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Abstract

Background: Modern plant taxonomy reflects phylogenetic relationships among taxa based on proposed
morphological and genetic similarities. However, taxonomical relation is not necessarily reflected by close overall
resemblance, but rather by commonality of very specific morphological characters or similarity on the molecular level.
It is an open research question to which extent phylogenetic relations within higher taxonomic levels such as genera
and families are reflected by shared visual characters of the constituting species. As a consequence, it is even more
questionable whether the taxonomy of plants at these levels can be identified from images using machine learning
techniques.

Results: Whereas previous studies on automated plant identification from images focused on the species level, we
investigated classification at higher taxonomic levels such as genera and families. We used images of 1000 plant
species that are representative for the flora of Western Europe. We tested how accurate a visual representation of
genera and families can be learned from images of their species in order to identify the taxonomy of species included
in and excluded from learning. Using natural images with random content, roughly 500 images per species are
required for accurate classification. The classification accuracy for 1000 species amounts to 82.2% and increases to
85.9% and 88.4% on genus and family level. Classifying species excluded from training, the accuracy significantly
reduces to 38.3% and 38.7% on genus and family level. Excluded species of well represented genera and families can
be classified with 67.8% and 52.8% accuracy.

Conclusion: Our results show that shared visual characters are indeed present at higher taxonomic levels. Most
dominantly they are preserved in flowers and leaves, and enable state-of-the-art classification algorithms to learn
accurate visual representations of plant genera and families. Given a sufficient amount and composition of training
data, we show that this allows for high classification accuracy increasing with the taxonomic level and even facilitating
the taxonomic identification of species excluded from the training process.
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Background
Taxonomy is the science of describing, classifying and
ordering organisms based on shared biological character-
istics [1]. Species form the basic entities in this system and
are aggregated to higher categories such as genera, fam-
ilies or orders depending on characteristics that reflect
common ancestry. Each category in this system can be
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referred to as a taxon. Biological systematics uses taxon-
omy as a tool to reconstruct the evolutionary history of
all taxa [2]. Historically, this aggregation was based on
the commonality of specific morphological and anatom-
ical characteristics [1, 2]. However, with the availability
and inclusion of molecular data [3, 4] the view on phy-
logenetic relationships has been subject to a number of
fundamental changes even on the level of families and
orders, compared to the pre-molecular era [5, 6]. The evo-
lutionary relationships underlying the phylogenetic tree
which is reflected in current taxonomic system are not
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necessarily accompanied by apparent morphological rela-
tionships and visual resemblance. As a consequence, it
is unclear whether images of plants depict visual charac-
ters that reflect the phylogenetic commonality of higher
taxonomic levels.
A number of previous studies utilized machine learning

techniques for automatic classification or recommenda-
tion of plant species [7–9] from images of flowers [10],
leaves [11], or location and time of observations [12]. A
recent study on image classification found that higher-
level visual characteristics are preserved in angiosperm
leaf venation and shape [13]. The authors used a machine
learning algorithm based on codebooks of gradient his-
tograms in combination with Support Vector Machines
to classify leaf images into families and orders with an
accuracy many times greater than random chance. The
algorithm was found to successfully generalize across a
few thousand highly variable genera and species to rec-
ognize major evolutionary groups of plants. Compared to
holistic shape analysis, they demonstrated that leaf vena-
tion is highly relevant for higher-level classification. The
study however had several limitations: it only targeted
leaf venation and shape, the approach required expensive
chemical pre-processing for revealing leaf venation, and
all images required manual preparation for background
removal, contrast normalization, and having a uniform
orientation. Furthermore, with 5314 images constituting
to 19 families and 14 orders, the investigated dataset was
rather small. Motivated by the findings of this previous
study, we aim to investigate whether taxonomic charac-
teristics can also be discovered and learned from general
plant images taken in natural habitats and varying in scale,
perspective, and extent to which a plant is depicted. Using
a broad set of plant species representing the angiosperm
flora of Western Europe, we investigate achievable clas-
sification accuracy on the three taxonomic levels species,
genera, and families, in order to answer the following
research questions (RQ):

RQ 1 How is the classification accuracy affected by
increasing intraclass visual variations as well as
interclass visual resemblance when generalizing the
taxonomic level from species over genera to
families?

RQ 2 Can distinct visual characteristics of higher
taxonomic levels be learned from species’ images in
order to facilitate taxonomic classification of
species excluded from training?

RQ 3 Which plant organs share visual characteristics
allowing for correct taxonomic classification?

To answer these research questions, we investigated the
classification performance of a convolutional neural net-
work (CNN) trained on 1000 species belonging to 516

genera and 124 families. Contrary to the well curated
images used in Wilf et al.’s study [13], we utilized plant
images with a large variety in perspective, scale, and con-
tent, containing flowers, leaves, fruit, stem, bark, and
entire plants. The images were not pre-processed, making
our study representative for a real-life automated identifi-
cation system. In a first set of experiments, we investigated
whether the classifier becomes confused by an increas-
ing visual variability when identifying taxa on the more
abstract genus and family levels. In a second set of exper-
iments, we investigated whether sufficient visual charac-
teristics of a genus and a family can be learned so that
even species excluded from training can be identified as
members of the respective higher-level taxon.

