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ABSTRACT

We show that there are a further infinite number of, previously unknown, supertranslation

charges. These can be viewed as duals of the known BMS charges corresponding to su-

pertranslations. In Newman-Penrose language, these new supertranslation charges roughly

correspond to the imaginary part of the leading term in ψ2. We find these charges by dual-

ising the Barnich-Brandt asymptotic charges and argue that this prescription gives rise to

new bona fide charges at null infinity.
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1 Introduction

Recently, the relation between BMS symmetry and Newman-Penrose charges at null infinity

of asymptotically flat spacetime has been made explicit in linear and non-linear gravity [1,2],

as well as electromagnetism [3]. While BMS charges are strictly defined at null infinity, and

in particular include the Bondi 4-momentum, it has been shown that other charges can be

defined by extending the definition of BMS charges into the bulk and it is these extended

BMS charges that encompass some of the Newman-Penrose charges. In linearised gravity,

at each order in a 1/r expansion away from null infinity the Newman-Penrose charges

are components of the Weyl scalar ψ0 in a 1/r expansion [4]—the real parts of which

correspondingly extend the notion of BMS charges as a 1/r expansion into the bulk [1].

Furthermore, the same picture holds in the non-linear theory, where an extension of the

BMS charges using the Barnich-Brandt prescription [5] as a 1/r expansion away from null

infinity is shown to include five of the ten non-linear Newman-Penrose charges [2]. It remains

an open question whether the extension of the BMS charges into the bulk can be further

enlarged such that they contain the imaginary parts of the Newman-Penrose charges. In

this paper we will not resolve this question in the general setting of extended BMS charges

but show that already at the level of the standard BMS charges something has been hitherto

missed.

At leading order, the BMS charges can be derived from the Barnich-Brandt formal-

ism [6]. By making a particular choice of the supertranslation parameter s(θ, φ), namely

choosing l = 0, 1 spherical harmonics, 1 the BMS charge can be shown to include the real

part 2 of the Bondi 4-momentum [6]

Pℓ,m = − 1

2
√
πG

∫

dΩ Yℓm (ψ0
2 + σ0∂uσ̄

0), (1.1)

where ℓ = 0 or 1, and ψ0
2 and σ0 are the leading terms in a 1/r-expansion of the Weyl scalar

1The supertranslation parameter describing a diffeomorphism of a physical metric should, of course, be
real. It is convenient to decompose a general such parameter s(θ, ϕ) as a sum over spherical harmonics,
which we may think of as the complete set of (real) solutions of � s = −ℓ(ℓ+ 1) s on the unit sphere, where
ℓ = 0, 1, 2, · · · . It will always be understood that we are taking s(θ, φ) to be real. Of course in practice it is
often convenient to work with the complex basis of spherical harmonics Yℓm(θ, φ). Whenever, in this paper,
we speak of taking s(θ, φ) to be a harmonic Yℓm(θ, φ), it should be understood that really, we mean that s
is a real function constructed as an appropriate linear combination of the complex Yℓm(θ, φ) harmonics.

2To be precise, the real part of −1/(4G)
∫
dΩ s (ψ0

2 + σ0∂uσ̄
0), where s is any of the four linearly-

independent real harmonics proportional to Y0,0, Y1,0, (Y1,1 − Y1,−1) or i (Y1,1 + Y1,−1).
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ψ2 and the shear σ, respectively:

ψ0
2 = lim

r→∞
r3 ψ2, and σ0 = lim

r→∞
r2 σ. (1.2)

For ℓ = 0 or 1, the fact that the Barnich-Brandt prescription gives only the real part is not

so troubling, since one can show that

ℑ(ψ0
2 + σ0∂uσ̄

0) = ℑ(ð̄2σ0). (1.3)

Now, ð̄2Yℓm = 0 for ℓ = 0 or 1, and so the imaginary part is a total derivative, which

vanishes under the integral over the sphere.

If we consider instead an arbitrary supertranslation parameter, then

s(θ, φ)ℑ(ψ0
2 + σ0∂uσ̄

0) = s(θ, φ)ℑ(ð̄2σ0) (1.4)

is no longer a total derivative when ℓ ≥ 2. Thus, one may ask if there is a sense in which

the Barnich-Brandt prescription is only giving half of the asymptotic charges when ℓ ≥ 2

(i.e. only the real part of the complex generalised charge −1/(4πG)
∫

dΩ s (ψ0
2 + σ0∂uσ̄

0)).

