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Fig. 1. We propose the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of people in
their loose everyday clothing from just a single monocular RGB stream, e.g., captured by a webcam.

We present the first real-time human performance capture approach that
reconstructs dense, space-time coherent deforming geometry of entire hu-
mans in general everyday clothing from just a single RGB video. We propose
a novel two-stage analysis-by-synthesis optimization whose formulation
and implementation are designed for high performance. In the first stage, a
skinned templatemodel is jointly fitted to background subtracted input video,
2D and 3D skeleton joint positions found using a deep neural network, and a
set of sparse facial landmark detections. In the second stage, dense non-rigid
3D deformations of skin and even loose apparel are captured based on a novel
real-time capable algorithm for non-rigid tracking using dense photometric
and silhouette constraints. Our novel energy formulation leverages auto-
matically identified material regions on the template to model the differing
non-rigid deformation behavior of skin and apparel. The two resulting non-
linear optimization problems per-frame are solved with specially-tailored
data-parallel Gauss-Newton solvers. In order to achieve real-time perfor-
mance of over 25Hz, we design a pipelined parallel architecture using the
CPU and two commodity GPUs. Our method is the first real-time monocular
approach for full-body performance capture. Our method yields comparable
accuracy with off-line performance capture techniques, while being orders
of magnitude faster.

CCS Concepts: • Computing methodologies → Computer graphics;
Motion capture;
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1 INTRODUCTION
Dynamicmodels of virtual human actors are key elements ofmodern
visual effects for movies and games, and they are invaluable for
believable, immersive virtual and augmented reality, telepresence, as
well as 3D and free-viewpoint video. Such virtual human characters
ideally feature high-quality, space-time coherent dense models of
shape, motion and deformation, as well as appearance of people,
irrespective of physique or clothing style. Creating such models at
high fidelity often requires many months of work of talented artists.
To simplify the process, marker-less performance capture methods
were researched to reconstruct at least parts of such models from
camera recordings of real humans in motion.
Existing multi-camera methods capture human models at very

good quality, but often need dense arrays of video or depth cameras
and controlled studios, struggle with complex deformations, and
need pre-captured templates. Only few multi-view methods achieve
real-time performance, but no real-time method for single RGB
performance capture exists. Many applications in interactive VR and
AR, gaming, virtual try-on [Hilsmann and Eisert 2009; Pons-Moll
et al. 2017; Sekine et al. 2014], pre-visualization for visual effects,
3DTV or telepresence [Orts-Escolano et al. 2016] critically depend
on real-time performance capture. The use of complex camera arrays
and studios restricted to indoor scenes presents a practical barrier
to these applications. In daily use, systems should ideally require
only one camera and work outdoors.
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Under these requirements, performance capture becomes a much
harder and much more underconstrained problem. Some methods
have approached this challenge by using multiple [Collet et al. 2015;
Dou et al. 2016; Wang et al. 2016] or a single low-cost consumer-
grade depth (RGB-D) [Newcombe et al. 2015; Yu et al. 2017] camera
for dense non-rigid deformation tracking. While these methods are
a significant step forward, RGB-D cameras are not as cheap and
ubiquitous as color cameras, often have a limited capture range, do
not work well under bright sunlight, and have limited resolution.
Real-time human performance capture with a single color camera
would therefore greatly enhance and simplify performance capture
and further democratize its use, in particular in the aforementioned
interactive applications of ever increasing importance. However,
dense real-time reconstruction from one color view is even harder,
and so today’s best monocular methods only capture very coarse
models, such as bone skeletons [Mehta et al. 2017; Sun et al. 2017].
In this paper, we propose the - to our knowledge - first real-

time human performance capture method that reconstructs dense,
space-time coherent deforming geometry of people in their loose
everyday clothing from a single video camera. In a pre-processing
step, the method builds a rigged surface and appearance template
from a short video of the person in a static pose, on which regions of
skin and pieces of apparel are automatically identified using a new
multi-view segmentation that leverages deep learning. The template
is fitted to the video sequence in a new coarse-to-fine two-stage
optimization, whose problem formulation and implementation are
rigorously designed for best accuracy at real-time performance. In
its first stage, our new real-time skeleton pose optimizer fits the
skinned template to (1) 2D and 3D skeleton joint positions found
with a CNN, to (2) sparse detected facial landmarks, and (3) to the
foreground silhouette.

In a second stage, dense non-rigid 3D deformations of even loose
apparel is captured. To this end, we propose a novel real-time ca-
pable algorithm for non-rigid analysis-by-synthesis tracking from
monocular RGB data. It minimizes a template-to-image alignment
energy jointly considering distance-field based silhouette alignment,
dense photometric alignment and spatial and temporal regularizers,
all designed for real-time performance. The energy formulation
leverages the shape template segmentation labels (obtained in the
pre-processing stage) to account for the varying non-rigid defor-
mation behavior of different clothing during reconstruction. The
non-linear optimization problems in both stages are solved with
specially-tailored GPU accelerated Gauss-Newton solvers. In or-
der to achieve real-time performance of over 25 Hz, we design a
pipelined solver architecture that executes the first and the second
stage on two GPUs in a rolling manner. Our approach captures
high-quality models of humans and their clothing in real-time from
a single monocular camera. We demonstrate intriguing examples
of live applications in 3D video and virtual try-on. We show qual-
itatively and quantitatively that our method outperforms related
monocular on-line methods and comes close to off-line performance
capture approaches in terms of reconstruction density and accuracy.
In summary, our contributions are: (1) We propose the first real-

time system for monocular human performance capture. In order
to achieve real-time performance, we not only made specific algo-
rithmic design choices, but also contribute several new algorithmic

ideas, e.g., the adaptive material based regularization and the dis-
placement warping to guarantee high quality results under a tight
real-time constraint. (2) We also show how to efficiently implement
these design decisions by combining the compute power of two
GPUs and the CPU in a pipelined architecture and how dense and
sparse linear systems of equations can be efficiently optimized on
the GPU. (3) To evaluate our approach on a wide range of data, we
show high quality results on an extensive new dataset of more than
20 minutes of video footage captured in 11 scenarios, which contain
different types of loose apparel and challenging motions.

2 RELATED WORK
Performance capture methods typically use multi-view images or
depth sensors. We focus here on approaches to capture 3D humans
in motion, and leave out the body of work on 2D pose and shape
capture. Most monocular-based methods ignore clothing and are
restricted to capturing the articulated motion and the undressed
shape of the person. Since there are almost no works that do perfor-
mance capture from monocular video we focus here on multi-view
and depth-based methods and approaches that capture pose and
undressed shape from single images.