Results
Identifying species, genera, and families (RQ 1)
In an initial set of experiments we classified species,
genera, and families on the full dataset. We applied the
’inclusive sets’ strategy (InS) with 90:10 partition. The
“Methods” section provides details of the dataset, meth-
ods and strategies. We compared the results at genus and
family level to hierarchy experiments. These experiments
initially predict species. Then, corresponding genera and
families are derived from the taxonomy and compared to
the ground truth genus and family. Table 1 shows clas-
sification results on the three taxonomic levels in terms
of top-1 accuracy, top-5 accuracy and standard devia-
tion of the proportion of misclassified images according
to binomial distribution. Nclasses is the number of classes
at each level and the suffix ’-H’ denotes the hierarchy
experiments. Across the 1000 species in the dataset, the
CNN classified 82.2% of the test images correctly (top-1).
At the more general taxon levels, i.e., genus and family,
accuracy improves relatively by 4.5% and 7.5%. For the
hierarchy experiments, the accuracy improved relatively
by 4.9% and 8.8% at genus and family level. For all experi-
ments, the standard deviation showed a relative decrease
of approximately 8% per level. The hierarchy experiments
indicate that for 4% of the test images, species are con-
fused with a different species of the same genus. For 7.2%
of images, misclassified species are members of the same
family. The remaining images, i.e., 13.8% at genus and

Table 1 Classification accuracy at three different taxonomic
levels using InS

Level Nclasses top-1 [%] σ [%] top-5 [%] σ [%]

Species 1000 82.2 0.36 92.9 0.24

Genus 516 85.9 0.33 94.7 0.21

Family 124 88.4 0.3 96.5 0.17

Genus-H 516 86.2 0.32 94.7 0.21

Family-H 124 89.4 0.29 96.6 0.17
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10.6% at family level, are classified as members of differ-
ent genera and families, indicating high interclass visual
resemblances and intraclass visual variations. The classi-
fiers at genus and family level do not learn to separate

them with higher precision, as indicated by the slightly
larger accuracy of the hierarchy experiments. Examples of
misclassifications are displayed in Fig. 1. Red frames indi-
cate confusion with species from another genus, hence

Fig. 1 Examples of misclassified images. First and third column display the classified images, second and fourth column the predicted class. Red
frames indicate wrong genus classification in hierarchy experiments, but correct direct classification at genus level. Orange frames indicate
confusion with species of the same genus. Best viewed in electronic form
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wrong genus classification in hierarchy experiments, but
correct direct genus classification. Orange frames indicate
confusion with species of the same genus.
We further evaluated the dependency between classifi-

cation accuracy and the number of imagesNimg represent-
ing each class. Figure 2 shows that the accuracy increased
and the deviation in classification performance across
taxa decreased with the number of training images. The
deviation also decreased with the taxonomic level. The
function-like characteristics of the accuracy for Nimg <

300 in Fig. 2 is affected by the dataset partitioning proce-
dure, i.e., the test set is composed of 10% of the images
per class (Nimg, test < 30), causing the class-averaged top-1
accuracy to be discretized depending on Nimg, test.

Classifying genus and family of untrained species (RQ 2)
We performed another set of experiments at the genus
and family level in order to study how well a CNN clas-
sifier can learn their visual resemblance and differences.
We used the ’exclusive sets’ strategy (ExS), assuring that
each genus and each family was represented by at least one
distinct species in training and test sets. The total num-
ber of species kS representing a class amounted to kS ≥ 2.
Table 2 summarizes top-1 and top-5 accuracy on both tax-
onomic levels. Each accuracy is an average across three
experiments with random species selection following the
ExS strategy. In comparison to the inclusive sets (InS),
classification accuracy is reduced by more than half on
the genus (55.4% relative) as well as on the family (56.7%
relative) level (see Table 1).
We evaluated the class-averaged classification accuracy

with respect to the number of images representing each
class (see Fig. 3). While the figure only provides an aggre-
gated view across all genera and all families, the Support-
ing Information section contains additional tables on the
accuracy per taxon. We observed that more images result
in a classifier with higher accuracy, a trend similar to that
observed for the InS experiments (cp. Fig. 2). However, we
also observed a considerably higher variance in the trend.

