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Abstract

That great ape endocranial shape development persists into adolescence indicates that the
splanchnocranium succeeds brain growth in driving endocranial development. However,
the extent of this splanchnocranial influence is unknown. We applied two-block partial least
squares analyses of Procrustes shape variables on an ontogenetic series of great ape cra-
nia to explore the covariation of the endocranium (the internal braincase) and splanchnocra-
nium (face, or viscerocranium). We hypothesized that a transition between brain growth and
splanchnocranial development in the establishment of final endocranial form would be mani-
fest as a change in the pattern of shape covariation between early and adolescent ontogeny.
Our results revealed a strong pattern of covariation between endocranium and splanchno-
cranium, indicating that chimpanzees, gorillas, and orangutans share a common tempo and
mode of morphological integration from the eruption of the deciduous dentition onwards to
adulthood: a reflection of elongating endocranial shape and continuing splanchnocranial
prognathism. Within this overarching pattern, we noted that species variation exists in mag-
nitude and direction, and that the covariation between the splanchnocranium and endocra-
nium is somewhat weaker in early infancy compared to successive age groups. When
correcting our covariation analyses for allometry, we found that an ontogenetic signal
remains, signifying that allometric variation alone is insufficient to account for all endocra-
nial-splanchnocranial developmental integration. Finally, we assessed the influence of the
cranial base, which acts as the interface between the face and endocranium, on the shape
of the vault using thin-plate spline warping. We found that not all splanchnocranial shape
changes during development are tightly integrated with endocranial shape. This suggests
that while the developmental expansion of the brain is the main driver of endocranial shape
during early ontogeny, endocranial development from infancy onwards is moulded by the
splanchnocranium in conjunction with the neurocranium.

Introduction

Palaeontologists have long exploited the endocranium and its negative imprint, the endocast,
as a proxy with which to interrogate the size evolution of the brain in the primate fossil record
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[1-4]. Over the past two decades, these efforts have been greatly extended by employing virtual
anthropological methods [5-20] to infer the evolution of both brain growth (an ontogenetic
change in size) and development (an ontogenetic change in shape) from computed tomo-
graphic scans of extant and extinct primate endocrania in ontogenetic series [21-30]. While
these described endocranial developmental changes are often taken as being wholly interpret-
able as brain developmental changes, several authors have stressed that the endocranium is not
shaped exclusively by the brain. This is because, mechanistically, developmental and evolution-
ary changes in facial size and morphology, cranial bone thickness, and cranial musculature
must also influence endocranial shape in addition to the tempo and mode of brain growth
[24-25, 27-28, 30-34]. From this standpoint, the brain-endocranium relationship is not a true
one-to-one correspondence; rather, endocranial structure is the age- and species-specific prod-
uct of manifold internal (brain/meninx) and external (splanchnocranium/neurocranium/mus-
culature) forces. Our challenge, then, is to delimit the extent of these forces in shaping the
primate endocranium, a task further complicated by the likelihood that such developmental
forces are liable to be bi-directional [35-38].

Development is not a stochastic process but rather a highly regulated one that produces pre-
dictable results. According to Gould [39-40] and Alberch et al. [41-42], it is far easier to regu-
late a resilient ontogeny than to alter it. Fundamental to this stability is conservation or
canalization: an evolved robustness of developmental pathways to genetic and environmental
disturbances that ultimately results in decreased adult phenotypic variance [43-46]. Yet, for
novel forms to arise, these genetically optimized developmental canals cannot be wholly stable
[47], but rather plastic in parts. Such plasticity has been ascribed by Gould [39] to natural
selection acting upon variations in the timing and rate of development. This is of particular rel-
evance as evidence suggests that developmental conservation (or canalization) is appreciable
in the mammal cranium [48]. Within the primate order, we have shown previously that extant
hominoids undergo highly conserved endocranial shape changes following the eruption of the
deciduous dentition [24-25, 28], a result recently corroborated by Zollikofer and colleagues
[30]. While we found that endocranial developmental patterns were overall conserved in
tempo and mode, great ape species differed in the amount of expansion of the anterior and
posterior cranial fossae [28]. This phenomenon is especially salient for several reasons. Firstly,
such differences in the amount of shape change, together with an early (prenatal) establish-
ment of species-specific morphology, likely drive and accentuate the disparity of adult homi-
noid endocranial shape. According to Keith [49], such fossal expansions are corollaries of
dental eruption, masticatory musculature growth and nuchal area expansion (external factors),
not brain growth (internal factor). Secondly, that these species differences emerged following
the complete eruption of deciduous dentition—after the cessation of brain growth (reviewed
in [26])—indicates that endocranial shape continues to change after the cessation of brain
growth. These results then suggest that, during infancy, the splanchnocranium succeeds the
brain in the determination of final (adult) endocranial form [50-52].

Thus, understanding the process of conservation itself, as driven by integration and allome-
try [48], is central to disentangling the relative contributions of internal and external morpho-
logical forces on the final establishment of species-specific endocranial form. Strong
integration, or covariation between developmental modules, constrains evolution, whereas
weakening covariation between modules permits independent specialization in response to
differing selective pressures. Integration, therefore, can permit a fine mediation between spe-
cies differentiation and canalization. As splanchnocranial and endocranial covariation bal-
ances dietary preferences on the one hand and encephalization on the other, such integration
must be restrictive in channelling variation, yet permissive enough to act as a source of varia-
tion [53-55]. In mammals, cranial development must accommodate an enormous range of
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morphological variation in the gnathic apparatus. Because of this, we would expect mamma-
lian cranial covariation patterns to be conserved, as was demonstrated across multiple mam-
malian orders [56]. Following Cheverud [57-58], such conservation of integration patterns is
likely testament to extensive pleiotropy in cranial development.