Multi-view. Many multi-view methods use stereo and shape from
silhouette cues to capture the moving actor [Collet et al. 2015; Ma-
tusik et al. 2000; Starck and Hilton 2007; Waschbüsch et al. 2005], or
reconstruct via multi-view photometric stereo [Vlasic et al. 2009].
Provided with sufficient images some methods directly non-rigidly
deform a subject specific template mesh [Cagniart et al. 2010; Car-
ranza et al. 2003; De Aguiar et al. 2008] or a volumetric shape rep-
resentation [Allain et al. 2015; Huang et al. 2016]. Such methods
are free-form and can potentially capture arbitrary shapes [Mustafa
et al. 2016] as they do not incorporate any skeletal constraints. Such
flexibility comes at the cost of robustness. To mitigate this, some
methods incorporate a skeleton in the template to constrain the
motion to be nearly articulated [Gall et al. 2009; Liu et al. 2011;
Vlasic et al. 2008]. This also enables off-line performance capture
from a stereo pair of cameras [Wu et al. 2013]. Some systems com-
bine reconstruction and segmentation to improve results [Bray et al.
2006; Brox et al. 2010; Liu et al. 2011; Wu et al. 2012]. Such methods
typically require a high resolution scan of the person as input. To
side step scanning, a parametric body model can be employed. Early
models were based on simple geometric primitives [Metaxas and
Terzopoulos 1993; Plänkers and Fua 2001; Sigal et al. 2004; Sminchis-
escu and Triggs 2003]. Recent ones are more accurate, detailed and
are learned from thousands of scans [Anguelov et al. 2005; Hasler
et al. 2010; Kadlecek et al. 2016; Kim et al. 2017; Loper et al. 2015;
Park and Hodgins 2008; Pons-Moll et al. 2015]. Capture approaches
that use a statistical body model typically ignore clothing or treat it
as noise [Balan et al. 2007] or explicitly estimate the shape under
the apparel [Bălan and Black 2008; Yang et al. 2016; Zhang et al.
2017]. The off-line human performance capture approach of Huang
et al. [2017] fits the SMPL body model to 2D joint detections and
silhouettes in multi-view data. Some of the recent off-line multi-
view approaches jointly track facial expressions [Joo et al. 2018] and
hands [Joo et al. 2018; Romero et al. 2017]. Even these approaches do
not reconstruct dynamic hair. To capture the geometry of the actor
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beyond the body shape an option is to non-rigidly deform the base
model to fit a scan [Zhang et al. 2017] or a set of images [Rhodin
et al. 2016]. Recently, the approach of Pons-Moll et al. [2017] can
jointly capture body shape and clothing using separate meshes; very
realistic results are achieved with this method, but it requires an
expensive multi-view active stereo setup. All the aforementioned
approaches require multi-view setups and are not practical for con-
sumer use. Furthermore, none of the methods runs at real-time
frame rates.

Depth-based. With the availability of affordable depth camera
sensors such as the Kinect, a large number of depth-based meth-
ods emerged. Recent approaches that are based on a single depth
camera, such as KinectFusion, enable the reconstruction of 3D rigid
scenes [Izadi et al. 2011; Newcombe et al. 2011] and also appearance
models [Zhou and Koltun 2014] by incrementally fusing geome-
try in a canonical frame. The approach proposed in [Newcombe
et al. 2015] generalized KinectFusion to capture dynamic non-rigid
scenes. The approach alternates non-rigid registration of the incom-
ing depth frames with updates to the incomplete template, which
is constructed incrementally. Such template free methods [Guo
et al. 2017; Innmann et al. 2016; Newcombe et al. 2011; Slavcheva
et al. 2017] are flexible, but are limited to capturing slow and care-
ful motions. One way to make fusion and tracking more robust is
by using a combination of a high frame rate/low resolution and
a low frame rate/high resolution depth sensor [Guo et al. 2018],
improved hardware and software components [Kowdle et al. 2018],
multiple Kinects or similar depth sensors [Dou et al. 2017, 2016;
Orts-Escolano et al. 2016; Ye et al. 2012; Zhang et al. 2014], or multi-
view data [Collet et al. 2015; Leroy et al. 2017; Prada et al. 2017] and
registering new frames to a neighboring key frame; such methods
achieve impressive reconstructions, but do not register all frames to
the same canonical template and require complicated capture setups.
Another way to constrain the capture is to pre-scan the object or
person to be tracked [De Aguiar et al. 2008; Ye et al. 2012; Zollhöfer
et al. 2014], reducing the problem to tracking the non-rigid defor-
mations. Constraining the motion to be articulated is also shown to
increase robustness [Yu et al. 2017, 2018]. Some works use simple
human shape or statistical body models [Bogo et al. 2015; Helten
et al. 2013; Wei et al. 2012; Weiss et al. 2011; Ye and Yang 2014; Zhang
et al. 2014], some of which exploit the temporal information to infer
shape. Typically, a single shape and multiple poses are optimized to
exploit the temporal information. Such approaches are limited to
capture naked human shape or at best very tight clothing. Depth
sensors are affordable and more practical than multi-view setups.
Unfortunately, they have a high power consumption, do not work
well under general illumination and most of the media content is
still in the format of 2D images and video. Furthermore, depth-based
methods do not directly generalize to work with monocular video.

Monocular 3D Pose and Shape Estimation. Most methods to infer
3D human motion from monocular images are based on convolu-
tional neural networks (CNNs) and leverage 2D joint detections and
predict 3D joint pose in the form of stick figures, e.g., [Popa et al.
2017; Rogez et al. 2017; Sun et al. 2017; Tome et al. 2017; Zhou et al.
2017]. Tekin et al. [2016] directly predict the 3D body pose from a
rectified spatio-temporal volume of input frames. The approach of

Tekin et al. [2017] learns to optimally fuse 2D and 3D image cues.
These approaches do not capture the dense deforming shape.We also
leverage a recent CNN-based 3D pose estimation method [Mehta
et al. 2017], but we only employ it to regularize the skeletal mo-
tion estimation. Some works fit a (statistical) body surface model
to images using substantial manual interaction [Guan et al. 2009;
Jain et al. 2010; Rogge et al. 2014; Zhou et al. 2010] typically for
the task of image manipulation. Shape and clothing is recovered
in [Chen et al. 2013; Guo et al. 2012], but the user needs to click
points in the image, select the clothing types from a database and
dynamics are not captured. Instead of clicked points, Kraevoy et al.
[2009] propose to obtain the shape from contour drawings. With
the advance of 2D joint detections, the works of [Bogo et al. 2016;
Kanazawa et al. 2018; Lassner et al. 2017] fit a 3D body model [Loper
et al. 2015] to them; since only model parameters are optimized, the
results are constrained to the shape space. More recent work [Varol
et al. 2018] directly regresses a coarse volumetric body shape. Cor-
respondences from pixels of an input image to surface points on the
SMPL body model can also be directly regressed [Güler et al. 2018].
Capturing 3D non-rigid deformations from monocular video is very
hard. In the domain of non-rigid structure from motion, model-free
methods using rigidity and temporal smoothness priors can capture
coarse 3D models of simple motions and medium-scale deforma-
tions [Garg et al. 2013; Russell et al. 2014]. Some methods [Bartoli
et al. 2015; Salzmann and Fua 2011; Yu et al. 2015] can non-rigidly
track simple shapes and motions by off-line template fitting; but
they were not shown to handle highly articulated fast body motions,
including clothing, as we do. Specifically for faces, monocular per-
formance capture methods were presented, for example [Cao et al.
2015; Garrido et al. 2016]. However, monocular full-body capture
faces additional challenges due to more frequent (self-)occlusions
and much more complex and diverse clothing and appearance. To
the best of our knowledge, the only approach that has shown 3D
performance capture of the human body including the non-rigid
deformation of clothing frommonocular video is the approach of Xu
et al. [2018]. Its space-time formulation can resolve difficult self-
occluded poses at the expense of temporally oversmoothing the
actual motion. But at over 1 minute runtime per frame, it is imprac-
tical for many applications such as virtual try-on, gaming or virtual
teleportation. It is also challenged by starkly non-rigidly moving
clothing. Reducing the processing time without compromising ac-
curacy introduces challenges in formulation and implementation of
model-based performance capture, which we address in this work.
We present, for the first time, a real-time full-body performance
capture system that just requires a monocular video as input. We
show that it comes close in accuracy to the best off-line monocular
and even multi-view methods, while being orders of magnitude
faster.

