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Dynamic single-molecule force spectroscopy (SMFS) is a powerful method to characterize the mechanical 
stability of biomolecules. We address the problem that the standard manner of reporting the extracted 
energy landscape parameters does not reveal the intrinsic statistical errors associated with them. This problem 
becomes particularly relevant when SMFS is used to compare two or more different molecular systems. Here, 
we propose two methods that allow for a straightforward test of statistical significance. We illustrate the 
power of the methods by applying them to the experimental results obtained for three dimeric coiled coils of 
different length. Both methods are general and may be applied to any problem involving the fit of models 
with two correlated parameters. 

I. INTRODUCTION 

Dynamic single-molecule force spectroscopy (SMFS) is 
an unprecedented biophysical method to characterize the 
mechanical stability of biomolecular interactions1-5. In 
a typical experimental setup, the molecules are pulled 
apart with the atomic force microscope at a constant re
tract speed. Force builds up between the molecule(s) un
til the rupture of the interaction is observed. Parameters 
such as the most probable rupture force F* and the load
ing rate r are obtained performing hundreds of approach
retract cycles in a range of different retract speeds. 

Assuming a one-dimensional energy landscape for the 
rupture process, the mechanical stability can be de
scribed in terms of the distance b.x to the transition state 
and the dissociation rate koff in the absence of force. Un
der the assumption of a time-independent loading rater, 
the parameters b.x and koff can be inferred through a 
linear regression of the Bell-Evans equation6 

F* = 
kBT ln ( rb.x ) 
b.x koffkBT ' 

(1) 

that relates the most probable value F* of the rupture 
force and the loading rate r = dF / dt measured experi
mentally. Here, kBT is the thermal energy. 

The values b.x and koff physically characterize the 
molecular system. Even though these values are easily 
obtained from the fit, determining their statistical sig
nificance when comparing different systems is far more 
challenging. The following examples highlight the prob
lems associated with the conventional way of reporting 
these values (see Table I). In the first two examples, the 
values were reported without errors. Are these values 
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FIG. 1. Example data for the coiled coil A4B4: The system 
was measured at six different retract speeds v (J..Lm/s) , con
ducting three independent experiments to obtain the most 
probable rupture forces and loading rates (three colors for 
each symbol) . 

statistically different? In examples 3 and 4, three sets 
of measurements, covering the same interval of retract 
speeds, were obtained experimentally. Each set was sep
arately fitted with the Bell-Evans equation (see Eq. 1), 
resulting in three estimates of b.x and koff for each sys
tem. Then the average values of the parameters and their 
standard error of the mean were determined. The same 
question as before holds: Are these values statistically 
different? For instance, a z-test in example 3 reveals that 
the values of b.x and koff are not significantly different. 
In contrast, in example 4, the values of b.x are different 
at a significance level of a = 0.05 but not at a = 0.01, 
while the koff values are not significantly different. Thus, 
are these systems physically different or not? 

One aspect that the conventional way of reporting the 
errors does not consider properly is that the parameters 
b.x and koff are actually correlated. Technically, the cor-
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TABLE I. Comparison of the mechanical stability of different systems measured with SMFS. 1) protein GB1 engineered with 
a hi-histidine metal chelation site, characterized in the absence and presence of metal ions; 2) protein L carrying a mutation 
in a hydrophobic residue, which affects mechanical stability; 3) methylation of DNA at different sites can increase or decrease 
mechanical strength (parameters obtained from the fitting of three independent data sets with the Bell-Evans equation, Eq. 1); 
4) coiled coil stability increases with the coiled coil length (parameters obtained from the fitting of three independent data sets 
with the Bell-Evans equation, Eq. 1). 

Ex. System Modification �x (nm) koff (s-1) Source 

1 
bi-His engineered GB1 without Ni2+ 0.20 0.12 7 

(G4-51) with Ni2+ 0.17 0.023 

2 Protein L 
wild type 0.26 0.02 8 
160V Mutant 0.46 0.002 

3 DNA 
non methylated 1.66 ± 0.35 (8.4 ± 35.2) X 10 9 
methylated mc-3 1.44 ± 0.18 (1. 7 ± 2.6) X 10-4 

4 heptads 
4 coiled coil 3.5 heptads 

3 heptads 

relation results from the fact that the covariance between 
these two parameters is not zero. Therefore, providing 
two independent errors for b.x and koff is misleading be
cause it gives certain combinations of these two param
eters a much higher probability than it should. In addi
tion, the statistics over only three measurements may be 
poor. 