As pointed out by Klingenberg [59], there is a large body of literature examining the mor-
phological integration of the primate skull, as primates were employed as research subjects for
both the revival of interest in morphological integration following Olson and Miller [60] and
the development of geometric morphometrics. Using traditional and geometric methods, pre-
vious authors have consistently demonstrated that the adult primate cranium is morphologi-
cally integrated, regardless of which cranial components—e.g. face, neurocranium, cranial
base, occipital bun and mandible—were subjected to analysis [37, 61-72]. Furthermore, this
effect has been consistently identified in studies exploring morphological integration across
ontogeny [57, 70, 73-75], which found that cranial developmental patterns are similar across
great apes. Yet, while the literature on primate cranial developmental integration is indeed
considerable, relatively little work has been done considering the endocranium itself as a devel-
opmental module. Bastir and colleagues [76] examined univariate brain and facial size as inde-
pendent variables in a partial least squares analysis with basicranial shape, demonstrating that
both values are important factors in determining basicranial orientation and morphology.
Recently, Zollikofer and colleagues [30] utilized extant hominid virtual endocasts as a develop-
mental module in order to determine the effects of cranial integration on endocranial mor-
phology across ontogeny, with the aim to test the spatial packing and facial orientation
hypotheses. Their results affirmed that endocranial shape is primarily moulded by cranial inte-
gration, with a correspondingly smaller proportion of variation attributable to brain morphol-
ogy itself.

While the concepts of morphological integration and allometry are closely intertwined,
allometry has been at the forefront of anatomical and evolutionary study for a much longer
period of time. As summarized by Klingenberg and Marugan-Lobén[77], the definition and
uses of allometry have evolved from the days of Huxley [78] to the geometric morphometrics
era[79]. Klingenberg [80] divides allometry into two groups: (1) the Gould-Mosimann school,
which defines allometry as the covariation of shape with size, and (2) the Huxley-Jolicoeur
school, which defines allometry as the covariation among morphological features that all con-
tain size information. For the former, allometry is implemented by a multivariate regression of
shape variables on size, while for the latter this implementation is performed by plotting Pro-
crustes form space [77, 80]. According to Gould [81-82], ontogenetic allometric pathways
operate as “channels of positive constraint”; allometry, then, like integration, enables pheno-
typic variation along this line of least resistance and constrains it by delimiting the adult mor-
phospace to a narrow range of shape disparity [82]. As much of shape variation can be in fact
allometric variation, thus much of morphological integration can be due to the effects of
allometry [77]. Allometry, therefore, can be a confounding factor in shape covariation analyses
if unaccounted for. Because allometry has emerged as an important factor in hominoid endo-
cranial development [21-25, 28], it is likely that allometry plays a crucial role in integrating
endocranial development. For the present study, we correct for allometry in order to focus
solely on those aspects of shape covariation that are unrelated to size variation.

Here, we explore which factors determine great ape endocranial shape variation at different
stages of ontogeny. More specifically, by defining the endocranium and splanchnocranium as
developmental modules, we analyze their covariation shape patterns among great ape species
and across postnatal ontogeny. If splanchnocranial development determines endocranial
structure following the end of brain growth, then we would expect to see a change in covaria-
tion patterns around this juncture. Based on the findings described in our previous work[28]
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and Zollikofer and colleagues[30], we hypothesize the following: (1) a shared ontogenetic pat-
tern of covariation describes endocranial and splanchnocranial shape change in great apes; (2)
species-specific variation in the direction and magnitude of shape change contributes to adult
endocranial and splanchnocranial morphologies; (3) allometry alone is insufficient to describe
the observed covariation between endocranial and splanchnocranial shape change; (4) endo-
cranial shape changes are not driven solely by the development of the splanchnocranium and
its associated changes in the cranial base.

Firstly, we use partial least squares analysis to establish whether morphological covariation
between the splanchnocranial module and the endocranial module varies across ontogeny and
among chimpanzees, gorillas and orangutans. Secondly, we aim to determine to what degree
allometry is manifest in the observed ontogenetic shape covariation pattern, as per Klingen-
berg [80]. We will accomplish this by comparing centroid sizes for each developmental mod-
ule, plotting Procrustes form space and by re-running our partial least squares analysis
accounting for allometry, i.e. by analyzing the shape residuals for each module following
regression on centroid size. Lastly, we will determine whether endocranial shape is exclusively
driven by developmental integration with the splanchnocranium via the cranial base. Using
thin-plate spline warping, we will test this by standardizing each vault for the effect of its
accompanying cranial base, the idea being that the cranial base acts as the interface between
splanchnocranium and endocranium during development [32, 83-87]. Thus, any residual
vault shape variation would be indicative of forces that are independent of cranial base, and
therefore splanchnocranial, development.

Material and methods
Sample

Our cross-sectional sample comprised computed tomographic scans of museum-housed dried
crania from Gorilla gorilla (n = 75), Pan troglodytes (n = 69, including scans of two whole fro-
zen neonates) and Pongo pygmaeus (n = 77), covering the lifespan from infancy to adulthood
(Table 1). No permits were required for the described study, which complied with all relevant
regulations. Sex attribution was drawn from museum records where available, while age
groups were based on molar eruption (1 = no erupted deciduous dentition; 2 = incompletely
erupted deciduous dentition; 3 = completely erupted deciduous dentition; 4 = > one erupted
M1; 5 = > one erupted M2; 6 = > one erupted M3). For full specimen information, including
provenance, please see S1 Table.

Segmentation and measurement

Endocasts were produced virtually using two- and three-dimensional semi-automated seg-
mentation [14]. To measure the endocasts, we placed endocranial surface landmarks that
encompassed the geometry of the endocranial cavity as delineated by the cranial fossae (ana-
tomical landmarks = 29, plus semilandmarks on curves, based on our previous work [24]). We
then measured on these same individuals anatomical landmarks (n = 23) and semilandmarks
on curves that encompassed the geometry of the splanchnocranium; such division of the ecto-
cranium into modules is inherently arbitrary and our definition here of the splanchnocranium
does not comprise the mandible. For splanchnocranial and endocranial landmark informa-
tion, please see Table 2; for full landmark data, see S2 and S3 Tables. Semilandmarks on curves
were resampled to equivalent point count, and endocranial surface semilandmarks were calcu-
lated following the measurement protocol developed by us previously [24], in which all semi-
landmarks were slid iteratively so as to minimize the thin-plate bending energy of each
specimen against the sample mean shape [88-89]. Generalized Procrustes analyses [90-92],
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Table 1. List of specimens by age and sex.

