximations, in terms of its 1IRDM or
density. While the 1IRDM and, even more so, the density are much less complex objects than the
wave function, the challenge in functional methods consists in finding the functionals of the IRDM or
the density that determine the desired observables, such as the energy.
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Part 11

Density Matrix Embedding Theory
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Chapter 4

Introduction: What is Density Matrix
Embedding Theory?

So far, we have presented two possible ways to treat quantum mechanical (lattice) systems: One
approach is to try to solve the Schrédinger equation

Ho|V) = E|V), (4.1)
I;[el = Tel + Uel (42)

for a given general electronic Hamiltonian directly by re-writing both the wave function as well as the
Hamiltonian in an efficient way and making approximations to those quantities. One possible approach
along these lines has been presented in section 2.2 as the tensor network method. Even though
the tensor network methods give very accurate results and numerical costs to solve the Schrodinger
equation is scaled down to polynomial growth with system size, it is still a fact that all wave function
methods grow too fast with the size of the regarded system, making it hard to compute large systems.

Another approach to deal with quantum mechanical problems are functional methods, where instead
of trying to solve the Schrédinger equation exactly, this minimization problem is written in terms of
functionals which are given in terms of one-body Green’s function, reduced density matrices or the
density itself, respectively

(U|H|W) = V[n] + T[] + W[T]. (4.3)

While these methods scale very well with growing system size, they have the disadvantage that all
the physics is now hidden in functionals of the density, IRDM or 2RDM and finding functionals of
observables in terms of those properties can be a complicated task.

There is another possible approach to treat quantum many body systems, namely the embedding idea.
When using an embedding method, instead of solving the Schrédinger equation for the whole system,
a small subsystem is chosen, which is small enough to be solved efficiently. The various embedding
techniques then differ in how the rest of the system is treated and how the connection between the
embedded system and the full system is made.

We will consider one embedding approach, namely the Density Matrix Embedding Theory (DMET)
which is depicted schematically in Figure 4.1. In DMET, additionally to computing the chosen sub-
system, which is called impurity, also the interactions of the rest of the system with the impurity are
included. In other words, in DMET, we divide the system into two disentangled parts: The so-called
embedded system which consists of the impurity and the part of the system interacting with it, and
the environment consisting of the part of the system not interacting with the impurity. The embedded
system determines the physics of the impurity, including interactions with the rest of the system (and
with that, also finite size effects and the influence of the boundaries). Since the embedded system is
much smaller than the original system, it can be computed efficiently with an accurate wave function
method.

In this thesis, we target lattice Hamiltonians, as explained in chapter 2.1. Thus, the following deriva-
tion will be shown for the lattice-site basis.
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impurity bath
- Ry N\
—0—0—0—0—0 0000 °
l projection
—0—0@—X—x—X
G AN J
embedding part, CAS environment

Figure 4.1: Basic idea of DMET: Instead of solving the full system with a wave function method, we split it up
into an impurity (turquoise) and a bath part (black). While the impurity is treated explicitly and as accurately as
possible, the bath part is split up into one part that interacts with the impurity (violet) and one part that does not
interact with the impurity (orange). While the part not interacting with the impurity is discarded, the interacting
part, together with the impurity region, is solved accurately with a wave function method. In order to separate the
bath into the two parts, a projection from the lattice basis to a new basis is necessary.

The following part of this thesis is structured as follows: In chapter 5, we will derive the mathematical
details of Density Matrix Embedding Theory. Then, in chapter 6, we will present the individual steps
of the DMET procedure for a simple example. In the last chapter 7, we will give a recipe on how to
practically implement this method and illustrate some subtleties and problems of the method.

26



Chapter 5

Mathematical derivation

In this chapter, we explain and derive in detail the Density Matrix Embedding Theory (DMET),
which was introduced in 2012 by Knizia and Chan [34, 35]. Although loosely following a review article
[70] of the group of Chan, we make an effort to describe each single step with all mathematical and
technical details, including the treatment of a simple example, that can be found in chapter 6. This
way, we are not only able to understand DMET thoroughly, but can also pin down possible pitfalls
and suggest improvements.

The general idea of embedding methods is depicted in figure 5.1: We start from a system which is
determined by the wave function ¥ (left hand side of figure 5.1). As ¥ is a very high-dimensional
object, it cannot be computed in general. Instead, we choose a part of the system, which we call
impurity (middle of figure 5.1, depicted in orange), that is fully determined by the wave function
Wimp- For many observables of interest, it is sufficient to describe only a small part of the whole
system as accurately as possible. As the impurity interacts with the rest of the system though, it is
not sufficient to just describe the wave function on the impurity; it is necessary to also describe the
interactions of the rest of the system with the impurity. Thus, the goal of DMET is to describe the
impurity region, including interaction of the rest of the system with it. In order to do that, but without
having to compute the wave function ¥ of the full system, we find an effective system, determined by
the wave function Wy, which we call embedded wave function. Weyy, is defined on a subspace of the
Fock space describing the full problem. This subspace is optimized to describe the impurity region
and the interaction of the rest of the system with the impurity as accurately as possible.

system impurity effective system

Figure 5.1: General idea of embedding methods: As the description of the wave function of the full system is
oftentimes not feasible, a subsystem, called impurity is chosen. While keeping this impurity region as it is, the rest of
the system is projected onto an optimal basis describing only the interactions of the system with the impurity. The
effective system, containing the wave function of the impurity and part of the rest of the system can then be solved
accurately. Graph is adapted from [44]

5.1 Exact embedding of the interacting system

In the tensor network method explained in section 2.2, the wave function is split up into L third-order
tensors, where each of those tensors represents one lattice site. In DMET on the other hand, we are
interested in splitting up the wave function into two different parts, one small part which is called
impurity and one big part which is called bath. We are then only interested in the physics on the
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Chapter 5. Mathematical derivation

impurity, which is influenced by the bath and try to treat the bath as inexpensive as possible while
still considering all interactions and correlations between impurity and bath.

As explained in section 2.1.2, we can write a general wave function in the lattice basis as a vector of
length 4%:

ZZ ZW e ) lp2) o). (5.1)

vy V2

Choosing one part of the lattice that we call the impurity and the remaining part that we call the
bath, we can split |¥) up into:

4
Y s, VDV2) VN ), (5.2)

vi=1vyo=1 l/NiI“p:l

|B) = Z Z Vg 1N |V Nip 1) -+ [N ) (5.3)

here |A) is only defined on a certain number of impurity lattice sites Niyp, and |B) is the rest of
the system, namely the bath. As we treat a translational invariant system, we can always choose the
impurity region to be at the beginning of the system, that is, at sites 1 to Nimp. We can then write
again the full wave function as:

4Nimp 4(N=Nimp)

ZZ Z Vij|A:) ® |Bj) (5.4)

in this equation, ¥;; is the connecting matrix between |A;) and |B;) and has the dimension 4imr x
4N_Nimp i

Similar to setting up of the wave function as a tensor network which we explained in section 2.2.1,
we now use the Singular Value Decomposition (sometimes also called Schmidt Decomposition) of the
matrix ¥;;. The Singular Value Decomposition is a mathematical relation [33, pp. 564] that is valid
for arbitrary matrices and can be expressed as:

4Nimp

U= UinhaVJ;. (5.5)
«

Here, U, and VJ ; are orthogonal matrices and the A\, are the so-called singular values of this decom-
position. The dimension of « corresponds to the dimension of the smaller of the sub spaces. Plugging
Eq. (5.5) into Eq. (5.4) then yields

4Nimp 4(N=Nimp) 4Nimp
> 2 Z Uiaha Vi |45) ® |By),
i=1 j=1

4Nimp 4(N=Nimp) 4Nimp

- > Y AUl @ VB,
j a=1

¥)

i=1 j=1 = — ~Y——
=|Aq) |Bo)
4Nimp 4Nimp
= ) MlAd) ®[Ba) = Y AaldaBa). (5.6)
a=1 a=1

By reorganizing the equation we see that this same wave function can be decomposed into the sum
of the tensor product of two different sets of many body wave functions (|A,) and |B,)) describing
different parts of the system ¥. The number of wave functions needed to completely describe both
parts of the system is the same even if one part is much smaller than the other.

The dimension of the vectors though stays the same, being dim = 4N for the |A,) and dim =
4N-Nump for the |B,). While for the impurity region

4Nimp

)= > Uialdi) (57)
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5.1. Exact embedding of the interacting system

the basis vectors have just been rotated (the number of basis vectors [A,) and |A;) is the same), in
the bath region

N—Nimp

|Bo) = Z V5B, (5.8)

we find a_completely new basis by linear combination of the original basis sets (the number of basis
vectors |B,) is much smaller than the number of original basis vectors |B;)).

The full basis of the considered system, divided into two subsystems A and B is thus transformed such
that the number of wave functions is the same as the number of wave functions it takes to describe
system A.

5.1.1 The Projection derived from the interacting system

We use the re-written wave function Eq. (5.6) to define a projection P’ that projects from the set of
Eq. (5.4) to the new set found in Eq. (5.6):

where we define

|Coz> + ‘é:;> = |A0¢Ba> (510)

such that
Ca) = |Aa) Niuwp @ 10) N - Nipmp (5.11)
1C22) = 10) Ny @ [ Ba) N Nop» (5.12)

so that the |C,) just have values that are non-zero on the impurity although they are defined on the
full system and the |C) have just values other than zero on the environment.

Note that, although the number of wave functions |f1a3a> is only 4™P, they are still defined in the
whole system, that these vectors have a length of 4".

We now define the wave function on the impurity |¥imp), and the wave function on the environment
[P eny as

|\Pimp> = Z )‘a|Aa> € Fimp; (5.13)
(1, - Vimp | Wimp) = > V1, - Vimpl|Aa)Aa (5.14)
[Tenv) = Y AalBa) € Fenv, (5.15)

<ijp+1, -~'VN|\IIcnv> = <ijp+1, ...I/N|Ba>>\a, (516)

where Fin,p is the Fock space on Niy,p, lattice sites and Fep, is the Fock space on N — Nip,, lattice
sites.

Knowing that per construction the wave functions in the impurity are orthogonal to the wave functions
in the environment, (A,|B,) = 0 and that two different basis sets also form an orthogonal basis,
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Chapter 5. Mathematical derivation

(Au|Ap) = (Ba|lBg) = 0, a # 3 we can consider the overlap of these wave functions with the
impurity and environment region:

<\I’imp|
<\Ilenv|

a> = <\Ijimp|éa>a (517)

A.B
AnBy) = (Weny |C2), (5.18)

We can then summarize the |C,) and |C) in one index:

4Nimp
Pr=3" (IC)Cal + ICa)C2]),
y=1
2.4Nimp R } 3 R
= > GG Co=0C, for a=1,....;Nimp,7 = 1, ... Nimp, (5.19)
~y=1

= CN'7 for « =1,...;Nimp,¥ = Nimp + 1, ...2 - Nimp.

The C., are not normalized and have the length ||C,||.
We then define the projection P with the normalized |C,,) = C, /||C, |-

P =1C){C) (5.20)

As on the impurity, we have performed a unitary transformation the projection is a unitary matrix in
the Fock space of the impurity:

2.4Nimp

P=1g, + > [CNC]. (5.21)

o y=4Nimp 41
P then projects into a subspace of the full Fock space that contains the exact wave function
P|U) = |T). (5.22)
The projected Hamiltonian,

PUHP|Y) = Hop|0) = (ﬁimp + Hinp—eny + Hn> 2 (5.23)

has the same form as the original Hamiltonian H on the impurity but is defined on a much smaller
Hilbert space than the latter:

H 4N - 4N (5.24)

Hemp @ 2 - 4Nimp 5 2. gNimp | (5.25)

s0 that Hemp can be solved accurately by some wave function method.

By construction, the lowest eigenstate of H, . is found by varying over the span of
{|C>"/}’Y:1,”72.4Nimp .

P'HP|U) = PH|U) = PE|¥) = E|U). (5.26)

With the help of the projection ]5, we have thus found a way that makes it possible to solve a large
interacting lattice problem efficiently.

Unfortunately though, in order to find the projection 15, the full wave function must be known. Thus,
it is necessary to approximate the projection. One possible way to do so is to compute the projection
from a non-interacting system instead.

Note that this derivation is valid generally and for all wave functions defined in Fock space F. When
treating electronic systems with this method, usually the particle number in the system is conserved
by the Hamiltonian. In that case, both the wave function as well as the projection do not need to be
defined on the full Fock space but only on the part of Fock space F|y; with the considered particle
number M.
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5.2. Embedding of the mean field system

5.2 Embedding of the mean field system

As shown in the section before, in order to find the projection P for a given system, the many body
wave functions needs to be known which is not in general possible. This is why, we approximate
the many body wave function with a mean field description, which can be solved exactly. While
for the standard DMET algorithm, this mean field description is always an approximation to the
exact system, we will later discuss how this can be made exact with the use of ideas from functional
theory. We then find the projection Ps corresponding to this mean field system which is defined by
the Hamiltonian:

T=> tiele; = eatlia, (5.27)
ij a
where
F o F (5.28)
) ®@ ... |vN) 2 VN +1m) .01+ 1) ®...Q |vn),
i) = éf10), (5.29)

is the particle creation and ¢; = (éj) the particle annihilation operator in the local lattice-site basis

and

al, ~]-' — F; (5.30)

Z Sign(0) o (1) © - ® lhom) = —mmm D 5i80(0) 15(1) @ - @ |p10m),
JES M + 1 o€ES,

o) = @4,]0),
is the particle creation and a, = (éL)T the particle annihilation operator in the eigenbasis of the

Hamiltonian 7'. Here, S,, are all possible permutations of s.

The ground state of Hamiltonian T is a Slater determinant as defined in section 2.1.3 and can be
written as

@) =al,..all H (5.31)

Changing from the orbital basis to the local lattice basis is given by

Zw(u) AT (532)
M N
P) = HaL\0> =T1> ¢eélo). (5.33)
I woi=1
The goﬁ” ) are the overlap elements (u|i) between the site basis and the natural orbital basis, where
el M (5.34)
i:1...N. (5.35)

Also, the cpz(»“) can be considered as a matrix of dimension N x M.

5.2.1 Rewriting the exact embedding wave function

Dividing the Slater determinant of Eq. (5.33) into one part that is on the impurity and one part that
is on the rest of the system, similar to the interacting case we can write:

4Nimp 4N = Nimp

Z Z D4 Ai) © | By), (5.36)
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where
2Nimp v Nimp
[4) = 0imp + > [T aw D= 01l 10)imp, (5.37)
v=1 p=1 i=1
2Nimp v N

1B) = [0)env+ > 18 D #él|0)en (5.38)

v=1 p=1 1=Nimp+1

and |0)imp and |0)eny is the vacuum of the impurity and environment subspace, respectively.

The particle number of the subsystems |A) and |B) are not known, that is, particles can go from one
part to the other part. On the other hand, in a Slater determinant, the total particle number is fixed
so that both subsystems need to add up to the correct particle number.

In the following, instead of doing the Schmidt decomposition as shown in the interacting case, we pro-
ceed slightly different by using that the mean field system is described by only one Slater determinant
instead of by a sum of Slater determinants which would be the case in the interacting system.

5.2.2 Singular value decomposition

In contrast to the many body wave function, which can only be described by a sum of Slater deter-
minants, our mean field wave function is fully determined by the overlap elements (u|i) = ¢! which
were defined in Eq. (5.33). This is why we can simply rotate the single particle orbitals which build
the Slater determinant in order to find an optimized basis. This optimized basis should be built such
that it splits the system into one part only describing the impurity and one part only describing the
rest of the system, as has been done in the interacting case.

Because of this, instead of performing a Schmidt decomposition on the matrix ®;;, as in the interacting
case, we consider the overlap elements (u|i) = ¢! directly. They give us the norm that each orbital p
has on site i. In general, all of the elements (u|i) will be non-zero as all orbitals will have a certain
occupation on each lattice site. These M vectors of length N can also be considered as a N x M
matrix. In other words: in order to describe the wave function on the impurity region, all M orbitals
need to be considered although we know that actually, only maximally 2N, particles can be on the
impurity due to Pauli’s principle.

As in the interacting case, we want to find a basis that describes the wave function on the impurity
and the wave function on the environment separately. The minimal amount of basis functions needed
to describe the impurity wave function is 2Ny, in the following.

We consider the sub-matrix of ¢ that includes the part that is defined only on the impurity sites:
@4, where j: 1.Nijyp; v 1.M. (5.39)

In order to find a minimal basis set describing the impurity wave function, we rotate the matrix ¢
(which means in other words, changing the occupied single-particle basis of the wave function) such
that not all, but only a few of the orbitals still have an overlap with the impurity. In other words, we
do a Singular value decomposition [33, pp. 564]| of this Niyp, x M matrix

Nimp M

@ => > Ujot Vi, (5.40)

i=1 a=1

which re-orders all orbitals with respect to their overlap on the impurity. Here, U (size: Nimp X Nimp)
and V (size: M x M) are both orthonormal matrices. o is a Nimp X M matrix of the form

ocpr 0 O 0 0 ... 0
0 o2 O 0 0 0

c=10 0 o3 0 0 0. (5.41)
0 . 0 onn, O .. 0

The Matrix V rotates the orbitals into a new basis where only the first Njyn, orbitals have overlap
with the impurity sites.
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5.2. Embedding of the mean field system

5.2.3 Basis transformation

Again, we go from the eigenbasis of the Hamiltonian into a new basis, in which the wave function
takes a more complex form. We do this by inserting the rotation matrix from before as V/o Vo, = 1

M
@) = ]] aklo) H Z ),
p=1 =1 w
M M M M M
=TI ViVl S PR 52)
p=1 u « p=1 «
In the lattice-site representation, we can write the new creation operators as:
b, = fo‘ el (5.43)
i=1
with
Vi€ = ¢ = & = ¢! VO‘ (5.44)

Only the first Nimp, orbitals have a non vanishing contribution on the impurity sites while the rest of
the elements {[;<,,,, is zero.

Investigating the new occupied basis set more carefully, we additionally see that it can again be written
as one single Slater determinant

M
=det(V) [] bil0). (5.45)
We can see this by considering the definition of a Determinant [33, p.299]

det(V) = Z sign(o) H Vo) (5.46)

oeS, pn=1

M
= Z <H VW(H)> sign (Bz(l)"'BL(M)> ,

oS, \p=1

M
=TI Vi1--Varar - sign (61...634) o, (5.47)
p=1 —_—
+1
where S, are all possible permutations of x and in the last line of Eq. (5.47), we have only written
down one possible of all permutations. Additionally, as V' is an orthonormal matrix, its determinant
is one [33, p.308] so that we can write:

|®) = [T bt 0). (5.48)

=

a=1

In this new occupied basis though, differently from the other basis set, per definition the last M — Nimp
orbitals do not have a contribution on the first Ny, lattice sites

|®) =b!...b}

Nimp

‘0> Nimp ®b1v o1t M|0>bath' (5.49)

Note that here, although the operators BIT\I;mp 1 b do not act on the impurity space, the bJf bjmp
act on the full space, |[0)n,,, ® [0)path = |0).
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Chapter 5. Mathematical derivation

5.2.4 Splitting up between impurity and environment

Here, we re-write the wave function as a sum of wave functions where parts contain contributions only
on the impurity |A2) and others only contain contributions on the rest of the system |Bg). In order
to do so, we split up the first Ny, creation operators:

b, = b o bl @t 1o Nip, (5.50)
so that
Nimp
N a = D 06, (5.51)
i=1
N
b=y, &rel (5.52)
t=Nimp+1
The remaining M — Ninp, creation operators
bl a: Nipp +1..M (5.53)

do not have any contribution on the impurity lattice sites anyway.

The whole wave function can then be rewritten as:

Nimp M
U | RGN I ) A
a=1 a=Nimp+1
Nimp Nimp M
= H b}rvimp,a 0>Nimp ® H bva,a ® H bl‘0>envv
a=l1 a=1 a=Nimp+1
4Nimp 4Nimp

Yo 1) IBL) = Y |ALBL). (5.54)

Note that although there is no pre-factor in the sum of equation 5.54, because we built up the wave
function in terms of creation operators, Pauli’s principle is still fulfilled even without an additional
explicit anti-symmetrization.

5.2.5 The projection derived from the mean field system

Analogously to the interacting system, we define the projection of the mean field system as:

4Nimp
Po= 3 |AB)ALBY
a=1
4Nimp ~ y 3 5
> (IGanCal +1CaE)

a=1

2.4Nimp ) }
> IGHGs,

v=1

2.4Nimp

> G Csl. (5.55)

y=1

Here, we split the basis functions |/I§BZ> into those containing only contributions on the impurity
|C%) and those containing only contributions on the environment |C2*) similar to the interacting case.

Again normalizing yields

2.4Nimp

Pr= " | (5.56)

=1
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5.2. Embedding of the mean field system

In contrast to the interacting case, we only rotated the single-particle orbitals from the basis dL to

the basis BL This means that the non-interacting projection Ps is not only 1 on the impurity, but on
the whole system:

2.4Nimp

Pr= Y |Cacs| =1, (5.57)

y=1
so effectively, we have done nothing.

Projecting the Hamiltonian T thus just yields the same Hamiltonian again

PITPs =T, =T (5.58)

The projection from the interacting system P and of the non-interacting system Ps are derived directly
from the belonging (interacting or non-interacting) wave functions and, in general, are not the same:

P+ P (5.59)

5.2.6 Practical approximating for the projection

So far, we have not made any assumptions. While the projection P describes the full wave function
accurately, the projection Ps describes the Slater determinant of the mean field system (which is
itself an approximation to the full system) accurately. However we also have not gained any practical
insights as the projection of the interacting system cannot be calculated in practice. We have to make
approximations in order to find a projection that is directly applicable to the interacting problem.

As stated in the introduction, in the DMET method we are only interested in the physics on the
impurity of the considered system. Often, the properties of the impurity region are sufficient to
describe many properties of the full system (this will discussed in more detail in section 10.1.1). The
properties on the impurity are nonetheless influenced by the interactions and correlations between the
impurity and the rest of the system.