Here, we resolve these problems, introducing a new 
statistical approach tailored to the typical experimental 
design where at least two independent values of r and 
F* are experimentally obtained at each of a given num
ber of different retract speeds. We present this approach 
by applying it to example 4 (table I), for which three in
dependent values of r and F* were obtained at each of 
six different retract speeds. For the convenience of the 
reader, we briefly describe this experimental realization 
below. The use of our method to guide the formulation 
of statistically sound experimental designs is discussed 
at the end of the paper. To describe the method, we 
will assume that the Bell-Evans equation holds. Never
theless, the method per se can also be applied to other 
bond rupture models that include additional physical as
sumptions about the rupture process, such as a change of 
the transition state distance with force11, the effect of a 
non-linear loading rate dependence12,13 or the inclusion 
of rebinding events14. 

II. PROPOSED STATISTICAL ANALYSIS METHOD 

The systems under study in ref. 10 consist of three het
erodimeric coiled coils of different length. We use the fol
lowing nomenclature for each coiled coil: A4B4, A4B3.s 
and A4B3, indicating that helix A has a constant length 
of 4 heptad repeats whereas helix B consists of 4, 3.5 
and 3 heptads ( 1 heptad = 7 amino acids). For each 
coiled coil, the most probable rupture forces F* and cor
responding loading rates r were determined at six differ-

1.29 ± 0.12 (3.2 ± 2.1)x10 
0.89 ± 0.05 (1.1 ± 0.4) X 10-1 10 

1.03 ± 0.04 (6.5 ± 2.4) X 10-3 

ent retract speeds. To apply our proposed method to this 
small set of pre-defined retract speeds, two or more inde
pendent sets of measurements are required. Independent 
here means that the most probable rupture forces and 
loading rates have been obtained in different measure
ment sessions (i.e., using a new cantilever and surface). 
We will call this method "approach 1". In our specific 
example, there are three independent measurements at 
each speed. Thus, for each coiled coil there are 18 differ
ent values of the most probable rupture force and loading 
rate, organized into the six classes defined by the retract 
speed at which the measurements were performed (see 
Fig. 1). 

The fit is done in MatLab with a linear model ofF* as a 
function of ln r. One fit of six points gives one pair of b.x 
and koff. We have then obtained a large number of b.xi 
and koff,i by applying the Bell-Evans fit to all possible 
combinations of six points out of the original 18 measure
ments. Here, i counts the number of possible sextuplets 
with i = 1 ... , 36 = 729. The two-dimensional distribu
tions of the b.x and koff parameters obtained from each 
of these fits are presented in Fig. 2. This figure shows 
that b.x and koff are correlated. 

At this point, there are several ways to select a single, 
representative pair of values b.x and koff from the entire 
set of values generated from the permutations. The sim
plest choice is the following: using all b.xi and koff,i val
ues obtained in the previous step, we search for the pair 
of values (b.x, koff) that minimizes the Residual Sum of 
Squares, RSS = Li((b.x- b.xi)2 + (koff- koff,i)2). The 
pair satisfying this condition will be taken as the best 
pair of values for the system. This step is used instead 
of simply calculating the averages over the values of b.xi 
and koff,i because these averages may be values that are 
not physically obtainable. Alternative methods, e.g. us
ing a bivariate Gaussian fit, would also provide the 9 5% 
confidence area associated to the pair of values thus ob
tained. The best pairs of b.x and koff values for the 3 
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TABLE II. Bell-Evans parameters calculated by minimizing 
the residual sum of squares (min(RSS); approach 1) or by 
fitting over the 18 points of each coiled coil system (fit(all); 
approach 2) . 

min(RSS) fit( all) 
System �x (nm) koff (s-1) �x (nm) koff (s-1) 
A4B4 1.29 l.Ox 10 4 1.28 1.4 X 10 4 
A4B3.5 0.88 1.1x 10-1 0.88 1.0 X 10-1 
A4B3 1.04 6.8x 10-3 1.03 5.8 X 10-3 

coiled coils in our example, obtained by minimizing the 
RSS, are shown in Table II and in Fig. 2. 