Dental age groups Individuals per species (n)
Sex Gorilla Pongo Pan Total
1 0 1 4 5
Female
Unknown 0 4
Male 1 1
2 3 2 3 8
Female 1 0 3
Unknown 1 4
Male 1 1
3 8 10 9 27
Female 1 1 4
Unknown 6 8 17
Male 1 1 6
4 12 11 19 42
Female 2 1 7
Unknown 7 24
Male 11
5 14 12 12 38
Female 11
Unknown 13
Male 14
6 38 41 22 101
Female 12 15 33
Unknown 2 12 22
Male 24 14 46
Total 75 77 69 221

https://doi.org/10.1371/journal.pone.0208999.t001

whereby coordinates of the 309 endocranial and 202 facial anatomical landmarks and slid

semilandmarks are transformed into Procrustes shape variables, were performed separately for

endocranial and splanchnocranial landmark blocks.

Analyses

To assess covariation, two-block partial least squares (PLS) analyses of Procrustes shape vari-
ables were performed. As an iterative method, this analysis yields vector pairs—singular warps,
as per Rohlf and Corti [93]—ranked according to the maximum covariance between the two

blocks of Procrustes shape data, here the endocranium and the splanchnocranium. In this

paper, we use the terms PLS and singular warps interchangeably. Landmarks and semiland-
marks were superimposed separately using Procrustes superimposition. The Procrustes shape
variables were then mean-centred (standardized) by subtracting the species-specific age group
mean from the shape data of each individual prior to computation of the covariance matrix, as
recommended by Mitteroecker and Bookstein [94]; for species-specific analyses, this covari-
ance matrix was composed solely of the species under investigation. A PLS analysis was per-
formed firstly with all species combined (Fig 1 and S1 Fig). Following Bookstein and

colleagues [74], individual PLS axes are termed singular warps. In this paper, we use both

terms interchangeably.
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Table 2. List of landmarks.

1. Anatomical endocranial landmarks

Midsagittal

Paired bilateral

Anterior sphenoid spine

Anterior clinoid process

Foramen caecum

Optical canal

Endobregma Superior orbital fissure
Endolambda Foramen rotundum
Internal occipital protuberance Foramen ovale
Opisthion Apex of the petrous bone
Basion Internal acoustic meatus
Endosphenobasion Maximum curvature between transverse and petrous curves
Dorsum sellae Foramen jugulare
Hypoglossal canal
II. Endocranial landmarks on curves
Midsagittal Paired bilateral Delineation
Midsagittal Shape of cerebrum and cerebellum
Clivus Angle of the basicranium

Foramen magnum

Shape of foramen magnum

Sphenoid

Anterior from middle cranial fossae

Transverse sinus

Posterior cranial fossae from the vault

Petrous

Middle from posterior cranial fossae

III. Anatomical splanchnocranial landmarks

Midsagittal Paired bilateral
Anterior nasal spine Root of zygomatic process
Rhinion Jugale
Prosthion Frontomalare orbitale
Staphylion Mastoidale
Orale Temporal-sphenoid suture

Maxillary tuberosity

Lingual canine margin

Lateral extreme of the curve, supra-orbital anterior projection

Medial extreme of the curve, supra-orbital anterior projection

IV. Splanchnocranial landmarks on curves

Midsagittal Paired bilateral Delineation
Sub-nasal clivus Prosthion to anterior nasal spine
Midsagittal profile Rhinion to glabella
Midsagittal palate Staphylion to orale

Nasal outline

Anterior nasal spine to rhinion

Orbital rim

Frontomalare orbitale

Zygomatic-maxillary contour

Porion to root zygomatic process

Alveolar outline

Maxillary tuberosity to prosthion

https:/doi.org/10.1371/journal.pone.0208999.t002

Next, to analyze ontogenetic trajectories in shape space, Procrustes shape variables were
ordinated by separate principal components analyses (PCA) for endocranial and splanchno-
cranial data (Figs 2 and 3). Similarly, separate principal components analyses for endocranial
and splanchnocranial data were performed on Procrustes form variables to analyze ontoge-
netic trajectories in form space (Fig 4). Principal components (PCs) were visualized as mean
shapes corresponding to the negative and positive limits of the principal components plots
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A PLS 1 (R= 0.83, explained covariance: 64.3%) B

Splanchnocranium

-0.05

-0.10

-0.15

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
Endocranium

Fig 1. Two-block, age group mean-centred PLS analysis between endocranium and the splanchnocranium: Pooled species, singular warp 1. (A)
Convex hulls represent pooled sexes of age groups 2-6 for each species; age group labels denote age group means, while lines are B-spline curves of the
average species-specific trajectories. Colours: green = chimpanzee; dark grey = gorilla; orange = orangutan. (B) Sagittal (left) and coronal (right)
visualizations of the shape changes corresponding to PLS 1 in the endocranium (top) and splanchnocranium (bottom), from negative (dashed line) to
positive values (solid line).

https://doi.org/10.1371/journal.pone.0208999.g001

(Figs 2 and 3). To compare ontogenetic growth changes between modules, we plotted the cen-
troid size of the endocranium versus the centroid size of the splanchnocranium (Fig 5).