The property that includes all knowledge about the system on the impurity is the wave function,
restricted to the impurity |Uinp), as defined in Eq. (5.13). As we are only interested in |Uiyp), we
will now try to find a projector that only reproduces the wave function on the impurity, while the rest
of the system does not have to be reproduced.

Considering again the mean field wave function

8) =bl®..@by, @bl ., . abllo), (5.60)

im

we realize that all creation operators l;jvimp 41 to IA)}[V[ do not influence the impurity in any way. A
reduced wave function that exactly reproduces the impurity region can be defined as:

) = bl @ .. @b, |0), (5.61)
4Nimp

D) = D 142), (5.62)
a=1

<(p;mp|q)imp> =1 (563)

Note that this is not possible for the interacting wave function which can be written as a sum of Slater
determinants only:

R

n=1
where
N!

= (AN M)(IN = M) (5.65)
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is the binomial coefficient for spin systems [17].

Because an interacting wave function cannot be written in terms of one single Slater determinant but
only as a sum of many Slater determinants, irrespective on how we rotate the creation operators of
the wave function, all b! will have contributions on the impurity.

Going back to the mean field wave function, we can split up the wave function into one part that is
only defined on the impurity sites Vi, and one part that is only defined on the environment Nepy:

) =b] @ ... @b, |0),

= (b;r\’imp,l + benV 1) - ® (b;rvimp,Nimpb;r\’cm, nnp) |0>

4Nimp

> 1A @By, (5.66)

similar to before (Eq. (5.54)). With this new, reduced mean field wave function we define the projection
similar as before (Eqns. (5.55) to (5.56)) as

2.4Nimp

Pra= Y. leaes ). (5.67)

r=1

Applying the projection Prsed to the full mean field wave function now does not yield the same wave
function but the reduced wave function that is though the same as the exact one on the impurity:

Bigl®) = [®), (5.68)
(Nimp|®) = (Nimp|®). (5.69)

Projecting the Hamiltonian 7" yields:
PIT Py = Tom = Ty + Ty —eno + T, - (5.70)

Again, the, embedded Hamiltonian is the same on the impurity as the original Hamiltonian, TN;mp =

T

Nimp*
When diagonalizing the embedded Hamiltonian we see that the lowest eigenstate @) of the Hamil-

tonian has to be in the span of the projection, {|C>,SY'} v - But from this, we cannot follow
~=1,..,2-4Nimp

that |®) is in the span of the approximated wave function |®’) which we used to build the projection.
Differently stated, we can diagonalize the embedding Hamiltonian and find its lowest eigenstate

but is is not clear that this eigenstate is the same as the original wave function |®’) used to find the
embedding Hamiltonian. In order for the projection to be useful, the two wave functions must be the
same.

In order to relate the two wave functions |®') and |®), we consider more carefully what the projection
applied to the mean field Hamiltonian looks like:

T = Z fijéle;, (5.72)

2Nimp
Temb :erT red — Z tabbTbb (573)

Note that t,, is of a completely different form and dimension as the original Hamiltonian fij. We
observe that, as the mean field Hamiltonian is just a sum of single-particle Hamiltonians, so can the
projection P. ; be understood as a sum of single-particle projections:

t— ﬁ;resd{ﬁied = Eemb' (574)

In the following, we will consider the much simpler single-particle problem to show that the lowest
eigenstate of the embedded Hamiltonian is related to the wave function the projection was built from.
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5.2. Embedding of the mean field system

5.2.7 The projection operator in the single-particle picture

The solution of the single-particle Hamiltonian # is given as:
N
Ztijcp;‘ = elol!, (5.75)
j=1

where the ¢! are the single-particle orbitals and the e the corresponding single-particle energies. The
elements ¢! are exactly the same as the overlap elements of Eq. (5.32) in section 5.2. They consist of
N vectors of length M, if NV is the total number of lattice sites and M the total particle number in
the system, but we can also consider all elements together as a matrix:

ei el
o= . (5.76)
o ON - 4,0%
Similar to the approach before, we rotate the matrix so that only the first Ny, orbitals have a
contribution on the first Ny, lattice sites:

Nim
gl gl 0 0
= e= | T T T Nt M (5.77)
= = gNNimerl fNNilnp+1
5]1\[ gll:[[imp gll:[[imp"rl E%

In order to get the approximate projection, we neglect all elements without overlap on the impurity,
a Nimp+1 . . .
*>E , yielding the matrix:

T
o [T s
el . g

We split up the orbitals [{*) into one set containing the impurity lattice sites, |}, ) and one set
containing the environment lattice sites |3, ), so that

1€%) = 1&Rp) + €N (5.79)

Additionally, we renormalize both basis sets,

. 1
€8s = Tea—7 €N ) (5.80)
€80, |

. 1
€ 8en) = Tz SN ) (5.81)
Nenv 1 _ ||£N}mpH Nenv

so that both sets individually are orthonormalized:

Gl

env

(€8 |ENmw Y = (€5 |€R:

env

) =0, (5.82)
> = 50&['3 va?ﬂa VOZ,B. (583)

We now have a set of Njy,, orbitals |£§f,p> that are defined on all IV lattice sites but that are always

zero for lattice sites ¢ > Nimp + 1 and a set of Ny, orbitals \SJ%EDJ that are defined on all N lattice
sites but that are always zero for lattice sites i < Nijmp. We can put them together such that

|€Y) = |£j‘\‘[imp> for v =1, ...Nimp, (5.84)
|€) = €%, ) for a = Nipp + 1,...2Njmp, (5.85)

We build the projection from the |§~“>:

p= €7V (€°. (5.86)
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5.2.8 Projection of the single-particle Hamiltonian

Projecting the single-particle Hamiltonian ¢ yields
£cmb :ﬁTfﬁ
2]\]'imp
= > [ENEHEPNER)
a,B=1
(5.87)

Nimp
= Z ‘g%ixnp > <§?\(finlp t‘fjﬁvixnp > <§§7ﬂmp

a,f=1

Nimp  2Nimp
+ Z Z ‘gjo\éfimp><£?\£/vimp|t‘££’env><£§7 nv| + h.c.
a=1 B=Nimp+1

2Nimp

+Y D IERLIERL.

a,B=Nimp+1
We can now consider all terms of Eq. (5.87) separately. The embedding Hamiltonian on the impurity

E1ER) (€N |

can be re-written as:

Nlmp
fon” = D 1€ ) (€8 1R ) (R
a,B=1
Nimp  Nimp )
= 3 D IR € [ I (IR ) (R 197
a,f=114,i,5,j'=1
Nimp
= > [y (i, (5.88)
ij=1
P |4)(i| and used that both the lattice-site basis vectors i) as
)

where we inserted unitary matrices Z i
) form a full, orthonormalized basis set of the impurity region, so

well as the new basis vectors |§Nmp

that
Nimp

Z |€N,mp §N,mp| ) = 045

holds. Considering the mixing terms between impurity and environment: we can apply this trick only

(5.89)

once:
Nimp  2Nimp
~*Nimp— & & 21 & )
femy " = D 1R (€ R, ) ER |+ Pc
a=1 B=Nimp+1
Nimp Nimp  2Nimp
S S S R R DI, ) (G |+ e
a=1 i,i’=1 B=Nimp+1
Nimp  2Nimp
- Z o lidtis(@R, |+ e (5.90)
=1 B=Nimp+1
The embedding Hamiltonian then reads
Eemb = < fij éib > . (591)
tuj tab

5.2.9 The connection between the effective single particle embedding and

the original Hamiltonian
In the following, we want to show the connection between the wave functions £* that we used to define

the projection p with and the eigenfunctions of the projected Hamiltonian ¢qp,y,
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5.2. Embedding of the mean field system

The single-particle Hamiltonian ¢ acts on the Hilbert space that spans all single-particle orbitals:

H = span{®1...oM...ON }- (5.92)

Restricted to a specific particle number M < N, we only have to consider a subset of this Hilbert
space,

HM = span{p1...onm/2} = span{&...&u 2}

Nim
gh L g 0 0
S P & v 0 0
= . Nimn" Nimp-+1 (5.93)
511\/imp-‘r1 gNimp+1 gNimpil g%mp"rl
. N
13 Y S eyt oL e
HM . (5.94)

The orbitals belonging to higher particle numbers than M are orthogonal to the &% orbitals describing
the first Ny, orbitals,

o L&, ke M+1,.N,iel,... M. (5.95)
As the £ are orthogonal to each other,
(&)F Nt =0, 4,11, ... Nignp, (5.96)
also the split up and renormalized orbitals {NZ are orthogonal to all ¢, for k > Nimp
€ 1LeF i=1,..,2Nimp (5.97)

which means that also their spans are orthogonal to each other:

span {éi}i@ N 1 span {fk}ke(Nimpﬂ M) - (5.98)

-----
im

On the other hand, the span containing the renormalized orbitals & and the ¢Vimet1 contains the
span of the original single-particle orbitals on the impurity

span {él, ey éZN‘“‘”} D span {51, . fNi“‘P} ) (5.99)

From the above two statements, we can conclude that the span of the renormalized orbitals can be
decomposed into

span {él, ...,52N‘"‘P} = span {fl, ...,£N““P} U {)\k 1Lt @M} (5.100)

where \F = ZﬁiMH ¢ and span {51, e fNimP} C span {901, . <pM}.
Now we consider the Hilbert spaces of the minimization problem of the projected Hamiltonian. The
wave function of the original one-body problem is defined on the full Hilbert space, 2. We can rewrite

min (x|p'ip|x) = min (px|i[px) = min (Xltlx) = é. (5.101)
XEH XEH XGSpan{ﬁi,,QN.

imp
The €; is the solution to the minimization problem

2Nimp

&on =Y g, (5.102)
b=1
2Nimp 2Ni1np

gl =Y alt, > lal=1

k=1 k=1

2Nimp

> g (5.103)

k=1
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Chapter 5. Mathematical derivation

Since the lowest energies are reached for those @* that are constructed of only contributions contained
in

span {cpl, ...gpM} D span {51, ..§Ni"‘1’} , (5.104)
we can conclude that for the lowest Ny, eigenstates @7,
span {@', ..., @Nimp} = span {51, vees EN““P} . (5.105)

We can further conclude that although the single-particle wave functions used to create the projection
with and the solutions of the eigenvalue problem of the projected Hamiltonian are not the same, their
spans are the same and so are the 1IRDMs on the impurity belonging to those single-particle wave
functions:

Nimp Nimp
GrRE =) &rer = Z%%, ij : 1, s Nimp (5.106)
k=1

5.2.10 The connection between many body embedding and the original
Hamiltonian

The Slater determinants that can be built from the two spans

span {¢', ..., &N} (5.107)
span {@', ..., @N‘“‘P} (5.108)
are
@) =b]..0Y, @i} (5.109)
@) = bl ... b}vm |0) = det {¢!,...,¢Nmr ), (5.110)

We now want to show that, if the spans from which the Slater determinants are built, also the Slater
determinants must be the same,

span {&', ..., &N} = span {@', ..., gNmr } 5 |®) = |®'). (5.111)

This can be realized in two different ways:

One way is to again consider the procedure that lead us to the reduced projection Ps 4. we showed
the occupied single-particle orbital basis of which the Slater determinant is built up can be rotated in
arbitrarily and still yield a Slater determinant:

@) = det {p, .. oM} "B det {€1,..M) = |@) (5.112)

where we can use the same argument as in Eqns. (5.46) to (5.47).

Another way of realizing that two Slater determinants which are defined on the same span of single-
particle orbitals must be the same follows the proof in [58], which states that a Slater determinant is
uniquely determined by its IRDM. As the 1IRDM is uniquely defined by the span of single particle
orbitals, also the Slater determinant must be uniquely defined by its span.

5.3 Applying the reduced projection operator to the full Hamil-
tonian

We have found a projection Ped and proved that for a mean field system, the projection of the
Hamiltonian 7' does not change the wave function |®imp) on the impurity region.

In a next step, we assume that this projection can be used to project the full interacting Hamiltonian

H=T+U, (5.113)
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5.4. Improving the projection through a self consistent scheme

where T is the one-body hopping term from before and U is the two-body interaction term U x

é:{aé}aéwéjg. We project the two parts of the Hamiltonian separately, where T will be projected

Towp, = P TP (5.114)

The interaction part of the Hamiltonian is projected analoguosly by rotating each operator in the
Hamiltonian once;

B el = bl e (5.115)
Z éitTI:)rsed,ioz = i)ao,emb (5.116)
— Uemnp, = P PELUPS P2 (5.117)

In the non-interacting case, the Hamiltonian is projected onto the active space of the impurity, defined
such that it fully defines the wave function on the impurity region, but not the wave function in the
rest of the system. In other words, in the mean field system, although we do not consider all orbitals,
we do consider all orbitals with an overlap over the impurity.

When applying the same projection to the interacting system, we thereby assume that the same
orbitals as in the non-interacting case determine the wave function on the impurity. This is not
correct and it depends on the interaction strength whether this is a good or a bad approximation. For
large interaction strengths, we do not expect the approximation to be good. This is why we have to
improve the initial guess of the projection, that is, we have to choose the set of single-particle orbitals
that determine the basis of the wave function on the impurity more carefully. This can be done by
the following procedure, which is also schematically presented in figure 7.1

5.4 Improving the projection through a self consistent scheme

In order to improve the projection, we want to optimize the set of orbitals chosen to describe the wave
function on the impurity. Differently stated, we want a mean field system whose one-body properties
look as similar to the one-body properties of the interacting system as possible, which means that
their 1IRDMs should be as similar as possible.

In order to achieve this goal, we self-consistently add a non-local potential W to the mean field system
which we use to get the projection from:

T'=T+W=-t) ¢ tino+ > wyel,jo (5.118)
(1o i,j0
The non-local potential is optimized such that the difference between 1RDMs of the (projected)
interacting system and the (projected) non-interacting system is minimized:

min Z <\I/emb|cjcj\\llemb> — <q)emb|c;‘rcj|q)emb> , (5.119)
i,jE€emb
where
|Temb) = B ¥), (5.120)
|Pemb) = P21 |®), (5.121)

are the projected interacting and mean field wave functions.

Practically, we choose the non-local potential to be zero in the first guess. Then the projection is gained
from 7" and the embedding Hamiltonian is calculated. This small Hamiltonian can be diagonalized
accurately; we calculate its 1IRDM. Equivalently, we also project 1" to the new basis and calculate
the IRDM likewise.

The difference between the two IRDMs (as written in Eq. (5.119)) is then minimized with a simple
Downhill-Simplex method [46], that is known to be robust, leading to a guess for the non-local potential
and a new projection Hamiltonian 1. A new projection is gained, leading to a different Hamiltonian
and the procedure is repeated until the projection Hamiltonian yields a 1IRDM that is as close as
possible to the IRDM of the interacting system.
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Chapter 5. Mathematical derivation

5.5 Observables

After the converged DMET calculation, we have obtained two different wave functions:

e The interacting wave function of the embedded system, that is, a wave function that is in a basis
which we know how to interpret on the impurity but not on the environment.

e The non-interacting wave function of the whole system that is obtained from a Hamiltonian
with a non-local potential. Here, the non-local potential of this mean field system is optimized
to reproduce as well as possible the one-body properties of the interacting system.

With these two ingredients, a variety of physical observables such as the density, the double occupancy
or the energy of the system can be obtained.

5.5.1 Local properties

Local observables or properties that are non-local, but restricted to the impurity, can be calculated
straightforwardly by simply taking the expectation value with the interacting wave function of the
embedded system.

The strictly local observables which we will calculate within this thesis are the density (7;) = <éjéz>,
the double occupancy (f;47,,) and the kinetic energy density (K;) = Qti’i+1<éjéi+1>

The non-local property that is restricted to the impurity we will compute is the density deviation
between neighbouring sites (7;) — (7;41).

5.5.2 Global ground state properties

Generally, in order to calculate any global observable <O>, the full wave function |¥) of the system
needs to be known,

0 = (V]|0|W). (5.122)

As in the DMET algorithm we do not compute the full wave function, but only the wave function
on impurity subsystems, we approximate the global observable by calculating the wanted property on
each impurity individually and then summing up over all impurities

O~ Y On,, (5.123)

Nimp€EN

In a translational invariant system we can additionally use that the observable will have the same
value on each subsystem so we compute the observable once on the impurity and then multiply with
the total amount of fragments in the system.

The global observable in the subsystem is calculated by taking the partial trace over the impurity of
the embedded system,

0 =Trx,., (ﬁembﬂemb> : (5.124)

where pepyp is the density matrix of the embedded system that can be computed from the wave
function. In this thesis, we will compute the energy per site with this method.

Because in DMET, we do not have an expression for the full wave function of the system, some
observables cannot be computed. In fact, all properties that measure long range correlation such as
the static structure factor or correlation functions are out of reach.

5.6 Summary

In this chapter, we derived the mathematical foundations of Density Matrix Embedding Theory.
While the theory itself was invented by Chan and collaborators, in their papers, the derivation of the
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5.6. Summary

algorithms is implicit and very brief. Here, we explicitly showed each step that leads to the DMET
algorithm in its most general form which cannot, up to this point, be found in literature.

Before giving a practical guide on how to implement the DMET algorithm, we will now make an
attempt to make the abstract steps clearer. We do this by showing different ways to understand the
concepts of DMET (in terms of wave functions or in terms of 1RDMS), for a specific and simple
example. This makes it possible to understand the complexity of the DMET procedure from different
perspectives.
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Chapter 6

Examplification of the DMET
procedure

In order to understand each of the sometimes abstract steps of the derivation in the previous chapter,
we now consider an example system of three spinless particles on five sites. With the help of this
example, we frame and quantify the approximations performed in the previous chapter. This way, we
hope to shed light on the different subtleties of the DMET algorithm from this, be able to critically
review this method. We indicate the analogies to reference [70] for each step.

6.1 Fock space wave function in the mean field approximation

We start by considering our example mean field system, from which we want to obtain the approximate
wave function, as was explained in general in section 5.2. The mean field system consists of 3 spinless
particles on 5 lattice sites, its Hamiltonian 7" has the same form as defined in Eq. (2.25)

Z tijele;, (6.1)

where the single particle Hamiltonian £ is defined as

0 -1 0 0 0
-1 0 -1 0 0
t= 0 -1 0 -1 0 (6.2)
0 o -1 0 -1
0 0 0 -1 0
The ground state wave function of 7" is a Slater determinant that can be written as [70, Eq. 3]:
3
@) = ] af,0) = alalal|vac)s. (6.3)
p=1
Here, by |vac)n we denote the vacuum state on any N lattice sites,
[vac)ny = 10) ® ... ® |0) . (6.4)
—_———

times N

Equivalently, we can also write |®) in a local lattice basis, where it takes the form

3 5 3 5
= H Z@Eméﬂ"a@s = H Z WCT|Vac (6.5)

p=1i=1 p=1i=1
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Here, gpz(# ) = ®;,, are the overlap elements between the two different bases; in other words goE“ )

the norm that orbital u has on site ¢ [70, Eq. 4]. All overlap elements together form the matrix:

gives

R
3 W5 9
=i ©3 ¢i]. (6.6)
05 i Pi
o8 9 o}

Equivalently to the previous chapter, we now want to split up the full wave function. We want to
obtain an embedded system, consisting of the impurity and the interactions between impurity and the
rest of the system. The remaining part of the system (which does not interact with the impurity) can
then be neglected. We find this embedded system by rotating the matrix ®.

In order to find this rotation, we choose an example for ® with orthonormalized orbitals. Specifically,
we take the three lowest eigenfunctions of the hopping Hamiltonian ¢ and normalize them. This yields

1 1
7 05
é —-05 0

1

I 05 0
i 0.5 1
V12 : V3

We will from now on show all single steps with this example wave function.

6.1.1 Finding the rotation for the mean field wave function

We choose the impurity of the system to comprise in total two sites and all orbitals. This yields an
overlap matrix for the impurity that is defined as

L _p05 L
b — < ; 73 ) 7 (6.8)
! 5 —05 0

i

where we consider all orbitals, restricted to the impurity region. In this basis, all orbitals v have an
overlap over all impurity lattice sites j. A system defined on two lattice sites (and spinless particles)
can be fully described by in total two orbitals though, as this is the maximum number of particles
that can be found on the impurity region. We want to optimize the orbitals such that only two of
them have an overlap with the impurity.

In order to do so, with the help of Mathematica we perform a Singular value decomposition on that
part of the matrix:

2 3
=3 Y UiiSi Vi, (6.9)

=1 p=1
Here U (size: 2 x 2) and V (size: 3 x 3) are both orthonormal matrices and Xj; is a 2 x 3 matrix with
only 2 entries > 0 on the diagonal [70, Eq. 3].

From Mathematica, we get the explicit matrices as

—0.776775  —0.629778

v= ( —0.629778  0.776775 > (6.10)
0.993167 0. 0.

= < 0. 0.424602 0. ) (6.11)
—0.542834  0.486541  —0.68455

V= 0708115 -0.173099 —0.68455 | . (6.12)

—0.451557 —0.856338 —0.250563

The matrix V is now the sought-after rotation matrix, which rotates the orbitals into a new basis. In
this new basis, only the first two orbitals have overlap with the first two impurity sites.
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6.1. Fock space wave function in the mean field approximation

6.1.2 Basis transformation

We insert the rotation matrix V in ground state wave function of the Hamiltonian £, taking advantage
of the relation [70, Eq. 6, first part]:

ViraVap = 1. (6.13)

The Slater determinant can then be written as

3
E (5wza /|vac)s

’

c

Il
e
Q>

= —*
H
L

ot

I
e

p=1 p=1 p
3 3 3 3 3
= H ZZ‘/’LGVGMI&L/|VE%C>5 H ZV bT|Va’C (614)
p=1 p a p=1 a
Considering the lattice-site representation of the new operator:
b= Zael, (6.15)

we get the overlap matrix in this new basis representation as [70, Eq. 6, second part]

VpuEai = q)i,u — Eai = @i#VHU (616)
1 1
Vizs —05 0 ~0.542834  0.486541  —0.68455
—_— 2 1
E=®-V=| % 0 - 0.708115 —0.173099 —0.68455
5 05 0 —0.451557 —0.856338 —0.250563
ﬁ - .
1 1
= 0 5
0.771467  —0.267405 0.
0.625475 0.32982 0.
- 0.052699  0.775311  0.250563 | . (6.17)
~0.0826406  0.156721  0.68455

0.0633515  —0.440504  0.68455

We observe that in this basis, we achieved our goal: on the first two sites, only the first two orbitals
have entries and the third orbital has a contribution of zero.