It is this question that we shall address in this paper. Indeed, as we shall show, we may

define an infinite number of extra supertranslation charges. These charges are obtained

by considering the “dual” of the Barnich-Brandt asymptotic charge, which is the analogue

of considering the field strength and its dual in the case of electromagnetism [3]. In a

gravitational context, it is analogous to getting a NUT charge by dualising the Bondi

mass [7] or Komar mass [8].

In section 2, we consider for illustrative purposes the simpler case of electromagnetism

and show how the usual electric and magnetic charges can be viewed as the real and imag-

inary parts of the Newman-Penrose charge, respectively. We extend this analogy to the

gravitational case in section 3 and find that one can define dual gravitational charges corre-

sponding to the supertranslation generators of the BMS group at null infinity. We conclude

with some comments in section 4.
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2 Electromagnetism

We begin by considering the simpler case of electromagnetism on flat Minkowski spacetime

[3], with metric given in outgoing Eddington-Finkelstein coordinates (u, r, xI = {θ, φ}) by

ds2 = −du2 − 2dudr + r2ωIJ dx
IdxJ . (2.1)

A convenient choice of complex null frame eµ
a = (ℓa, na,ma, m̄a) is given by

ℓ =
∂

∂r
, n =

∂

∂u
− 1

2

∂

∂r
, m =

m̂I

r

∂

∂xI
,

ℓ♭ = −du, n♭ = −
(

dr +
1

2
du

)

, m♭ = r m̂I dx
I ,

m̂ =
1√
2

(

∂

∂θ
+

i

sin θ

∂

∂φ

)

, m̂♭ =
1√
2
(dθ + i sin θdφ) . (2.2)

Following Barnich and Brandt [5], we define the electric charge to be3

Qc =
1

4π

∫

S

c ⋆ F =
1

4π

∫

S

dΩ c r2 F01, (2.3)

where c(x) is an arbitrary function on the 2-sphere corresponding to the asymptotic sym-

metry for electromagnetism and we use the notation that for some arbitrary covector V

ℓaVa ≡ V0 = −V 1, naVa ≡ V1 = −V 0, maVa ≡ Vm = V m̄. (2.4)

Contrast the above expression with the Newman-Penrose charge [4], generalised to in-

clude a constant c

Q(NP )
c = lim

r→∞

1

2π

∫

S

c r2 Φ1, (2.5)

where

Φ1 =
1

2
(F01 + Fmm̄) (2.6)

is a Newman-Penrose scalar corresponding to a particular component of the Maxwell field

strength in the complex null frame. We only take the leading Newman-Penrose charge and

do not, here, consider a 1/r-expansion in which case one could define a charge at every

order. We stress that what appears in integral (2.5) is the complex Newman-Penrose scalar

Φ1 multiplied by a constant. Note that the real part of Φ1 is given by F01, which corresponds

to the expression in the Barnich-Brandt integral (2.3). What about the imaginary part of

3Note that in the case of electromagnetism, the Barnich-Brandt charge is integrable. This is not the case
in non-linear gravity due to Bondi news (or more generally fake news [2]) at null infinity.
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the generalised Newman-Penrose charge given by Fmm̄?

As emphasised above, the Barnich-Brandt integral with c = 1 corresponds to the electric

charge. Correspondingly, the asymptotic magnetic charge may be defined as

Q̃c =
1

4π

∫

S

c F =
1

4π

∫

S

dΩ i c r2 Fmm̄. (2.7)

Given this we conclude that

Q(NP )
c = Qc − iQ̃c, (2.8)

i.e. the generalised Newman-Penrose charge contains information about both the electric

and magnetic charge.

Aside It may be argued that for c = 1, Q̃ = 0, as follows: Stokes’ theorem implies that

Q̃ =
1

4π

∫

S

F =
1

4π

∫

Σ
dF = 0 (2.9)

by the Bianchi identity. However, this result follows if null infinity is the only boundary

of the spacetime. On a black hole background this result need not hold as the magnetic

charge at infinity is equal and opposite to a contribution to the integral from the horizon.