To determine to what degree allometry affects the PLS results, we performed an additional
PLS analysis on endocranial and splanchnocranial data following regression of these data on
centroid size (Fig 6 and S2 Fig). Lastly, we performed PLS analyses successively with each spe-
cies separately (Figs 7-9 and S3-S5 Figs) to gain a better understanding of differences that may
be obscured by pooling multiple species [94-95]. It is important to note that our assessments
of trajectory similarities and differences are derived from a visual assessment, rather than addi-
tional statistical testing.

Because the braincase is tightly integrated with the face throughout development, any size
and shape changes in the face also affect the endocranium, especially at the cranial base: the
interface between these two cranial modules. To explore to what degree endocranial shape
changes during development are driven by cranial base changes, we analyzed developmental
shape changes of the cranial vault after standardizing for shape differences in the cranial base.
In other words, we used geometric morphometric methods to ask: if all individuals had the
exact same cranial base shape, what would their vaults look like? To this end, we first per-
formed a Procrustes superimposition and divided our endocranial landmark set into an endo-
cranial base component and an endocranial vault component as used previously [24]. We then
removed the contribution of the endocranial base to endocranial shape by thin-plate spline
(TPS) warping [96] the endocranial base shape coordinates of each specimen to the consensus
shape of the endocranial base; the respective landmarks and semilandmarks on the
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Fig 2. Ontogenetic shape trajectories as ontogenetic sequences of specimens in shape space: Endocranial. (A-B)
Principal components analysis of Procrustes shape variables from the eruption of deciduous dentition (age group 2) to
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adulthood (age group 6). (A) Principal component 1 vs. principal component 2. (B) Principal component 1 vs.
principal component 3. Convex hulls represent pooled sexes of age groups 2-6 for each species; age group labels
denote age group means, while lines are B-spline curves of the average species-specific trajectories. Colours:

green = chimpanzee; dark grey = gorilla; orange = orangutan. (C) Visualizations of sagittal (left) and coronal (right)
shape changes corresponding to principal component 1, from negative values (dashed line) to positive values (solid
line).

https://doi.org/10.1371/journal.pone.0208999.g002

endocranial vault were warped using this TPS interpolation [88]. Principal components
analysis was then used to ordinate the resultant shape changes attributable to the cranial vault
independent of the cranial base (Fig 10). If shape changes in the cranial base linked to splanch-
nocranial development did account for all endocranial shape changes, then a principal compo-
nents analysis of these TPS-warped endocranial vaults would only reveal noise and not an
ontogenetic signal.

Results
Ontogenetic shape covariation between species

The results of our pooled PLS analysis of covariance demonstrate that a major (r = 0.83) axis of
covariation (singular warp 1) defines splanchnocranial and endocranial morphological
changes during ontogeny, explaining 64% of the total covariance (Fig 1A). Taken as a whole,
these data highlight a conserved pattern of ontogenetic integration among chimpanzees
(green), gorillas (dark grey) and orangutans (orange) from the eruption of the deciduous den-
tition (age group 2) onwards to adulthood (age group 6). This vector shows that species differ
in the amount of shape change experienced along this shared axis of covariation, whereby the
magnitude (vector length) of endocranial and splanchnocranial shape changes between age
group means is overall highest in orangutans and lowest in chimpanzees, with gorillas inter-
mediate to both. For chimpanzees, the greatest amount of shape change occurs between age
groups 4 and 5, while in gorillas, the greatest comparable changes are between age groups 3
and 4, and again to a lesser extent between age groups 4 and 5. Along this axis of covariation
(singular warp 1), orangutans are distinct in this regard, undergoing large amounts of shape
change both early in ontogeny (between age groups 2 and 3) and in late adolescence (age
group 5 to 6). With respect to direction, gorilla and chimpanzee covariation trajectories paral-
lel each other until age group 3 in gorillas and age group 4 in chimpanzees, whereupon they
begin to diverge slightly. Conversely, orangutans are again exceptional to the overall pattern:
the orangutan trajectory is entirely non-overlapping at age group 2, whereupon it overlaps
with the African apes at age group 3; at this juncture, however, its direction continues at an
angle to that of chimpanzees and gorillas.

The corresponding endocranial shape changes (Fig 1B) describe a lengthening of the ante-
rior cranial fossae, an antero-inferior expansion of the temporal poles and a downwards rota-
tion of the foramen magnum, while the splanchnocranial shape changes denote an antero-
inferior extension of the maxilla, a proportional reduction of the orbits and an inferior exten-
sion of the nasal area. Because all specimens are scaled to unit centroid size during the Procrus-
tes superimposition, the relative size of the orbits decreases in the visualization of the shape
changes associated with singular warp 1, indicating that the actual size of the face is increasing
along the positive direction of the y-axis. As the face grows and becomes more prognathic dur-
ing postnatal ontogeny, the endocast becomes more elongated antero-posteriorly.

Higher PLS axes recover considerably weaker patterns of covariation between the endocra-
nium and the splanchnocranium without a clear, interpretable ontogenetic signal (S1 Fig).
From singular warp 2, accounting for just 11% of the sample covariation, it is apparent that
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Fig 3. Ontogenetic shape trajectories as ontogenetic sequences of specimens in shape space: Splanchnocranial.
(A-B) Principal components analysis of Procrustes shape variables from the eruption of deciduous dentition (age
group 2) to adulthood (age group 6). (A) Principal component 1 vs. principal component 2. (B) Principal component 1
vs. principal component 3. Convex hulls represent pooled sexes of age groups 2-6 for each species; age group labels
denote age group means, while lines are B-spline curves of the average species-specific trajectories. Colours:

green = chimpanzee; dark grey = gorilla; orange = orangutan. (C) Visualizations of sagittal (left) and coronal (right)
shape changes corresponding to principal component 1, from negative values (dashed line) to positive values (solid
line).