We now investigate the new basis set more carefully [70, Eq. 9] and see that we can simplify it to a
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new Slater determinant form:

3 3
@)= [T Vabilvac)s
1 a

ll‘:
[ (Vlliﬂi + V12i?£ + V1313§)

+ (Vmg{ + szl;; + stj);r)))

+ (Varb] + Vaabl + Vaght) ] vac)s
= [ Vi1 VaaVash]bibl — Vi1 Va3 Vaab! b}

- V12V21V33BIIA)£B§ + V12‘/23‘@,11;J{5;1;§

+ VisVar Vaobl 3D} — Vi3Vaa Va1 blbLbL | |vac)s
=[ (V11Vaz — Vi2Va1) BJ{EE . stgi?;r),

+ (Va1 Vi — Vo Var) BIB; . V13i7;5,

+ (ViaVar — Vi1 Vaa) bI0) - Vasbl | [vac)s
:det(V)f)IlA);lA)yva(:)g)
=det(V) (B{B;|vac>2 ® B§|Vac>3_5)

2
=det(V) (H b [vac)s ® Bgvac>3_5>

a=1

2
= (H b [vac), ® B§|vac>3_5> : (6.18)

a=1

where we used that the Slater determinant of an orthonormal matrix is one.

det(V) = 1. (6.19)

The last operator lA)g has no contribution on the impurity lattice sites (that is, on the first two sites).
As this is the case, we can now split up the wave function into one part that is defined on the impurity
and a remaining part that is defined on the rest of the system

6.1.3 Splitting up between impurity and environment

Splitting up between impurity lattice sites and the environment lattice sites yields

2 3 5 3
b =303 Vau®uidl + 37 Vi @i (6.20)
i=1 p=1
b

=3 p=1

ot
imp,a Nenv,a

The whole wave function can be rewritten in terms of these split-up creation operators as

1) = [ (Blaps + D s) (Bhps + Bl ) 8] Ivachs
= [ (B + BBl s+ Bl bl BBl ) ] Pcds (020

We have now achieved the goal we stated in the beginning: solely by rotating the matrix ®, we have
split up the wave function into one part that contains the impurity and the interaction of the impurity
with the rest of the system and another part that does not interact with the impurity.

From this wave function, we want to define the approximate projection. In order to explicitly see the
implications for the projection does, we now consider the single-particle picture and specifically, the
one-particle reduced density matrix (1IRDM) in the single particle picture.
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6.2 The 1IRDM

Generally, the 1IRDM of the mean field system can be written in the new basis as

3
(@"[ele;)0m) DA

Mw

i = (@lefe;|®) =

=
Il

—
=
Il

-

I\Mw

3 3 3 3 3
= Z Z Z‘P?Vuavau’(p?/ = <Z 901 ua) Z @f/V,,/a = Z EiaEaj (6_22)
p=1p'=1a=1

p'=1 a=1

Knowing the structure of the matrix =:

imp imp

11 21 0
imp imp 0
_ 21 22
Zia = €31 &o3 33 | (6.23)
a1 &os &3a
&1 &5 Ess

we can explicitly write down the 1IRDM in terms of the single particle orbitals &,,;:

’y =
(E77)% + (627)? 'mpﬁlgrfp + élfgpilmp 511?")531 + f'mp£32 6P + 5112%42 €751 + 612 57 €52
ETPENTP + 5P (E5TP)? + (&557)2 ExrPEsy + EnaPEsn ExrPEs1 + EnaPEan ExrPEst + EnnPErso
llnlmfsl + Elmpﬁ 2 §1mp§31 + 622 &32 &2+ €2, + ¢2, €31841 + &32842 + 633843 31851 + E32852 + €33853
€7 Ea1 + €5 €2 521 €a1 + 6557812 E31641 + E32€a2 + E338a3 E +E5,+ 8 §41851 + €42852 + 43853
&7 61 + 657652 EnTés1 + 6557852 31851 + €32652 4 €33853  €a1651 + 282 + €43853 &2, + &2, + &2,

The first two lattice sites are still defined as the impurity. Considering this part of the IRDM more
explicitly and going back to the original basis, we observe:

lmp Z —%a—'aj
YD Vil

a=1p=1p'=1
= Z iy (6.24)

This means that impurity region does not change upon the basis transformation.

Considering the elements of the IRDM on the rest of the system, we can the eigenfunctions of the
1RDM on the environment:

Vi @5 = A (6.25)
3
nv € €2
VZ Z¢i j>‘e
e=1

2
=D 0N+
e=1
with 0 <\ < 1. (6.26)

Where we used that the third single particle orbital £€2 does not have any contribution on the impurity,
it must be fully determined by the environment 1RDM.

We can then split up the 1IRDM on the environment into one part interacting with the impurity and
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one part not interacting with the impurity:

Yo = AP i, Lan) + v [Eas] (6.27)
31 + &3, + &34 §31641 + &308a2 + E338u3  €31851 + 32652 + €333
= | &18a + E32842 + E338u3 €2, + &3, + €3, §41651 + 42852 + Ea3Esa
§31851 + 32852 + &33853 41851 + 42652 + 43853 2, + &2, + &2
&3 + &3, £316a1 + &328a2  £31851 + E32652 &35 E33&as &33&ss
= | &1€a + 32802 &+ &5 Enbst +&a&sa | + | E338u3 &5 Euzéss
£31851 +&32852  €a1€51 + Ea2ésa &2, + &, 33853 Cuslss &3y

Written less explicitly, the IRDM is defined as

Zg € = Z £4)(€°15).- (6.28)

a=1

We can split up each single particle orbltal into one part that is defined on the impurity and one part
that is defined on the environment and then rewrite the IRDM as

519 = lmp, + gNem”z (629)
3
Yij = Z ( imp,i + §N m,,i) ( imp,j + §N m,,j)
a=1
3
= Z glmp, imp,j + Z gva 7 1mp_] + Z glmp 1£Ncn\,,j + Z g?\fcnv,ié-?\/'cnv,j' (630)
a=1

The first term in Eq. (6.30) is defined just the impurity, where we know that the 1IRDM has not
changed upon the basis transformation

3
lmp Z €1mp i 1mpJ Z spfmp,isoip;np,j' (631)
p=1

Note that while in the first expression the sum over a only includes the first two orbitals, it includes
all three orbitals in the original representation, i.e., the sum over u goes over all three orbitals.

Considering the last term in Eq. (6.29) which only includes environment lattice sites, we can further
decompose it into:

3 2
Vo™ =Y i = D ENen i€ +EE (6.32)

a=1 a=1
Then, we can write the full IRDM as:

3 2 3
3¢3
i = D PhupiPhupg T Y Nt T D EN ifap Z &inp,i€Nenv.g T &6 (6.33)
n=1 a=1 a=1 ~

bath

imp emb mix mix

The first two terms are only determined by the first two orbitals in the new basis £ and &2 and at
the same time fully determine those two orbitals:

3 2
imp—emb __ i " a a
ij =D PhrapiPhiupg T D Een iV

p=1 a=1
imp emb
2
=2 8¢
a=1
Y11 Y12 0 0 0
Y21 V22 0 0 0
= 0 0 €3, +£63, €31841 + 32842 €31851 + E32852 (6.34)

0 0 &1 +E&326a & + &3, Ea1é51 + a5
0 0 &1&51 +83282 41851 + 12652 &, +&3
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6.3. Building the projection

This leads to the conclusion that in the single particle picture, the 1IRDM on the impurity and all
interactions of the rest of the system with the impurity can be determined by two orbitals ¢! and &2.
Just describing properties on the impurity, the third orbital £€> can be neglected. We want to find the
projection that does exactly this.

6.3 Building the projection

From above defined single particle orbitals, we want to build a projection that does not change the
one-particle properties of the hopping Hamiltonian ¢ on the impurity.

We define the projection in the single particle picture as

p= Z V(€. (6.35)

Projection of the single particle Hamiltonian then yields

2
plip = Z ) (Ear [El€a) (Eal- (6.36)

Note that here, we only consider the first two orbitals ¢! and &2 while the third orbital is neglected.

In order to take a closer look at the new form of the Hamiltonian, we again separate the single-particle
orbitals into those parts defined on the impurity and those parts defined on the embedded system,

[€ar) = |€a7) + €m°):

2

Prip =" l& ™) (€ HEmP)E™|

a’a=1
2
+ Z |£1mp nnp|t‘§emb><§§mb|+c_c.
a’a=1
S I (6.57)
a’a=1

We now consider the parts of the projection separately. The first part contains only orbitals defined
on the impurity. Here, we can go back to the original basis set as:

Pl tPimp = Z [P (¢imp| 7| gimpy (cime )

a’a=1
=3 el
a’a=1
= Z tu H‘(lep lmp
' p=1
Z Z [P Y (P 8) (ilE15) (Gl o
pw'p=11,5=1
- 3 (S ) i (o)
ij=1 \p'=1 =1
<]lsub|i> <j‘]lsub>
2
= > &yli) il (6.38)
i,j=1
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Chapter 6. Examplification of the DMET procedure

The mixing term considers the overlap of the impurity orbitals with the embedding orbitals. The
impurity orbitals are also rotated back to the original basis:

2
ﬁjnixfﬁmix = Z a’ a|§lmp fcmb| + c.c.

a’a=1

3 2
Z > wal€P) €] + cc.
1 a1
2
= Z D il (€T + e (6.39)

i=1 a=1

With that, leaving the environment part of the Hamiltonian as it is, the full hopping matrix ¢, after

the projection reads:
icmb = < él] éib ) . (640)
taj tab

The embedding Hamiltonian femy, has the same form as the original Hamiltonian on the impurity,
while the rest of it has changed. Also, while before the dimension of £ was 5 x 5, it is now 4 x 4 in the
new basis set as we have neglected the third orbital £3.

6.4 Two different ways to obtain the same projection

In the previous section, we have defined the projection in the single particle picture, motivated by
what we found for the 1IRDM in the single particle picture. As a remaining step, we want to explicitly
calculate this projection. The projection is determined by the single particle orbitals £€*. Those can be
obtained either directly from the wave function in the new basis or through the 1IRDM of the system.
This is why, there are also two different ways to obtain the projection. For our explicit example, we
will demonstrate that both approaches yield the same result.

e Explicitly through the wave function of the mean field problem

This is the intuitive way to obtain the projection: we can compute the mean field wave function
in terms of the single particle orbitals. Rotating the orbitals, we only choose those with an
overlap over the impurity to build the projection.

e Through the IRDM

This is what is practically done as the 1IRDM is a much more handy object than the wave
function, even in the mean field system. Although less intuitive, we will show that we obtain
the same projection by considering the 1IRDM of the mean field system.

Diagonalizing the hopping Hamiltonian ¢ with hopping t = —1:

0o -1 0 0 O
-1 0 -1 0 0
0o -1 0 -1 0
o 0 -1 0 -1
o 0 0 -1 0

(6.41)

yields the eigenvalues {—+v/3,v/3, —1,1,0} with eigenvectors (written as columns of a matrix here):

1 1 1
vz ve U5 05 &
05 -05 —05 05 0
1 1 1
O (6.42
05 -05 05 —05 0
1 1 1
vz ve U5 05 m
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6.4. Two different ways to obtain the same projection

The ground state wave function of the problem in the many particle picture (determined by the
mean field Hamiltonian T') is then a Slater determinant built from the three orbitals with the lowest

eigenvalues,

3 5
= H Z <I>wcT|vaC (6.43)

p=1i=1
where
1 1
v 90
05 —-05 0
1 1
o=| = 0 -% (6.44)
05 05 0
1 1
The 1RDM belonging to this wave function is then defined as
3
Y = ) (!
pn=1
0.666667 0.394338 —0.166667  0.394338 0.166667
0.394338 0.5 0.288675 0.5 —0.105662
= | —0.166667 0.288675  0.666667  0.288675 —0.166667 (6.45)
0.394338 0.5 0.288675 0.5 —0.105662
0.166667 —0.105662 —0.166667 —0.105662 0.666667
The goal of DMET is now to find an embedding Hamiltonian
PP = tem (6.46)

whose eigenvectors yield the same 1RDM on the impurity as v from the previous equation. There
are two different ways to find the projection p: directly from the wave function or through the 1IRDM.

6.4.1 Defining the projection directly from the wave function

In the above derivation, we find a basis set IA)E, in which only two basis function have an overlap with
the first two impurity sites in the lattice representation:

5
i=ZE (6.47)
with
0.771467  —0.267405 0.
0.625475  0.32982 0.
=—| 0052699 0775311 0.250563 | . (6.48)

—0.0826406 0.156721  0.68455
0.0633515  —0.440504 0.68455

As the third orbital does not have any overlap with the impurity, we do not need it in order to describe
the wave function on the impurity (that is, on the first two lattice sites). Additionally, we derived in
Eq. (6.24) that the 1RDM on the impurity is not changed by the projection. As in the non-interacting
case, the natural orbitals and the eigenstates of the hopping Hamiltonian are the same this means
that also the wave function on the impurity does not change with the projection.

Stated otherwise: The projection is a unit matrix on the impurity and consists of the (re-normalized)
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Chapter 6. Examplification of the DMET procedure

first two orbitals in the environment:

10 0 0 0
. [ o1 0 0 0 (6.49)
P=1 0 0 0052699/,/c —0.0826406/./c; 0.0633515//c1 '
0 0 0.775311/\/c;  0.156721/\/c;  —0.440504/,/c3
10 0 0 0
0 1 0 0 0
0 0 0451557 —0.708115 0.542834 |’
0 0 0.856338 0.173099 —0.486541
where
1 = 0.052699% + 0.08264062 + 0.06335152 (6.50)
co = 0.775311% + 0.1567217 + 0.440504. (6.51)

This is one way to get the projection.

6.4.2 Defining the projection through the environment part of the 1IRDM

The projection on the impurity is, as stated before, just the unit matrix. We additionally showed in
Eq. (6.27) that the environment part of the IRDM gives the same set as

5
bl = Zael. (6.52)
=1

The 1IRDM defined on the environment is

0.666667  0.288675 —0.166667
YN = | 0.288675 0.5 —0.105662 | . (6.53)
—0.166667 —0.105662  0.666667

Diagonalizing yields the eigenvalues {0.0136200671,0.8197132662, 1.} and the eigenvectors

—0.451557  0.856338  0.250563
ev = 0.708115  0.173099  0.684550 (6.54)
—0.542834 —0.486541 0.684550

The eigenvector belonging to the eigenvalue one is the orbital that does not have any overlap with the
impurity. It can be neglected for the description of the impurity. Taking the eigenvectors belonging
to the lowest eigenvalues, we can now define the projection as:

10 0 0
0 1 0 0

pf=1 0 0 —0451557 0.856338 (6.55)
0 0 0708115  0.173099
0 0 —0.542834 —0.486541

which is the same as the projection defined from the wave function directly.

6.4.3 The 1RDM of the embedded system

We apply the projection p to the hopping Hamiltonian ¢ to get the embedding Hamiltonian femp

pip=
0 -1 0 0 0 1o 0 0
oy X X 1 0 -1 0 0 01 0 0
=1 0 0 —04516 07081 —0.5428 0 -1 0~ 0 0 0 —0.4516  0.8563
0 s 01 oo 0 0 -1 0 -1 ][00 o7s 0173
' ' ' 0 0 0 -1 0 0 0 —0.5428 —0.4865
0. -1 0. 0.
~1. 0. 04516 —0.8563 | _
“| 0. 04516  1.4083 —0.0897 | ~ "™ (6.56)

0. —0.8563 —0.0897 —0.1280



6.5. Summary

Diagonalizing the new hopping Hamiltonian yields the eigenvectors

—0.513869  0.634511 —0.5 —0.288675
—0.705318  0.050269 0.5 0.5 (6.57)
0.099101 —0.061637 —0.625475 0.771467 )
—0.478167 —0.768810 —0.329820 —0.267405
with corresponding eigenvalues
{-1.372562,—-0.079225,1.,1.732050} (6.58)

Taking the eigenvectors belonging to the lowest two eigenvalues and build the IRDM from them yields

0.666667  0.394338 —0.090034 —0.242103
_ 0.394338 0.5 —0.072996  0.298613
Temb =1 _0.090034 —0.072996  0.013620 0
—0.242103  0.298613 0 0.819713

(6.59)

As can be seen by comparison, on the impurity (that is, in this case, for the first two sites) the IRDMs
of the full problem and of the embedding problem are the same.

6.5 Summary

In this chapter, with the help of the example of three spinless particles on five lattice sites, we have
explicitly shown every step in the DMET algorithm in terms of the treated wave functions and in
terms of the treated 1IRDMs. We have shown that, both treatments lead to the same result.
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Chapter 7

Practical implementation

Although very detailed, the above section might not be very helpful to understand the actual DMET
algorithm, as it is implemented in the codef. Also, there are a few technicalities and difficulties that
will be discussed in the following chapter.

The goal of this chapter is to give a practical guide for the implementation of the DMET code in the
flavour which is used in this thesis. In the first section, for the example of the Hubbard model, we
will guide the reader through the DMET steps which have to be implemented in the code. In the
second section, we will discuss in detail a few of the subtleties and problems we have come across in
the course of this thesis. We will reveal tricks that are used in the actual calculations and highlight
some of the drawbacks of the DMET algorithm. While some of the drawbacks can be circumvented,
as we will also show, other problems have to be considered in more detail.

7.1 Actual DMET steps

In this section, we will show each single step of the DMET code for the Hubbard Hamiltonian. The
goal of this section is to show the reader how to practically implement her own DMET code.

H=t Y el eje+ U fipi, (7.1)
()0

H|W) = E|D), (7.2)
which we also show graphically in figure 7.1.

1. Setting up the Hamiltonians as tensors

As a first step, we define the full interacting Hamiltonian. The one-body (hopping term) T is
then defined as a matrix with elements only on the first off-diagonal. The two-body (electron-
electron interaction term) U is defined as a tensor of fourth order. In the Hubbard model, it
only has diagonal terms U (4, 4,1, 1).

2. Computing the mean field 1RDM

The next step is to compute the IRDM of the mean field Hamiltonian 7. In the non-interacting
case, the eigenfunctions of the IRDM and of the Hamiltonian are the same. Thus, we diagonalize
the mean field Hamiltonian (in the first iteration, this is simply the hopping Hamiltonian, after
that, there will be an additional non-local potential added to it). The eigenvectors of this matrix
are then the eigenstates of the IRDM. The 1RDM consists only of the occupied orbitals, so we
take the lowest % eigenstates (each orbital can be occupied twice due to spin). We build the
1RDM in the lattice-site basis by computing each element as

M2
Yij = Z oo (7.3)
p=1

T The code implemented within the scope of this thesis is available upon request.
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Chapter 7. Practical implementation

Schmidt decomposition

)~ |4)® |Bi)

| = update
guess projection P75, | -
— |Bz > h red
|
l I A
impurity + bath: impurity + bath:
mean-field exact
rrmf . rrexact
Himp + Vlmp Himp
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mf exact
Y ghn
update [ |
Vim
P
mf __ .exac True
y =7
False

Figure 7.1: Schematic presentation of all DMET steps listed above.

3. Obtaining the projection from the mean field 1IRDM

The projection should leave the impurity region of the Hamiltonian unchanged and just project
the rest of the system onto a new basis set. Thus, the impurity part of the projection is simply
a unitary matrix. To find the optimal orbitals which build up the incomplete basis set, we cut
out only the part of the 1IRDM that is not on the impurity and diagonalize it. We then get three
different groups of eigenvalues

e Eigenvalues that are 0, belonging to the unoccupied orbitals of the 1IRDM

o Figenvalues that are 2, meaning that the full norm is in the environment. This also means
that the eigenvectors belonging to the eigenvalue does not have an overlap with the impurity
lattice sites

e Eigenvectors that are between 0 and 2. This means that the belonging eigenvectors do
not have its full norm on the environment, thus having an overlap with the impurity. The
eigenvectors belonging to these eigenvalues are the ones we choose to define the projection

The full projection has two parts: on the impurity, it is a unity matrix while the environment
part consists of the eigenvectors belonging to the eigenvalues between zero and 2:

. 1In;,., 0
— im - -~ 7.4
p ( 0 genv,1~~§env,2N;mp ) ( )

Note that each of the eigenvectors &, is of length N, so that the total projection matrix will be
of the dimension N x 2Ny, .

4. Obtaining the embedding Hamiltonian and calculating observables We use the
projection to build the embedding Hamiltonian:

ﬁemb = prsc‘de Arizd + PrSchprScBUPr‘ZdPer (75)

Note that here, T will always remain to be the simple hopping Hamiltonian, without additional
nonlocal potential. The embedding Hamiltonian is now small enough to be solved accurately
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with the method of choice (in this work, either by exact diagonalization or with DMRG). With
the wave function on the embedded system |Uep), we compute the IRDM

Yij = (Vemb| ¢l & Wermp).- (7.6)

5. Computing the IRDM of the non-interacting embedded system

We want to compare the IRDM of the interacting system with the IRDM of the non-interacting
system. As the IRDM of the interacting system is obtained with the embedding Hamiltonian, we
also compute the IRDM of the non-interacting system with the embedded hopping Hamiltonian.

6. Obtaining the non-local potential

We minimize the difference between the two 1RDMs by adding a non-local potential to the
embedded hopping Hamiltonian used to calculate the non-interacting 1IRDM. This is done until
convergence.

7. Self-consistency

From the step before, we obtain a new mean field Hamiltonian T =T+ V, where V is the non-
local potential. Now instead of using the simple hopping Hamiltonian to define the projection,
we use this new Hamiltonian. This will yield a different embedding Hamiltonian and different
1RDMs. We repeat the above steps until the non-local potential does not change anymore and

all _ g
T‘itr:L - T‘itr:L+1‘

7.2 Problems and subtleties of DMET

In the last chapters, for the sake of clarity, we considered the straightforward and easiest possible way
to derive and implement the DMET algorithm. There are however some subtleties and problems in
DMET that we have come across and that are worth mentioning. In this section, we will mention all
subtleties and problems known to the authors and offer solutions or bypasses if possible. Some of the
subtleties with deeper meaning and and some problems will be explained and discussed in more detail
in the last chapter 11.