The achieved accuracy is not only influenced by the num-
ber of images, but also by the specific genus or family that
was classified. Table 3 displays the five genera and families
with best and worst classification accuracy.
Successful classification using the ExS strategy is con-

siderably more challenging since not the totality of their
species, but the visual characteristics of families and gen-
era need to be generalized and learned. Classification
accuracy depends on the number of species represent-
ing a taxon during training (Table 3, 3rd column). For
the ExS strategy, each classifier was trained on images of
90% of these species, e.g., five species for the genus of
Orobanche and 41 species for the family of Orchidaceae
but only one species for the genus of Linum and the family
of Lythraceae. For 81 genera and 15 families the clas-
sifier was trained solely on images of one species and
expected to classify another species of this genus or fam-
ily (cp. Table 4), resulting in 28.7% and 12.6% accuracy
respectively. These low accuracies are still 50 times (gen-
era) and ten times (families) higher than random guessing
with 0.6% for genera and 1.2% for families. In these cases,
only if the overall visual appearance of two species is close
and different to the appearance of other taxa in the train-
ing set, a high classification accuracy can be achieved.
We found this applicable for the genus of Arctium, rep-
resented by A. lappa and A. minus, with an overall high
visual resemblance. The genus of Diplotaxis on the other
hand was represented by D. tenuifolia and D. erucoides.
For >23% of the test images, the latter was misclassi-
fied as belonging to the genus of Cardamine due to the
close resemblance of the inflorescence. The same applied
to D. tenuifolia, which was regularly (20%) misclassified
as belonging to the genus Ranunculus. The Gymnadenia
species in the dataset, i.e., G. conopsea and G. nigra,
were not recognized when training was conducted on
only one of both species. A majority of authors consider
the latter actually belonging to the genus Nigritella. The
classifier also indicates their visual dissimilarity. It is a
common phenomenon in plant systematics that different

Fig. 2 Class-averaged top-1 classification accuracy vs. number of images representing each species, genus, or family. Solid lines display the average
accuracy and filled areas display the corresponding standard deviation
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Table 2 Three-fold cross-validated accuracy for classifying genus
and family of untrained species in the exclusive sets ExS

Level Nclasses top-1 [%] top-5 [%]

Genus 181 38.3 ±1.2 49.6 ±1.3

Family 81 38.7 ±3.4 48.0 ±3.0

authors have different opinions on themembership of cer-
tain taxa [14]. We found that an increasing number of
species and training images representing a genus or family
yields an increasing classification accuracy. For instance,
when only considering genera and families represented
by at least three species (kS ≥ 3), the average accuracy
increases to 49.1% on the genus and to 39.1% on the
family level.
Among all families, Orchidaceae was classified best in

the ExS experiments with 87.6% accuracy (97.4% for InS).
Represented by 4873 images of 46 species belonging to
16 genera, this family is on the 4th rank of total images
per class. The most frequent misclassifications for Orchi-
daceae were Plantaginaceae (2.6%) and Fabaceae (1.5%).
This underlines the fact that the Orchidaceae species
within the PlantCLEF2016 dataset represent a distinct and
rather homogeneous group of species with similar appear-
ance, different from species of other families. Hence, both
the intraclass visual variability and the interclass visual
resemblance are low for Orchidaceae. Orchids perform
well because the images tend to resemble each other,
with main focus on the flower, all resembling a similar
habitus and a typical leaf form. The CNN learns these
common traits from a broad set of species and is able
to derive a generalized visual representation that allows
to classify species excluded from the training process as
members of Orchidaceae with an accuracy of 87.6%. Gera-
niaceae achieved the second highest accuracy (81.5%) in
the ExS experiments, followed by Pinaceae (78.3%), Lami-
aceae (72%), Betulaceae (71.5%), and Asteraceae (71.1%,
not listed in Table 3). These families are well represented

by a high number of species in the dataset (Asteraceae
and Lamiaceae) or characterized by uniform and distinct
physical appearance (Pinaceae, Lamiaceae). The species
of these families also achieved high accuracy in the InS
experiments.
Compared to the 81.7% classification accuracy achieved

in the InS experiments, the classification accuracy of 38%
for the Poaceae family was significantly reduced. The
members of this family are characterized by a typical
grasslike shape with lineal leaves and typical unsuspicious
wind-pollinated flowers. The most frequent misclassifi-
cations involved Fabaceae and Plantaginaceae, of which
some species from the latter family at least remotely
resemble the appearance of Poaceae. We found it sur-
prising that misclassifications as Cyperaceae or Juncaceae,
two closely related families of the same order were virtu-
ally not present, although species of these three families
are very similar in shape and appearance. This might
be attributed to the content imbalance problem, i.e., dif-
fering distributions of image content categories during
training and testing. We evaluated the negative impact
of content imbalance on the classification accuracy in
the Supporting Information (cp. Additional file 1: Figure
S2). An explanation for the confusion with the dicotyle-
donous families might be that unlike most of the other
families, the major proportion of the images refer to
the content category “entire” where any specific traits
are not distinguishable as the individuals are depicted
from a distance in a clumpy or meadowlike manner.
Eventually, grasses form the background of images of
many other species. Very likely, this confused the CNN
while learning a generalized representation of this family
and caused the observed misclassifications. Potentially,
structured observations along with defined imaging per-
spectives could increase the classification accuracy [8].
Given enough training images, the classifier successfully

identified genus and family of trained species (InS) but
more interestingly also of species excluded from training