3 METHOD
The input to our method is a single color video stream. In addition,
our approach requires a textured actor model, which we acquire in
a preprocessing step (Sec. 3.1) from a monocular video sequence.
From this input alone, our real-time human performance capture
approach automatically estimates the articulated actor motion and
the non-rigid deformation of skin and clothing coarse-to-fine in two
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Fig. 2. Our real-time performance capture approach reconstructs dense, space-time coherent deforming geometry of people in loose everyday clothing from
just a single RGB stream. A skinned template is jointly fit to background subtracted input video, 2D and 3D joint estimates, and sparse facial detections.
Non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable dense surface tracker.

subsequent stages per input frame. In the first stage, we estimate
the articulated 3D pose of the underlying kinematic skeleton. To
this end, we propose an efficient way to fit the skeletal pose of the
skinned template to 2D and 3D joint positions from a state-of-the-
art CNN-based regressor, to sparse detected face landmarks, and to
the foreground silhouette (Sec. 3.3). With this skeleton-deformed
mesh and the warped non-rigid displacement of the previous frame
as initialization, the second stage captures the surface deformation
of the actor using a novel real-time template-to-image non-rigid
registration approach (Sec. 3.4). We express non-rigid registration
as an optimization problem consisting of a silhouette alignment
term, a photometric term, and several regularization terms; the for-
mulation and combination of terms in the energy is geared towards
high efficiency at high accuracy despite the monocular ambiguities.
The different components of our approach are illustrated in Fig. 2.
In order to achieve real-time performance, we tackle the underly-
ing optimization problems based on dedicated data-parallel GPU
optimizers (Sec. 4). In the following, we explain all components.

3.1 Actor Model Acquisition
Similar to many existing template-based performance capture meth-
ods, e.g., [Allain et al. 2015; Cagniart et al. 2010; Gall et al. 2009;
Vlasic et al. 2008; Xu et al. 2018], we reconstruct an actor model
in a preprocessing step. To this end, we take a set of M images
Irec = {Irec1 , · · · , IrecM } of the actor in a static neutral pose from
a video captured while walking around the person, which covers
the entire body. For all our templates we used around M = 70 im-
ages. With these images, we generate a triangulated template mesh
V̂ ∈ RN×3 (N denotes the number of vertices in the mesh) and the
associated texture map of the actor using an image-based 3D recon-
struction software1. We downsample the reconstructed geometry
to a resolution of approximately N = 5000 by using the Quadric
Edge Collapse Decimation algorithm implemented in MeshLab2.
The vertex colors of the template mesh C ∈ RN×3 are transferred
from the generated texture map. Then, skeleton joints and facial
markers are manually placed on the template mesh resulting in a
skeleton model. The template mesh is rigged to this skeleton model

1http://www.agisoft.com
2http://www.meshlab.net/

Table 1. The employed non-rigidity weights si, j .

Class ID Weight Part/Apparel Type
1 1.0 dress, coat, jumpsuit, skirt, background
2 2.0 upper clothes
3 2.5 pants
4 3.0 scarf
5 50.0 left leg, right leg, left arm, right arm, socks
6 100.0 hat, glove, left shoe, right shoe,
7 200.0 hair, face, sunglasses

via dual quaternion skinning [Kavan et al. 2007], where the skin-
ning weights are automatically computed using Blender3 (other
auto-rigging tools would be feasible). This allows us to deform
the template mesh using the estimated skeletal pose parameters
(Sec. 3.3). An important feature of our performance capture method
is that we model material-dependent differences in deformation be-
havior, e.g. of skin and apparel during tracking (see Sec. 3.4). To this
end, we propose a new multi-view method to segment the template
into one of seven non-rigidity classes. We first apply the state-of-
the-art human parsing method of Gong et al. [2017] to each image
in Irec separately to obtain the corresponding semantic label images
Lrec = {Lrec1 , · · · ,LrecM }. The semantic labels L ∈ {1, · · · , 20}N
for all vertices Vi are computed based on their back-projection
into all label images, and a majority vote per vertex. The materials
are binned into 7 non-rigidity classes, each one having a different
per-edge non-rigidity weight in the employed regularization term
(Sec. 3.4). Those weights were empirically determined by visual
observation of the deformation behaviour under different weighting
factors. The different classes and the corresponding non-rigidity
weights are shown in Tab. 1. We use a very high weight for rigid
body parts, e.g., the head, medium weights for the less rigid body
parts, e.g., skin and tight clothing, and a low weight for loose cloth-
ing. We use a high rigidity weight for any kind of hair style, since we
do not, similar to all other human performance capture approaches,
consider and track hair dynamics. We map the per-vertex smooth-
ness weights to per-edge non-rigidity weights si, j by averaging the
weights of vertex Vi and Vj .

3https://www.blender.org/
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3.2 Input Stream Processing
After the actor model acquisition step, our real-time performance
capture approach works fully automatically and we do not rely on a
careful initialization, e.g. it is sufficient to place the T-posed character
model in the center of the frame. The input to our algorithm is a
single color video stream from a static camera, e.g., a webcam. Thus,
we assume camera and world space to be the same. We calibrate
the camera intrinsics using the Matlab calibration toolbox4. Our
skeletal pose estimation and non-rigid registration stages rely on
the silhouette segmentation of the input video frames. To this end,
we leverage the background subtraction method of Zivkovic and
van der Heijden [2006]. We assume the background is static, that
its color is sufficiently different from the foreground, and a few
frames of the empty scene are recorded before performance capture
commences. We efficiently compute distance transform images IDT
from the foreground silhouettes, which are used in the skeletal pose
estimation and non-rigid alignment step.

3.3 Skeletal Pose Estimation
We formulate skeletal pose estimation as a non-linear optimization
problem in the unknown skeleton parameters S∗:

S∗ = argmin
S

Epose(S). (1)

The set S = {θ ,R, t} contains the joint angles θ ∈ R27 of the J joints
of the skeletal model, and the global pose R ∈ SO(3) and translation
t ∈ R3 of the root. For pose estimation, we optimize an energy of
the following general form:

Epose(S) =E2D(S) + E3D(S) + Esilhouette(S) + Etemporal(S)
+Eanatomic(S) .

(2)

Here, E2D and E3D are alignment constraints based on regressed 2D
and 3D joint positions, respectively. In addition, Esilhouette is a dense
alignment term that fits the silhouette of the actor model to the
detected silhouette in the input color images. At last, Etemporal and
Eanatomic are temporal and anatomical regularization constraints
that ensure that the speed of the motion and the joint angles stay in
physically plausible ranges. To better handle fast motion, we initial-
ize the skeleton parameters before optimization by extrapolating
the poses of the last two frames in joint angle space based on an
explicit Euler step. In the following, we explain each energy term in
more detail.