7.2.1 Interacting and non-interacting bath picture

In the above derivation, we showed DMET in the so-called "interacting bath picture" [70, section
3.1/3.2], that is, we set up the original Hamiltonian to have interactions on all lattice sites. Differently
stated, in the first step, we generate the full Hamiltonian H=T+U , where the first part T is generated
as an N x N matrix and the second part U is generated as a tensor of fourth order, N x N x N x N.
Although working well in theory, this method has the downside that we have to store the U-tensor, an
object growing oc N* with system size N which can get expensive with respect to the memory costs
already for medium-sized lattices.

As the full system H is never actually calculated anyways and all the interactions between the impurity
and the rest of the system are mimicked through the optimized one-body orbitals that are given
by the projection p, the storage of the full interacting problem is not necessary. Instead, the so
called "non-interacting bath picture" can be implemented. Here, only the interactions within the
impurity are taken into account, in other words, only the interaction tensor Uy, of dimension
NNiwp X NNy X NNy X Ny, 18 built. Thus, the interactions within the embedded system and the
interactions between impurity and embedded system are not taken into account when building the
first projection p and are only later approximately included in the self-consistency loop.

imp

7.2.2 Optimizing the full (embedded) 1RDM or only the 1IRDM on the
impurity
In order to find the non-local potential W that optimizes the projection p, we minimize the difference

between the 1IRDM of the interacting system with the 1IRDM of the non-interacting system. There
are two possibilities how to do that in practice:
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Chapter 7. Practical implementation

1. Compare the 1RDMs on the impurity

From the DMET calculation, we obtain the wave function of the embedded system |¥cp1,). This
wave function is in the original lattice-site basis on the impurity. Thus we can calculate the
1RDM on the impurity of the system

Yij = (Wemb|&1 &1 Wemb)s 4,7 1 1. Nimp (7.7)
and compare it with the 1IRDM of the non-interacting system on the impurity
v5 = (®lele;|®), 0,5 1. Nimp. (7.8)

We see numerically that we can indeed find a non-local potential that leads to the same 1RDMs
Yij| Nimp = Vij| Nimp- Unfortunately though, when comparing the 1RDMs restricted to the impu-
rity, we encounter convergence issues for large interaction strength.

2. Compare the 1IRDMs on the embedded system
Alternatively to solution 1, we can also compare the 1IRDMs for the whole embedded system.
In order to so, we also have to project the mean field Hamiltonian to the embedding basis

PrsctiT Arid = Aemb7 (7.9)
Temblq)emb> = E~1|¢emb> (710)

and then minimize
min (<\Ifemb\ejej\q/emb> _ <<I>emb\éjej\q>emb>) L7 1o 2Nip. (7.11)

In this approach, we see numerically that the two 1IRDMs are never exactly the same which can
lead to ambiguities in the non-local potential. It is far more stable for large interaction strength
though, so in the following, this approach will be used.

The reason for the occuring instabilities and ambiguities will be analysed more in detail in chapter 11
of this thesis.

7.2.3 Symmetry breaking in DMET

In the DMET algorithm, we want to mimic the many body ground state wave function by a single
Slater determinant which is the ground state wave function of an approximate mean field system. In
other words: we want to describe a state that can only be determined exactly by a sum of Slater
determinants by just one single Slater determinant.

In order to describe many body features in this way, we need to allow more degrees of freedom than
usually existent in the mean-field description of the considered system. One way to expand the degrees
of freedom of the Slater determinant is to explicitly break its symmetry at the cost of violating the
conservation laws of the mean field description. In the DMET algorithm, this symmetry breaking is
done with the non-local potential W

In the self-consistency loop of the DMET algorithm, the non-local potential WNimp, defined solely on

the impurity is found which, added to the mean field embedding Hamiltonian Temb, yields the same
1RDM as the interacting embedding Hamiltonian Hgyp,. Then, in order to improve the projection

P# | we continue the Wi, on full mean field Hamiltonian:

T =T+V. (7.12)

The nonlocal potential V defined on the whole lattice is then

VN 0 0 0

V= 0 VN, 0 0 (7.13)
0 0 Ny 0
0 0 0 Wy
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Where we used the translational symmetry of the full system for the continuation of VNimp throughout
the full system.

One condition the Hamiltonian 7” has to fulfill (and that might not be seen immediately) is that it
needs to break the translational symmetry that the system described by the exact Hamiltonian H has.
If the translational symmetry of 1’ is not broken, the DMET procedure will immediately converge
trivially and the gained observables from this DMET run will not approximate the interacting system
in a good way. We explain this in more detail for the easy example of only 2 impurity lattice sites.

Example: Two impurity sites When taking into account only two impurity lattice sites, the
W, matrix only has two independent degrees of freedom: the densities n; and nq on the two sites
are the same as both couple to each other and also to the embedding system equally, so translational
invariance is preserved. The first off-diagonal elements, vy15 = 3, are each others complex conjugates.
As we are only treating real numbers, y12 = v21. So, after the first self-consistency loop, we get the
correction matrix:

Vi = ( vLv ) (7.14)

Continuing as before through the whole lattice, we get

vy v2 0 0 ... v
Vo V1 V2 0 0
V= 0 Vo V1 V2 0 (715)
Vo2 V1 V2
V2 0 0 e V2 U1

The V matrix, defined like this though does not change the projection at all: while the diagonal
elements vy just add a phase to the Hamiltonian T’ , the off-diagonal elements vy trivially change the
energy spectrum, but both elements do change the eigenfunctions of the Hamiltonian. This means
that the DMET loop will stop after the first iteration and the projection will not be improved from
the initial guess. So, we remain with the projection gained from the pure hopping Hamiltonian.

In order to fix this, instead of continuing Vi,

mp trivially, we break the translational symmetry by
continuing like this:

V1 U2 0 0 0
Vo U1 0 0 0
o 0 0 V1 V2 0
V= 0 w v 0 (7.16)
.. U1 V2
0 0 0 . V2 U1
This yields a new mean field Hamiltonian 7" of the form:
(%1 (%] 0 0 —t
V2 U1 —t 0 0
TR _ 0 —t V1 V2 0
T7"=T+V= 0w v -t . . (7.17)
—t V1 V2
—t 0 0 V2 (%

When breaking the translational symmetry in this way, we get a non-trivial new projection which
brings the 1IRDMs of the interacting and the non-interacting embedding Hamiltonians closer and
closer together and improves the results on the expense of violating a fundamental symmetry.

Generalizing the symmetry breaking While for the case of two impurity lattice sites, we have
to introduce a symmetry breaking explicitly, this is not necessary if we consider more impurity lattice
sites. The reason for this is that the symmetry in these cases will be automatically broken due
to the projection of the exact Hamiltonian. Before the projection, we consider an on-site Hubbard
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interaction that is only local on each site and a nearest neighbour hopping. While this remains exactly
the same after the projection on the impurity, the interactions and correlations in the bath part of
the Hamiltonian are changed dramatically by the projection: After rotating the Hamiltonian, each
lattice site in the bath part of the embedding Hamiltonian is interacting with each other and also, the
hopping term ¢’ between any two lattice sites is non-zero. This leads to a different treatment of those
impurity sites directly neighbouring the bath part of the Hamiltonian and those in the middle of the
impurity: the lattice sites neighbouring the bath are now coupled to all bath lattice sites, while the
lattice sites in the middle of the impurity remain only coupled to nearest neighbours by hopping and
do not directly interact with each other.

This alone leads to a symmetry breaking in the matrix Vi, .

7.2.4 Degeneracy at the Fermi level

In step 2 of the practical implementation documented in section 7, it is stated that we build the IRDM
of the full system by filling up the natural orbitals with the lowest eigenenergies with two electrons
per orbital. This is a problem though, if the eigenenergies of the one-particle spectrum are degenerate
at the Fermi level because this means that there are two different orbitals with the same energy that
need to be taken into account. For the one-dimensional Hubbard model, this problem occurs when
the total particle number is divisible by four.

Solution 1

If we run into this problem, we can simply take into account all eigenvectors belonging to the
same eigenenergy and occupy them with two, divided by the number of degenerate eigenvectors,
In the one dimensional Hubbard model for example, we encounter a twofold degeneracy. We
build the 1IRDM taking the eigenvectors belonging to lowest M/2 — 1 eigenvalues. Then, we
take the eigenvectors belonging to the eigenvalue of M /2 and M/2+, which has the same value
and occupy each degenerate orbital once. This yields the correct 1IRDM for the whole system.

When diagonalizing the environment 1IRDM though, we see that not only Nin;, of the eigenvalues
are between zero and two but imp. We only choose the eigenvectors belonging to the inner #Imp
to build the bath orbitals. As the correlated system has a gap, this problem only occurs in the
first iteration and therefore does not yield a big error.

Solution 2

An (easier) way to circumvent this problem instead of solving it, is to choose the system prop-
erties so that no degeneracy occurs at the Fermi level: This can be done by choosing anti-
periodic boundary conditions for the one-dimensional Hubbard model. As in this work, we
mostly consider very big systems, and the behaviour of the system is not changed dramatically
by anti-periodic instead of periodic boundary conditions, this is the solution we choose for the
calculations depicted in part IV of this thesis.

Solution 3

Instead of changing the boundary conditions such that the degeneracy of the mean field system is
broken, it is also possible to include a fictitious temperature in the mean field system. Analogue
to implementing anti-periodic boundary conditions, this would also lead to a mean field system
without degeneracy at the Fermi level.

7.3 Summary

In this chapter, we have given a recipe for the implementation of the DMET algorithm. Further, we
have illustrated subtleties and tricks that can be found in the practical DMET implementation and
indicated a few problems of this method.
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Quantum phase transitions in the
Hubbard-Holstein model
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Chapter 8

The Hubbard Holstein model

Changing the phase of a material means changing its properties in a fundamental way, such as melting
or freezing. While normal transitions in classical systems are usually driven by the competition
between inner energy and entropy, in a quantum system even at temperature zero, phase transitions
can be observed. Quantum phase transitions [62] do not occur, like classical phase transitions, due to
thermal fluctuations, but due to the interplay of competing interactions in the Hamiltonian describing
the system.

In quantum materials, the electron-electron and the electron-phonon interactions naturally compete
against each other. This is most easily understood by noting that the Coulomb interaction between
two electrons is generically repulsive, whereas electron phonon interactions can lead to effectively
attractive electron-electron interactions. A good example for this is the Cooper pairing mechanism
in conventional superconductors [2]. In strongly correlated low-dimensional materials, the competi-
tion between electron-electron and electron-phonon interactions has lead to longstanding debates for
instance about the origin of high-temperature superconductivity and the anomalous normal states
observed in entire classes of materials [57, 38]. At the same time, competing interactions lead to com-
peting ground states and phase transitions that pose a major roadblock on the way towards reliable
numerical solutions for the quantum many-body electron-phonon problem. In many-body quantum
physics, interactions in the system are described by a Hamiltonian and phase transitions are driven
by the competition of different terms in the Hamiltonian.

The goal of this part of the thesis is to characterize and understand quantum phase transitions in one
dimensional systems and how this problem can be treated with the DMET method presented before.
In orde to do that, we will first discuss the considered model and describe the analytically known
limiting cases. After that, we will discuss the methods used to treat the full model. The first method
is a generalization of the DMET method presented in the chapter before to electron-phonon systems.
We also briefly present the generalization of the DMRG method to electron-phonon methods. Both
generalizations have been derived by the author of this thesis in the scope of this thesis. Finally, the
results obtained from the DMET method will be presented and compared to the results obtained by
DMRG calculations and by a purely electronic DMET, where the lattice vibrations are taken into
account for with the Born Oppenheimer approximation.

The work presented in this part of this thesis has been summarized in [53]

8.1 Hamiltonian

We choose the simplest possible model that can still describe electron-electron as well as electron-
phonon interactions which is the one-dimensional Hubbard-Holstein Hamiltonian [14, 63|

ﬁelfphon =1 E ézoéjg +U E 'fLi‘rﬁii “+ wo E &I&l + E ; (’flw)(&j + ai) (81)
(i,4),0 % % i,0
(S —
A B C D

Here, the first two terms describe the electronic part of the system:
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Chapter 8. The Hubbard Holstein model

A is a simplified description of the kinetic energy of the electrons where ¢, is the particle
annihilation and é}a the particle creation operator of particles with spin o = {1, ]}: we assume
that the itinerancy of the electrons decays exponentially with the distance, which is why we only
consider next-neighbours hopping. Electrons can hop from one site to the adjacent site.

B is a simplified description of the Coulomb interaction between the electrons, where 14 =
6ITéiT and ;| = éLéi 1, are the density operators of spin up and down: We neglect long-range
interactions of the electrons and only consider an on-site repulsion.

The third and fourth terms in the Hamiltonian describe the interactions of the electrons with the
phonons. Phonons are quasi particles that we use to describe the lattice vibrations of solids. In
the one dimensional Hubbard-Holstein Hamiltonian, they are approximately described by a harmonic
linear chain. This is why we describe the phonons by a distorted quantum harmonic oscillators:

C describes the quantum harmonic oscillators in second quantization, where a; is the phononic
particle annihilation and d;.r the phononic particle creation operator.

D describes the coupling of the electrons to the phonons: electrons and phonons are coupled

through the electronic density which distorts the phononic oscillator from its origin. (&;-r + ai>

corresponds to the displacement operator of the phonons on lattice site 3.

In the Hubbard Holstein model, three competing forces that drive the system to different quantum
phases can be detected: first, the electron hopping strength ¢, that leads to mobilization of the
electrons and will put the system in a metallic phase. Second, the electron-electron interaction U
that, if dominant, leads to an immobilized spin wave for the electronic degrees of freedom, that is, a
Mott phase, which is insulating. Third, the electron-phonon coupling g, that, if dominant, leads to a
Peierls phase, that is the position of the electrons on the lattice is distorted from their initial position,
forming a charge density wave. Also the Peierls phase is insulating.

For the two limiting cases of no electron-phonon interaction and no electron-electron interaction, the
Hamiltonian in Eq. (8.1) can be solved exactly and we know which phase to expect: In the case of no
electron-phonon interaction, the interplay between the kinetic and the repulsion term of the electronic
Hamiltonian plays a major role, which will result in a Mott phase. When neglecting electron-electron
interactions, we expect to see a Peierls phase.

In between the two insulating phases (the Mott phase for strong electron-electron interactions and
weak electron-phonon interactions and the Peierls phase for the opposite scenario), a metallic phase
can be found. This phase occurs due to strong quantum fluctuations of the phonons, that can destroy
the Peierls phase if the electron-electron interactions are not too strong to prevent this. This is why,
we expect a metallic phase, when the two couplings, i.e. the electron-electron and the electron-phonon
coupling compensate each other. We expect the metallic phase to be distinct when considering high
phonon frequencies wy in comparison to the itineracy of the electrons ¢. In contrast, if the phonon
frequency is small compared to the electronic hopping, the metallic phase should, if existent, be smaller
than for the opposed case.

Before discussing the full Hubbard Holstein model, we will first present known, exact results for the
limiting cases and sketch their derivations.

8.2 Mott phase

The gapped phase of a Mott insulator, as opposed to conventional band insulators, occurs purely due
to electron-electron interactions and is thus a true correlation effect. This is why, in order to predict
the insulating Mott phase, conventional band theory, in which the interactions of the electrons are not
considered, is not enough. In the Mott picture, whether a material is a metal or an insulator depends
on the ratio between the interaction strengths of the electrons and the kinetic hopping term % The
material is in the metallic phase if the hopping term dominates over the electron electron repulsion
t > U . On the other hand, the material is insulating for ¢t < U. In the one dimensional case and
for the purely electronic case at half filling it has been shown that the gap is always bigger than zero
if U > 0 [41]. In order to gain a better understanding of where the Mott gap originates from, we
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8.3. Peierls phase

will briefly present the idea of the proof here. Considering the Hubbard model with N, sites and N
electrons on it:

Hel =t Z é;-(géjg + UzﬁiTﬁiJ, (82)
(i,5),0 @

As we do not include spin-flip terms in this Hamiltonian, the number of electrons with up- spin M
and down-spin M’ are conserved (M + M’ = N). Assuming that E (M, M’;U) is the ground state
energy of the above Hamiltonian for a fixed number of particles and using particle-hole symmetry, one
can show:

EM,M;U)=—~(Ny—M - MU+ FE(Ny— M,N, —M;U). (8.3)
We define the gap Ap = py — p— as the difference between the chemical potentials:
pr =EM+1,M;U) - E(M,M;U) (8.4)
u_=EM,M;U)— E(M—1,M;U) (8.5)
inserting equation 8.3 into equation 8.4 yields:

py =U —p (8.6)

The proof of Lieb and Wu shows that, for temperature zero, in one dimension and for a half-filled
system, the Hubbard Hamiltonian will always be in a gapped state, irrespective of the strength of the
electron-electron interaction (excluding U = 0).

When including electron-phonon interactions though, even in one dimension a richer phase diagram,
including a metallic phase and a Peierls phase can be found. On the other hand, this problem is not
addressable analytically anymore.

8.3 Peierls phase
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Figure 8.1: Without electron-electron interaction and for a half filled Holstein system at temperature 0, the ions
in the lattice always lead to a dimerization of the electronic chain. This situation is energetically more favorable
because, due to the doubling of the period, more bands appear, leading to a gap opening at the Fermi level. This
graph is from the book "Density waves in solids" by George Griiner [18].

The Peierls instability or dimerization occurs when the electron-phonon interaction dominates the
electron-electron interaction. For a half filled system without electron-electron interaction and at

67



Chapter 8. The Hubbard Holstein model

temperature zero, a dimerization of the lattice always occurs, that is, this lattice will always be in
the Peierls phase. This can be proven exactly [31], but also intuitively understood as is explained in
the book by Peierls himself [50]. Consider a 1D electron chain with a constant distance between the
electrons of a.

The Bloch band of this setup will then look like figure 8.1: For a half filled system, the electrons
will fill up the band until the Fermi energy ep which corresponds to a position in k-space of Kp.
If the distance between nuclei is not uniform, but instead they are dimerized in pairs of two due to
the electron-phonon interaction (which in the Holstein model is an interaction of the electron density
with the phononic distortion from the zero position), this corresponds to the doubling of the unit cell
to 2a. It leads to a loss in energy between the electrons that are now closer together, but a gain in
energy between the electrons that are further apart. For the half filled system at temperature zero,
the energy gain due to gap opening is always bigger than the loss of elastic energy of the electrons.

8.4 Summary

In this chapter, we discussed the term quantum phase transitions in connection with the Hubbard
Holstein model, which is a minimal model for the quantum mechanical description of coupled electron-
phonon systems. We then investigated the phase diagram of the Hubbard Holstein model by discussing
the analytically known limiting case of the Mott and the Peierls phase and showing what is expected
for the full model.
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Chapter 9

Methods

The one dimensional Hubbard Holstein model, although it is the easiest model that considers both
electron-electron as well as electron-phonon interactions, cannot be solved analytically. However, it
has been studied with a lot different numerical methods, such as the Density Matrix Renormalization
group (DMRG) [13], Quantum Monte-Carlo (QMC) [8, 19, 22, 66, 48, 28] and dynamical mean field
theory (DMFT) [68, 45, 3]. In this thesis, we analyze the quantum phase transitions discussed in
chapter 8 with the Density Matrix Embedding Theory introduced in part II and compare to results
obtained with a DMRG solver.Also, in the DMET method, we use a DMRG solver to diagonalize the
small embedding. In the following, we will very briefly discuss the expansion of the DMRG solver
implemented by Claudius Hubig to treat electron phonon systems. Then, we will discuss more in
detail the expansion of the DMET algorithm to coupled electron-phonon systems.

9.1 DMRG for coupled electron-phonon systems

Throughout this thesis, we use the Density Matrix Renormalizatiom Group, specifically, the syten
library [24, 25], as a solver for our DMET systems. In order to use DMRG for the coupled electron-
phonon system at hand, we expanded the syten library to be able to treat electron-boson systems.

As explained in section 2.2, DMRG is an efficient wave function method. In this method, the wave
function is decomposed as a Matrix Product State (MPS) and the Hamiltonian as a Matrix Product
Operator (MPO). Using the gauge freedom of this description (as explained in detail in section 2.2.3)
makes it possible to apply the Hamiltonian (MPO) locally to each lattice site (MPS) and then updating
the whole system.

In the syten library, instead of defining one MPS consisting of N tensors, where N is the number
of lattice sites in the system, an MPS consisting of 2N lattice sites is defined. All even lattice sites
are then phononic and all odd lattice sites are electronic. The electronic sites are treated with the
fermionic commutation relations while the phononic sites are treated with the bosonic commutation
relations, making it possible to have a big number of basis functions per site.

Additionally, local MPOs, that is, the local particle creation and annihilation operators é;r, ¢; for the
fermionic particles and &L&i for the bosonic particles are defined such that the bosonic MPOs only
interact with the bosonic MPS lattice sites and the fermionic MPOs only interact with the fermionic
MPS lattice sites.

The gloabl Hamiltonian ffel,phon is then build up from these local operators where the transition
elements t;;, Ujjki, wij, gijr of the individual parts of the Hamiltonian are handed over to the syten
code explicitly when starting the calculation.

Then, the interactions between two bosonic, between two fermionic and between a bosonic and a
fermionic site are defined differently. With this setup of a new lattice with 2 - N lattice sites, the
ususal DMRG algorithm can be used.
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Chapter 9. Methods

Scaling of DMRG

The purely fermionic syten-DMRG code scales with oc m?3 - d - w, where m is the bond dimension (as
explained in section 2.2), d is the physical dimension of the local MPS (that is, 4 for fermions and
Nphon for bosons) and w is the bond dimension of the MPO.

This means that, due to the phonons, the DMRG code will be linearly slowed down due to the
doubling of the total lattice sites (N fermionic and N bosonic sites) and due to the higher amount of
basis functions per lattice site d.