Fig. 3 Class-averaged top-1 classification accuracy per number of images according to ExS strategy. The lines display the average classification, the
filled areas the standard deviation
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Table 3 The five best and worst classified taxa at genus and
family level according to the achieved top-1 accuracy on the ExS*

Level Taxon kS,train kS,test top-1 [%]

ExS InS

Genus Orobanche 5 1 96.5 93.3

(Best) Ophrys 11 1 95.7 96.3

Arctium 1 1 84.0 85.7

Viola 8 1 83.2 84.1

Geranium 12 1 82.9 94.7

Genus Linum 1 1 2.2 85.7

(Worst) Diplotaxis 1 1 1.6 87.1

Bartsia 1 1 1.6 62.5

Gymnadenia 1 1 0 76.5

Lychnis 1 1 0 75.0

Family Orchidaceae 41 5 87.6 97.4

(Best) Geraniaceae 15 2 81.5 93.5

Pinaceae 11 1 78.3 87.7

Lamiaceae 43 5 72.0 91.5

Betulaceae 8 1 71.5 89.9

Family Lythraceae 1 1 0 89.1

(Worst) Melanthiaceae 1 1 0 93.8

Rutaceae 2 1 0 78.6

Urticaceae 1 1 0 76.2

Verbenaceae 2 1 0 80.0

kS,train and kS,test are the numbers of species in the dataset during training and test
*Results are three-fold cross-validated with random species selection during
training and test

(ExS). To achieve these results, the classifiers learned dis-
tinct visual characters of genera and families. To visualize
the reasoning of the classifiers on the test set images,
we highlighted the neural attention, i.e., image regions
responsible for classification, in terms of heat maps [15].
We manually evaluated several hundred images of genera
and families. Representative images of flowers and leaves
along with the neural attention at genus and family level
are shown in Fig. 4. Most notably, the classifiers do not
learn any background information. Instead, neural atten-
tion covers relevant plants or parts thereof. We observed
that the classifiers often paid attention to characters such
as leaf shape, texture, and margins, as well as attachment
of the leaf. For some taxa, leaves seemed more relevant to
the classifier if compared to flowers (cp. Cornus, Primula,
Rhamnus, Fabaceae). For other taxa, flowers and inflo-
rescence seemed more relevant than leaves (cp. Prunella,
Salvia, Vinca, Geraniacea, Lamiaceae). Additional images
covering more taxa are shown in the Additional file 1.
For genera and families with low intraclass variabil-

ity and accordingly high classification accuracy on higher
taxonomic levels, one may expect worse classification
results on the species level. We selected the Orchidaceae

family to study this phenomenon. Species in the Orchi-
daceae family are on average represented by 106 images
and achieved 84.7% top-1 accuracy for the InS strat-
egy, with a deviation of 14%. Figure 5 shows a confusion
matrix on species level across all classifications within
the Orchidaceae family. Only few species with high visual
resemblance are prone to misclassifications and only 2.6%
of the misclassifications belong to other families. In the
same manner, we compared the classification accuracy of
each family in the ExS experiments with that of its con-
tained species in the InS experiments (see Figure S5 in
the Additional file 1). We found a similar trend between
accuracy at both taxonomic levels, i.e., few species from
families with high resemblance can be confused. However,
the effect is barely noticeable and the overall classification
accuracy per family remains ≥60%. In result, we found
that the CNN is able to do both, accurate fine-grained
classification on species level as well as generalization to
higher taxonomic levels.

Plant organs sharing visual similarities (RQ 3)
Given the high visual variability at the genus and family
level, we aim to understand the contribution of different
plant organs in shaping the higher-level visual represen-
tation. Classification accuracy is increased if the plant
organs exhibit distinct visual characters learned by clas-
sifier. Therefore, we evaluated the classification accuracy
of the ExS experiments per image content category. The
InS results imply that approximately ≥500 images per
genus and ≥1000 images per family are required to learn
the visual representation. This number of images is nec-
essary as species with different appearance are merged
into one class. The species themselves are represented by
images with different content and at various scales and
perspectives. As a result, the classes exhibit high visual
variability at genus level and even higher at family level.
The ExS results tell that higher-level taxa represented
by many species achieved a higher classification accu-
racy when compared to taxa represented by only a few
species (cp. Table 3). To take these aspects into account,
we restricted the analysis of the ExS results to gen-
era and families represented by at least five species and
500 (genera) respectively 1000 (families) images in the
training set.
On average, flower images achieved the highest top-1

classification accuracy (cp. blue bars in Fig. 6) at both the
genus (80%) and the family level (65%). Generally, all con-
tent classes on the genus level achieve better results than
the content classes at the family level. The ranking of all
content classes is identical for family and genus level, with
images of the content class “entire” and “branch” forming
the only exception. Leaf images achieved an overall lower
accuracy than images depicting fruit. The content cate-
gories “entire” and “stem” achieved the lowest accuracy
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Fig. 4 Image regions important for classification at genus (top rows) and family level (bottom rows). Best seen in electronic form