3 Gravity

As is to be expected, the case of gravity is more intricate compared to the electromagnetic

case. Starting from an asymptotically flat spacetime [9,10], which we define to be a space-

time for which there exist Bondi coordinates (u, r, xI = {θ, φ}) in which the metric takes

the form

ds2 = −Fe2βdu2 − 2e2βdudr + r2hIJ (dx
I − CIdu)(dxJ − CJdu) (3.1)
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with the metric functions satisfying the following fall-off conditions at large r

F (u, r, xI ) = 1 +
F0(u, x

I)

r
+ o(r−1),

β(u, r, xI ) =
β0(u, x

I)

r2
+ o(r−3),

CI(u, r, xI ) =
CI
0 (u, x

I)

r2
+ o(r−2),

hIJ(u, r, x
I ) = ωIJ +

CIJ(u, x
I)

r
+ o(r−1), (3.2)

where ωIJ is the standard metric on the round 2-sphere with coordinates xI = {θ, φ}.
Moreover, residual gauge freedom allows us to require that

h = ω, (3.3)

where h ≡ det(hIJ) and ω ≡ det(ωIJ) = sin2 θ. Furthermore, we assume that

T0m = o(r−3) (3.4)

so that the Einstein equation then implies that [2, 6]

CI
0 = −1

2DJC
IJ , (3.5)

where DI is the covariant derivative compatible with the metric on the round 2-sphere ωIJ .

The BMS charge is defined as [5, 6]

δ/Q =
1

8πG
lim
r→∞

∫

S

⋆H =
1

8πG
lim
r→∞

∫

S

dΩ r2e2βHur, (3.6)

where

H =
1

2

{

ξbg
cd∇aδgcd− ξb∇cδgac+ ξ

c∇bδgac+
1

2
gcdδgcd∇bξa+

1

2
δgbc(∇aξ

c−∇cξa)
}

dxa∧dxb

(3.7)

and the notation δ/ is used to signify the fact that the expression is not necessarily integrable.

The asymptotic symmetry generator

ξ = s ∂u +

∫

dr
e2β

r2
hIJDJs ∂I −

r

2

(

DIξ
I − CIDIs

)

∂r (3.8)
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with s(x) an arbitrary function on the 2-sphere.

Given the boundary conditions (3.2), the BMS charge (3.6) reduces to [6]

δ/Q =
1

16πG

∫

S

dΩ

[

δ
(

− 2s F0

)

+
s

2
∂uCIJδC

IJ

]

. (3.9)

The integrable part of the charge is given by

Q(int) = − 1

8πG

∫

S

dΩ s F0, (3.10)

while the non-integrable part can be interpreted as the existence of Bondi flux at null

infinity, which prevents the conservation of the charge along null infinity.

Alternatively, we may define the charge

Q = − 1

4πG

∫

dΩ s (ψ0
2 + σ0∂uσ̄

0), (3.11)

where ψ0
2 and σ0 are defined in (1.2). As discussed in [4] (see equation (4.8) or (4.17) of

Ref. [4]), one has

∂uQ = − 1

4πG

∫

dΩ s
(

|∂u σ0|2 − ð
2(∂uσ̄

0)
)

. (3.12)

Newman and Penrose only considered the case where s is taken to be an ℓ = 0 or ℓ = 1

spherical harmonic Yℓm, since after integration by parts on the second term one has a factor

ð̄2 Yℓm, which vanishes identically. These ℓ = 0 and ℓ = 1 charges give the Bondi-Sachs mass

and 3-momentum respectively [4]. In particular, the ℓ = 0 Bondi mass (or more precisely

energy) is seen to be a strictly non-increasing function of u, which is conserved if and only

if ∂u σ
0 = 0. In terms of the metric components defined in the expansions (3.2), one has

|∂u σ0|2 = 1
8N

IJ NIJ , (3.13)

whereNIJ = ∂u CIJ is the Bondi news tensor. Thus the Bondi-Sachs mass and 3-momentum

are conserved if and only if the Bondi news tensor vanishes, signifying the absence of

gravitational radiation at future null infinity I +.