Sparse 2D and 3DAlignment Constraint. For each input frame I , we
estimate the 2D and 3D joint positions P2D,i ∈ R2 and P3D,i ∈ R3
of the J joints using the efficient deep skeleton joint regression
network of the VNect algorithm [Mehta et al. 2017] trained with the
original data of [Mehta et al. 2017]. However, with these skeleton-
only joint detections, it is not possible to determine the orientation
of the head. Therefore, we further augment the 2D joint predictions
of [Mehta et al. 2017] with a subset of the facial landmark detections
of [Saragih et al. 2009], which includes the eyes, nose and chin. We
incorporate the 2D detections P2D,i ∈ R2 based on the following

4http://www.vision.caltech.edu/bouguetj/calib_doc

Fig. 3. The two cases in the silhouette alignment constraint. Target silhouette
(yellow), model silhouette (red), negative gradient of the distance field z
(green arrow), and the projected 2D normal n of the boundary vertex (red
arrow).

re-projection constraint:

E2D(S) = λ2D

J+4∑
i=1

λi


π (

p3D,i (θ ,R, t)
)
− P2D,i



2 . (3)

Here,p3D,i is the 3D position of the i-th joint/facemarker of the used
kinematic skeleton and π : R3 → R2 is a full perspective projection
that maps 3D space to the 2D image plane. Thus, this term enforces
that all projected joint positions are close to their corresponding
detections. λi are detection-based weights. We use λi = 0.326 for
the facial landmarks and λi = 1.0 for all other detections to avoid
that the head error dominates all other body parts. To resolve the
inherent depth ambiguities of the re-projection constraint, we also
employ the following 3D-to-3D alignment term between model
joints p3D,i (θ ,R, t) and 3D detections P3D,i :

E3D(S) = λ3D

J∑
i=1



p3D,i (θ ,R, t) − (
P3D,i + t′

)

2 . (4)

Here, t′ ∈ R3 is an auxiliary variable that transforms the regressed
3D joint positions P3D,i from the root centered local coordinate
system to the global coordinate system. Note that the regressed
3D joint positions P3D,i are in a normalized space. Therefore, we
rescale the regressed skeleton according to the bone lengths of our
parameterized skeleton model.

Dense Silhouette Alignment Constraint. We enforce a dense align-
ment between the boundary of the skinned actor model and the
detected silhouette in the input image. In contrast to the approach of
Xu et al. [2018] that requires closest point computations we employ
a distance transform based constraint for efficiency reasons. Once
per frame, we extract a set of contour vertices B from the current
deformed version of the actor model. Afterwards, we enforce that
all contour vertices align well to the interface between the detected
foreground and background:

Esilhouette(S) = λsilhouette
∑
i ∈B

bi ·
[
IDT

(
π (Vi (θ ,R, t))

) ]2
. (5)

Here, Vi is the i-th boundary vertex of the skinned actor model and
the image IDT stores the Euclidean distance transform with respect
to the detected silhouette in the input image. The bi ∈ {−1,+1} are
directional weights that guide the optimization to follow the right
direction in the distance field. In the minimization of the term in
Eq. 5, silhouette model points are pushed in the negative direction
of the distance transform image gradient z = −∇xy IDT ∈ R2. By
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definition, z points in the direction of the nearest image silhouette
(IS) contour. If model points fall outside of the IS they will be dragged
towards the nearest IS contour as desired. When model points fall
inside the IS however there are two possibilities: 1) the model point
normal n follows roughly the same direction as z or 2) it does not.
In case 1) the normal at the nearest IS point matches the direction
of the model point normal. This indicates that z is a good direction
to follow. In case 2) however, the normal at the nearest IS point
follows the opposite direction, indicating that z is pointing towards
the wrong IS contour, see Fig. 3. Therefore, in case 2) we follow the
opposite direction p = −z by setting bi = −1. This is preferable over
just following n, since n is not necessarily pointing away from the
wrong IS contour. Mathematically, we consider that we are in case
2) when nT z < 0. For all the other cases, we follow the direction of
z by setting bi = +1.

Temporal Stabilization. To mitigate temporal noise, we use a tem-
poral stabilization constraint, which penalizes the change in joint
position between the current and previous frame:

Etemporal(S) = λtemporal

J∑
i=1

λi




p3D,i (θ ,R, t) − pt−13D,i (θ ,R, t)



2 .

(6)

Here the λi are joint-based temporal smoothness weights. We use
λi = 2.5 for joints on the torso and the head, λi = 2.0 for shoulders,
λi = 1.5 for knees and elbows, and λi = 1.0 for the hands and feet.

Joint Angle Limits. The joints of the human skeleton have physical
limits. We integrate this prior knowledge into our pose estimation
objective based on a soft-constraint on θ ∈ R27. To this end, we
enforce that all degrees of freedom stay within their anatomical
limits θmin ∈ R27 and θmax ∈ R27:

Eanatomic(S) = λanatomic

27∑
i=1

Ψ(θi ) .

Here, Ψ(x) is a quadratic barrier function that penalizes if a degree
of freedom exceeds its limits:

Ψ(x) =


(x − θmax,i )2, if x > θmax,i
(θmin,i − x)2 , if x < θmin,i
0 , otherwise .

This term prevents un-plausible human pose estimates.

3.4 Non-rigid Surface Registration
The pose estimation step cannot capture realistic non-rigid deforma-
tions of skin and clothing that are not explained through skinning.
The model therefore does not yet align with the image well every-
where, in particular in cloth and some skin regions. Hence, starting
from the pose estimation result, we solve the following non-rigid
surface tracking energy:

Enon−rigid(V) = Edata(V) + Ereg(V) . (7)

The energy consists of several data terms Edata and regularization
constraints Ereg, which we explain in the following. Our data terms

are a combination of a dense photometric alignment term Ephoto
and a dense silhouette alignment term Esilhouette:

Edata(V) = Ephoto(V) + Esilhouette(V) . (8)

Dense Photometric Alignment. The photometric alignment term
measures the re-projection error densely:

Ephoto(V) =
∑
i ∈V

wphoto ∥σc (IGauss (π (Vi )) − Ci )∥2 , (9)

where Ci is the color of vertex Vi in the template model and σc (·)
is a robust kernel that prunes wrong correspondences according to
color similarity by setting residuals that are above a certain thresh-
old to zero. More specifically, we project every visible vertex Vi ∈ V
to screen space based on the full perspective camera model π . The
visibility is obtained based on the skinned mesh after the pose esti-
mation step using depth buffering. In order to speed up convergence,
we compute the photometric term based on a 3-level pyramid of
the input image. We perform one Gauss-Newton iteration on each
level. We use the projected positions to sample a Gaussian blurred
version IGauss of the input image I at the current time step, for more
stable and longer range gradients. The Gaussian kernel sizes for the
3 levels are 15, 9 and 3 respectively.

Dense Silhouette Alignment. In addition to dense photometric
alignment, we also enforce alignment of the projected 3D model
boundary with the detected silhouette in the input image:

Esilhouette(V) = wsilhouette
∑
i ∈B

bi ·
[
IDT

(
π (Vi )

) ]2
. (10)

After Stage I, we first update the model boundary B and consider all
vertices Vi ∈ B. These boundary vertices are encouraged to match
the zero iso-line of the distance transform image IDT, and thus be
aligned with the detected input silhouette. The bi are computed
similar to the pose optimization step (see Sec. 3.3). Due to the non-
rigid deformation that cannot be recovered by our pose estimation
stage, in some cases the projection of the mesh from Stage I has
a gap between body parts such as arms and torso, while in the
input image the gaps do not exist. To prevent image silhouettes
being wrongly explained by multiple model boundaries we project
the posed model VS into the current frame and compute a body
part mask — derived from the skinning weights. We increase the
extent of each body part by a dilation (maximum of 10 pixels, the
torso has preference over the other parts) to obtain a conservative
region boundary that closes the above mentioned gaps. If a vertex
Vi moves onto a region with a differing semantic label, we disable
its silhouette term by setting bi = 0. This drastically improves the
reconstruction quality (see Fig. 4).