Fig. 5 Confusion matrix for species prediction within the family of Orchidaceae
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(cp. Fig. 6). Flower images also achieved the most accurate
predictions on the genus level. Notable exceptions are the
generaAcer and Pinus, where fruit and leaf images allowed
for higher accuracy compared to flowers. Classification
on fruit images achieved highest accuracy for the genus
Silene. Also for classification at family level, flower images
often yield the most accurate predictions. Notable excep-
tions are Asparagaceae and Boraginaceae, where images
of stem and branch yield a higher degree of similar-
ity. For Asteraceae, Fabaceae, Pinaceae, and Sapindaceae,
fruit images performed best, i.e., 92.1%, 71.7%, 89.5%, and
62.4% in comparison to 83.5%, 64.5%, 72.7%, and 53.4% on
flowers. For Fagaceae and Oleaceae, fruit and leaf images
performed better than flower images. Detailed results per
genus and family are given in the Supporting Information
(cp. Additional file 1: Figure S6).

Discussion
Identifying species, genera, and families (RQ 1)
Wilf et al. stated that computer vision-based recogni-
tion is able to generalize leaf characters for predicting
memberships at higher taxonomic levels [13]. Their study
required a systematic, but time-consuming procedure
for collecting images of chemically treated leaves. The
authors achieved 72.14% classification accuracy on 19
families represented by ≥100 cleared leaf images. For this
experiment, they used random sets without considering

(a)

(b)
Fig. 6 Averaged top-1 (blue) and top-5 (turquoise) accuracy for novel
species grouped by image content for classifying a genera and b
families

taxonomic membership, making their results comparable
to our InS experiments. We used a CNN based classifica-
tion pipeline and images with a large variability in quality
and content. In this setting, we achieved 88.4% accuracy
on 124 families, out of which 19 families were repre-
sented by ≤100 images. Our results demonstrate that
despite sampling, content, and taxonomic imbalance (cp.
“Image dataset” section), as well as high variability in
viewpoint and scale, CNN-based image classification
yields substantial performance for plant identification.
Average top-1 species classification accuracy across the
entire dataset was 82.2%, and increased with each tax-
onomic level relatively by 4% given the InS strategy
(Table 1). The standard deviation showed a relative
decrease of 8% per level. When confronted with highly
variable and imbalanced data, the CNN benefits from
an increasing amount of training data. For classes repre-
sented by ≤100 training images, the classification accu-
racy per class is moderate and yields on average ≈ 80%.
For classes represented by ≥ 400 training images, class-
averaged classification accuracy is consistently ≥ 70%
per class and approaching 90% on average. Generalizing
species to their genus and family level reduces the num-
ber of classes to be distinguished at the cost of increasing
the intraclass visual variability and interclass visual resem-
blance. There are genera and families which form classes
with large visual differences while species from different
genera or families might resemble each other in specific
organs. At species level, the lower intraclass variability
caused 17.8% misclassifications. In 13.8% and 10.6% of
these cases, the classifier confused species from another
genus or family, as shown by the hierarchy experiments in
Table 1. With misclassification rates of 14.1% and 11.6%,
direct classification at the genus and the family level
and was slightly less accurate. We attribute this to the
increased intraclass variability and interclass resemblance
along with the skewed data distribution intensified by
taxonomic imbalance. With respect to our first research
question, we conclude that:

RQ 1 When generalizing plant identification from
species over genera to families, the classification
accuracy shows a relative improvement of 4% per
taxonomic level. Classification at these taxonomic
levels is negatively affected by intraclass visual
variability and interclass visual resemblance as well
as taxonomic imbalance of the dataset. Taxonomic
identification by species level classification is
slightly more accurate.

Classifying genus and family of untrained species (RQ 2)
We applied the ExS strategy specifically to evaluate clas-
sification accuracy on untrained species, i.e., species
excluded from training at genus and family level. The
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strategy explicitly prevents a hidden species classification
that could then be mapped to the family or genus and
would bias results. A successful classification of genus or
family implies that visual characters are shared among
the species of the same taxonomic group. On exclusive
training and test sets, Wilf et al. achieved 70.59% accu-
racy while classifying six families (≈4 times better than
random chance). In our ExS experiments, an average clas-
sification accuracy of 38.7% was achieved for 81 families
(≈32 times better than random chance).
We found the amount of training data necessary for

learning visual representations to depend on the taxo-
nomic level. While classification accuracy increased with
a higher taxonomic level on the InS, the average accuracy
decreased when classifying the genus and family apply-
ing the ExS strategy. Whereas 1000 training images per
genus were sufficient to achieve a 60% average accuracy,
the classification accuracy of families with 1000 images
was less than 50% on average. Classification accuracy var-
ied notably among different taxa in the ExS. The five best
classified families reached accuracies of 71.5 to 87.6%,
while the five best genera were classified with 82.9 to
96.5% accuracy. We conclude that distinct visual charac-
ters can be learned by a CNN in many cases even from
a heterogeneous dataset. We also state that the classifica-
tion accuracy is clearly linked to the number of species
and images used for training and the intraclass visual
variability. Hence, we conclude on our second research
question:

RQ 2 Higher-level visual characters are preserved for
many plant genera and families. Even from images
with large variations in viewpoint, scale, and
content, they can be learned by state-of-the-art
classification methods. Sufficient amount and
distribution of training images allow for taxonomic
classification of species excluded from the training
process.