More generally, we may allow the function s in the charge (3.11) to be any arbitrary

spherical harmonic, without the restriction to ℓ = 0 or ℓ = 1, and we again have charges

that are conserved whenever the Bondi news tensor vanishes.4 Our focus in the remainder

4What one loses, by considering the infinity of charges corresponding to ℓ ≥ 2, is that now the non-
conservation when NIJ 6= 0 is no longer of a definite sign, since both the ð

2(∂u σ
0) and the |∂u σ

0|2 terms
contribute when NIJ 6= 0. See, however, appendix C.
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of this section will be on showing how these more general charges (3.11) are related to

Barnich-Brandt BMS charges, and a generalisation thereof.

Calculating ψ0
2 and σ0 in terms of the metric expansion coefficients in (3.2), one finds

ψ0
2 + σ0∂uσ̄

0 = 1
2F0 −

i

4
DIDJ C̃

IJ , (3.14)

and so the two expressions (3.10) and (3.11) are related by

Q(int) = ℜ (Q) , (3.15)

where we take s to be an arbitrary function of xI in the definition of Q. This is analogous

to what we found before in section 2, namely, for the asymptotic symmetry chosen to give

a global charge, the BMS charge is the real part of the more general charge that we have

defined in equation (3.11).

Noting that (3.15) has only provided a relation between the real part of the charge (3.11)

and the Barnich-Brandt charge (3.10), and inspired by the electromagnetic example in the

previous section, we are now led to consider the dual or magnetic Barnich-Brandt charge

δ/Q̃ =
1

8πG
lim
r→∞

∫

S

H =
1

8πG
lim
r→∞

∫

S

dΩ
Hθφ

sin θ
(3.16)

with H defined in equation (3.7). It remains to show that this defines a charge, namely that

the quantity defined above vanishes on-shell. We show that this is the case in appendix A.

It is straightforward to show that (see appendix B)

δ/Q̃ =
1

16πG

∫

S

dΩ

[

δ
(

− sDIDJ C̃
IJ
)

+
s

2
∂uCIJδC̃

IJ

]

, (3.17)

where 5

C̃IJ = CK
(IǫJ)K , ǫIJ =





0 1

−1 0



 sin θ. (3.18)

Note that the non-integrable term is closely analogous to that for δ/Q, see equation (3.9),

and it also vanishes if the Bondi news vanishes. The integrable part gives rise to new charges

Q̃(int) = − 1

16πG

∫

S

dΩ sDIDJ C̃
IJ (3.19)

5In fact, CK
[IǫJ]K = 0, which can simply be shown using Schouten identities in two dimensions and the

trace-free property of CIJ . Thus, C̃
IJ = CK

IǫJK .
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that are conserved in the absence of Bondi news. As can be seen from (3.14),

DIDJ C̃
IJ = −4ℑ(ψ0

2 + σ0∂uσ̄
0), (3.20)

and so we have

Q = Q(int) − iQ̃(int). (3.21)

Integrating by parts, Q̃(int) in (3.19) can be rewritten as

Q̃(int) = − 1

16πG

∫

S

dΩ (DIDJ s) C̃
IJ . (3.22)

If s is an ℓ = 0 or ℓ = 1 spherical harmonic, in which case s satisfies DIDJ s =
1
2ωIJ �s, it

follows that Q̃(int) = 0 since ωIJC̃
IJ = 0, and so one recovers the result [6] that Q = Q(int)

for the ℓ = 0 and ℓ = 1 charges that correspond to the Bondi-Sachs 4-momentum.

In general, however, for an arbitrary function s on the sphere, the Q̃(int) are bona fide

asymptotic charges in their own right, which supplement the already known BMS charges,

Q(int). Together, Q(int) and −Q̃(int) provide the real and imaginary parts of the generalised

charges Q defined in (3.11).

4 Discussion

We have shown that one can define new dual asymptotic charges at null infinity. These

charges are the imaginary part of the charges defined in equation (3.11)—the real part

being the charges of Barnich-Troessaert [6]. The new charges can be defined because at

leading order it is possible to “dualise” the Barnich-Brandt 2-form to obtain an expression

that also vanishes on-shell. In Ref. [2], it was shown that five of the ten conserved non-linear

Newman-Penrose charges are subleading charges in the Barnich-Brandt formalism. It is,

however, not possible to define dual Barnich-Brandt charges away from null infinity hence

the question of how to fit the other five Newman-Penrose charges in the Barnich-Brandt

formalism remains an open problem.

The existence of a further infinite number of BMS charges does not seem to give rise to

new soft theorems [11, 12] as the imaginary part of ψ0
2 at I

+
± and I

−
± is not part of the

physical phase space [12]. However, we are nevertheless left with the question of the role of

these charges in connection with the information paradox [13–15].