https://doi.org/10.1371/journal.pone.0208999.9003
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Fig 4. Ontogenetic shape trajectories in Procrustes form space. (A-B) Principal components analysis of Procrustes
shape variables from the eruption of deciduous dentition (age group 2) to adulthood (age group 6). (A) Endocranial
form space; principal component 1 vs. principal component 2. (B) Splanchnocranial form space: principal component
1 vs. principal component 2. Convex hulls represent pooled sexes of age groups 2-6 for each species; age group labels
denote age group means, while lines are B-spline curves of the average species-specific trajectories. Colours:

green = chimpanzee; dark grey = gorilla; orange = orangutan.

https://doi.org/10.1371/journal.pone.0208999.9004
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Fig 5. Centroid size of endocranium vs. centroid size of splanchnocranium. Convex hulls represent pooled sexes of
age groups 1-6 for each species; age group labels denote age group means, while lines are B-spline curves of the average
species-specific trajectories. Colours: green = chimpanzee; dark grey = gorilla; orange = orangutan.

https://doi.org/10.1371/journal.pone.0208999.g005
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Fig 6. Two-block, age group mean-centred PLS analysis of endocranial and splanchnocranial shape residuals after regression on size: Pooled species, singular
warp 1. (A) Convex hulls represent pooled sexes of age groups 2-6 for each species; age group labels denote age group means, while lines are B-spline curves of the
average species-specific trajectories. Colours: green = chimpanzee; dark grey = gorilla; orange = orangutan. (B) Sagittal (left) and coronal (right) visualizations of the
shape changes corresponding to PLS 1 in the endocranium (top) and splanchnocranium (bottom), from negative (dashed line) to positive values (solid line).

https://doi.org/10.1371/journal.pone.0208999.g006
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Fig 7. Two-block, age group mean-centred PLS analysis between endocranium and the splanchnocranium:
Chimpanzees, singular warp 1. (A) Convex hulls represent pooled sexes of age groups 1-6; age group labels denote
age group means, while line is B-spline curve of the average chimpanzee-specific trajectory. (B) Sagittal (left) and
coronal (right) visualizations of the shape changes corresponding to PLS 1 in the endocranium (top) and
splanchnocranium (bottom), from negative (dashed line) to positive values (solid line).

https://doi.org/10.1371/journal.pone.0208999.g007
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Fig 8. Two-block, age group mean-centred PLS analysis between endocranium and the splanchnocranium: Gorillas,
singular warp 1. (A) Convex hulls represent pooled sexes of age groups 2-6; age group labels denote age group means, while
line is B-spline curve of the average gorilla-specific trajectory. (B) Sagittal (left) and coronal (right) visualizations of the shape
changes corresponding to PLS 1 in the endocranium (top) and splanchnocranium (bottom), from negative (dashed line) to
positive values (solid line).

https://doi.org/10.1371/journal.pone.0208999.9008

this axis is predominately driven by ontogenetic changes in gorillas and chimpanzees, captur-
ing little ontogenetic signal in orangutans (S1 Fig; middle). Singular warp 3 (S1 Fig; right) only
explains 6% of the pooled sample covariation.

Ontogenetic shape variation between species

To better understand the covariation patterns revealed by our partial least squares analyses in
Fig 1 and S1 Fig, we next ordinated our endocranial and splanchnocranial shape data in sepa-
rate principal components analyses, allowing us to examine each concomitant shape variation
pattern in isolation. In endocranial shape space, the first principal component bears the stron-
gest ontogenetic signal, separating the youngest and oldest individuals (Fig 2A). Regarding the
second principal component, the African apes overlap until late adolescence, at which point
gorilla endocranial shape development exceeds that of chimpanzees; orangutans are largely
distinct from this African ape pattern and instead exhibit a more curved trajectory (Fig 2A).
Along the third component, gorillas diverge from the general pattern at late adolescence (Fig
2B). Overall, these plots of endocranial shape space indicate that great ape trajectories differ in
degree but show a marked overall likeness [28].

Splanchnocranial shape development trajectories (Fig 3) closely mirror those of the endo-
cranium (Fig 2), both with regards to trajectory direction and magnitude. However, while it is
clear that great ape trajectories exhibit overall directional similarity, diversity in magnitude is
apparent along the first principal component (Fig 3A). As trajectory magnitude corresponds
to the amount of shape change, this indicates that chimpanzees undergo considerably less
splanchnocranial shape change development than do orangutans and gorillas in a comparative
developmental timeframe (from the incomplete eruption of deciduous dentition to adult-
hood). Along the second principal component, orangutans are wholly distinct from the Afri-
can apes (Fig 3A), while the third principal component highlights a divergence in great ape
trajectory direction following adolescence (Fig 3B).
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Fig 9. Two-block, age group mean-centred PLS analysis between endocranium and the splanchnocranium:
Orangutans, singular warp 1. (A) Convex hulls represent pooled sexes of age groups 1-6; age group labels denote age
group means, while line is B-spline curve of the average orangutan-specific trajectory. (B) Sagittal (left) and coronal
(right) visualizations of the shape changes corresponding to PLS 1 in the endocranium (top) and splanchnocranium
(bottom), from negative (dashed line) to positive values (solid line).

https://doi.org/10.1371/journal.pone.0208999.9009

Allometric effects

From the above PLS and Procrustes shape space results, we have observed that the great ape
pattern of shape covariation (Fig 1) is manifest in the underlying similarity of the endocranial
and splanchnocranial trajectories in shape space (Figs 2 and 3, respectively). However, as a
considerable proportion of the ontogenetic pattern of shape development is likely attributable
to allometry, that is, the proportion of shape variation due to size variation, it is interesting to
remove the developmental effects that size has on shape in order to focus solely on the question
at hand: how shape change alone covaries between modules with ontogeny. Therefore, to
determine to what degree our PLS and PCA results are explainable by allometry, we began by
examining Procrustes form, or size-shape, space whereby Procrustes shape variables and their
associated centroid sizes are ordinated by principal components analysis.