Our high-dimensional monocular non-rigid registration problem
with only the data terms is ill-posed. Therefore, we use regulariza-
tion constraints:

Ereg(V) = Esmooth(V) + Eedge(V) + Evelocity(V) + Eacceleration(V) .
(11)

Here, Esmooth and Eedge are spatial smoothness priors on the mesh
geometry, and Evelocity and Eacceleration are temporal priors. In the
following, we give more details.
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Fig. 4. Left: Input image. Middle: Textured reconstruction without using
the body part mask. One can clearly see the artifacts since multiple model
boundaries wrongly explain the silhouette of the arms. Right: Using the
body part mask in the distance transform image the foreground silhouette
is correctly explained.

Spatial Smoothness. The first prior on the mesh geometry is a
spatial smoothness term with respect to the pose estimation result:

Esmooth (V) = wsmooth

N∑
i=1

∑
j ∈Ni

si j

|Ni |




(Vi − Vj
)
− (VS

i − VS
j )



2 .
(12)

Here, the Vi are the unknown optimal vertex positions and the
VS
i are vertex positions after skinning using the current pose esti-

mation result of Stage I. si j are the semantic label based per-edge
smoothness weights (see Sec. 3.1) that model material dependent
non-rigidity. The energy term enforces that every edge in the de-
formed model is similar to the undeformed model in terms of its
length and orientation. In addition to this surface smoothness term,
we also enforce locally isometric deformations:

Eedge (V) = wedge

N∑
i=1

∑
j ∈Ni

si j

|Ni |

(

Vi − Vj


 − 

V̂i − V̂j



)2 , (13)

where V̂ denotes the vertex position in the template’s rest pose. We
enforce that the edge length does not change much between the
rest pose V̂i and the optimal unknown pose Vi . While this is similar
to the first term, it enables us to penalize stretching independently
of shearing.

Temporal Smoothness. We also use temporal priors that favor
temporally coherent non-rigid deformations. Similar to temporal
smoothness in skeletal pose estimation, the first term

Evelocity (V) = wvelocity

N∑
i=1



Vi − Vt−1i


2 , (14)

encourages small velocity and the second term

Eacceleration (V) = wacceleration

N∑
i=1



Vi − 2Vt−1i + Vt−2i


2 , (15)

encourages small acceleration between adjacent frames.

DisplacementWarping. The non-rigid displacements dt−1i = Vt−1i −
VS,t−1
i ∈ R3 that are added to each vertex i after skinning are usu-

ally similar from frame t − 1 to frame t . We warp dt−1i back to the
rest pose by applying Dual Quaternion skinning with the inverse
rotation quaternions given by the pose at time t − 1. We refer to
them as d̂t−1i . For the next frame t , we transform d̂t−1i according
to the pose at time t resulting in a skinned displacement dS,ti and
initialize the non-rigid stage with Vti = VS,t

i +d
S,t
i . This jump-starts

the non-rigid alignment step and leads to improved tracking quality.
Similarly, we add dS,ti to the skinned actor model for more accu-
rate dense silhouette alignment during the skeletal pose estimation
stage.

Vertex Snapping. After the non-rigid stage, the boundary vertices
are already very close to the image silhouette. Therefore, we can
robustly snap them to the closest silhouette point by walking on
the distance transform along the negative gradient direction until
the zero crossing is reached. Vertex snapping allows us to reduce
the number of iteration steps, since if the solution is already close
to the optimum, the updates of the solver become smaller, as is true
for most optimization problems. Therefore, if the mesh is already
close to the silhouette, we ‘snap’ it to the silhouette in a single step,
instead of requiring multiple iterations of Gauss-Newton. To obtain
continuous results, non-boundary vertices are smoothly adjusted
based on a Laplacian warp in a local neighborhood around the mesh
contour.

4 DATA PARALLEL GPU OPTIMIZATION
The described pose estimation and non-rigid registration problems
are non-linear optimizations based on an objective E with respect
to unknowns X, i.e., the parameters of the kinematic model S for
pose estimation and the vertex positions V for non-rigid surface
deformation. The optimal parameters X∗ are found via energy min-
imization:

X∗ = argminXE(X) . (16)
In both capture stages, i.e. pose estimation (see Sec. 3.3) and non-
rigid surface tracking (see Sec. 3.4), the objective E can be expressed
as a sum of squares:

E(X) =
∑
i

[
Fi (X)

]2
=
����F(X)

����2
2 . (17)

Here, F is the error vector resulting from stacking all residual terms.
We tackle this optimization at real-time rates using a data-parallel
iterative Gauss-Newton solver that minimizes the total error by
linearizing F and taking local steps Xk =Xk−1 + δ∗k obtained by the
solution of a sequence of linear sub-problems (normal equations):

JT (Xk−1)J(Xk−1) · δ∗k = −JT (Xk−1)F(Xk−1) . (18)

Here, J is the Jacobian of F. Depending on the problems (pose esti-
mation or non-rigid registration), the linear systems have a quite
different structure in terms of dimensionality and sparsity. Thus,
we use tailored parallelization strategies for each of the problems.
Since we use Gauss-Newton instead of Levenberg-Marquardt, the
residual has not to be computed during the iterations, thus leading
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to faster runtimes and in consequence more iterations are possible
within the tight real-time constraint.

Pose Estimation. The normal equations of the pose optimization
problem are small, but dense, i.e, the corresponding system matrix
is small, rectangular and dense. Handling each non-linear Gauss-
Newton step efficiently requires a specifically tailored parallelization
and optimization strategy. First, in the beginning of each Gauss-
Newton step, we compute the system matrix JT J and right hand side
−JT F in global memory on the GPU. Afterwards, we ship the small
system of size 36 × 36 (36 = 3+3+27+3, 3 DoFs for R, 3 for t, 27 for θ ,
and 3 for t′) to the CPU and solve it based on QR decomposition. The
strategy of splitting the computation to CPU and GPU is in spirit
similar to [Tagliasacchi et al. 2015]. To compute JT J on the GPU,
we first compute J fully in parallel and store it in device memory
based on a kernel that launches one thread per matrix entry. We
perform a similar operation for F. JT J is then computed based on a
data-parallel version of a matrix-matrix multiplication that exploits
shared memory for high performance. The same kernel also directly
computes JT F. We launch several thread blocks per element of the
output matrix/vector, which cooperate in computing the required
dot products, e.g., between the i-th and j-th column of J or the i-th
column of J and F. To this end, each thread block computes a small
subpart of the dot product based on a shared memory reduction. The
per-block results are summed up based on global memory atomics.
In total, we perform 6 Gauss-Newton steps, which turned out to be
a good trade-off between accuracy and speed.