Plant organs sharing visual similarities (RQ 3)
Specific organs contain different amounts of visual
information relevant for classification at higher taxo-
nomic levels (cp. Figs. 4 and 6). For classifying excluded
species in the ExS experiments, we found flower images
to allow for the highest classification accuracy, i.e., 80% at
genus level and 65% at family level. The accuracy achieved
on leaf images were 25% (genus) and 20% (family) lower
compared to flower images. This suggests a stronger
preservation of higher-level visual characters for flowers
than for leaves. Flowers consist of complex 3D structures
with variation in shape, color, and texture. Their appear-
ance from different perspectives hence contains comple-
mentary visual information which is beneficial for visual
classification. Leaves on the other hand mainly represent

2D structures with rather homogeneous color space. For
the vast majority of images they are depicted from their
top side. Hence, the visual information is lower compared
to flower images. For some images, it can be even difficult
to isolate a single leaf as it is depicted as part of a mix-
ture of different species and viewed from an arbitrary
perspective and distance. Interestingly, the reduction of
classification accuracy by classifying at family level instead
of genus level was least for leaf images (54 to 46%). Despite
leaf images often being prone to misclassification, this
indicates that higher-level characters are also preserved in
leaves. Stem images allowed for a classification accuracy
of 43% and 34% at genus and family level. Visual inspec-
tion of stem images revealed that tree bark is classification
relevant, e.g., for the family Pinaceae or the genus Prunus.
However, for many stem images of herbaceous plants,
leaves or flowers are additionally depicted in the image.
This applies also to image categories “branch” and “entire”,
where almost always leaves, flowers or fruit of the same
plant are present on the image. Upon changing the classi-
fication level from genus to family, the accuracy is reduced
by about 15%-25% for each image content category. We
observe the strongest reduction for images of the category
“fruit” and “entire”. This reflects the fact that overall shape
and visual appearance of entire plants may differ strongly
even among closely related species while flower and leaf
shape are much more relevant for plant taxonomy.
Today’s taxonomy is based on genetic data expressed in

a great variety of morphological characters. Some of these,
e.g., the position of the ovary relative to the other floral
parts, or the number of stamens per flower, are very spe-
cific and often constant for the members of a higher-level
taxon. Many of such characters will hardly be discernible
from the type of images present in the used dataset. The
images are not standardized with respect to perspective,
background and position. We may consider a number of
causes for the differences in the achieved classification
accuracy per taxon. Very likely, they are a consequence
of resemblance regarding general shape, appearance and
life form of the members in the sample. Obtaining high
classification accuracy for families such as Orchidaceae
and Pinaceae or similarly genera such as Orobanche and
Geranium (Table 3) is linked to a low intraclass vari-
ability. This, on the other hand, is often connected to a
similar perspective of the image. Other families such as
Rosaceae comprise a much greater diversity of life forms
and types of physical appearance, ranging from dwarf
shrubs (Dryas) to bushes (Rosa) and trees (Sorbus). We
conclude on our third research question:

RQ 3 Shared higher-level visual characters allowing for
accurate classification at genus and family level are
most dominantly preserved in plants’ flowers and
leaves.
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Conclusion
We performed a series of systematic image classification
experiments and studied the achieved accuracy across
1000 plant species belonging to 516 genera and 124
families. We used plant images taken in natural habi-
tats with large variations in viewpoint, scale, and in the
extent to which a plant is depicted. In a first set of exper-
iments, we studied how a classifier can abstract from
an increasing visual variability when identifying taxa on
the more generalized genus and family levels. We found
that CNN-based classification techniques are able to clas-
sify taxa on the genera and family level. However, the
increase in classification accuracy per taxonomic level
was found to originate mainly from a reduced num-
ber of classes to be distinguished. Grouping species at
genus and family level forms classes with increased intr-
aclass visual variability and interclass visual resemblance
while intensifying data imbalance. Compared to species
level classification, the classification accuracy was nega-
tively impacted. The taxonomic identification of plants
was found slightly more accurate if based on species level
classification. In a second set of experiments, we inves-
tigated whether sufficient visual characteristics of genera
and families can be learned so that even species excluded
from training can be identified as members of such. We
found that those species can be assigned to the correct
high-level taxon for a broad set of genera and families.
This implies that higher-level visual characteristics of gen-
era and families are present for many taxa and that they
can be learned by classification techniques, given suffi-
cient amount and distribution of training data. Wilf et al.
showed, based on images of cleared leaves, that plant
systematic relationships are preserved in leaf architec-
ture [13]. We argue that these relationships are similarly
reflected in in-situ images, depicting a number of different
plant organs. These images are of heterogenous quality
and cover a much higher number of taxa. Future work
on higher-level taxon classification from images should
focus on improving data quality with respect to sampling
and content imbalance, allowing to reveal and investigate
the visual characteristics that facilitate a correct classi-
fication in more detail. Furthermore, taking taxonomic
relations into consideration during classifier training and
testing is a promising direction for advancing multi-label
classification, which eventually allows accurate taxonomic
identification at multiple levels using only one model.