From Fig 4, it is evident that both endocranial (Fig 4A) and splanchnocranial (Fig 4B) pri-
mary axes are reflective of allometric shape variation. That the parallelism of the great ape tra-
jectories in splanchnocranial form space is oriented primarily along the first principal
component indicates that this axis is driven overwhelmingly by size, with higher principal
components providing little explanatory value (Fig 4B). While a similar phenomenon is appar-
ent in endocranial form space, here the effect is less marked, with the second PC also defining
a proportion of the explained variance. This indicates that size alone does not account for all
endocranial shape variation.

Our form analyses indicated that size increase plays a considerable role in shape develop-
ment, but to dissimilar extents in endocranial versus splanchnocranial form space. To specifi-
cally compare size increases (growth) between modules, we plotted endocranial centroid size
versus splanchnocranial centroid size (Fig 5). As seen in Fig 5, all great ape species follow a
similar pattern of growth, defined by a dramatic endocranial size increase from age group 1 to
2 that continues more modestly from age group 2 to 3. From age group 3 onwards (the com-
plete eruption of the deciduous dentition), endocranial size increase is less pronounced. In
contrast, splanchnocranial size increases until adulthood, with relatively regular spacing
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Fig 10. Principal components analysis of vault shape after standardizing for endocranial base shape as the
interface between endocranial and splanchnocranial shapes. (A-B) Principal components analysis of Procrustes
shape variables from the eruption of deciduous dentition (age group 2) to adulthood (age group 6). (A) Principal
component 1 vs. principal component 2. (B) Principal component 1 vs. principal component 3. Convex hulls represent
pooled sexes of age groups 2-6 for each species; age group labels denote age group means, while lines are B-spline
curves of the average species-specific trajectories. Colours: green = chimpanzee; dark grey = gorilla;

orange = orangutan. (C) A visualization of standardized chimpanzee (left), gorilla (middle) and orangutan (right)
standardized vault shapes for each individual.

https://doi.org/10.1371/journal.pone.0208999.g010

between age groups, particularly after age group 3 (Fig 5). Regarding species comparisons,
chimpanzee and orangutan growth patterns overlap greatly. While gorillas start at higher ini-
tial endocranial and splanchnocranial size values at age group 2, the pattern of growth itself is

PLOS ONE | https://doi.org/10.1371/journal.pone.0208999 December 19, 2018 15/27


https://doi.org/10.1371/journal.pone.0208999.g010
https://doi.org/10.1371/journal.pone.0208999

®PLOS | one

Covariation of endocranium and splanchnocranium in great apes

overall comparable to that of the smaller apes. Adolescent and adult size variation (convex hull
area) in gorillas and orangutans greatly exceeds that of chimpanzees, both endocranially and
splanchnocranially, likely due to prominent sexual dimorphism in these species.

Taken together, our results in Figs 4 and 5 indicate that much of endocranial and
splanchnocranial shape variation is indeed allometric shape variation. Thus, to investigate
great ape ontogenetic shape covariation patterns independent of the effects of size, it is
imperative to correct for allometry. To determine to what degree allometry affects the PLS
results, we performed an additional PLS analysis on endocranial and splanchnocranial
data following regression of these data on centroid size. By analyzing the covariation of
residuals, it is clear that a large amount of the major axis of covariation (r = 0.25; explained
covariance = 61.5%) between splanchnocranial and endocranial shape is in fact driven by
allometriceffects, as interpreted by the obvious reduction of an ontogenetic signal (Fig 6)
compared to the uncorrected PLS results (Fig 1). Nevertheless, some ontogenetic signal
remains, defining a similar pattern between orangutans and gorillas, with chimpanzees mir-
roring an abbreviated version of this covariation trajectory. From this general covariation
pattern, only the earliest age group (here, age group 2; incomplete eruption of deciduous
dentition) deviates, indicating that covariation between endocranium and face is different
in early ontogeny, but relatively consistent among species following age group 3 (complete
eruption of deciduous dentition). Specifically, splanchnocranial shape change in the transi-
tion from age group 2 to 3 exceeds that of the endocranial module, whereas subsequent to
age group 3, endocranial shape changes occur with little accompanying splanchnocranial
shape change.

On PLS 2 (r = 0.41; explained covariance = 6.5%), a large amount of splanchnocranial
shape change occurs between age group 2 and 3 with little concomitant endocranial shape
change; here, all species trajectories are parallel (S2 Fig; middle).This indicates that covariation
is markedly different (weaker) in age group 2 than in subsequent age groups. PLS 3 is less
informative, with little separation of age group means or species (S2 Fig; right).

Species-specific ontogenetic covariation

Thus far, it is evident that while great ape species are conserved with respect to an overarching
pattern of shape change covariation between splanchnocranial and endocranial modules, each
differs somewhat from one another; as noted, these deviations pertain mainly to variations in
trajectory magnitude and direction. We further conducted PLS analyses on a covariance
matrix of each species separately, which enables us to examine these species-specific covaria-
tion patterns in greater detail. Considering chimpanzees, this additionally allowed us to
include a sample of neonates (age group 1), the inclusion of which permits the investigation of
splanchnocranial and endocranial shape change covariation directly after birth. We found that
chimpanzee shape covariationin neonates is entirely distinct from successive age groups (i.e.
convex hull 1 is non-overlapping with convex hull 2), with the greatest overall amount of
shape change occurring from age group 1 to 2 (PLS1; Fig 7A; r = 0.76). This phenomenon—a
marked discontinuity between neonatal and later ontogeny—is also apparent on the third sin-
gular warp (S3 Fig; right) and is indicative of weaker covariation directly after birth: shape
changes to the splanchnocranium are unmatched by comparable changes to the endocranium.
On singular warp 2, covariation is also weak between age groups 1 and 2, yet here the opposite
effect is observable, as a large amount of splanchnocranial shape change occurs with little cor-
responding shape change in the endocranium. On singular warps 1 and 3, shape covariation is
greatest in adults, with relatively more shape change occurring in the splanchnocranium than
in the endocranium, than in preceding age groups.
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Along the first singular warp, visualizations of the shape changes of the splanchnocranium
describe the difference between a relatively large-orbited splanchnocranium with no progna-
thism to a more prognathic adult skull with vertically compressed orbits (Fig 7B). From age
group 2 to adulthood, the endocranium becomes more anterio-posteriorly elongated, the mid-
dle cranial fossae expand laterally, and the temporal poles rotate medially.