Non-rigid Surface Registration. The non-rigid optimization prob-
lem that results from the energy Enon-rigid has a substantially differ-
ent structure. It leads to a large sparse system of normal equations,
i.e, the corresponding system matrix is sparse and has a low number
of non-zeros per row. Similar to [Innmann et al. 2016; Zollhöfer et al.
2014], during GPU-based data-parallel Preconditioned Conjugate
Gradient (PCG) we parallelize over the rows (unknowns) of the sys-
tem matrix JT J using one thread per block row (x-,y-, and z-entry of
a vertex). Each thread collects and handles all non-zeros in the cor-
responding row. We use the diagonal of 1

JT J as a preconditioner. We
perform 3 Gauss-Newton steps and solve the linear system based on
4 PCG iterations, which turned out to be a good trade-off between
accuracy and speed.

Pipelined Implementation. To achieve real-time performance, we
use a data-parallel implementation of our entire performance cap-
ture algorithm in combination with a pipeline strategy tailored for
our problem. To this end, we run our approach in three threads on a
PCwith two GPUs. Thread 1 uses only the CPU, which is responsible
for data preprocessing. Thread 2 computes the CNN-based human
pose detection on the first graphics card, thread 3 solves the pose op-
timization problem and estimates the non-rigid deformation on the
second graphics card. Our distributed computation strategy induces
a 2 frame delay, but for most applications it is barely noticeable.

5 RESULTS
For all our tests, we employ an Intel Core i7 with two Geforce GTX
1080Ti graphics cards. Our algorithm runs at around 25 FPS, which
fulfills the performance requirement of many real-time applications.

In all our experiments, we use the same set of parameters that are
empirically determined: λ2D = 460, λ3D = 28, λsilhouette = 200,
λtemporal = 1.5, λanatomic = 106, wphoto = 10000, wsilhouette = 600,
wsmooth = 10.0, wedge = 30.0, wvelocity = 0.25 and wacceleration =
0.1. In the following, we first introduce our new dataset, evaluate
our approach on several challenging sequences qualitatively and
quantitatively, and compare to related methods. Then, we perform
an ablation evaluation to study the importance of the different
components of our approach. Finally, we demonstrate several live
applications. More results are shown in our two supplementary
videos, which in total show over 20 minutes of performance capture
results. We applied smoothing with a filter of window size 3 (stencil:
[0.15, 0.7, 0.15]) to the trajectories of the vertex coordinates as a
post process for all video results except in the live setup.

5.1 Dataset
In order to qualitatively evaluate our method on a wide range of
settings we recorded several challenging motion sequences. These
contain large variations in non-rigid clothing deformations, e.g.,
skirts and hooded sweaters, and fast motions like dancing and jump-
ing jacks. In total, we captured over 20 minutes of video footage
split in 11 sequences with different sets of apparel each worn by one
of seven subjects. All sequences were recorded with a Blackmagic
video camera (30fps, 540 × 960 resolution). We provide semantically
segmented, rigged and textured templates, calibrated camera param-
eters and an empty background image for all sequences. In addition,
we provide the silhouettes from background subtraction, our motion
estimates and the non-rigidly deformed meshes. For eight of the
sequences we captured the subject from a reference view, which
we will also make available, to evaluate the tracking quality. Fig. 5
shows some of the templates and example frames of the captured
sequences. All templates are shown in the supplementary video. We
will make the full dataset publicly available.

5.2 Qualitative andQuantitative Results
In total, we evaluated our approach on our new dataset and five
existing video sequences of people in different sets of apparel. In
addition, we test our method with 4 subjects in a live setup (see
Fig. 1) with a low cost webcam. Our method takes frames at 540×960
resolution as input. To better evaluate our non-rigid surface registra-
tion method, we used challenging loose clothing in these sequences,
including skirts, dresses, hooded sweatshirts and baggy pants. The
sequences show a wide range of difficult motions (slow to fast, self-
occlusions) for monocular capture. Additionally, we compare our
approach to the state-of-the-art monocular performance capture
method of Xu et al. [2018] on two of their sequences and on one of
our new captured sequences.

Qualitative Evaluation. In Fig. 5, we show several frames from
live performance capture results. We can see that our results pre-
cisely overlay the person in the input images. Note that body pose,
head-orientation, and non-rigid deformation of loose clothing, are
accurately captured. Both the side-by-side comparison to RGB input
and the accurate overlay with the reconstructed mesh show the
high quality of the reconstruction. Also note that our reconstruc-
tion results match the images captured from a laterally displaced
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Fig. 5. Qualitative results. We show several live monocular performance capture results of entire humans in their loose everyday clothing. (a) shows the
template models. (b) shows input images to our method, while (c) shows that the corresponding results precisely overlay the person in the input images. Our
results can be used to render realistic images (d) or free viewpoint video (e).
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Fig. 6. Our real-time approach even tracks challenging and fast motions,
such as jumping and a fast 360◦ rotation with high accuracy. The recon-
structions overlay the input image well. For the complete sequence we refer
to the supplemental video.

reference view which is not used for tracking (see supplemental
video). This further evidences the fidelity of our 3D performance
capture results, also in depth, which shows that our formulation
effectively meets the non-trivial underconstrained monocular re-
construction challenge. To evaluate the robustness of our method,
we included many fast and challenging motions in our test set. As
shown in Fig. 6, even the fast 360◦ rotation (see the first row) and
the jumping motion (see the second row) are successfully tracked.
This illustrates the robustness of our algorithm and its efficient and
effective combined consideration of sparse and dense image cues,
as well as learning-based and model-based capture, which in this
combination were not used in prior work, let alone in real-time.

Comparison to Related Monocular Methods. In Fig. 7, we provide a
comparison to 3 related state-of-the-art methods: The fundamen-
tally off-line, monocular dense (surface-based) performance capture
method of Xu et al. [2018], called MonoPerfCap, and two current
monocular methods for 3D skeleton-only reconstruction, the 2D-to-
3D lifting method of Zhou et al. [2016] and the real-time VNect al-
gorithm [Mehta et al. 2017]. For the latter two, we show the skinned
rendering of our template using their skeleton pose. The test se-
quence is provided by Xu et al. [2018] with manually labeled ground
truth silhouettes. Our method’s results overlay much better with the
input than the skeleton-only results of Zhou et al. [2016] and Mehta
et al. [2017], confirming our much better reconstructions. Also a
quantitative comparison on this sequence in terms of the silhouette
overlap accuracy (Intersection over Union, IoU), Fig. 8, shows that

Fig. 7. Qualitative comparison to related monocular methods. The results
of our approach overlay much better with the input than the skeleton-only
results of Zhou et al. [2016] and Mehta et al. [2017]. Our results come close
in quality to the off-line approach of Xu et al. [2018].