Dualising the Barnich-Brandt prescription only works for supertranslation charges and

at null infinity. In particular, for the SL(2,C) part of the BMS group, the analysis of

9



appendix A does not go through, that is there are terms at order r0 that are neither

components of the Einstein equation nor total derivative terms; these terms provide an

obstruction to a charge being defined. For the same reason, we cannot also understand the

imaginary part of the extended BMS charges [2] in this way. It would, therefore, be helpful

to understand why it was possible to define dual charges for supertranslations in terms of

a more basic Iyer-Wald [16] (see also Ref. [17]) or Barnich-Brandt [5] type of analysis.

Acknowledgements

We would like to thank the Mitchell Family Foundation for hospitality at the Brinsop Court

workshop where this work was initiated. M.G. is partially supported by grant no. 615203

from the European Research Council under the FP7. C.N.P. is partially supported by DOE

grant DE-FG02-13ER42020.

A Boundary terms

In this section, we prove that the variation of the dual charge (3.16) is equivalent to the

Einstein equation. Starting from the definition of the charge, given in equation (3.16), and

the fact that

δgab = 2∇(aξb), (A.1)

a calculation similar to that done in appendix D of Ref. [2] finds that

δ/Q̃ =
1

16πG
lim
r→∞

∫

S

dθ dφ δIJθφ

{

6ξJ [∇I ,∇c]ξ
c + 2[∇J ,∇c](ξIξ

c)

+2∇c(ξI∇cξJ + ξc∇JξI − ξI∇Jξ
c)
}

. (A.2)

Ignoring the first line in the expression above for now, the terms on the second line can be

written as
1

8πG
lim
r→∞

∫

S

dθ dφ δIJθφ ∇cXIJ
c, (A.3)

where

Xab
c = ξa∇cξb + ξc∇bξa − ξa∇bξ

c. (A.4)

Expanding out the integrand in equation (A.3) gives

∇cXIJ
c = ∂KXIJ

K + ∂ĉXIJ
ĉ + Γc

ceXIJ
e − Γe

dIX[eJ ]
d − Γe

dJX[Ie]
d, (A.5)
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where we use the notation that hatted lower case Latin indices, such as ĉ, denote u or r

components. The first term is a boundary term and can, therefore, be ignored. Thus,

∇cXIJ
c = ∂ĉ(g

ĉd̂XIJd̂) +
1

2
g−1gĉd∂dg XIJĉ − 2gĉdΓK

dIX[KJ ]ĉ − 2gcdΓê
dIX[êJ ]c, (A.6)

where

g ≡ det(gab) = −r4e4β sin2 θ, (A.7)

we have used the fact that the equation above is contracted with δIJθφ , i.e. that the IJ indices

are antisymmetrised and also the fact that

X[IJ ]K = X[IJK] = 0, (A.8)

which can be simply verified from the definition of Xabc, equation (A.4). Also, note that

X[ab]c = ξ[a∂|c|ξb] − ξc∂[aξb] − ξ[a∂b]ξc = 3ξ[a∂cξb] (A.9)

since the Christoffel symbols cancel out. Moreover, as a direct consequence of the previous

equation

X[ab]c = X[ca]b = X[bc]a. (A.10)

Consider the last term in equation (A.6)

− 2gcdΓê
dIX[êJ ]c = −2gKdΓê

dIX[êJ ]K − 2gĉdΓê
dIX[êJ ]ĉ. (A.11)

First, we argue that the last term in the expansion above is an order 1/r quantity as follows:

−2gĉdΓê
dIX[êJ ]ĉ = −2gĉdΓê

dIX[ĉê]J

= −4gd[uΓ
r]
dIX[ur]J , (A.12)

where in the first equality above we used property (A.10). Using the fact that

ξu = −1

2
(�s+ 2s) +O(1/r), ξr = −s+O(1/r2),

ξI = −r∂Is+
1

2

(

sDICIJ −DIsCIJ

)

+O(1/r), (A.13)

it is clear that

X[ur]J = O(r0). (A.14)
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Moreover, using the expression for the Christoffel symbols given in section 4.3 of Ref. [18],

−4gd[uΓ
r]
dI = 2e−4βgIL∂rC

L

= O(1/r). (A.15)