In gorillas, the ontogenetic covariation pattern along the first singular warp is both strong
and positive (r = 0.9; Fig 8A), revealing a large amount of shape changes from age group 4 to 5,
with a lesser amount from age group 3 to 4. Here, the covariation pattern is similar across
ontogeny, with comparable amounts of shape change experienced in both the endocranium
and splanchnocranium. Higher singular warps carry a clear ontogenetic signal, underscoring
in particular a large amount of splanchnocranial shape change in early ontogeny (age group 2
to 3) that occurs with relatively less concomitant endocranial shape change (54 Fig; middle
and right).Shape-wise, the positive end of the first singular warp can be visualized as a narrow,
oblong endocranium with an extended clivus, a splanchnocranium with angled zygomatic
arches and an anteriorly extended maxilla; at the negative end, the endocranium is superiorly
and laterally expanded in the middle and anterior cranial fossae, with an attenuated clivus,
while the splanchnocranium has relatively larger orbits, a reduced maxilla, and a reduced
angle along the zygomatic arches (Fig 8B).

In orangutans, the covariation pattern along the first singular warp (Fig 9A; r = 0.87) is
more curvilinear than that of the African apes; such curvilinearity is also observable on higher
singular warps (54 Fig; middle and right). Along the first singular warp, covariation is strong,
such that comparable amounts of shape change are experienced in both splanchnocranial and
endocranial developmental modules. The amounts of shape change experienced between age
group means is remarkably comparable across the ontogenetic signal revealed by the first sin-
gular warp (Fig 9A); on higher singular warps, this spacing is more irregular, with the greatest
amounts of shape change occurring in adolescent ontogeny. As with our chimpanzee analysis,
conducting a PLS of orangutans alone enabled us to include one orangutan neonate in our
sample. Our results indicate that neonatal shape covariation is generally comparable to that of
individuals in age group 2 on higher singular warps, but plots “off” of the general trajectory;
this is likely a factor of the small sample size.

When visualized, endocranial shape variation along the first singular warp from negative to
positive evinces an endocranium with a short clivus and laterally expanded anterior cranial
fossae to an endocranium with inferiorly expanded temporal poles and a foramen magnum
with accompanying large reductions to the lateral regions of the anterior cranial fossae (Fig
9B). In the splanchnocranium, these changes covary with a transition from relatively large
orbits and a short maxilla to inferiorly elongated nasal and maxillary regions.

Standardizing the cranial base

To determine to what extent endocranial shape change occurs independently of cranial base
shape change, we standardized the Procrustes shape variables of the endocranial vault to the
cranial base. The resultant trajectories in shape space show a clear ontogenetic signal (i.e. they
are not static) and are relatively similar between great apes (Fig 10), but to a lesser extent than
in the non-standardized analysis (Fig 2). In the projection of the first two PCs, the trajectories
of chimpanzees and gorillas closely overlap at age group 2, but diverge noticeably following
this juncture (Fig 10A). The orangutan shape trajectory, meanwhile, is completely distinct
from the African apes until age group 4, whereupon the orangutan trajectory overlaps that of
chimpanzees (Fig 10A). That the orangutan age group 2 plots “off” the trajectory for age
groups 3 and 4 is probably less an indicator of a biological difference than a sampling artifact.
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In the projection of the first and third PCs, the African ape trajectories are approximately lin-
ear (Fig 10B), converging gradually from age group 2 onwards. Orangutans, while occupying a
parallel space in this projection, again exhibit a curved trajectory between age groups 2 and 4
(Fig 10B). Overall, the spacing between age group means is similar between the African ape
species: a large amount of shape change between age groups two and three and remarkably lit-
tle shape change between age groups five and six. In comparison, the spacing between age
group means in orangutans is more evenly distributed.

Discussion

In our analysis of endocranial and splanchnocranial morphological integration, we have
shown that great ape species are typified by similar developmental covariation patterns.
Hence, in corroboration of the work of Zollikofer and colleagues [30], our results signify that
conservation, or canalization, is indeed a hallmark of endocranial/splanchnocranial integra-
tion. This adds to the growing body of work demonstrating (a) that the primate cranium is
highly integrated [61, 63-72]; and (b) that developmental integration patterns are comparable
across primate species [57, 73-74, 94].

Species-specific variation

Within this overarching pattern of similar developmental trajectories, some species-specific
variation in magnitude and direction exists. However, as our partial least squares and principal
components analyses indicate that developmental trajectories are curvilinear, this precludes
the calculation of angles between trajectories to determine whether apparent species variation
in vector direction is statistically significant [28]. Based on visual inspection, however, it is
apparent that chimpanzees and gorillas are more similar to each other with regards to trajec-
tory direction than either is to orangutans; this phenomenon is evident both for shape covaria-
tion and shape variation. Indeed, that chimpanzee and gorillas overlap to a considerable
degree highlights that they differ in vector length between age group means: the amount of
shape change covariation experienced between comparable dental-age stages. Thus, while the
African apes overlap in age group means at the incomplete eruption of deciduous dentition,
gorillas undergo much greater amounts of shape change such that the gorilla age group 5
mean overlaps with that of the chimpanzee age group 6 mean. Our results therefore add fur-
ther substantiation to evidence showing that many aspects of the overall cranial shape differ-
ences between gorillas and chimpanzees can be explained by ontogenetic allometric scaling
[97-103]. Meanwhile, it is intriguing that the amount of shape change covariation is remark-
ably consistent across orangutan ontogeny, as this would suggest that any growth spurt is not
particularly marked. A more likely explanation, however, is that the substantial amount of
covariation observed in orangutans (large convex hull area) masks multiple species, sexual
bimaturism [104-108], and the development of secondary sexual characteristics [109], all of
which contribute to the enormous shape disparity of orangutans [110-112]. It is likely that the
observed discrepancy between orangutan and African ape trajectories is attributable to the dif-
fering facial architecture of orangutans [32, 52, 113-116].