Fig. 8. Quantitative comparison to related monocular methods. In terms of
the silhouette overlap accuracy (Intersection over Union, IoU), our method
achieves better results and outperforms [Zhou et al. 2016] and [Mehta et al.
2017] by 8.5% and 9.4%, respectively. On average our results are only 4.3%
worse than the off-line approach of Xu et al. [2018], but our approach is
orders of magnitude faster.

our method achieves clearly better results and outperforms [Zhou
et al. 2016] and [Mehta et al. 2017] by 8.5% and 9.4%, respectively.
Using the same metric, our IoU is only 4.3% smaller than Xu et al.
[2018], which is mainly caused by the fact that their foreground seg-
mentation is more accurate than ours due to their more advanced but
offline foreground segmentation strategy (see Fig. 10). But please
note that our method is overall orders of magnitude faster than
their algorithm which takes over 1 minute per frame and our recon-
structions are still robust to the noisy foreground segmentation. To
compare against MonoPerfCap more thoroughly, we also compare
against them on one of our sequences (see Sec. 5.1), which shows
more challenging non-rigid dress deformations in combination with
fast motions (see bottom rows of Fig. 9). On this sequence, the ac-
curacy of the foreground estimation is roughly the same leading
to the fact that our approach achieves an IoU of 86.86% (averaged
over 500 frames) which is almost identical to the one of [Xu et al.
2018] (86.89%). As shown in Fig. 9, we achieve comparable recon-
struction quality and overlay while being orders of magnitude faster.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2019. 2019-01-28 01:33 page 10 (pp. 1-17)



LiveCap: Real-time Human Performance Capture from Monocular Video • 1:11

Fig. 9. Qualitative comparison to MonoPerfCap [Xu et al. 2018]. We achieve
comparable reconstruction quality and overlay while being orders of magni-
tude faster.

MonoPerfCap’s window-based optimizer achieves slightly better
boundary alignment and more stable tracking though some difficult,
convolved, self-occluded poses, but is much slower. Our reconstruc-
tion of head and feet is consistently better than [Xu et al. 2018]
due to the additional facial landmark alignment term and the better
pose detector that we adopted. We provide a qualitative comparison
showing highly challenging motions in the supplementary video.

Surface Reconstruction Accuracy. To evaluate our surface recon-
struction error, also relative to multi-view methods, we use the
Pablo sequence from the state-of-the-art multi-view template-based
performance capture method of Robertini et al. [2016] (they also
provide the template). As shown in Fig. 12, our real-time monocular

Fig. 10. Comparison of the foreground segmentation of Xu et al. [2018] and
our method. Note that our silhouette estimates are less accurate than the
ones of [Xu et al. 2018]. Nevertheless, our reconstruction results are robust
to the noisy foreground estimates and look plausible.

Fig. 11. Quantitative comparison of the surface reconstruction accuracy
on the Pablo sequence. Our real-time monocular approach comes very
close in quality to the results of the monocular off-line method of Xu et al.
[2018]. It clearly outperforms the monocular non-rigid capture method of Yu
et al. [2015] and the rigged skeleton-only results of the 3D pose estimation
methods of Zhou et al. [2016] and Mehta et al. [2017].

method comes very close in quality to the results of the fundamen-
tally off-line multi-view approach of Robertini et al. [2016] and the
monocular off-line method of Xu et al. [2018]. In addition, it clearly
outperforms the monocular non-rigid capture method of Yu et al.
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Fig. 12. Qualitative comparisons of the surface reconstruction accuracy on
the Pablo sequence. Our real-time monocular approach comes very close
in quality to the results of the fundamentally off-line multi-view approach
of Robertini et al. [2016] and the monocular off-line method of Xu et al.
[2018]. It clearly outperforms the monocular non-rigid capture method of Yu
et al. [2015] and the rigged skeleton-only results of the 3D pose estimation
methods of Zhou et al. [2016] and Mehta et al. [2017].

[2015] and the rigged skeleton-only results of the 3D pose estima-
tion methods of Zhou et al. [2016] and Mehta et al. [2017] (latter two
as described in the previous paragraph). This is further evidenced
by our quantitative evaluation on per-vertex position errors (see
Fig. 11). We use the reconstruction results of Robertini et al. [2016]
as reference and show the per-vertex Euclidean surface error. Simi-
lar to [Xu et al. 2018], we aligned the reconstruction of all methods
to the reference meshes with a translation to eliminate the global

Fig. 13. Comparison of the skeletal pose estimation accuracy in terms of
average per-joint 3D error on the Pablo sequence. Our method outperforms
the three other methods, most notably the skeleton-only methods of Mehta
et al. [2017] and Zhou et al. [2016].

depth offset. The method of Xu et al. [2018] achieves slightly better
results in terms of surface reconstruction accuracy. Similar to our
previous experiment (see Fig. 10), we observed that our foreground
estimates are slightly worse than the ones of [Xu et al. 2018] which
caused the lower accuracy.

Skeletal Pose Estimation Accuracy. We also compare our approach
in terms of joint position accuracy on the Pablo sequence against
VNect [Mehta et al. 2017], [Zhou et al. 2016] and MonoPerfCap [Xu
et al. 2018]. As reference, we use the joint positions from the multi-
view method of Robertini et al. [2016]. We report the average per-
joint 3D error (in millimeters) after aligning the per-frame poses
with a similarity transform. As shown in Fig. 13, our method out-
performs the three other methods, most notably the skeleton-only
methods [Mehta et al. 2017; Zhou et al. 2016]. This shows that our
combined surface and skeleton reconstruction also benefits 3D pose
estimation quality in itself.

Ablation Study. We first qualitatively evaluate the importance
of all algorithmic components in an ablation study on a real video
sequence. To this end, we compare the results of: 1) our pose esti-
mation without facial landmark alignment term and the silhouette
term, which we refer to as E2Dw/of ace + E3D , 2) our pose estima-
tion without the silhouette term ( E2D + E3D ), 3) our complete pose
estimation (Epose ) and 4) our full pipeline (Epose + Enon−r iдid ).
As shown in Fig. 14, 1) the facial landmark alignment term signifi-
cantly improves the head orientation estimation (red circles), 2) the
misalignment of E2D + E3D is corrected by our silhouette term in
Epose (yellow circles), 3) the non-rigid deformation on the surface,
which cannot be modeled by skinning, is accurately captured by
our non-rigid registration method Enon−r iдid (blue circles). Second,
we also quantitatively evaluated the importance of the terms on a
sequence where high-quality reconstructions based on the multi-
view performance capture results of De Aguiar et al. [2008] are
used as ground truth. The mean vertex position error shown in
Fig. 15 clearly demonstrates the consistent improvement by each of
the algorithmic components of our approach. The non-rigid align-
ment stage obtains on average better results than the pose-only
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Fig. 14. Ablation study. 1) the facial landmark alignment term significantly
improves the head orientation estimation (red circles), 2) the misalignment
of E2D + E3D is corrected by our silhouette term in Epose (yellow circles),
3) the non-rigid deformation on the surface, which cannot be modeled
by skinning, is accurately captured by our non-rigid registration method
Enon−r iдid (blue circles).

Fig. 15. Ablation study. The mean vertex position error clearly demonstrates
the consistent improvement by each of the algorithmic components of our
approach. Our full approach consistently obtains the lowest error.

alignment. Since non-rigid deformations are most of the time con-
centrated in certain areas, e.g., a skirt, and at certain frames when
articulated motion takes place, we also measure the per-frame and
per-vertex improvement of the proposed non-rigid stage. To this
end, we measure the improvement of (Epose + Enon−r iдid ) over
(Epose ) by computing the per-vertex error of the pose only results
minus the per-vertex error of our method. Consequently, positive
means our method is better than the pose-only deformation. As
demonstrated in Fig. 16, the non-rigid stage significantly improves
the reconstruction of the skirt and the arm. The improvement is
especially noticeable for frames where the deformation of the skirt
significantly differs from the static template model, since such mo-
tion cannot be handled by the pose-only step. On the same dataset
we also evaluated the influence of 1) the warping of the non-rigid
displacement of the previous frame, 2) the proposed body part masks
used in the dense silhouette alignment, and 3) the proposed vertex
snapping. Those algorithmic changes respectively lead to 2.4%, 1.7%

Fig. 16. Improvement of the non-rigid stage (Epose + Enon−r iдid ) over
pose-only deformation (Epose ). Top row: Four monocular input images.
On the bottom row, for each image, we show the per-vertex error of the
pose only results minus the per-vertex error of our method. Consequently,
negative means pose only is better and is colored in red. Positive means our
method is better and is colored in blue. As expected our method achieves
most improvement on the non-rigid skirt part— which is around 20mm for
the shown frames.