Hence, we find that

δIJθφ∇cXIJ
c = ∂ĉ(g

ĉd̂X[θφ]d̂) +
1

2
g−1gĉd∂dg X[θφ]ĉ + 2gĉdδIJθφΓ

K
dIX[JK]ĉ

− 2gKdδIJθφΓ
ĉ
dIX[JK]ĉ +O(1/r). (A.16)

Note that

δIJθφX[JK]ĉ = 2δIJθφδ
θφ
JKX[θφ]ĉ

= −1

2
δIKX[θφ]ĉ. (A.17)

Thus,

δIJθφ∇cXIJ
c = ∂ĉ(g

ĉd̂X[θφ]d̂) +
[1

2
g−1gĉd∂dg − gĉdΓI

dI + gIdΓĉ
dI

]

X[θφ]ĉ +O(1/r). (A.18)

Now, consider the last two terms in the square brackets above

−gĉdΓI
dI + gIdΓĉ

dI = gĉegId (∂dgIe − ∂egId)

= gĉegIr∂rgIe + gĉKgIJ (∂JgIK − ∂KgIJ) + gĉêgIJ (∂JgIê − ∂êgIJ)

= gĉêgIJ (∂JgIê − ∂êgIJ) +O(1/r2)

= gĉugIJ∂JgIu − gĉê
hIJ

r2
∂ê(r

2hIJ) +O(1/r2)

= −4

r
gĉê∂êr +O(1/r2), (A.19)

where, in the last equality, we have used the fact that h ≡ det(hIJ ) = sin2 θ. Using equations

(A.9) and (A.13), one can show that

X[θφ]u = −1

2
r δIJθφ

{

∂Is
[

sDK∂uCJK −DKs∂uCJK

]

+ ∂Is∂J�s
}

+O(1), (A.20)

X[θφ]r =
1

2
δIJθφ s ∂I

[

sDKCJK −DKsCJK

]

+O(1/r), (A.21)
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which means the O(1/r2) terms in equation (A.19) can be consistently neglected. Thus,

δIJθφ∇cXIJ
c = ∂ĉ(g

ĉd̂X[θφ]d̂) +
[1

2
g−1gĉd∂dg −

4

r
gĉr

]

X[θφ]ĉ +O(1/r). (A.22)

Now,
1

2
g−1gĉd∂dg =

1

2
gĉd

∂d(r
4e4β sin2 θ)

r4e4β sin2 θ
=

2

r
gĉr +O(1/r2) (A.23)

and

∂ĉ(g
ĉd̂X[θφ]d̂) = ∂u(g

urX[θφ]r) + ∂r(g
urX[θφ]u) +O(1/r)

= −∂u(X[θφ]r)− ∂r(X[θφ]u) +O(1/r)

= −∂u(X[θφ]r)−
X[θφ]u

r
+O(1/r), (A.24)

so that

δIJθφ∇cXIJ
c = −∂u(X[θφ]r) +

X[θφ]u

r
+O(1/r). (A.25)

From equations (A.20) and (A.21)

δIJθφ∇cXIJ
c = −1

2
δIJθφ ∂I

{

s
[

sDK∂uCJK −DKs∂uCJK

]

+ s∂J�s
}

+O(1/r). (A.26)

In summary, up to total derivative terms, which vanish upon integration

δIJθφ∇cXIJ
c = O(1/r). (A.27)

Going back to equation (A.2) and using the fact that

[∇a,∇b]Vc = Rabc
dVd, (A.28)

δ/Q̃ =
1

4πG
lim
r→∞

∫

S

dθ dφ ξ[θGφ]cξ
c, (A.29)

where Gab is the Einstein tensor. Hence δ/Q̃ vanishes on-shell at leading order.