Methods
Image dataset
We utilized the PlantCLEF 2016 image dataset provided
as part of the CLEF plant image retrieval task 2016 [16].
This datasets consists of 117,713 images belonging to
1000 species of trees, herbs, and ferns occurring in West-
ern European regions. The images have been collected

by 8960 distinct contributors of a citizen science ini-
tiative [7]. The plant families and genera occurring in
this dataset reflect typical Western European flora. An
accompanying XML file defines meta-data per image, i.e.,
an image category (namely flower, branch, leaf, entire,
fruit, leaf scan, or stem) and the identified species name,
including family and genus. Table 4 shows in row 1 the
total number of species NSpec, genera NGen, and families
NFam present in the dataset. The dataset has three dif-
ferent sources of imbalance. In general, imbalance means
that the frequency of occurrence of distinct classes within
the dataset is highly skewed compared to a uniform dis-
tribution. Imbalance can cause low accuracy on under-
represented classes [17]. At species level, the number
of images Nimg per species varies from 859 (Quercus
ilex) to eight (Saxifraga media or Scilla luciliae) with a
median of 84 images per species (see Fig. 7a). As data
was collected by a citizen science initiative, one source of
imbalance is caused by the natural frequency and rareness
of plant taxa in combination with geographical and sea-
sonal sampling bias. Hence, we term this source sampling
imbalance. The second source of imbalance relates to the
image content categories. On average 33% of images dis-
play flowers, 26% leaves, and 19% the entire plant. The
remaining images display branches (9%), fruit (8%), and
stems (5%). This content imbalance causes biased clas-
sification if certain classes are primarily represented by
images of a specific content category, e.g., flowers. Low
classification accuracy can be expected if the test data is
composed of underrepresented content categories. Tar-
geting higher-level classification, the taxonomy adds a
third source of imbalance, i.e., taxonomic imbalance.
The number of species grouped into genera and families
is highly different. Some taxa are hyperdiverse, e.g., the
Asteraceae family which contains 117 species represented
by 11,157 images, whereas others are monospecific, e.g.,
Lycopodiaceae with only one species and 26 images in
total (cp. Fig. 7b and c). Even in case of balanced data
at species level, taxonomic imbalance results in highly
skewed distributions of images across higher-level taxa.

Table 4 Number of species NSpec, genera NGen, families NFam

and total images Nimg of the resulting dataset applying the ExS
strategy at increasing minimum number of species kS per genus
or family

kS NSpec NGen Nimg NSpec NFam Nimg

1 1000 516 117713 1000 124 117713

2 665 181 74013 957 81 110790

3 503 100 55566 927 66 104786

4 407 68 45159 903 58 102315

5 295 40 32010 867 49 98756

kS = 1 denotes the original dataset
ks = 2 was selected for the ExS experiments
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(a)

(b)

(c)
Fig. 7 Distribution of images over taxa. a Number of images per species and content. The dashed red line displays the total number of images and
the horizontal dotted line the median, amounting to 84 images. b and c display the number of species per genus and family. Please note that only
100 genera and 66 families represented at least by three species are displayed for sake of visibility

The complete list of taxa, associated metrics, and the
distribution of image categories across plant families are
accessible via the Supporting Information.

Model
We used convolutional neural network (CNN) based
image classification. A CNN is a class of deep, feed-
forward neural network withmany layers, i.e., information
processing steps. Each successive layer transforms the
output of the previous layer. Starting from the raw pixel-
based image as input to the first layer, the CNN learns
filters that best translate input data into compact and
discriminant representations for classification.
We chose the Inception-ResNet-v2 architecture [18]

for our experiments, which combines the computational
efficiency of inceptionmodules [19] with the optimization

benefits of residual connections [20]. Inception modules
were engineered for efficient processing of information at
different spatial extents [18, 19]. Residual connections, i.e.,
shortcuts in the model, allow for optimizing the residual
of layer stacks and for training very deep neural net-
works with high accuracy [20]. The Inception-ResNet-v2
architecture achieved remarkable results on the ImageNet
“Large Scale Visual Recognition Challenge” (ILSVRC)
2012 classification task1 validation set [21], i.e., 17.8% top-
1 and 3.7% top-5 error [18]. The ILSVRC dataset consists
of 1.4 million hand labeled images depicting 1000 object
categories. We used TensorFlow, an open-source software
library for large scale machine learning systems [22], for
training and evaluation of the classifiers.
The number of parameters of CNNs is typically