Effects of allometric variation

Our form space analyses indicated that size increase plays a considerable role in shape develop-
ment, with this effect differing in extent in endocranial versus splanchnocranial form space.
Specifically, that splanchnocranial trajectories in form space are parallel to the first axis of vari-
ation indicates that shape variation in the splanchnocranium is predominated by size varia-
tion. Such a pronounced effect is not observed in endocranial form space, implying that
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endocranial shape variation is not entirely determined by allometric variation [29]. By regress-
ing out size and subsequently analyzing the covariation of residuals (Fig 6), we demonstrated
that a large amount of the major axis of covariation between splanchnocranial and endocranial
shape is driven by allometric effects. Despite this, an ontogenetic signal remains. This residual
signal evinces comparable trajectories between great apes, particularly between orangutans
and gorillas, with chimpanzees again displaying an abbreviated version of the gorilla
trajectory.

Differences between early and adolescent ontogeny

Based on virtual endocasts, we [28] and Zollikofer and colleagues [30] previously showed that
great ape endocranial shape continues to develop past a point when brain growth would be
expected to cease. This phenomenon is manifest in earlier studies relying solely on cranial
cross-sections [32, 50-52, 117-118], and is indicative of the successive influence of the face on
the continuing development of the primate endocranium. In this paper, we hypothesized that
this transition between brain growth and splanchnocranial growth and development would be
reflected in a change in the ontogenetic shape covariation pattern between endocranial and
splanchnocranial modules. From our partial least squares analyses (Fig 1 and Figs 6-9), we
demonstrated that our youngest age groups (i.e. prior to the complete eruption of the decid-
uous dentition) deviate to some extent from the pattern adhered to by older age groups. This
corroborates our hypothesis that covariation between endocranium and face is different in
early ontogeny. However, sample sizes are too small to permit statistical testing of differences
in angle between early and late ontogeny for each species.

Influence of the splanchnocranium on endocranial shape development

If endocranial shape change were primarily attributable to the development of the face and its
attendant effects on the cranial base, then one would expect minimal shape change in the
endocranial vault past cessation of brain growth after accounting for the shape changes of the
cranial base. When we standardize endocranial shape variables to the cranial base, however, all
great apes display continued shape change from the eruption of the deciduous dentition to
adulthood (Fig 10). These trajectories are similar in direction between great apes, indicating a
conservation of shape change in these expansionary structures following the complete erup-
tion of the deciduous dentition (Fig 10). The differences between our cranial base-standard-
ized (Fig 10) and non-standardized analyses (Fig 2) suggest that several of the endocranial
shape changes visualized here, notably, the inferior expansion of the clivus region, the poste-
rior migration of opisthion, and the superior rotation of the cribriform plate (Fig 2B), are cor-
ollary to the development of the face. Furthermore, our cranial base-standardized results show
that while gorillas and chimpanzees follow similar trajectories in terms of direction, they differ
in magnitude such that gorillas change shape more during the period of development from age
groups two to three alone than do chimpanzees from age groups two to six. The ontogenetic
signal from age group 3 to 6 along the major axis of covariation between endocranial and facial
shape therefore takes place during a time when the relationship of low endocranial size
increase and high splanchnocranial size increase is quite constant.

From the eruption of the deciduous dentition to adulthood, endocranial shape becomes
more elongated as the splanchnocranium grows and become more prognathic (Fig 1 and Figs
6-9). We interpret this consistent pattern of covariation as ontogenetic integration between
the splanchnocranium and the endocranium. That endocranial shape development persists to
adulthood in close conjunction with splanchnocranial shape development would suggest that
the latter drives the former. However, not all splanchnocranial shape changes are tightly
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integrated with endocranial shape. Indeed, in all of our PLS analyses here, only the first singu-
lar warp can be linked to covariation between splanchnocranium and endocranium, while
higher singular warps indicate that some splanchnocranial changes during ontogeny do not
affect endocranial shape. In particular, during early postnatal ontogeny, from age group 1 to 2,
and from age group 2 to 3, the covariation between facial growth and development and the
shape of the endocranium is weak. This time-window coincides with a period of high brain
growth rates, therefore indicating that, during early postnatal development, the shape of the
endocranium is primarily driven by the tempo and mode of brain expansion [21, 23-25]. At
later stages of development, splanchnocranial and endocranial shape development were found
to covary more strongly in all examined great ape species, particularly from the complete erup-
tion of the deciduous dentition onwards.

Conclusion

In summary, we have shown that covariation between the hominid splanchnocranium and
endocranium is weak during early infancy but strong in subsequent age groups. This suggests
that whereas the developmental expansion of the brain is the main driver of endocranial shape
during early ontogeny, the adult endocranium is shaped by strong integration of the neurocra-
nium with the splanchnocranium in later developmental periods. Throughout hominoid evo-
lution, endocranial shape has accordingly been modified to accommodate the adaptive
diversification of the face, suggesting that final endocranial form is a product of multiple devel-
opmental pathways and multiple selective pressures.

As our partial least squares analyses of orangutans and chimpanzees alone indicate, neona-
tal shape covariation differs from that of later age groups. In chimpanzees, for which we have
more than one neonatal specimen, it is apparent that neonates are entirely distinct from the
general pattern of covariation. By improving the sample composition of neonatal specimens in
future research, it will be possible to ascertain the degree to which neonates differ in their mor-
phological integration. Including prenatal data would further illuminate whether our neonatal
results found here represent a pattern established prior to birth.
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