9.2 DMET for coupled electron-phonon systems
In order to generalize DMET to coupled electron-phonon systems, we need to find a projection P that
projects the whole, coupled electron-phonon Hamiltonian
Hcl—ph = Tol + ﬁcl + Tph + Ucl—ph (9.1)
into a new embedding basis:
A, = PTHo_pn P, (9.2)

Similar to the purely electronic case, we find this projection by assuming a non-interacting system,
which then allows us to make a product ansatz between the electronic and phononic degrees of freedom
as is visualized in figure 9.1. Instead of finding one projection for the coupled electron-phonon system,
we thus have to find two projections, one for the electrons and one for the phonons. The electronic
projection is then, as in the original scheme, approximated by the ground state of H % (section 5.2.6)

electrons phonons

impurity bath

s 9900000009
lprojection

= AN _/
embedding part, CAS environment

Figure 9.1: Visualization of the decomposition of the electron-phonon model system via the projection P: Starting
with a 1D lattice in real space that on each site has both electronic (blue) as well as phononic (red) degrees of freedom,
we choose one part of the system that is from then on called impurity, whereas the rest is the bath. The projection
leaves the basis on the impurity the same (a real space lattice), whereas it projects the bath degrees of freedom into
a new basis set whose physical meaning is abstract. Within this new basis set, the environmental degrees of freedom
can be divided into those having an overlap with the impurity lattice sites and those that do not have an overlap
with the impurity lattice site, called environment. The physics on the impurity is determined by the impurity and
the embedding part of the system only. Sketch from [53].

9.2.1 Generalized coherent states

In order to find the projection for the phononic degrees of freedom we choose a set of shifted harmonic
oscillators, which is a Hamiltonian of the same form as the electron-phonon Hamiltonian Eq. (8.1):

ﬁph = Zwodj,&i + Zgi(fl;r + dz) = Tph + Cph. (93)

The first part of this Hamiltonian is set of simple quantum harmonic oscillators (one harmonic os-
cillator for each lattice site ¢), while the second part describes a distortion z; = <dz + di> from the

resting position on lattice site i. In order to describe the state of the system on lattice site ¢ with Fock
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9.2. DMET for coupled electron-phonon systems

number states (that is, the eigenstates of the quantum harmonic oscillator that are usually used), an
infinite number of these Fock number states is needed and the particle number for each lattice site is
not fixed:

o0

&) =D _&rallo) (9-4)

(0%
As this is not an optimal description of the problem, we redefine the eigenstates of the harmonic
oscillator allowing us to effectively describe the shifted harmonic oscillator [6, pp.18]. The ground
state wave function of the shifted harmonic Oscillator is the product state of coherent states on each
lattice site k:

1Z) = ®ak\2k> (9.5)
k

aTzk _ 7zk22oo(z)j-
|2k) = €5 |0) = e~ l= I/ ;\%m (9.6)

A coherent state |z) is a quantum harmonic oscillator that is shifted with respect to its initial position,
where z = <&L + cik> is the shift of the phonon mode from the initial position on the lattice site

k. In order to describe the non-interacting Hamiltonian defined in 9.3, only one state |zx) per site is
needed. For the interacting problem though, the simple shifted harmonic oscillator is not the exact
eigenstate, as here, electron-phonon interactions need to be included. Thus, in order to describe
the full Hamiltonian, we choose a linear combination of coherent states to describe the interacting
problem.

Similar to the electronic case Eq. (5.60), we determine the phononic projection by splitting the
phononic wave function up into three parts:

Nim N—Nim
Nph P Nph P

Z)="3 1B e Y B (9.7)
a,3 J

Here, the |APP) are again just defined on the impurity region of the lattice, \th> is composited by
those coherent states that have an overlap over the impurity region and |B§h) is composited by the
coherent states that do not have an overlap over the impurity region. Neglecting again the part of the
wave function that does not have an influence on the impurity, we define the phononic projection as:

N;Vhimp N;Vhimp
h h h 1 h
o= > [ARMIBE N (BEM (AR = Y |ARMCEN ) (ARMCEY. (9-8)
o, a,B
Then, analogous to the electronic procedure, we again define
|ARRBE") = |CB) + |C2P") (9.9)
such that
~ph Nimp
|CPRY = |AyL), for av: 1,.. N, (9.10)
|CPhY = 0, otherwise, (9.11)
Y Nimp
|CxPhy = 0, for o 1, .N ™7, (9.12)
|C*Phy = | B,,), otherwise, (9.13)
which yields the projection
4Nimp
P = (ICE"CR + |G (e,
~y=1
2.4Nimp
= Y |CEhy(CE CPh = (., for @ =1,...; Nimp,7 = 1, ...Nimnp, (9.14)
y=1

Ssph __ Aph
Pt = ny’ for oo = Nimp + 1, ..., 2Nimp, ¥ = 1, ...Nimp.
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The C’}Y)h are not normalized yet:

2.4Nimp
o= Y I ICEM)(CRh. (9.15)

y=1
We thus define the projection used in the phononic DMET algorithm as

2.4Nimp
Bon= > [CEMy(CEh. (9.16)

y=1

Due to the bosonic nature of the phonons, the number of basis functions per site, N,, will go to
infinity for an accurate calculation. As the coherent state basis is very close to the optimal basis for
the description of the Hubbard Holstein Hamiltonian though, taking 8 basis states per phononic sites
is enough to converge the results within our error estimate.

9.2.2 Projection of the full Hamiltonian

Knowing the two projections, we are now able to find the embedding Hamiltonian of the coupled
system
€

Hefnkﬁh = Pghp«jlﬁelfphpelpph- (9.17)

The purely electronic part of the Hamiltonian is treated as before with the electronic projection Py
(this has been explained in detail in section 5.3):

-E[ = Tel + Uel + Tph + Uelfph (918)
Teclmb = Pglfelpel (9.19)
ﬁeelmb = peflpglﬁelpelpel- (920)

The purely phononic part of the Hamiltonian, Tph, is treated analogously to the electronic hopping
part of the Hamiltonian Eq. (5.114), but with the phononic part of the Projection If’ph:

Tt =D Z PLa T P (9.21)
- Z Z wo Pl ala, Pih (9.22)
=" wod, . (9.23)

The interaction part of the Hamiltonian, contains electronic as well as phononic degrees of freedom:

Uat—ph = Z a(el ¢ip)(al + ay) (9.24)
= Z c +Cio)a Z c - Cio )l (9.25)

Specifically, we have two electronic degrees of freedom and one phononic degree of freedom that need to
be rotated. Similar to Eq. (5.115), we define the projection of the phononic creation and annihilation
operators as:

Z ph,ai Z = aemb (926)

Z diaPph,ia = CA’/oco’,emb~ (927)
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From this definition, we find the projected electron-phonon interaction term as:

T =Y a(BhVe e PP Al + Y T " a(Phel e Pit)ai P, (9.28)
a,b,c 1,0 a,b,c 1,0
= D althd)al + D add,)i; (9:29)
a,b,c,o a,b,c,o
= > alehé,)(al +al). (9-30)
a,b,c,o

Note that, although the Hamiltonian before the rotation had a diagonal form (that is, the sum was
only over one index, i), it is not diagonal anymore after the transformation. In fact, the new embedding
Hamiltonian Hemp does not have any structured form any more after transformation. Also, as there
are long-range interactions in this new Hamiltonian, the DMRG calculation gets more costly as larger
bond dimensions have to be considered.

9.2.3 Improving the projection

A

task: solve | Hej_pp

(1) product ansatz
. / \ .

Tel ]j])h
Y ¥
P (2) compute projection Py

(3) compute embedding Hamiltonian

Hemb

(4) compute 1IRDMs

s emb ~emb S

Vel Vel I'ph Iph

(5) miniize distance between 1RDMs

: S emb . S
min ('Vel = Vel ) min (71‘)‘1‘1”‘ — 7;11>

(6) improve self-consistently
Figure 9.2: Visualization of the DMET procedure: from the purely electronic and the purely fermionic projection
Hamiltonians HY™ and Hg}rjoj, we get the projections P and Pp,. Applied to the full Hubbard-Holstein Hamiltonian
f[el_ph these yield the embedding Hamiltonian I?lgfﬁl;h that, due to its small size, can be calculated accurately. In

order to improve the projections P.; and Pph, we aim at making the (electronic and phononic) 1IRDM properties

of the interacting (v°™P and 'yeﬁ“b) and the non interacting systems (vgh and wgh) as similar as possible. This is

done by adding non—Il)}(;cal potentials to the projecting Hamiltonians that minimize the difference between the one-
body observables of the interacting system and the non-interacting systems. When the new potentials are found,
new projections can be calculated which yield a new embedding Hamiltonian. This procedure is repeated until
self-consistency.

Again the initial guess for the projection is not necessarily very good as additionally to assuming a non-
interacting active space for both the electrons as well as the phonons, it also assumes a product state
between electronic and phononic degrees of freedom. We self-consistently optimize the electronic and
the phononic projection, where for the electronic case we proceed similar as for the purely electronic
problem as explained in section 5.4.

For the phonons, we have to compare two properties as the initial Hamiltonian also has two terms:

ng()j = Ton + Von + Con + Wi (9.31)
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While Vph is dependent on the phononic reduced one-particle density matrix (d;r&j% th depends

on the shift of the phonons from zero (d} + a;). The potentials are again found by minimizing the
difference between the properties of the interacting and the mean field system:

min Z <\I/emb|a;-raj|\llemb>—<Z|a1aj|Z>
i,jEimp
+ > (Wamla] + il o) — (210} +ailZ) |, (9.32)
i€imp

where |Z) is the ground-state wave function of the Hamiltonian defined in Eq. (9.31) and |¥) is the
ground state wave function of the full Hubbard Holstein Hamiltonian defined in Eq. (9.1). The whole
DMET procedure is visualized in figure 9.2.

The small embedding problem is then solved using the DMRG code generalized to phonon-electron
problems, explained in section 9.1.

9.3 Born Oppenheimer approximation

The question arises whether the extensive treatment of the fully quantized electron-phonon Hamil-
tonian is necessary in order to capture the full phase diagram of the Hubbard Holstein model. In
order to clarify this question, we compare our results with the Born Oppenheimer (BO) Hamiltonian
in the one dimensional Hubbard Holstein mode, where the quantum nature of the electrons is fully
conserved but the phonons are treated as classical nuclei.

In order to do so we derive the Born Oppenheimer Hamiltonian. The full Hubbard Holstein Hamilto-
nian, as already written in section &8 reads:

Hy phon =t Z cwcjg + UZ"ZT”N + wo Z a;a; + Z a;(Nig)( + a;) (9.33)
(i,5),0

The particle creation and annihilation operators are defined as

e, i
@i =4/ <x2+wopl> (9.34)
af =% (4 Za) (9.35)

from which follows

f . Wo 1
al - a; = ?xf + %p? (9.36)
al + a; = V2uwod; (9.37)

rewriting the Hamiltonian to:

Hy phon =t Z cwcﬁ, + Uanan + wo Z (x + pl> + gnivV2wo ;. (9.38)
(i,3),0

In the Born-Oppenheimer approximation, we assume the nuclei on the one hand side to be classical
particles and on the other hand to be much slower than the electrons; thus we can neglect their kinetic
energy, which yields:

1
el phon = € E wc]a—i-U E Nirflsy + E —x + pf + E gniV2wox;. (9.39)
(i,9),0 i

We can now treat this Hamiltonian with purely electronic DMET, where the ionic term is simply a
constant in the energy contribution In the DMET calculation, we optimize the distortion of the nuclei
Z; to minimize the total energy, yielding the electronic potential energy surfaces.
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Chapter 10

Results for the computation of the
Hubbard Holstein model

10.1 Defining observables and parameters

10.1.1 Observables

In order to describe the phase transition of the one dimensional Hubbard Holstein model, we need
to define observables that unambiguously show which phase the system is in. One observable that
unambiguously shows whether we are in an insulating or a metallic phase is the energy gap, defined
as

Acsp =2-Ey/? — E)/P71 — B/ (10.1)

)

where Eév /% is the ground state energy of the Hamiltonian for half filling, Eév /271 s the ground state
energy of the system for half filling minus one and Eév /21 s the energy of the system for half filling

plus one.

While it is in general possible (but cumbersome) to treat open shell systems in the DMET method, we
did not include this feature in our implementation. Thus, we cannot measure the energy gap defined
in Eq. (10.1) directly. We thus choose a relatively simple approximation: Instead of doing three
calculations with different particle numbers, we consider our sophisticated mean field Hamiltonian

Hﬁ?g,h = Ael + f/el + Tph + Vph + épll + th (102)

which is optimized to have similar one-body properties as the interacting Hamiltonian. We calculate
the spectrum {¢;} of this non-interacting Hamiltonian by diagonalizing it and then approximate the
gap by defining

Ac=2.EN/? — EY/271 _ g/t
N/2 N/2—1 N/241

22'261‘— Z €, — Z €5y (103)
i=1 i=1 i=1

In order to further monitor the phase transitions of the Hubbard Holstein model and to distinguish
between the Mott and the Peierls phase (which are both gapped phases), we additionally show two
more observables, namely the the double occupancy (n;n;;) and the electronic density difference
between neighbouring sites (n;) — (n;+1) which are both local properties and can simply be calculated
on one arbitrary (impurity) site.

The double occupancy measures the probability of finding two electrons (one electron with spin up
and one electron with spin down) on one lattice site. For half filling and in the limiting case of
the system being deeply in the Peierls phase (that is, very small electron-electron interaction and
high electron-phonon interaction) or far in the regime of a Mott phase (that is, very strong electron-
electron interaction and weak electron-phonon interaction), one can intuitively understand what to
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expect: If we have a strong Peierls phase, the electron density will not be homogeneous anymore.
The maximum density deviation between adjacent electronic sites possible is to have two electrons
on one site and zero electrons on the adjacent site. This situation will lead to a double occupancy
of (nirniy) = <W> = 130 = 0.5 for the whole system. In the case of an extreme Mott
phase, we expect the opposite: the electron-electron repulsion is strong in comparison to the hopping,
leading to electrons that are localized on the lattice site; per lattice site, only one electron can be
found, leading to a double occupancy of zero. In the metallic phase and for a half filled system, the
electrons are not bound to the lattice sites; on average, we find every possible distribution to equally
probable. This leads to a double occupancy of (ns4n;) = (0.5-0.5) = 0.25.

The electronic density difference between neighbouring sites only indicates the transition to the Peierls
phase: While in the Mott phase, the electronic density distribution stays homogeneous, in the Peierls
phase we observe an electronic density oscillation, that is, the electronic density on site ¢ will be much
higher /lower than on site ¢ + 1.

10.1.2 Parameters

The phase transition depends on the itineracy of the electrons (o t), the electron-electron repulsion
(x U), the electron-phonon interaction (o g) and the phonon frequency with respect to the electrons.
This is why, we introduce the adiabaticity ratio

a=— (10.4)

accounting for the relation between the kinetic hopping energy of the electrons ¢ and the frequency of

the phonons wy and we also decide to discuss our results in terms of dimensionless coupling constants:

U 2
A g

u = -, =
4t QtOJO

(10.5)

Computational scaling

One of the biggest selling points of DMET is low computational costs in comparison to methods such
as DMRG or the different flavours of DMFT. In DMET, we calculate the big system with a low
accuracy method, whose computational costs scales quadratic with total lattice size. Additionally, we
diagonalize the interacting Hamiltonian of the small embedding system; this calculation scales like
the chosen solver (in our case, DMRG) for the impurity size. As we improve the estimate of the
projection, the whole calcuation has to be performed various times until self-consistency.

. s . . 3
As already mentioned, in this work we use a DMRG solver that scales approximately with (Ng})" -

(Nph

imp

3 3
) , leading to a total scaling of 7 {(Ni‘ﬁlpf . (Nf;}llp> - (Nel)2 . (Nph)2 , where 7 is the amount

of iterations needed until convergence.

10.2 Extrapolation and convergence

While the Hubbard-Holstein model describes a translational invariant, infinite solid, in our simulations,
we can only consider finite systems. This discrepancy can lead to errors in our calculation which in
the following, we try to annihilate or, if not possible, discuss in detail.

In this thesis, we are discussing two different methods, DMRG and DMET and compare them; for
both methods, we need to perform extrapolations and consider convergences with system size. In order
to not make the discussion in this thesis too lengthy though, we will only perform the extrapolations
and convergence discussion of the DMET method for selected observables here, as this method is also
the core of this thesis. The interested reader can find the remaining discussion of the rest for the
DMRG method and the remaining DMET observables in the appendix in chapter 15.
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10.2. Extrapolation and convergence

10.2.1 Phonon basis functions per site

As explained in section 9.2.1, we use a generalized coherent state basis in order to describe the phononic
part of the wave function which is an optimized basis set for our problem. Still, as phonons obey the
bosonic commutation relation, we need in principle infinitely many of those basis functions per lattice
site to describe the phononic degrees of freedom. As this is not possible numerically, we make sure
that the number of phononic basis functions leads to qualitatively converged results for the chosen
observables.

We will show the convergence with phononic basis functions for the DMET and the DMRG calculation
both in the adiabatic as well as in the anti-adiabatic limit for the energy gap Ac/t here. The interested
reader can find the discussion about other observables (the total energy and the double occupancy)
in the appendix.

In figure 10.1, we show the convergence of the energy gap in the anti-adiabatic (o« = 5.0) as well as
for the adiabatic limit (a = 0.5) for the DMET calculation.

anti-adiabatic, u = 1.0 95 adiabatic, u = 0.2

% 2 phon ~-&- 4 phon === ( phon —e— 8 phon +- 10 phon =412 phon

Figure 10.1: Convergence of the energy gap with the number phononic basis functions per site for a total system
size of N = 408. While for the anti-adiabatic case, the results are converged for a considered number of basis function
of phon = 8, in the adiabatic limit, even for 12 phonon basis functions per site we see no convergence in the Peierls
phase. The position of the quantum phase transitions is predicted quantitatively for both cases and a number of
basis functions per site of 8. Graph from [53].

While the results are quantitatively converged for a number of phonon basis functions of 8 in the
anti-adiabatic limit and in the Mott regime of the adiabatic limit the gap in the Peierls phase is
not converged even for 12 basis functions per site. As we are only interested in the position of the
gap (which is always quantitatively predicted for 8 basis functions per site) and to not drive the
computational costs any higher, we still consider 8 basis functions in the following.

10.2.2 Finite size scaling

The Hubbard-Holstein model is defined in infinite space and is therefore translational invariant. Nu-
merically though, we are only able to consider finite systems and therefore have to consider finite size
effects and the influence of the boundaries on the observables. This is why we do a finite size scaling.
In the DMET method, there are two scales to be considered: the size of the whole considered system
as well as the impurity size.

Finite size scaling of the whole system

As the computational costs with respect to the whole system size only grows quadratic, we can
regard very big systems and therefore perform the finite size scaling with system sizes of N = 408,
N = 816 and N = 1632 sites, as shown in figure 10.2. While for the energy gap, the finite size
scaling is necessary, for the local observables, namely the density difference of the electrons between
neighbouring sites (n;) — (n;1+1) and the double occupancy (n;tn;;), we observe that the finite size
effects and the influence of the boundaries for a system size of N = 408 are already negligible (as can
be observed in figure 10.2).
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Figure 10.2: Finite size scaling for the energy gap Ac/t (left hand side) and double occupancy (nitn;,) (right
hand side) in the DMET calculation. We show some examples, both for the adiabatic limit (A = 0.15;0.35;0.55 and
u = 0.2) as well as for the anti-adiabatic limit (A = 0.25;0.85;1.45 and v = 1.0). The extrapolation is done with
system sizes of N = 408;816;1632. The scaling is linear, making it possible to remove finite size effects. We also
observe that for the double occupancy, the values do not differ for the different system sizes, which leads us to the
conclusion that for this observable, the finite size effects are already negligible for system sizes > 408. Left graph
from [53]

Finite size scaling of the impurity
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Figure 10.3: Finite size scaling of the impurity for the energy gap Ac/t (left hand side) and the double occupancy
<niT”i¢> (right hand side) in the DMET calculation: we plot the dependence of energy gap % on the electron-
phonon coupling strength A for different impurity sizes, going from Njpp = 2 to Nijmp = 8 in steps of 2. While both
observables seem to decrease with increasing impurity size, the scaling seems to converge for the double occupancy
while that is not the case for the energy gap.

In DMET, while the impurity part of the system is considered as accurately as possible, the rest of
the system is only taken into account on a mean field level. This is why, with increasing impurity size,
long range correlations are captured more accurately. Unfortunately though, this leads to a nonlinear
scaling of the observables with respect to the impurity size.

In the following, we will discuss the scaling of our non-local observable Ac/t as well as the scaling of
the (locally defined) double occupancy (n;+n;y) with increasing impurity sizes. We start the discussion
for the adiabatic limit (o = 0.5,u4 = 0.2) and refer the interested reader to the appendix for further
data for different parameter sets.

In figure 10.3, we plot the energy gap %, as defined in section 10.1.1 for different electron-phonon
coupling strengths A in the adiabatic limit (o = 0.5, u = 0.2). We observe an apparently non-linear
decrease of the estimation of the energy gap for increasing impurity sizes.

In order to quantify the finite size scaling more in detail, we choose different data sets of A for the
four impurity sizes. In figure 10.4, we see the development of % for increasing impurity sizes. The
convergence for all values of \ with increasing impurity size is nonlinear, making its quantification
nontrivial. While the scaling for small values of A < 0.3 cannot even be described qualitatively as the
values go up and down with no visible rules, the values of the gap for large values of A > 0.3 is going
monotonously down with increasing impurity sizes.

From the discussion in sections 8.2 and 8.3 we expect a Mott phase for small values of A and a
Peierls phase for high values of A\. The Mott phase occurs due to electron-electron correlation and
does not exhibit long range order which explains that with increasing impurity sizes, the result is not
monotonously converging. The Peierls phase on the other hand breaks translational invariance (and
thus a symmetry); it exhibits long range order and thus is improved upon considering larger regions
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Figure 10.4: Finite size scaling for the energy gap with increasing impurity sizes in the DMET calculation. We
show different values of the electron-phonon coupling strengths A with increasing impurity sizes. On the left hand
side, we show coupling strengths A < 0.3 belonging to the Mott phase, on the right hand side, we show coupling
strengths A > 0.3 belonging to the Peierls phase.

of the system more accurately. Additionally, the decrease in the energy gap with increasing impurity
size seems reasonable as with growing impurity size, we include more electron-electron correlation,
which work against the Peierls phase.