counting several millions, e.g., 54 million in case of



Seeland et al. BMC Bioinformatics            (2019) 20:4 Page 12 of 13

the Inception-ResNet-v2. Hence, CNNs require a large
amount of training data in order to avoid overfitting. A
common strategy to avoid this is termed fine-tuning, i.e.,
to pre-train the CNN on a large dataset and then update
the network weights by training on the actual data [23].
We used a network that was pre-trained on the ILSVRC
data as available from the TensorFlowModel Garden [24].
For further augmenting the data during training, each

image was pre-processed per epoch by selecting one ran-
dom crop and applying horizontal flipping with random
chance. Each random crop must cover at least 10% of the
original image area while keeping an aspect ratio between
0.75 and 1.33. The resulting crop was then reshaped to
fit 299×299 px and fed into the CNN for processing. It
should be noted that by taking random crops, the classifier
can potentially learn objects’ details to some extent. How-
ever, there is no guarantee that a crop displays the object
of interest or part thereof at all.

Experimental procedure
Seeking an answer for RQ1, our aim was evaluating clas-
sification accuracy on three taxonomic levels, namely
at the species, the genera, and the families level. We
trained a CNN on each level to classify the respective
taxa, further denoted as ’classes’, and evaluated the clas-
sification accuracy. Per experiment, the image dataset
needed to be partitioned into a training and a test set.
We considered the authors’ original sets and found that
the training set contained 113,204 images, while the test
set merely contained 4509 images (< 4%). Not only is
the test set underrepresented, it only contains 495 of
the 1000 species. Since we wanted to study results on
the class level (species, genus, family), the original sets
were insufficient for answering our research questions.
We randomly created new class-based sets following a
90:10 partitioning, i.e., 90% of a class’ images are used
as training set and the remaining 10% as test set. Since
each class is represented in both training and test set,
we refer to this partitioning strategy as ’inclusive sets’ or
shortly InS.
In order to evaluate RQ 2 and RQ 3, we studied whether

a CNN is able to learn a visual representation of a genus
and a family in order to classify untrained species as
belonging to that genus or family. These experiments
required a different partitioning strategy: a species must
only be present in either the training or the test set.
Per genus and family, their species were partitioned 90%
into the training and the remaining 10% into the test set.
For genera and families with less than ten species, we
ensured that at least one species was in the test set and
the remaining were put into the training set. We refer to
this strategy as ’exclusive sets’ or shortly ExS. The ExS
requires a minimum number of species kS representing
a class (genus or family). On the one hand, increasing kS

allows a CNN to better learn a visual representation of
a genus or family by abstraction across a larger variation
within the species. On the other hand, the selection of kS
strongly affects the size of the remaining dataset, espe-
cially with respect to the taxonomic imbalance (cp. Fig. 7).
Table 4 displays the remaining number of species, genera,
families, and images, for an increasing number of mini-
mal required species kS per genus and family. For example,
the last row of Table 4 shows that only 40 genera would
remain in the dataset if we restrict our focus to genera
with at least five species.We decided to set kS to the small-
est possible value, i.e., kS = 2, for obtaining the largest
possible dataset. That means that each class (genera and
family) is represented by at least one species both in the
training and the test set. Removing all genera and fami-
lies represented by just one species resulted in two subsets
of the original dataset: (1) for genus classification con-
taining 181 genera represented by 665 species, and (2) for
family classification containing 81 families represented by
957 species (cp. row 2 in Table 4). The difference between
kS = 2 and kS = 3 in Table 4 shows that 81 genera
and 15 families are represented by exactly two species.
We applied threefold cross validation with random species
selection for the ExS experiments.

Training procedure and evaluation
In each epoch, a randomly cropped and flipped part of
each image was trained in random order. The training
loss was calculated as the cross entropy loss and a soft-
max function within the last layer. For mini-batches with a
size of 32 images, the loss was aggregated and then prop-
agated backwards in order to update network weights.
The learning rate was set 5e-4 for the first 150,000 steps
and 1e-4 for subsequent 100,000 steps. For testing, a sin-
gle central crop (87.5% of the original image area) per
image was forwarded through the network and classi-
fied. All experiments were evaluated in terms of top-1
and top-5 accuracy, averaged across all images of the test
dataset. The top-k accuracy was computed as the fraction
of test images where the ground-truth class label appears
in the list of first k predicted class labels when predictions
are sorted by decreasing classification score. The visual
explanations, i.e., heat maps displaying neural attention,
in Fig. 4 were computed using gradient-weighted class
activation mapping [15].

Additional file

Additional file 1: This archive contains spreadsheets with the complete
list of taxa, i.e., species, genera, families, along with details on training and
test set configurations and results for every taxon and experiment.
Furthermore, the Supporting Information include evaluations on the
impact of image content on classification accuracy and the InS at species
level vs. ExS accuracy as well as additional neural attention visualizations.
(ZIP 9011 kb)
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