B Derivation of dual charge

In this appendix, we show that

lim
r→∞

Hθφ

sin θ
=

1

2

{

δ
(

− sDIDJ C̃
IJ
)

+
s

2
∂uCIJδC̃

IJ
}

, (B.1)
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where Hab is defined in equation (3.7). Note that

Hθφ

sin θ
= δIJθφ

HIJ

sin θ
=

1

2
ǫIJHIJ . (B.2)

Thus, from equation (3.7),

Hθφ

sin θ
=

1

2
ǫIJ

{

ξJg
cd∇Iδgcd +

1

2
gcdδgcd∇JξI − ξJ∇cδgIc+ξ

c∇JδgIc

+
1

2
δgJc(∇Iξ

c −∇cξI)
}

. (B.3)

Equations (3.8), with the fall-off conditions (3.2), and (A.13) give that

ξu = s, ξr =
1

2
�s+O(1/r), ξI = −1

r
DIs+O(1/r2),

ξu = −1

2
(�s+ 2s) +O(1/r), ξr = −s+O(1/r2), ξI = −rDIs+O(r0), (B.4)

where I, J, . . . indices are lowered (raised) with the (inverse) metric on the round 2-sphere.

Consider the first two terms in the expression on the right hand side of equation (B.3).

Using the expression for the determinant of metric given in equation (A.7) and assuming

implicitly the antisymmetrisation in [IJ ],

ξJg
cd∇Iδgcd +

1

2
gcdδgcd∇JξI = ξJ∂I(g

−1δg) +
1

2
g−1δg∂J ξI

= 4ξJ∂Iδβ + 2δβ∂J ξI

= O(1/r), (B.5)

where we have used the fall-off properties given in equations (3.2) and (B.4). Hence, these

terms will not contribute to the dual charge. Similarly, using equations (3.2) and (B.4)

and the expression for the Christoffel symbols given in section 4.3 of Ref. [18], it is fairly

straighforward to show that

ǫIJδgJc(∇Iξ
c −∇cξI) = O(1/r). (B.6)

Hence,
Hθφ

sin θ
=

1

2
ǫIJ

{

ξI∇cδgJc + ξc∇JδgIc

}

+O(1/r). (B.7)
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Now, consider the first term above:

ǫIJξI∇cδgJc = ǫIJξI
(

gur∇rδguJ + gKL∇KδgJL
)

+O(1/r)

= ǫIJξI

[

gKL(∂KδgJL − 2ΓM
K(JδgL)M − 2Γu

K(JδgL)u)− gurΓK
rJδguK

]

+O(1/r)

= ǫIJDIs δ(D
KCJK + 2C0 J) +O(1/r). (B.8)

However, note that equation (3.5) then implies that, in fact,

ǫIJξI∇cδgJc = O(1/r). (B.9)

Thus, as before, making use of equations (3.2) and (B.4) and the expression for the Christof-

fel symbols given in section 4.3 of Ref. [18]

Hθφ

sin θ
=

1

2
ǫIJξc∇JδgIc +O(1/r)

=
1

2
ǫIJ

(

ξu∇JδguI + ξK∇JδgIK
)

+O(1/r)

=
1

2
ǫIJ

(

DI(sδC0 J) +DK(sDIδCJK)− sDKDIδCJ
K +

1

2
s∂uCIKδCJ

K

)

+O(1/r)

=
1

2

(

−sDIDJδC̃
IJ +

s

2
∂uCIJδC̃

IJ
)

+O(1/r), (B.10)

where in the last equality above we have neglected total derivative terms, which will inte-

grate to zero and have used definition (3.18).

In conclusion, we find that

lim
r→∞

Hθφ

sin θ
=

1

2

{

δ
(

− sDIDJ C̃
IJ
)

+
s

2
∂uCIJδC̃

IJ
}

. (B.11)

C Alternative definition of a real charge

From the perspective of the Newman-Penrose formalism, it would also make sense to define

charges Q̂ according to

Q̂ = − 1

4πG

∫

dΩ s
[

ψ0
2 + σ0 ∂u σ̄

0 + ð
2 σ̄0

]

. (C.1)

Then, from (3.12), one has

∂u Q̂ = − 1

4πG

∫

dΩ s |∂u σ0|2, (C.2)
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which holds for any choice of s and demonstrates more clearly that the charges are conserved

for vanishing Bondi news.

We may re-express Q̂ in terms of the metric expansion coefficients in (3.2). Noting first

that ð2σ̄0 = 1
4DIDJ (C

IJ + i C̃IJ), we find that

Q̂ = − 1

8πG

∫

dΩ s (F0 +
1
2DIDJ C

IJ). (C.3)

Thus Q̂ is in fact purely real, although it differs from the real part of Q defined in (3.11),

which is given by Q(int) in (3.10) (see equation (3.15)), by the addition of the second term.
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