Fig. 17. Importance of our material-based non-rigid deformation adaptation
strategy.With a low global regularization weight the deformation of the skirt
is well reconstructed, but the head is distorted (left). A high deformation
weight preserves the shape of the head, but prevents tracking of the skirt
motion (middle). Our new semantic weight adaptation strategy enables the
reconstruction of both regions with high accuracy and leads to the best
results (right).

and 1.7% improvement in average 3D vertex error which sums up to
a total improvement of 5.8%. The importance of our material-based
non-rigid deformation adaptation strategy is shown in Fig. 17. With
constantly low non-rigidity weights (si, j = 2.0) in all regions, the de-
formation of the skirt is well reconstructed, but the head is severely
distorted (left). In contrast, with high global non-rigidity weights
(si, j = 50.0), the head shape is preserved, but the skirt cannot be
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Fig. 18. Free-viewpoint video rendering results using our approach.

Fig. 19. Live virtual try-on application based on our approach.

tracked reliably (middle). Our new semantic weight adaptation strat-
egy enables the reconstruction of both regions with high accuracy
and leads to the best results (right).

5.3 Applications
Our monocular real-time human performance capture method can
facilitate many applications that depend on real-time capture: in-
teractive VR and AR, human-computer interaction, pre-visualization
for visual effects, 3D video or telepresence.We exemplify this through
two application demonstrators. In Fig. 18, we show that our method
allows live free-viewpoint video rendering and computer anima-
tion of the performance captured result from just single color input.
This illustrates the potential of our method in several of the afore-
mentioned live application domains. In Fig. 19, we demonstrate a
real-time virtual try-on application based on our performance cap-
ture method. We replace the texture corresponding to the trousers
on the template and visualize the tracked result in real time. With
such a system, the users can see themselves in clothing variants in
real time with live feedback, which could be potentially used in VR
or even AR online shopping.

6 DISCUSSION AND LIMITATIONS
Wehave demonstrated compelling real-time full-body human perfor-
mance capture results using a single consumer-grade color camera.
Our formulation combines constraints used, individually, in differ-
ent image-based reconstruction methods before. But the specific
combination we employ embedded in a hierarchical real-time ap-
proach is new and enables, for the first time, real-time monocular
performance capture. Further, our formulation geared rigorously for
real-time use differs from the related, but off-line MonoPerfCap [Xu
et al. 2018] method in several ways: In Stage I, the facial landmarks

as well as the displacement warping which is also added during
pose tracking improve the pose accuracy of our real-time method.
Further, we track the pose per frame instead of a batch-based for-
mulation which reduces the computation time and allows faster
motions. Further improvement in terms of efficiency are achieved
by our GPU-based pose solver. In Stage II, our dense photometric
term that adds constraints for non-boundary vertices and our adap-
tive material based regularization improve reconstruction quality.
Our non-rigid fitting stage is faster due to the more efficient combi-
nation of spatial regularizers that requires a much smaller number
of variables than the as-rigid-as-possible regularizer. We directly
solve for the vertex displacements instead of estimating the embed-
ded graph rotations/translations. We found that this formulation is
better suited for a parallel implementation on the GPU and it also
gives a more flexible representation. Due to our real-time constraint,
we make use of an efficient distance transform-based representation,
instead of the ICP-based approach that requires expensive search of
correspondences between the model boundary and the image sil-
houettes. Our experiments show that our method achieves a similar
reconstruction quality compared to the off-line performance capture
approach of Xu et al. [2018] while being orders of magnitude faster.

Nonetheless, our approach is subject to some limitations, see also
Fig. 20. Due to the ambiguities that come along with monocular
performance capture, we rely on an accurate template acquisition
since reconstruction errors and mislabeled part segmentations in
the template itself cannot be recovered during tracking. Further,
we cannot handle topological changes that are too far from the
template, e.g. removing of some clothes and deformations along
the camera viewing axis can only be partially recovered by our
photometric term. The latter point could be addressed by an addi-
tional term that involves shading and illumination estimation. As
is common for learning methods, the underlying 3D joint regres-
sion deep network fails for extreme poses not seen in training. Our
model fitting can often, but not always correct such wrong estimates
which produces glitches in the tracking results. However, our per-
formance capture approach robustly recovers from such situations,
see Fig. 20 (top). Since our method uses foreground/background
segmentation, strong shadows and shading effects, objects with
similar color to the performer, and changing illumination situations
can cause suboptimal segmentation; thus leading to noisy data as-
sociation in the silhouette alignment term, which manifests itself
as high-frequency jitter. Our approach is robust to some degree
of miss-classifications, but can get confused by big segmentation
outliers. This could be alleviated in the future by incorporating more
sophisticated background segmentation strategies, e.g., based on
deep neural networks. Strong changes in shading or shadows, spec-
ular materials or non-diffuse lighting can also negatively impact the
color alignment term. A joint optimization for scene illumination
and material properties could alleviate this problem. Even though
we carefully orchestrated the components of our method to achieve
high accuracy and temporal stability in this challenging monocular
setting, even under non-trivial occlusions, extensive (self-)occlusion
are still fundamentally difficult. Our estimates for occluded parts
will be less accurate than with multi-view methods due to the lack
of image evidence. While pose and silhouette plausibly constrain
the back-side of the body, fully-occluded limbs may have incorrect
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Fig. 20. Failure cases. Top row: The underlying 3D joint regression deep
network can fail for extreme poses not seen in training, which can produce
glitches in the tracking results. Our model fitting can often but not always
correct such wrong estimates. However, our performance capture approach
robustly recovers from such situations. Bottom row: Our estimates for oc-
cluded parts will be less accurate than with multi-view methods due to the
lack of image evidence. While pose and silhouette plausibly constrain the
back-side of the body, fully-occluded limbs may have incorrect poses.

poses. Additional learned motion priors could further resolve such
ambiguous situations. Fortunately, our approach recovers as soon
as the difficult occlusions are gone, see Fig. 20 (bottom).

7 CONCLUSION
We have presented the first monocular real-time human perfor-
mance capture approach that reconstructs dense, space-time coher-
ent deforming geometry of entire humans in their loose everyday
clothing. Our novel energy formulation leverages automatically
identified material regions on the template to differentiate between
different non-rigid deformation behaviors of skin and various types
of apparel. We tackle the underlying non-linear optimization prob-
lems at real-time based on a pipelined implementation that runs two
specially-tailored data-parallel Gauss-Newton solvers, one for pose
estimation and one for non-rigid tracking, at the same time. We
deem our approach as a first step towards general real-time capture
of humans from just a single view, which is an invaluable tool for
believable, immersive virtual and augmented reality, telepresence,
virtual try-on, and many more exciting applications the future will
bring to our homes. An interesting direction for future work is the
joint estimation of human motion, facial expression, hand pose, and
hair dynamics from a single monocular camera.
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