Having computed the pairs of �x and koff that min
imize the RSS of the three systems, the main question 
to be answered in the focus of this work is if these sys
tems are significantly different. For this purpose, we test 
if the two-dimensional distributions of two systems, i.e., 
Px(�x, koff) of the �Xi and koff,i corresponding to sys
tem X, and Py (�x, koff) obtained for system Yare sta
tistically different. To determine whether two sets of data 
arise from the same or different distributions, we use the 
Peacock test15, which is a two-dimensional extension of 
the Kolmogorov-Smirnov test. The method involves first 
computing the "maximum distance" Dmax between the 
empirical cumulative distributions. Second, under the 
null-hypothesis that the two empirical distributions are 
the same, we create thousands of independent distribu
tions P� and Ply by sampling randomly with replace
ment from the collection of (�xi, koff,i) of both systems 
X and Y and computing the maximum distance D' for 
each couple. This step produces a distribution of values 
of D' based on the assumed null-hypothesis. Finally, we 
compare the empirical Dmax with the distribution of the 
D' to compute a p-value, i.e., the probability to obtain a 
D' equal or larger than Dmax· The smaller the p-value, 
the higher the evidence to reject the null hypothesis that 
the distributions are identical. Here, we fix a significance 
level a =0.001 for rejecting the null hypothesis. This 
test is non-parametric and it allows for correlations be
tween the parameters. Using this procedure, we have 
transformed the question of whether two pairs ( �x, koff) 
associated to two systems are significantly different into 
the question of whether the clouds in Fig. 2 are signifi
cantly different. 

In our specific example, the p-values obtained from the 
Peacock test analysis over the P( �x, koff) distributions 
are less than 0.001 in all cases (see table III), allowing us 
to conclude that the sets of parameters describing each 
system are statistically different. The power of our ap
proach is clear: both the Peacock test and the inspection 
of Fig. 2 leave no doubts that the systems are significantly 
different, whereas the original statistical treatment done 
in10 could not firmly establish this difference. 

From an experimental point of view, the question arises 
if the proposed method can also be applied if only one 
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TABLE III. p-values of the Peacock test. Approach 1: be
tween the distributions P(�x, koff) of the coiled coil systems. 
Approach 2: between the distributions P(r, F*) of the coiled 
coil systems. 

H 
<1 

1.8 

1.6 

1.4 

1.2 

0.8 

Pairs 
A4B4-A4B3 
A4B3.s-A4B3 
A4B4-A4B3.s 

0.6 
-6 

p-value 
approach 1 approach 2 
p < 0.001 0.006 
p < 0.001 p < 0.001 
p < 0.001 p < 0.001 

• A<B3.s 
• min(RSS) 
• A4B3 
• min(RSS) 
• A4B4 
• min(RSS) 

0 

FIG. 2. Bell-Evans parameter clouds for each coiled coil sys
tem obtained from the fitting of the permuted data, together 
with the �x and koff pairs that minimize the Residual Sum 
of Squares (min(RSS); blue circles) in each system. 
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FIG. 3. Most probable rupture force vs. most probable load
ing rate for the three coiled coil systems, and corresponding 
Bell-Evans fit (lines) over the 18 points of each coiled coil 
system. The fit parameters are in Table II (fit(all)). 

set of (r, F*) pairs is available for each retract speed 
used. With only one (r, F*) pair, the classification and 
the permutations described above are not possible. For 
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such cases, we propose an alternative approach ( "ap
proach 2") where the Peacock test is used directly over 
the (r, F*) pairs of each system, and not over the pa
rameters of the fit. The two-dimensional distributions 
P(r, F*) will have considerably fewer points than the dis
tributions P(6.x, koff ) , which will decrease the accuracy 
of the test. Despite this shortcoming, this alternative 
method still enables the comparison of experimental re
sults with far more statistical confidence than usual. The 
first step is to perform the Peacock test for the distribu
tions Px ( r, F*) and Py ( r, F*) of the systems X and Y. 
Second, if the distributions are statistically different ac
cording to the Peacock test, one can conclude that the 
parameters 6.x, koff calculated from the fitting of the en
tire data set of each system with the equation (Eq. 1), 
are statistically different. 

This approach is particularly suitable for systems with 
one measurement at each velocity. For illustration pur
poses, we apply it to the three coiled coil systems we 
consider here. Table III shows the p-values of each coiled 
coil system, obtained when performing the Peacock test 
over the 18 pairs (r, F*) (right column) . Because the 
p-values are very small we can conclude that the sys
tems are statistically different, allowing us to fit each of 
them individually. The linear fits, using all 18 pairs for 
each coiled coil, are shown in Fig. 3 and the values of 
the parameters are presented in Table II ( "approach 2"). 
The 6.x andkoff values obtained using the two methods 
show good agreement (Table II), highlighting that both 
approaches can be used to compare different systems. 

Ill. DISCUSSION 

We present two approaches to test for statistical dif
ferences in the fit parameters extracted from dynamic 
single-molecule force spectroscopy. As mentioned in the 
introduction, these two approaches are general and can 
straightforwardly be applied to other models that re
late the mean/maximum ruptures forces with the load
ing rates11-14. For models with more than two param
eters, the only necessary change is the generalization of 
the statistical test to higher dimensional distributions for 
approach 1. 