Similar to the non-local energy gap, we also plot the double occupancy (n;yn;y) for different impurity
sizes and values of electron-phonon coupling strengths A (Fig. 10.4). While also the values for this
observable seem to decrease with increasing impurity size, the scaling seems to converge, which could
not be observed for the energy gap. Again considering the results more in detail by plotting single
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Figure 10.5: Finite size scaling for the double occupancy <”iT”i¢> with increasing impurity sizes in the DMET
calculation. We show the energy gap Ac/t as a function of different values of the electron-phonon coupling strengths
A with increasing impurity sizes. On the left hand side, we show coupling strengths A < 0.3 belonging to the Mott
phase, on the right hand side, we show coupling strengths A > 0.3 belonging to the Peierls phase. The double
occupancy, being a local observable, converges much faster with increasing impurity size.

electron-phonon coupling strengths, we observe that, while the decrease is only strictly monotonic for
values > A = 0.3, the results seem to be almost converged for an impurity size of 8. We explain this
with the locality of this observable, which is influenced less by long-range correlations than the energy
gap.

As already mentioned, DMET’s success origins partly in its computational cheapness, making it
possible to relatively easy consider large coupled electron-phonon systems. To keep the computational
costs low and because we do not observe any qualitative changes in the behaviour of the observables,
in the following, we will choose an impurity size of 6. For 6 impurity sites, the computational cost
per calculation is approximately 3 hours (in comparison, calculations for 8 impurity sites are already
taking around 12 hours on average), making it much cheaper than the DMRG calculations used to
compare to this study which on average took 72 hours per calculation.

10.3 Energy per site

Although not being an observable of physical interest, the energy per site is an important property to
show how well two methods agree with each other.
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Chapter 10. Results for the computation of the Hubbard Holstein model

10.3.1 DMET vs. DMRG

In order to benchmark the results of the DMET calculation, we therefore compare the results for
the calculated energy per site Fg. with those from the DMRG calculation. In figure 10.6, we show
the energy per site for the anti-adiabatic (o = 5.0, u 1.0) as well as for the adiabatic limit
( = 0.5, u =0.2) for DMRG and DMET. Of course also for the DMRG calculation, a finite size
scaling with respect to the total system size has been made. This discussion as well as the finite size
scaling of the energy in the DMET calculation can be found in sections 15.2 and 15.1 in the appendix.
For both cases, the results agree on a quantitative level.
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Figure 10.6: Comparison of the energy per site Egjte, calculated with the DMRG and with the DMET method.
In the upper graph, we show the anti-adiabatic limit (o = 5.0, w = 1.0), in the lower graph, the adiabatic limit
(a=0.5, uw=0.2). For both limits, the results agree quantitatively. Graph from [53]

10.3.2 DMET vs. DMET with BO approximation

Additionally, we also compare the energies per site between the full Hubbard-Holstein model and the
Hubbard-Holstein model in BO approximation in figure 10.7. For the anti-adiabatic limit, the energy
per site shows approximately the same behavior while not agreeing quantitatively. In the adiabatic
limit, a qualitative agreement can be observed. In this section, we show a comparison of the energy per
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Figure 10.7: Comparison of the energy per site Ejte for the full electron-phonon system (DMET calculation),
with the energy per site from the same system under the BO approximation. On the right hand side, we show the
anti-adiabatic (o« = 5.0, u = 1.0), on the left hand side the adiabatic limit (o = 0.5, w = 0.2). While the behaviour
only approximately coincides for the anti-adiabatic case, a qualitative agreement between the two methods for the
adiabatic limit can be observed. Graph from [53]

site for the three considered methods: DMET for coupled electron-phonon systems, DMRG for coupled
electron-phonon systems and DMET for purely electronic systems in the BO approximation. For the
first two methods, we get a quantitative agreement between the energy per site, while, when comparing
the two different DMET approaches, we only observe a qualitative agreement. We therefore hope to
get good agreement in the quantities of physical interest between the DMET and DMRG methods for
coupled electron-phonon systems but are already warned that the BO approximation might not fully
be able to reproduce the full physics of the Hubbard Holstein model.
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10.4. Phase diagram of the Hubbard Holstein model

10.4 Phase diagram of the Hubbard Holstein model

10.4.1 Anti-adiabatic limit

In figure 10.8, we plot the energy gap Ac/t, the electronic density difference between neighbouring sites
(n;) — (n;41), and the double occupancy (n;;n;;) (as defined in section 10.1.1) in the anti-adiabatic
limit (o = 5.0) for an electron-electron repulsion of v = 1.0 and for different electron-phonon coupling
strengths .

For all three observables, we observe a Mott phase for 0 < A < 0.7. With growing A, we indeed observe
a distinct metallic phase (0.7 < A < 1.1) which is followed by a Peierls phase for 1.1 < A.
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Figure 10.8: Energy gap Ac/t, density difference of the electrons between neighbouring sites (n;) — (nijy1) and
double occupancy <ni¢ni¢> for the anti-adiabatic limit o = 5.0 and an electron-electron coupling of u = 1.0 for
different electron-phonon couplings A. For 0 < A < 0.7, a Mott phase is observed, which changes into a metallic
phase for 0.7 < XA < 1.1. Above coupling values of 1.1 < X, we observe a Peierls phase. Graph from [53]

10.4.2 Adiabatic limit

As explained in section 8.1, the occurrence of a pronounced metallic phase in the anti-adiabatic limit
was to be expected; it is however not clear whether this phase also occurs for all electron-electron
interaction strengths v in the adiabatic limit, where the phonon frequency is small in comparison to
the electronic hopping and thus, the quantum fluctuations of the phonons are suspected to be smaller.
In figure 10.9, we again show the energy gap Ac/t, the electronic density difference between neigh-
bouring sites (n;) — (n,+1) and the double occupancy (n;n;;) (as defined in section 10.1.1) in the
adiabatic limit (o = 0.5) for different electron-electron repulsions, (v = 0.0;0.2;0.4) and different
electron-phonon coupling strengths \. When the electron-electron interaction is absent, we do not
observe a Mott phase, but a direct transition from the metallic to the Peierls phase at A = 0.2. This
result is as expected as the Mott phase is driven by the electron-electron interaction and therefore
cannot occur in this limit.

For a small electron-electron interaction, u = 0.2, the Mott phase exists for very small electron-phonon
interactions 0 < A < 0.1. The gap indicating the Mott phase though is very small in comparison to
the gap that indicates the pronounced Peierls phase for 0.3 < . Between Mott and the Peierls, we
observe a small metallic phase for electron phonon coupling values of 0.1 < X < 0.3.

When considering stronger electron-electron interactions u = 0.4, the size of the gap indicating the
Mott gap grows considerably, as does the range of the Mott phase: for 0 < A < 0.25, we observe a
Mott phase, followed again by a narrow metallic phase for 0.25 < A < 0.45. Afterwards, we observe a
Peierls phase, whose gap is less pronounced than for lower u, but still clearly visible.

Our results for the adiabatic limit of the Hubbard Holstein model are summarized in the phase dia-
gram shown in figure 10.10. We observe that the Mott phase, while not existent at all for u = 0.0,
grows more and more pronounced for growing electron-electron coupling values u. The range of the
metallic phase stays approximately constant for different u-values, but shifts from small values for
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Figure 10.9: Energy gap Ac/t, density difference of the electrons between neighbouring sites (n;) — (n;+1) and
double occupancy <n,~an> for the adiabatic limit « = 0.5 and three different electron-electron couplings, v = 0.0,
u = 0.2 and u = 0.4 for different electron-phonon couplings A. For u = 0.0 (absent electron-electron coupling), we do
not observe any Mott phase but a direct transition from the metallic to the Peierls phase at A = 0.2. For a value of
u = 0.2, the Mott phase exists for values of 0 < X < 0.1 but the gap is very small. For values 0.1 < X\ < 0.3, a metallic
phase can be observed, followed by a Peierls phase for A > 0.3. For bigger electron-electron couplings (v = 0.4) the
energy gap indicating the Mott phase (from 0 < X < 0.25) gets more pronounced. The range of the metallic phase
(0.25 < A < 0.45) stays the same for this u-value while the gap due to the Peierls phase for 0.45 < X becomes less
pronounced (but still visible). Graph from [53]

electron-phonon interaction A to intermediate values. The Peierls phase is getting less pronounced for
growing u.

10.4.3 Comparison with DMRG calculation

In order to benchmark our results, we compare with the DMRG method. As explained in section 9.1,
for this purpose we expanded the syten library to be able to treat coupled fermion-boson systems.

In figure 10.11, we compare the DMRG and the DMET results for both the anti-adiabatic limit
(o =5.0,u = 1.0) and the adiabatic (o = 0.5, = 0.2) limit. Up to an electron-phonon coupling value
of A = 1.2, we observe a quantitative agreement of the energy gap, although different approximations
where made to calculate this property (while in the DMET calculation, we only take the HOMO-
LUMO gap of the mean field system, in the DMRG calculation we calculate the energy gap for
systems with half, half plus one and half minus one filling, as explained in section 10.1.1). While
for higher values of A, the actual value of the gap differs, the point of the quantum phase transition
is predicted equivalently with both the DMRG and the DMET calculation. For a value of A = 1.3,
the gap measured by the DMET calculation abruptly increases, while it only increases slightly in
the DMRG calculation. Reasons for this discrepancy could be either the mean field nature of the
calculation of the gap in the DMET treatment, which overestimates the Peierls phase, or the too
early cutting of the Fock space (with a maximum amount of 8 phononic basis function per site, see
the discussion in section 10.2.1) which could lead to an under-estimation of the Peierls phase in the
DMRG calculation.

In figure 10.11, we compare the DMRG and the DMET results for the adiabatic limit (o = 0.5) and
an electron-electron repulsion of « = 0.2. While the position of the phase transitions both between the
Mott and the metallic phase as well as between the metallic and the Peierls phase agree quantitatively,
the actual sizes of the gaps only agree qualitatively: In the Mott and metallic phase, the gap measured
by the DMRG calculation is bigger than the gap measured in the DMET calculation. While in the
metallic phase, the DMET gap closes up to a value of 1074, the value stays at a value of 5- 1073
in the DMRG calculation. These deviations are within the error limit of the finite size convergence
presented in section 10.2.2.

In the Peierls phase, as also observed in the anti-adiabatic limit, the size of the gap in the DMET
calculation is bigger as in the DMRG calculation. As already discussed before, this can have its origin
either in the mean field nature of the calculation of the DMET gap or in the cutting of the Fock space
in the DMRG calculation.
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Figure 10.10: Phase diagram for the adiabatic limit (o = 0.5) of the Hubbard Holstein model. For different
electron-electron coupling values u and different electron-phonon coupling values A, the phase of the model at these
parameters is indicated. While not existent at all for u = 0, the Mott phase gets more and more pronounced with
growing v and small X\ values. The Peierls phase, while always existing in this range, needs higher electron-phonon
coupling strengths to occur when the electron-electron interactions are also growing bigger. Graph from [53]
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Figure 10.11: Comparison of the energy gap Ac/t for the DMRG and the DMET calculation in the adiabatic limit
o = 0.5 (left side) and the anti-adiabatic limit (right side). Plotted are different electron-phonon coupling values A
for a constant electron-electron coupling of u = 0.2. We observe a quantitative agreement in the position of the phase
transitions between Mott and metallic phase at A = 0.1 and between metallic and Peierls phase at A = 0.3. For the
Mott phase and the Peierls phase both, the size of the gap is only in qualitative agreement. Graph from [53]

10.4.4 Comparison with results from the Born Oppenheimer approxima-
tion

As discussed in section 9.3, we can also make the Born Oppenheimer approximation, which means
treating the phononic degrees of freedom classically ions which are distorted from the resting position,
where this distortion of the ions &; is optimized to minimize the total energy. In figure 10.12, we
compare the double occupancy (n;+n;;) and the distortion of the electronic density (n;) — (n;41) for
the BO system and the fully quantum mechanical system in the anti-adiabatic (o = 5.0,u = 1.0)
and the adiabatic limit (o = 0.5,u = 0.2). In the anti-adiabatic limit, we observe that for both
observables, the Born-Oppenheimer description of the phase transition is not accurate. While in the
full quantum mechanical model, the transition between metallic and Mott phase occurs for a value
of A = 1.1, in the Born-Oppenheimer model, this transition already occurs for A = 1.0. Also, more
importantly, the actual phase transition is of second order, while the Born-Oppenheimer treatment
predicts a phase transition of first order.

In the adiabatic limit, while still not accurate (the phase transition is predicted too early, at A = 0.25
(BO) instead of A = 0.3 (full)), at least the qualitative nature of the phase transition as being of
second order is captured.

This result confirms our expectation that in order to treat the quantum phase transitions of the
Hubbard Holstein model, both the quantum mechanical nature of the electrons as well as of the
phonons needs to be taken into account. Especially when considering the phononic frequency to
be high in comparison to the electronic kinetic hopping, the BO approximation, which assumes the
phonons to be moving much slower than the electrons, fails.
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Figure 10.12: Comparison of the density difference of the electrons between neighbouring sites (n;) —(n;4+1) and the
double occupancy (n;yn;; ) in the adiabatic (left side) and the anti-adiabatic (right side) limit for the fully quantum
mechanical treatment and the Born Oppenheimer approximation of the Hubbard Holstein model. Both calculations
are performed with DMET. For both the adiabatic and the anti-adiabatic case, the position of the gap is not predicted
accurately with the BO approximation, in the anti-adiabatic limit, also the nature of the phase transition is predicted
wrong (first order instead of second order phase transition). Parameters are a = 0.5, v = 0.2, tejec = lphon = 1,
Nimp = 6, Nphon = 8 (adiabatic) and o = 5.0, u = 1.0, telec = tphon = 1, Nimp = 6, Nphon = 8 (anti-adiabatic).
Graph from [53]

10.5 Summary

In this chapter, we showed results for all three methods that we introduced before. First, a finite
size extrapolation is performed. Then, four properties of the system, that is, the energy per site, the
energy gap, the double occupancy and the density difference of the electrons between neighbouring
sites were considered and discussed. While we showed good agreement between the electron-phonon
DMRG method and the electron-phonon DMET methods for all properties, in the BO approximation,
only the energy per site can be reproduced qualitatively and the rest of the description of the Hubbard
Holstein model is not accurate.

We have expanded the DMET method towards the calculation of electron-boson systems and bench-
marked this expansion with the Hubbard-Holstein model, which describes coupled electron-phonon
problems. With this new method, we expect to be able to also treat electron-photon systems. In this
field, there have been recent, very exciting developments in experimental physics, specifically in cavity
quantum-electrodynamical engineering of materials properties [39, 9, 56, 54, 43, 10, 32, 1]. We hope
that our DMET method could be further expanded to theoretically model some of those experiments
as DMET is able to deal with correlated electron-boson lattice systems from weak to strong coupling.
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Chapter 11

Goals and pitfalls of DMET

In part II of this thesis, we derived and explained the DMET method in great detail. In DMET, the
system of interest is split into two parts, an impurity and the rest of the system called environment.
While for the environment certain approximations are made, the impurity is treated as accurately as
possible.

But which properties on the impurity are supposed to be reproduced? Or, in other words, what are
the goals of DMET? In this chapter, we will analyse the goals of DMET for the specific case of the
Hubbard model, described by the Hamiltonian

I;[ =1 Z é;raéjg + UZTALiTTALi¢7 (111)
(i,9),0 i

H|U) = E|T). (11.2)

The Hubbard system is translationally invariant and particle and spin conserving. By restricting
ourselves to a homogeneous system, we find the simplest possible case in which we can investigate in
great detail what can be achieved in DMET. Additionally, we do not consider any of the tricks that
are possible in DMET and that were discussed in section 7.2 in order to investigate the limitations of
this method in a clear-cut setting.

11.1 Wave function

The property that describes the full physics and from which all observables can be calculated is the
wave function on the impurity.

We start with the wave function of the original system |¥) restricted to the impurity as has been
defined in Eq. (5.13). This is the property of the full system we can maximally hope to describe
accurately.

In the DMET method, we find a projection Prsed from the mean field system

T=t Y éléo (11.3)
(iri)s0
7|8y = E|®') (11.4)
2.41mP

@) = D AalCa), (11.5)
a=1

9.4imp

- Prsed Z |Ca><ca| (11'6)
a=1

As discussed before, with P2, the interacting Hamiltonian H is projected into an embedding basis

Heop, that leaves the Hamiltonian on a small part of the system, called impurity, the same while it
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changes the Hamiltonian on the rest of the system.

-E[emb|\:[lemb> - E/lqjemb>7 (117)
ﬁemb|imp = H|imp- (118)

The projection is improved self-consistently by adding a non-local potential to the mean field system

T/ =t Z é;-rgéjg + Z ’Uijé;rgéjg = T + V (11.9)

(,4),0 4,350

The non-local potential V is chosen such that the 1RDMs of the interacting embedded system and
the non-interacting mean field system are the same. The new Hamiltonian 7" yields a new projection,
which leads to a self-consistency cycle that converges once the 1IRDMs of both systems are the same.

The developers of DMET claim [70, 34, 35], that after the above procedure is converged, the wave
function of the interacting embedded system, restricted to the impurity lattice sites, |¥emb)|imp i8
the same as the wave function of the non-interacting mean field system that is used to generate the
projection, |®)|imp

|\Ijemb>|imp = |(I)>|imp~ (1110)

Additionally, if the method is to yield useful results, also the wave function of the embedded system,
restricted to the impurity should be the same (or similar) to the wave function of the original system
on the impurity

(|\Ijemb>|imp - |\Ij>|imp) = 57 (].].].].)
where 0 is small. Note: what we mean by small here and how we intend to compare the wave functions

will be explained in more detail later in this work.

We will now first derive whether it is possible to meet the first demand (Eq. 11.10) and then numerically
check if the second demand (Eq. 11.11) is met. Then, we can conclude if the wave function on the
impurity is a sensible target property.

11.1.1 First demand

Dimensions

As a first step, we consider the dimensions of the Hilbert spaces the different wave functions are
defined in. If the dimension of the Hilbert space of the embedded wave function on the impurity and
the Hilbert space of the mean field system, restricted to the impurity are the same, it is in principle
possible that also the wave functions are the same.

Dimensions in the interacting system

The ground state wave function of the original Hamiltonian H is in general defined in the full Fock
space of a N lattice site system F. For the Hubbard Hamiltonian that is particle number conserving
though, we can restrict the Fock space to the part of M particles:

W) € Fnlu (11.12)

After the projection, we only consider 2 -imp "sites" (they are actual sites on the impurity region and
different basis functions on the rest of the system). Also, we only consider the maximal number of
particles that can possibly be on the impurity region, which are 2 - imp particles

|\Ijemb> S f2imp|21mp~ (1113)

The amount of basis functions needed to set up the Fock space is the binomial coefficient

. 2imp! 2imp!
dim (fQimp|2imp) = 2imp—imp ) 2imp+imp = imp | 3imp* (1114)
2 . 2 : 2 2 ¢
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For the homogeneous Hubbard system we can additionally use that the particle number per site is
constant,

=_, 11.15
P=y (11.15)
where p is the number of particles on each site. Thus, in the homogeneous case we can also restrict
the Fock space on the impurity to

\Ijemb>‘imp € ]:imp|p~imp~ (1116)
This yields a total amount of basis functions needed to set up this Fock space of

imp!
imp—p-imp | imp+p-imp
2 ' 2 '

Aim (Fimnp |p-imp) = =N, (11.17)

which is much smaller than the number of basis functions needed to set up the other Fock spaces.

Like all wave functions, we can write the wave function restricted to the impurity in its Slater deter-
minant basis set, where only Slater determinants with p - imp particles on it are allowed.

I
| et lismp = Y €' @hp)- (11.18)

i=1

Dimensions in the non-interacting system

The non-interacting system is described by the Hamiltonian T, its ground state wave function is a
Slater determinant with a fixed particle number of M. This means that the Fock space describing
this problem, similar to the interacting case, is

After the projection, the Slater determinant describing the mean field embedding Hamiltonian Tomb
is restricted to the Fock space

]:2imp|2imp (1120)

as we consider a system with 2imp particles in it.

Considering the wave function projected on the impurity lattice sites |®)|imp, We know that there
is (possible) particle transfer between the impurity and the embedding part of the system. For the
converged DMET calculation though, the particle number on the impurity needs to be the same as in
the interacting case which means that there have to be p-imp particles on the impurity. We know that
the wave function describing the embedded system is a Slater determinant. This does not imply that
the wave function describing the impurity is a Slater determinant. Like the interacting wave function
on the impurity, we can also write the non-interacting wave function on the impurity as

R

‘(I)cmb>|imp = Zcz@fmp) (1121)

=1

Considering the dimensions of the Fock spaces the wave functions are defined on, it is possible that
the demand in Eq. (11.10),

!

|\I’emb>|imp = |q)>|imp; (11.22)
can be fulfilled.
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Reasoning that the wave functions can not be the same

Consider without loss of generality two systems (one with, the other without interaction), with re-
spectively two particles:

H =1 41y +1(1,2), (11.23)
H|U) = Ey|W), (11.24)
T:tAl +£2+ﬁ1 + 0g, (11.25)
T|®) = Eo|®), (11.26)
(11.27)
We can choose a gauge such that Ey = Ey = 0 which yields
ty +t2 +0(1,2)|¥) =0 (11.28)
£1+1?2+@1+1A)2|(13> =0 (1129)
Assume that the wave functions |¥) and |P)
!
‘\I/Himp = ‘(I)>|imp- (1130)
Eqns. (11.28) and (11.29) imply that
(t1 +12) |O) = —a(1,2)|T), (11.31)
(1 +12) |@) = (—0(1) — 92) | ). (11.32)
subtracting Eq. (11.32) from Eq. (11.31) yields:
0=(—4(1,2) + 9(1) 4+ 92) |®) |imp- (11.33)

As the term —4(1,2) + 9(1) + 92 can never be zero, the wave functions |U)|iy,p and |®)|imp can only
be the same if they are zero:

) iap = 19) iy <= 19 s = [) sap = 0. (11.34)

From this reasoning it seems highly unlikely that the interacting and the non-interacting wave functions
are locally the same in general. Further, due to the dimensionality of the wave function and the
potential, it is only possible to control a wave function with a potential that is of the same dimension.
As the wave function is gained from a system which includes two-particle terms 9’(1,2), in order to
control this wave function, we would also need a controlling potential depending on two particles,
which would be an interacting wave function.