The value of our two approaches goes beyond their 
power to determine statistical differences in the energy 
landscape parameters of pairs of systems after having the 
"final" results of SMFS experiments. Rather, they should 
be used iteratively throughout a study until a satisfac
tory experimental design is reached, i.e., to determine 
whether a given set of results is sufficient to answer the 
question "do systems X and Y differ in their free energy 
landscape" to the desired level of confidence, or whether 
further independent measurements are necessary. Equiv
alently, it is not possible to define a minimum number 
of data points necessary to apply our approaches; the 
appropriate number of data points depends on the sys
tems being compared and the desired level of confidence 
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in the statistical test. After an initial set of (r, F*) data 
are collected for each system, approach 2 (or approach 1, 
if at least two (r, F*) pairs at each retract speed already 
exist) can be used to compare different experimental sys
tems. We illustrate this point in Table IV, which shows 
the p-values obtained for approach 2 when fewer pairs are 
considered in the analysis of the systems in our example. 
With only 6 pairs of (r, F*) , we can no longer discard the 
hypothesis that the systems A4B4 and A4B3 are differ
ent because the p-value is large. Even though statistically 
sound conclusions may be obtained in some cases with a 
single (r, F*) at each retract speed (see the comparison 
between A4B4 - A4B3.s and A4B3.5 - A4B3 in Table IV), 
there are clear advantages to obtaining at least two inde
pendent (r, F*) pairs. This experimental design not only 
gives more accurate estimates of the parameters associ
ated with the free energy landscape of each system. Ad
ditionally, examination of the clouds of points obtained 
with approach 1 provides useful insight into the qual
ity of experimental design: e.g., clouds with two highly 
populated areas separated by a low density region might 
suggest two types of physical events taking place, or a 
problem in the setup of one of the measurements. 

The suitability of the method based on the Peacock 
test relies on some assumptions that should be tested for 
each particular system. For instance, in the permutation 
approach, it is assumed that there are no correlations be
tween different (r, F*) pairs. One possible source of cor
relation could arise from the use of the same cantilever 
to cover the whole range of retract speeds, as was the 
case for the coiled coil data analyzed here. Nevertheless, 
in this particular case, we have confirmed that no signifi
cant correlation exists even though each set of six retract 
speeds was measured with the same cantilever. This sug
gests that the random error associated with each F* and 
r value is larger than the systematic error introduced by 
the cantilever calibration. 

In this study we focused on the statistical signifi
cance of the parameters obtained from the Bell-Evans 
model. It is known that the parameters obtained from 
this model can be affected by wrong calibration of AFM 
cantilevers16 or the use polymeric handles12,13, because 
they strongly affect the estimation of the loading rate 
values. The methods proposed here can be applied inde
pendently of the presence (and correction) of those bias 
since the corrections of biases and systematic errors have 
to be applied before the analysis tools proposed here. As 
mentioned in the introduction, the two analysis methods 
are general and could be in principle extended to others 
models that relate the mean/maximum ruptures forces 
with the loading rates11-14. Because some of these mod
els have more than two parameters, the statistical test 
should be generalized to higher dimensional distributions 
for the approach 1. 
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TABLE IV. p-values of the Peacock test for the approach 2 
when some pairs (r, F*) are removed from the original data 
set. For each comparison, 10 random removals of the given 
number of points was performed and for each of them a p
value was computed. The 10 p-values were combined m a 
single p-value following the Fisher's method17. 

Pairs 
A4B4-A4B3 
A4B3.5-A4B3 
A4BrA4B3.5 

p-value 
6 pairs removed 12 pairs removed 

p < 0.001 0.85 
p < 0.001 p < 0.001 
p < 0.001 p < 0.001 

IV. CONCLUDING REMARKS 

We have developed two methods to determine sta
tistical differences in the energy landscape parameters 
obtained in dynamic single-molecule force spectroscopy. 
Applying these methods to the published data of the 
coiled coil systems in10, we conclude that the mechan
ical stability of these coiled coils is indeed different. We 
show that the statistical analysis is in principle possible 
for experiments where only a pair (r, F*) at each retract 
speed is available. It is clearly of advantage, however, 
to obtain more than one independent pair over a wide 
range of retract speeds; in fact, such an experimental de
sign should be the standard for conducting this type of 
experiments. This allows to perform the permutation ap
proach to generate a reasonable amount of data without 
increasing the number of experiments. This, in turn, pro
vides an excellent starting point for the statistical test. 

V. SUPPLEMENTARY MATERIAL 

A Matlab code to perform the analysis is provided. 
The code requires as input the most probable rupture 
forces and loading rates and outputs the clouds of the 
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parameters �x and koff with their min (RSS) and p-values 
for the approach 1 and �x and koff from the fitting over 
all points and the p-values for the approach 2. 
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