11.1.2 Second demand

Although we have derived that the non-interacting and the interacting wave functions of the embedded
system on the impurity will usually not be the same, it still might be that the interacting wave function
of the embedded system becomes very similar to the wave function of the original system on the
impurity,

(|\chmb>|imp - |\I!>|imp) = 5‘1/ (1135)

In order to test this assumption, we first have to clarify how we intend to compare the wave functions
on the impurities. Further, we have to define what we mean by "dy being small" .

1. How to compare the wave functions?
All information of the wave function is also contained in the density matrix

p=U"T, (11.36)
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11.1. Wave function

also called M-RDM I'"V, where M is the number of particles in the system. Thus, for a system
with only one particle, the IRDM describes the whole system, for a system with 2 particles, the
2RDM describes the whole system and so on.

In order to see if the projection is improving with increase of the impurity region, we compare
the imp-RDMs of the embedded system with the imp-RDMs of the whole system, which for this
purpose we solved with our DMRG solver

2. What does ¢ is small mean?

It is hard to quantify what "similar" in terms of wave functions or N-RDMs means. This is
why, we the difference between the NRDMs of the original and of the DMET system with the
difference between the original system and a system, which we project trivially so that it is cut
after 2imp lattice sites. We call the trivial projection PPMEG  The costs of calculating this
system is the same as one DMET self-consistency loop as the system size considered here is the
same as the size of the embedded system in DMET. The N-RDMs being "close" thus in our
setting means that dpyra, the difference of the wave functions obtained by the two DMRG
calculations is significantly bigger than dpygT, the difference of the full DMRG wave function
and the DMET wave function.

For this calculation, we considered a full system of 24 lattice sites and impurity sizes of 1, 2, 3 and
4 sites at half filling so that number of particles = number of impurity lattice sites. In figure 11.1,

1.25
_e— DMET
1.000 —%— DMRG
0.75
o)
0.50
0.25
0.099 15 20 75 30 35 10

Nimp

Figure 11.1: Difference between the N-RDM of the full system and the system cut after 2Njn, lattice sites (red
line, crosses) and the difference between the N-RDM of the full system and the DMET system (blue line, dots)

we plot the difference between the N-RDMs of the embedded systems, once gained with the trivial
projection PPMEG and once gained with the DMET projection P,

2

(FNimp ‘imp - Fé\rf;ﬁ;phmp) =0 (1137)
We observe that the distance between the original system and the embedded system, obtained by
the trivial projection PPMEG (in blue labelled with "DMRG" in the graph), is of the same order of
magnitude as the distance between the original system and the embedded system, obtained by the
DMET projection Arsed (in red and labelled with "DMRG" in the graph). Additionally, we know by
construction that the DMRG projection will converge to the exact solution if the embedded system
is of the same size as the original system, which is not obvious for the DMET projection. Also, the
DMET calculus is more expensive as, instead of performing the computation of the embedded system
once, it has to be repeated until convergence of the projection.

In this chapter, we have shown that the wave function on the impurity of the embedded interacting
and non-interacting systems in DMET are usually not the same. Moreover, the DMET algorithm
does not provide a wave function on the impurity that is closer to the wave function on the impurity
of the original system than a simple cutting of the full space would yield.

We deduce from these insights that the wave function on the impurity is not a sensible target property
in the DMET algorithm.
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11.2 1RDMs

If the wave function on the impurity is not a sensible target, a next good candidate would be the
1RDM. In this section, we will investigate

1. If it is possible to make the IRDMs of the embedded mean field and the embedded interacting
system the same

? S
"Yemb|imp = "Yemb|imp; (1138)
where Yemp, is the LRDM of the interacting and ~2 , is the IRDM of the mean-field system.

2. If the embedding 1IRDM e on the impurity is close to the IRDM from the original system
~ on the impurity

(’yemb|imp - 7|imp) =9 (1139)

11.2.1 Comparison of the IRDM of the embedded mean field and the
embedded interacting system

1RDMs on the embedded system

Considering the 1IRDMs of the embedded systems, v and Yemb, We see immediately that they can
never be the same,

Yermb 7 Yemb; (11.40)

by looking more closely to the definitions of the two TRDMs:
The 1RDM of the mean field system is defined as

Vombyij =2 Y P (11.41)

where P is the total particle number in the embedded system and the @ are the eigenvectors of
single-particle Hamiltonian belonging to the lowest P/2 eigenvalues.

temp|3*) = €|3). (11.42)

The determinant of these eigenvectors builds the many body ground state wave function of the mean
field Hamiltonian in Fock space:

Temb‘q)emb> = E|(I)emb>a (1143)
Den) = det {3}, (11.44)

The ground state of the interacting system |¥)cm1, can be written as a sum of Slater determinants
«
V)emp = D @), (11.45)
k=1

where o > 1. This means that in order to determine |¥)cn,, not only the lowest eigenvectors of
the single-particle system are needed, but a linear combination of all Slater determinants in the
span {Xk}k:l__P. Therefore, the IRDM of the interacting system can be written as

n
Yemb,ij = anf(ff(f, (11.46)
k=1

where x¥ are the natural orbitals of the interacting 1IRDM and P > n > P/2.
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1RDMs on the impurity

The 1RDM of the mean field embedded system is defined by the {¢*}.  which are the eigenfunctions

imp
of the single-particle Hamiltonian :
Nimp
D obEs =Y = = Y B (11.47)
J i=1

We can split each orbital into one part that is only defined on the impurity and one part that is only
defined on the bath:

¢ = Plnp + Penv (11.48)

Then, the 1IRDM of the embedded system can be written as

Nimp Nimp
s _ § : ~a ~a § ~a ~a
’Yemb,ij - soimp,icpimp,j + <)Oenv,igoenv,j? (1149)
a=1 a=1

Considering now only the 1IRDM on the impurity,
Nimp
’Ysmb,ij|imp = ’Yismp,ij = Z @icfnp,i@?mp,ja (11.50)
a=1

we observe that the single-particle wave functions on the impurity ¢f; , are no longe normalized.
Renormalizing them yields

Nimp
’Yismp,ij = Z ||@||i2mp30iamp,i(pi(¥np,j' (1151)
a=1

We see that 7, ;; has the same form as the IRDM of the interacting system by considering the
1RDM of the interacting system

2Nimp
Vembij = D NN (11.52)
k=1

Note that the sum here goes over all possible one-particle orbitals. Splitting the ¥* into impurity and
bath

X" = Xinp + Xou (11.53)
yields the 1IRDM
2Nimp 2Nimp
Yembiii = O XwpiXempg + D XouviXeav.i- (11.54)
a=1 a=1

Considering the 1RDM on the impurity and renormalizing yields

Nimp
Yimpii = Y, Mk (X pXfop i XTrp - (11.55)

a=1

Note that, due to the renormalization, the sum now only goes until Ny, as the full sub-space of the
1RDM on the impurity is set up by Nimp orbitals.

We see that Eq. (11.51) and Eq. (11.55) have the same form. So, it is possible to make the 1RDMs
of the embedded interacting and the embedded mean field system, restricted to the impurity exactly
the same. In order to do that, we need to choose the natural orbitals of the mean field 1IRDM such
that they are the same on the impurity

(11.56)

o _ .k
Soimp,azl..imp - Ximp,k:l...imp'
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Additionally, we have to make the norms the same:

In fact, there is not only one possible choice for the set of eigenfunctions of the mean field Hamiltonian
t’, but infinitely many. The Hamiltonian

Nimp Nimp
. . - 2
By = D 1B mpPinp iPimps + D € (1= [llmp)” Pl e (11.58)
a=1 a=1
yields the exact same 1RDM on the impurity as the Hamiltonian
Nimp Nimp
fiy = D €@l Phnpiimps + O € (1= @llimp)” Pl i Pl (11.59)
J p¥imp,i¥imp,j ; N
a=1 a=1

where the environment orbitals ¢/ can be chosen arbitrarily.

A consequence of this arbitrariness is that we can find a non-interacting Hamiltonian # that yields
the same 1RDM as the interacting Hamiltonian much simpler than through the minimization of the
standard DMET procedure:

The interacting 1IRDM of the embedded system, v;;, yields 2/Viy,p natural orbitals X~k, Eq. (11.52). As
in a non-interacting system, the natural orbitals are equal to the eigenfunctions of the single particle
hopping Hamiltonian

2Nimp
=Y exixy (11.60)
k=1

we can directly find the Hamiltonian ffij from the natural orbitals, where we choose the €, arbitrarily.
The condition this Hamiltonian needs to fulfill is that it yields a 1RDM which is on the impurity
exactly the same as the 1IRDM of the interacting system on the impurity:

Vimp,ij = Vimp,ij- (11.61)

This condition is trivially fulfilled when just taking the natural orbitals ¥* obtained from the diagonal-
ization of the interacting 1IRDM. But it is also fulfilled for any single particle orbitals n* = nikmp +08 s
where the orbitals on the impurity are the same as before,

nﬁnp = ¢1kmp (1162)

The eigenfunctions on the environment, @¢¥ = are completely arbitrary as they do not influence the
1RDM on the impurity at all. This can be seen intuitively by considering a simple explicit example.

This arbitrariness in the eigenfunctions on the environment leads to severe convergence issues in the
DMET algorithm.

11.2.2 Comparison of the 1RDM of the embedded interacting with the
original interacting system

We have shown that it is possible to make the 1IRDMs of the mean field and the interacting system
on the impurity the same and which consequences this has. This equivalence does not state anything
about the similarity of the interacting 1IRDM of the embedded system and the original IRDM though.

Equally to our study for the wave functions, we also examine the difference between the original IRDM
restricted to the impurity -y|imp and the IRDM obtained from the embedded system Yemb |imp- We
again compare to the 1IRDM obtained from a system that is simply cut after 2imp lattice sites. This
is equivalent to comparing the efficiency of the projection obtained from the DMET self-consistency
loop prsed and the trivial projection that is unity on the first 2imp lattice sites and zero otherwise. In
figure 11.2, we show the result of this comparison: while the difference between the 1IRDMs for the
DMRG calculation and the cut DMRG system is high for small impurity sizes, it decreases drastically
with increasing impurity sizes. For this approach, we now see that both solution will coincide for
equal system sizes. Comparing the 1IRDM of the full system with the DMET system, we observe that
they are already relatively similar for small impurity sizes, but the difference in the 1IRDMs increases
with growing impurity size.
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Figure 11.2: Difference between the IRDM of the full system and the system cut after 2Njyp lattice sites (red line,
crosses) and the difference between the 1IRDM of the full system and the DMET system (blue line, dots)

11.3 Summary

In this chapter, we have examined the claims found in literature about the targets of the DMET
algorithm.

We conclude that the wave function on the impurity is not a good target for two reasons. On the one
hand, we usually cannot even locally make the wave function of an interacting and a non-interacting
system the same. On the other hand, the wave function of the embedded system on the impurity does
not become similar to the wave function of the original system on the impurity.

The 1RDM restricted to the impurity is a better property as it is possible to make the IRDMs of the
interacting and the non-interacting systems the same. Also, for small impurity sizes, the difference
between the 1IRDM from the DMET calculation and the original system is relatively small, making
it a good target for DMET. Unfortunately though, there is an ambiguity in the choice of the non-
interacting IRDM and thus, in the non-local potential of the mean field system, leading to convergence
issues in the numerical code.

11.3.1 Solutions: How to make the projection well-defined

There are three possible solutions, that we can think of, to fix the ambiguity issue discussed in the
section before:

1. Minimizing the 1RDMs on the full system
Instead of making the IRDMs on the impurity the same

’yzmb|imp = 'Yemb|impa (1163)

we can try to minimize the distance between the full IRDMs on the embedded system:

min (Yemp — Yemb) - (11.64)

This is what is often done in practice and also most of the results obtained in this work were
performed by minimizing the full 1IRDMs on the embedded system. Still, as the IRDMs on the
full system can never be exactly the same, the mean field 1IRDM (and with that the full mean
field system), are neither unique nor well defined when taking this path. In practice, we observe
that convergence issues can be minimized in this way.

1. Including temperature
It can be shown [15] that in the grand canonical ensemble, that is, including temperature in the
system, it is possible to make the 1IRDM of a non-interacting system the same as the 1IRDM of
an interacting system

k,s
’ygmlb = ’ygrl:lb' (1165)

95



Chapter 11. Goals and pitfalls of DMET

Including temperature in the system is therefore one possible way to solve the ambiguity problem,
we will not treat this topic in this thesis though.

2. Using insights from functional theory
In functional theories discussed in section 3.1 of this thesis, there has been done a lot of research
on the topic of uniquely mapping properties of non-interacting systems to interacting systems.

We can use these insights by, instead of choosing the 1IRDMs as target of the DMET algorithm,
choosing a different property such that a unique convergence is achievable.

In the next chapter, we will explore two possible properties that meet this demand.
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Chapter 12

Using insights from Functional Theory
for DMET

12.1 Density functional theory

As discussed in section 3.1 of this thesis, the foundation of Density Functional Theory is that there is
a one-to-one correspondence between the density and the wave function of a chosen system. In other
words, the density fully determines the full system, there cannot be two different densities yielding
the same ground-state wave function.

For our DMET approach this means that, instead of making the 1IRDMs of the interacting and the
non-interacting embedded systems the same, we choose to make the densities the same

NS b = Memb- (12.1)

When changing the target of DMET in this way, it is on the one hand possible to find a non-interacting
Hamiltonian 7” that exactly meets this demand. On the other hand, we can also be sure that, once
we have found it T’, it is the only (non interacting) Hamiltonian yielding exactly this density. Thus,
changing the target from the IRDM to the density the code should converge more easily.

For our homogeneous Hubbard system, the density on the whole system is also homogeneous
Ni; = ﬁ (12.2)
From this property, it follows that also the non-local potential V we add to the mean field Hamiltonian

T'=T+V
=1 Z é;-faéjg + Z Uiié;rgéw (12.3)
(i,9),0 0,0

is homogeneous on the impurity. As we continue the non-local potential on the impurity throughout
the full system, this means that the mean field Hamiltonian is also homogeneous on the whole system.

Unfortunately, this new Hamiltonian 1’ just changes the phase of the system and does not change the
initial guess of the projection PZ,, as explained in section 7.2.3. The DMET self-consistency cycle
thus converges trivially after one iteration.

So, for homogeneous systems, the density is not enough as a target property.

12.2 Kinetic energy Kohn Sham

As the density is not enough to determine a reduced projection Prsed which can be improved in the
self-consistency loop in the homogeneous case, we have to find a property that can yield a projection
that can be improved. Preferably, this property should also be uniquely defined though, that is, for a
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given non-interacting system, there should only be one external potential yielding a certain value of
this property.

One observable fulfilling the above demand is the kinetic energy density K; that is defined as
Ki = 2tz *Vii+1 (124)

where 7; ;41 is the first off-diagonal element of the IRDM and ¢, is the prefactor of the next-neighbour
hopping term.

For the Hubbard model defined in Eq. (11.1), the non-interacting Hamiltonian which yields the same
density n; and kinetic energy density K; has the form:

T= Y tielcjo+ > vichein (12.5)
(irj)s0 io
T|®) = E|®). (12.6)

It can be shown [60] that for a homogeneous system, there is one and only one external potential
which yields the same kinetic energy density than the kinetic energy density of the interacting system:

In the interacting system, the hopping element ¢; = ¢ is constant. The kinetic energy density K; thus
only depends on the first off-diagonal term of the 1IRDM +; ;41 which is the same for all lattice sites ¢
in the homogeneous system. The 1IRDM, and with that, the kinetic energy density, thus only depends
on the interaction strength in units of the hopping U/t and the relative filling per site %

As the 1IRDM does not depend on any shifts or phases of the Hamiltonian, as we have discussed in
section 7.2.3, the IRDM of the non-interacting system only depends on the relative filling per site %

Thus, we can find a relative hopping of the non-interacting system:

te~,
$ = 2 JAtl (12.7)
Vii+1

We can adapt our DMET algorithm to not target the IRDM, but the density n; and the kinetic energy
density K; in the self-consistency cycle

Min (Yemb — Yemp) — M [(Remb — Nemp) + (Kemb — Komp)] 5 (12.8)

yielding an effective local potential v; and an effective hopping parameter t; on the impurity. Note
that in order to create a non-trivial self-consistency cycle as a first step the two parameters have to
be found on the impurity. Then, in a second step they have to be continued throughout the system
by breaking the translational symmetry, as explained in detail in section 7.2.3.

12.2.1 Comparing the kinetic energy density of the original system with
the embedded system

In Kinetic Energy Kohn Sham theory, is is always possible to make the kinetic energy density of a
mean field and an interacting system the same. Equivalent to the above cases of the wave function
and the 1IRDM, this does not state anything about the similarity of the kinetic energy density of the
embedded system and the original kinetic energy density of the original system though.

In this chapter, like for the wave function and the 1IRDM, we examine the difference between the orig-
inal kinetic energy density, restricted to the impurity K;|imp and the kinetic energy density obtained
from the embedded system Kjemb|imp, Which we will denote by KEKS 2 here. We again compare to
the kinetic energy density obtained from a system that is simply cut after 2imp lattice sites. Addi-
tionally, we also compare to the kinetic energy density obtained from the original DMET calculation
and from a DMET calculation, where, instead of minimizing the full IRDM in the self-consistency
loop, we just minimize the diagonal and first-off diagonal elements of the IRDM (which is a property
proportional to the kinetic energy density, we will call this method KEKS 1 here).

In figure 12.1, we see the result of this comparison. The performance of the DMRG calculation as well
as the performance of the DMET calculation is very similar to the comparison of the full IRDMs: The
DMRG calculation yields a big difference between the K; for small impurity sizes and the decreases
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Figure 12.1: Difference between the kinetic energy density K; of the full system and the system cut after 2Njnp
lattice sites (red line, crosses), the difference between K; of the full system and the DMET system (blue line, dots), the
difference between K; for the full system and the Kinetic-Energy-DMET calculation (green, stars) and the difference
between K; for a minimization of the diagonal and first off-diagonal element in the DMET calculation.

with increasing impurity size. In the DMET calculation, the difference between the K; is already
small for small impurity sizes, but increases for growing impurity sizes.

The KEKS 1 method yields lower values in the of the K; difference to the full system, which is not
surprising as it is optimized to that property. Interestingly though, the difference does not increase
with increasing impurity sizes but instead decreases starting from an impurity size of 4. This effect
can be seen more drastically when considering the KEKS 2 method: here, although the difference of
the K to the full system is bigger than for all other methods (except DMRG), the difference decreases
with increasing impurity size.

12.3 Summary

In this chapter, we combined Density Matrix Embedding Theory with insights from functional theory.
By changing the target in DMET from making the 1IRDMs of the embedded interacting and the mean
field systems the same to making the density and the kinetic energy density the same, we improve the
method in two ways:

1. Arbitrariness of the projection

In standard DMET, the projection into the embedded system is not unique, leading to conver-
gence issues. Due to the one-to-one correspondence between the kinetic energy and the external
potential of our considered homogeneous system, in our method, this arbitrariness is avoided.

2. Agreement of target of the original and the embedded system

We compare the kinetic energy density on the impurity of the embedded system and the original
system the same for standard DMET and with our adapted method. The results show that the
difference between K; increases with increasing impurity sizes for standard DMET, but decreases
for our method. This shows that agreement between this target for the original system and the
embedded system is possible.

The insights presented in this chapter will be published in [59] soon. The expansion of DMET towards
functional theories results naturally from an explicit derivation of DMET and the examination of the
goals of DMET as we have shown in 11.2.1. This is why we believe that combining DMET with
functional theories, which can be either seen as solving numerical and mathematical issues in the
DMET code or as finding a new group of functionals in functional theory is a promising pathway
towards the description of more realistic, strongly correlated systems. In the future, we aim at testing
our new methods for observables beyond the density and the kinetic energy density.
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Chapter 13

DMET calculation of the bond
stretching in H-

In section 12.1, we concluded that for a homogeneous system, the density is not a good target as in this
case, it only adds a trivial phase to the mean field system. For non-homogeneous systems however,
comparing the interacting with the non-interacting density leads to a non-homogeneous local potential
in the mean field Hamiltonian.

In this chapter, we combine insights from DMET and DFT to a new method that we call Self-consistent
density embedding (SDE). Doing this, we hope to address difficulties in both techniques: As discussed
in section 11, in DMET, the mean field system from which the projection is found can never be exact.
As a result, the embedded system which is used for the computation of all physical observables is also
never exact (although it can be very similar to the original system) leading to numerical convergence
issues. This can be improved by using insights from DFT: in Kohn-Sham DFT, as discussed in section
3.2, the mean field system (which is the Kohn-Sham system) is exact as it has the same density as the
interacting system and all observables are functionals of the density. Using insights from DFT thus
can help to improve the DMET algorithm.

From the DFT perspective, there are two challenges that still have to be faced: on the one hand side,
DFT functionals often struggle to describe the physics of strongly correlated systems. Also, once a
functional in DFT is found, it cannot be improved anymore. As DMET is designed to treat strongly
correlated systems and can be improved systematically by increasing the size of the impurity, with
the help of DMET we can also try to find new functionals in DFT.

We test and explain our SDE method which combines DFT and DMET for a simple example system
that is not easy to describe with commonly used approximate DFT functionals: the two electrons bond
stretching of a heteroatomic molecule in one dimension (see Fig.13.1). Part of the work presented
here has been published in the paper [44].
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Figure 13.1: Visualization of the 1D H> molecule. The real space is discretized on a lattice. The two atoms are
modelled through a symmetric double well potential. Sketch from [44]
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13.1 Model Hamiltonian for heteroatomic bond stretching

We model the two electron bond stretching with the Hamiltonian : [42]

S 1
H=- > (el gbio + el ytiv1.0 — 20i)
2Al’2 1+1,077 1,0 , s
i,0
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Here, ¢; , and ¢; , are the creation and annihilation operators of an electron with spin o on lattice

1,0

, (13.1)

+ E Vi,extNi,o +
1,0

site 4, as defined in section 2.1.3. We further define n; , = élaéiyg, which is the density operator. We
consider a one-dimensional box of size L with N lattice points which determines the lattice spacing
Azx. Additionally, we employ an external potential v, which has the form of a double well.

The three terms of the Hamiltonian are describing the energy contribution in the system: The first
term is, similar to the kinetic term in the Hubbard model, a next-neighbours hopping term. The
second term mimics the ions of the molecule, as we do not explicitly consider these degrees of freedom
here, it takes the form of an external potential. It depends on the considered dimension and has the

form
21 %) 2122

Y/ N R N

while z; = Ax (i — &51) is the distance between two grid points, the numbers z; and z determine

the depth of each well respectively. z; and 25 take values between 0 and 2, we will characterize the
potential by their difference Az = z; — 2.

(13.2)

The third term of the Hamiltonian is the interaction term between the electrons and has a different
form than the on-site repulsion of the Hubbard model: We consider a more realistic kind of interaction
by not only taking into account the interactions of two electrons on the same lattice site, but also more
long-range interactions. This is done with the so-called soft-Coulomb interaction, which has the same
form as the normal Coulomb interaction, but avoids the singularity at zero distance which occurs in
the one-dimensional case by including a softening parameter o = 1.

In a problem including only two electrons, instead of having to do a numerical inversion, we can
analytically invert the density n of the problem to yield the Hartree-exchange-correlation potential
UHxe. In our considered Hamiltonian, the ground state of the two-electron problem is always a singlet.
This is why we can write the density as

n(r) =2 po(r)|*. (13.3)

In section 3.1 of this thesis, we have established the Kohn Sham equations as
v2
(=% +5s0) i) = j60) (13.9
n(r) = Z o, (r)]?. (13.5)
J

We can then insert Eq. (13.3) into Eq. (13.4) yields [21], which yields us an explicit expression for the
Hartree-exchange correlation potential in dependence of the density:
h(r)\/n(r
{)HXC(T) = _M + €o, (136)
n(r)

where h(r) is the single-particle Hamiltonian of the system.

13.2 DMET for non-homogeneous systems

So far we only have treated homogeneous systems. As we treat a non-homogeneous system, the
algorithm presented in chapter 7 needs to be adapted.

T Both authors contributed equally to this paper.
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Figure 13.2: Visualization of the patching procedure: In order to obtain a continuous density, we sweep through
the system by just going one site forward for each impurity calculation. Then, only the physical properties of the
centering site are taken into account and patched together. Sketch from [44]

13.2.1 Patching together the single impurities

For homogeneous systems, the DMET algorithm is simpler insofar as that in order to compute proper-
ties of the full system, only one impurity plus embedded system needs to be calculated. As the system
is locally the same everywhere, the properties on one impurity can simply be continued throughout
the whole system. For non-homogeneous systems, this is not that simple. Different regions in the
system can have different densities. In order to compute properties of the whole system we thus have
to divide the full system into impurities and perform one DMET self-consistency cycle for each of
them. Afterwards, the system is patched back together. Of course, the patching has to be such that
the whole system is covered.

In DMET the system is divided into non-overlapping impurities causing artificial discontinuities in
local observables [67].

In order to make sure that all impurities connect smoothly to one another, we introduce a continuous
patching, where the system is covered by overlapping impurities. In practice, we sweep through the
system by just going one site further for each impurity calculation (figure 13.2). When patching the
system back together, we only take into account the site in the middle of each impurity. Real space
lattices, for which we formulate the theory, have an intrinsic discontinuity (due to discretization of
the real space) and our patching procedure is constructed such that the local observables remain as
continuous as they can possibly be on a real space lattice.

Further, we have to make sure that when patching the system back together, we retain the correct
particle number A in the full system

Ny =N Z0. (13.7)

Following [70], we achieve this by adding and self-consistently optimizing a chemical potential p to
the embedding Hamiltonian of each impurity

ﬁemb — -Hemb +u Z TALZ', (138)
1€ Nimp

where 7; denotes the density operator on site i. The constant p in Eq. (13.8) is added only to the
impurity part of each Hcp,p, in order to achieve a correct particle number on both the impurity and
the environment, respectively. In other words, the chemical potential is a Lagrange multiplier, which
assures that the constrain in Eq. (13.7) is fulfilled.

13.2.2 Inversion instead of minimizing

For the specific example of targeting the density of the interacting and non-interacting mean field
system to be the same on the impurity, instead of minimizing the difference between the two densities
and finding a non-local potential yielding the new projection, we can use additional insights from DFT:
As in the normal DMET calculation, starting with an initial guess, which is obtained from the one-
body part of the Hamiltonian iL, we calculate the projected Hamiltonian H,p and then diagonalize
it to obtain the many body wave function |Weyy,) of the embedded system. From the wave function,
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Kohn-Sham system:
Hg = h + Opxe

/ for each impurity \

Build projection P
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Update Build embedding system: N
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Figure 13.3: Visualization of the SDE algorithm: First, an initial guess for the Kohn-Sham system is made from
which the projection is built. Then, the embedding Hamiltonian is calculated and the corresponding ground state
wave function and density are computed. The density is then inverted and yields an updated vy which is then
used to update the Kohn-Sham system. This is repeated until self-consistency. An additional self-consistency cycle
is added in order to maintain the correct particle number. Sketch from [44]

we calculate the density nemp on the impurity. But now, instead of minimizing the difference between
the interacting and the non-interacting density with a Simplex algorithm as explained in section 5.4,
we use the Hohenberg-Kohn theorem on the mean field system, which is equivalent to a Kohn-Sham
system in DMET. From the Hohenberg-Kohn theorem it follows that in real space, every interacting
density has a corresponding non-interacting wave function |®) and local potential vg.

Thus, having calculated the density exactly on the impurity, we can find the corresponding Kohn-
Sham potential for this impurity by inversion [21, 29, 27, 47]. Inverting the density on every impurity
yields the new Kohn-Sham Hamiltonian h + dpxc. Note that the inversion is performed independently
for each impurity and the total Kohn-Sham potential is patched together as we describe in detail in
section 13.2.1. We then use the new Kohn-Sham Hamiltonian to calculate a new projection I:’fed. This
is done, similar to the original DMET algorithm, until convergence (see Fig. 13.3).

13.3 Results

13.3.1 Dissociation of the H, molecule

As a first step, we consider Az in above defined Hamiltonian, which means that the external double
well potential has two wells of the same depth. With in total two particles in the system, this
corresponds to the modelling of the Hs model. We vary the bond length of the model, that is, the
distance between the two wells of the external potential to show the behaviour of the bond stretching
of the Hs molecule. We expect the following behaviour: For a specific distance between the two cores,
we compute a minimal energy Ey which is the stable distance between the two cores. When changing
the bondlengths either to smaller or to bigger values, the energy should always increase. In the case
of smaller bond lengths, this is a drastic increase due to the repulsive core-core interaction. In the
case of bigger distance, the bonding energy that makes it possible to form molecules is decreasing.
For very large core distances d — oo, this contribution goes to zero as we now have two separate H
atoms.

In Fig. 13.4, we show the ground state energy Ey of the Hamiltonian described in 13.1. We observe
that our SDE method describes exactly the behaviour we are expecting. Additionally, comparing
to results from an exact diagonalization calculation, we see that our method quantitatively agrees
with the exact solution. The advantage of our method is the much lower computational cost: While
for the exact solution, the computational costs grow exponentially with the number of orbitals N
(4V), in the SDE method, only the costs of the impurity calculation is exponential. The underlying
mean field calculation is growing quadratic with the amount of orbitals, multiplied by the number of
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Figure 13.4: Ground state energy of the H> molecule, modeled in 1D calculated with SDE and Njym, = 5 (orange
stars), Full-CT (black dashes line) and one dimensional LDA (solid blue line). When varying the distance of the two
core potentials d, the energy curve has a minimum corresponding to a stable molecule. For smaller core distances,
the energy grows due to the repulsion of the two cores. Increasing the distance d — oo leads to the vanishing of
the binding energy resulting in two separate atoms. Following set of parameters has been used (see section 13.1):
number of real space lattice sites N = 120, box size L = 20, potential well difference Az = 0, softening parameter
a = 1. Graph from [44]

impurities NV, and the needed self-consistency iterations 1 (42 Nme . N3 . 7). We additionally compare
the results with those from a one dimensional LDA-DFT [20] calculation, whose computational costs
are even lower. The costs for the LDA calculation grow quadratic with the number of lattice sites
times the self-consistency iterations (N2 - n) but they also do not describe the behaviour of the Ho
bond stretching accurately. Specifically, the LDA calculation fails to describe the ground state energy
of the system for large bond lengths.

13.3.2 Peaks and steps in the Kohn-Sham potential

In Kohn-Sham DFT, a non-interacting system is used to describe an interacting one. Here, the
interaction consists of the repulsion of the two electrons in the Hy model. As the Kohn Sham system
does not include an actual interaction term, this repulsion needs to be mimicked by the (external)
Kohn-Sham potential. In order to do so, we expect to see a peak that prevents the two electrons from
being at the same atom, as has been investigated in previous work [61, 16, 21].

We consider the density and the Kohn-Sham potential from the SDE calculation in Fig. 13.5 to observe
this peak. Specifically, we consider one computation with 5 impurity sizes (denoted as SDE(5) in the
figure) and one computation with 9 impurity sizes (denoted as SDE(9) in the figure) and compare
with the density and Kohn Sham potential obtained from the ED calculation.
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Figure 13.5: Density distribution n(z) and Kohn-Sham potential vg(z) with SDE(5) (solid blue line), SDE(9)
(solid orange line) and full CI (dashes black line). The exact and the SDE solution agree quantitatively. The SDE
Kohn-Sham potential shows the expected peak in the center which mimics the electron-electron interaction. For
small impurity sizes, this behaviour is overestimated, but converges quickly to a quantitatively exact result for bigger
impurity sizes. The following set of parameters has been used: N = 120, L = 20, d = 10, Az = 0. Graph from [44]

On the left hand side, we plot the density of the model and observe that both SDE calculations
agree quantitatively with the exact calculation. Considering the right hand side, where we plotted
the Kohn Sham potential, we observe a peak at position = 0 in for both SDE calculations and the
exact calculation. For an impurity size of 5, this peak is overestimated, for an impurity size of 9 it
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agrees quantitatively with the exact solution. We can thus conclude that we can reproduce the exact
Kohn-Sham potential for the one-dimensional Hs model.

As a next step, we consider the external double well potential to be asymmetric, that is Az = 0.5. This
Hamiltonian can be used to mimic heteroatomic molecules and their behaviour under bond stretching.

Considering again the density and the Kohn Sham potential in figure 13.6, we first of all observe
that the density of the molecule is not symmetric for an asymmetric external potential, which not
only makes sense but also agrees quantitatively with the exact solution. On the right hand side of
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Figure 13.6: Density distribution n(z) and Kohn-Sham potential vg(x) for an asymmetric external core potential
with SDE(5) (solid blue line), SDE(9) (solid orange line) and full CI (dashes black line). To account for the asymmetry
in the density distribution, in addition to the peak we observe a step going from the right side of the molecule to its
left side. The following set of parameters has been used: N = 120, L = 20, d = 10, Az = 0.5. Graph from [44]

the figure, we again consider the Kohn-Sham potential. As for the symmetric external potential, we
observe a peak separating the two electrons from each other, which corresponds to the mimicking of

the electron-electron repulsion in the interacting case. Additionally, we observe a step between the
potential on the left and the right side. This step is necessary to obtain an asymmetric density.

13.4 Summary

In this chapter, we combined DMET with DFT to a new method which we call SED. We tested this
method on the bond stretching of Hs and find very good results.

106



Part V

Summary and Outlook

107






Chapter 14

Summary and Outlook

14.1 Summary

The first goal of this thesis was to understand some of those methods and their implications towards
our understanding of nature. In the first part of this thesis, we decided on one specific setting, that
is, non-relativistic many body quantum mechanics on a discretized real space lattice. We presented
different techniques that are widely used for the numerical solution of model systems in this setting.
Specifically, we presented two groups of approaches which are used to solve the models mentioned
above, namely wave function methods and the functional methods. We highlighted advantages and
problems of both groups of methods. In the second part of this thesis, we analyzed and presented in
great detail a method that takes a third approach in between the two above mentioned groups. The
method, called Density Matrix Embedding Theory, is an embedding technique, where one part of the
system is treated with a wave function method and the connection towards the remaining system can
be understood in terms of functional theory.

The second goal of this thesis was to expand DMET to be able to treat coupled electron-boson systems.
We then tested DMET for coupled electron-phonon systems on the Hubbard-Holstein model, which
describes the fundamental interactions between electrons and phonons. In order to be able to describe
the physics of the Hubbard-Holstein model, we needed to decide which observables to consider. Here,
we took great care of excluding or at least quantifying the limitations of the method, making sure
that problems such as finite size effects are controlled. Comparing with the Tensor Network method,
we found that our electron-phonon DMET is able to describe the quantum phase transitions of the
Hubbard-Holstein model

The third goal of this thesis was to expand the DMET method to bridge functional methods and
wave function methods thus forming a possible pathway towards being able to treat ab initio systems
with strong correlations. Upon a profound analysis of the DMET method, we found the connection
to functional methods already inside the method itself, which lead towards an improvement of the
DMET method or, seen from the functional perspective, towards the possibilities of finding functionals
in a different way. We showed that the expansion of DMET towards functional methods is in principle
possible for two different settings: In the homogeneous case, we can include insights from Kinetic
Energy Kohn Sham theory in the DMET technique and for inhomogeneous systems, we can use
Density Functional Theory. The latter approach has been proven to be successful for the treatment
of a model system of Hs.

14.2 Outlook

This thesis is, of course, just a small piece in a much bigger puzzle. Besides the fact that there are
obviously a lot of other approaches towards a better understanding of nature, there are also a lot of
pathways starting from this thesis. There are three ways in which the work presented in this thesis
can be continued
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14.2.1 DMET for electron-boson systems

We have considered the one-dimensional Hubbard-Holstein model which describes the coupling of
electrons to phonon modes but the expansion of the DMET method is general and allows the treatment
of any coupled electron-boson system. Thus, in a next step we can also describe electron-photon or even
electron-phonon-photon coupling with DMET. Also an expansion towards two-dimensional systems,
which for the purely electronic DMET has already been explored, is possible.

14.2.2 Improving DMET with further insights from functional theory

We have shown two possible ways DMET can be improved with Kinetic Energy Kohn Sham Theory
or with Density Functional Theory, but so far we have only applied this new method to a Hs toy
model. In a next step, we can treat a more complicated system with our new method.

In the literature the presentation of DMET is convoluted and relatively implicit. In this thesis, we
have taken the first steps toward a more mathematical formulation of this theory but we still have
not fully analyzed the implications and relations of the projection in the DMET system. A more
fundamental analysis could help to improve DMET even further.

14.2.3 Finding new functionals with DMET

As functional theory shows up naturally in the DMET methods, it makes sense to include DMET in
embedding DFT methods.

The DMET-DFT approach allows to find a density-to-potential mapping in a completely new setting
that does not follow the energy minimization which is usually done in DFT approaches. Additionally,
this approach seems to work well especially for strongly correlated systems.

Of course it is also possible, on a larger scope, to combine all above mentioned proposals. Seeing
DMET and DFT not as two separate but as one hybrid method would make it possible to find
functionals for coupled electron-boson systems that are able to treat strongly correlated systems and
that additionally can be improved systematically. Recent experiments on coupled electron-photon
systems in a cavity set-up [39, 9, 54, 43, 10, 32, 1] show the need for the ab-initio treatment of coupled
electron-photon systems.
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Chapter 15

Appendix

15.1 Finite size extrapolation for the DMRG data

In the DMRG calculation, opposed to the DMET calculation, we only have two sources of possible
errors due to finite size effects: the system size itself and the maximal number of considered basis
functions in the phononic Fock space Nphon. We discuss both in this section.

15.1.1 Phonon basis functions per site

Similar to the convergence discussion for the DMET method, we show the convergence of the DMRG
calculation with increasing number of phononic basis functions per site. We choose two observables:
the energy gap in figure 15.1 and the convergence of the energy per site in 15.2 and show results both
for the anti-adiabatic (o = 5.0) as well as for the adiabatic limit (v = 0.5).

anti-adi, v = 1.0 adiabatic, u = 0.2

0.015

~-#%- 2 phon ~-&-- 4 phon -%-- 6 phon —e— § phon +- 10 phon

Figure 15.1: Scaling with the number of phononic basis functions per lattice site of the energy gap Ac/t. For the
anti-adiabatic limit, the results are converged for a number of basis functions of 8 while in the adiabatic-limit in
the Peierls phase, no convergence is reached even for a number of basis functions of 10. The position of the gap is
predicted correctly for a number of basis functions of 8.

anti-adi, v = 1.0 adiabatic, u = 0.2
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A A
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Figure 15.2: Scaling with the number of phononic basis functions per lattice sites for the energy per site E/t. While

the results are converged in the anti-adiabatic limit for 8 basis functions, again in the adiabatic limit, no convergence
can be reached for a maximal number of basis functions of 10
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Both for the energy gap Ac/t as well as for the energy per site E/t, we observe similar results as in the
DMET calculations: While in the anti-adiabatic limit o = 5.0, convergence is reached for a number
of phononic basis functions per site of 8, in the adiabatic limit, no convergence can be reached with
a maximal number of basis functions of 10. As the position of the gap is predicted quantitatively for
the anti-adiabatic and the adiabatic case, both for a number of basis functions of 8, we will conduct
all further calculations with this number of basis functions.

15.1.2 Finite size scaling

Unlike in the DMET method, the numerical costs of the DMRG calculations grow polynomial with
growing system sizes. This is why, for our extrapolation, we chose to consider system sizes of N = 24,
N = 48 and N = 96, as can be seen in Figure. 15.3 We observe that, while Energy gap F/t is
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Figure 15.3: Finite size scaling for the energy gap in the DMRG calculation. We show some examples, both for the
adiabatic limit (A = 0.1;0.3;0.5 and w = 0.2) as well as for the anti-adiabatic limit (A = 0.2;0.8;1.4 and u = 1.0).
The extrapolation is done with system sizes of N = 24;48;96. The scaling is again linear, making it possible remove
finite size effects. Also for the DMRG calculation, we observe that the values do not differ for the different system
sizes, which leads us to conclude that for this observable, the finite size effects are already negligible for system sizes
> 24.

already converged with respect for a total system size of N = 24 lattice sites, hence no extrapolation
is needed, this is not the case for the energy gap Ac/t. In all the DMRG plots shown in the main
text, we consider DMRG data that are extrapolated with respect to the total system size.

15.2 Remaining finite size extrapolation for the DMET data

In the main text, in order to keep the discussion short, we only considered selected observables for
which showed the extrapolation and the discussion of convergence for the DMET calculations. Here,
we also discuss the remaining observables.

15.2.1 Phonon basis functions per site: Double occupancy

Beside the energy gap, also the double occupancy is an important observable that is considered in the
discussion of the Hubbard-Holstein phase diagram.

We see that the convergence with respect to the total number of phononic basis functions per site is
analogous to the energy gap. While for the anti-adiabatic limit o = 5.0, the results are converged for
a number of basis functions of 8, in the adiabatic limit o = 0.5, not even a number of basis functions
of 12 is sufficient to converge the behaviour deep in the Peierls phase although the position of the
phase transition is predicted correctly.

We choose a number of phononic basis functions of 8 for all DMET calculations.

15.2.2 Scaling with the whole system size: Energy per site
Considering the finite size scaling of the energy per site E/t with the total system size, we observe

no dependence of this observable on the considered system sizes of N = 408;816;1632. We therefore
conclude that the energy per site is already converged for total system size of N = 408.
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Figure 15.4: Scaling of the double occupancy <n¢inu> in the adiabatic = 0.5, v = 0.2 and in the anti-adiabatic
limit « = 5.0, u = 1.0. In the anti-adiabatic regime, the results are converged for 8 phononic basis functions per site
while in the Peierls phase of the adiabatic regime, not even 12 basis functions are sufficient.
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Figure 15.5: Finite size scaling for the energy per site in the DMET calculation. We show some examples, both for
the adiabatic limit (A = 0.15;0.35;0.55 and u = 0.2) as well as for the anti-adiabatic limit (A = 0.25;0.85;1.45 and
u = 1.0). The extrapolation is done with system sizes of N = 408;816; 1632. The scaling is linear, making it possible
to remove finite size effects. We also observe that the values do not differ for the different system sizes, which leads
us to conclude that for this observable, the finite size effects are already negligible for system sizes > 408.

15.2.3 Scaling with the impurity size: anti-adiabatic limit

In the main text, we showed the scaling with the number of impurity lattice sites in the DMET
calculation only for the adiabatic limit. In the anti-adiabatic limit, we observe similar results: While
the results are already converged for an impurity size of Ny, = 6 in the Mott phase, A < 0.75 and
also the position of the gap is not changing anymore, the size of the gap in the Peierls phase is not
converged. The same situation can be observed for the double occupancy (n;4n;y).

4 anti-adiabatic, u = 1.0 anti-adiabatic, u = 1.0
1
, - %— 2imp .
3 / 1.04 - 4imp /
% :? -»- Gimp
4 §().5- —e— 8imp
| 0.07 T T T T T
7 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
A A
—%*— 2imp ~de 4imp === Glmp —o— Simp

Figure 15.6: Finite size scaling of the impurity for the energy gap Ac/¢ (left hand side) and the double occupancy
<ni¢nu> (right hand side) in the DMET calculation: we plot the dependence energy gap Ac/t on the electron-
phonon coupling strengths X for different impurity sizes, going from Nimp = 2 to Nimp = 8 in steps of 2. While both
observables seem to decrease with increasing impurity size, the scaling seems to converge for the double occupancy
while that is not the case for the energy gap.
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