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We show the outstanding skills of a data-driven low-dimensional linear model in predicting the
spatio-temporal evolution of turbulent Rayleigh-Bénard convection. The model is based on dy-
namic mode decomposition with delay-embedding, which provides a data-driven finite-dimensional
approximation to the system’s Koopman operator. The model is built using vector-valued observ-
ables from direct numerical simulations, and can provide accurate predictions for 100s of advective
time-scales. Similar high prediction skills are found for the Kuramoto-Sivashinsky equation in the
strongly-chaotic regimes.

Predicting the spatio-temporal evolution of high-
dimensional nonlinear dynamical systems, such as turbu-
lent flows, has been of long-standing interest in science
and engineering [1, 2]. For example, forecasting turbu-
lent flows plays a key role in controlling and optimizing
various engineering systems (e.g. wind farms) and pre-
dicting the state of the atmosphere and/or ocean (e.g.
day-to-day weather) [3–6]. For many of these problems,
an objective of particular interest and wide-ranging ap-
plications is predicting extreme events at some useful lead
time [7–9].

Data-driven prediction of chaotic and turbulent flows
has received significant attention in recent years, in par-
ticular, for problems in which the high-dimensional, non-
linear governing equations cannot be solved fast enough
to be useful (e.g. for online control/optimization), or,
in which some of the physical processes (and thus the
governing equations) are not fully understood but ob-
servational data from the past are available (e.g. the
weather/climate systems) [10–15]. Rapid advances have
been recently made in this area based on using techniques
from machine learning or approximating the Koopman
operator. These approaches involve using the past data
to build/train a model that can produce accurate and fast
predictions about the future spatio-temporal evolution
of the flow. Promising results for prototypes of chaotic
flows, e.g. Lorenz-63/96 and Kuramoto-Sivashinsky (K-
S) equations, have been reported using machine learning
methods such as recurrent neural networks [16, 17] and
reservoir computing [18].

The Koopman operator [19], which is an infinite-
dimensional linear operator that shifts observables for-
ward in time, offers a powerful framework for analyz-
ing and tackling nonlinear systems such as fluid flows
[20, 21]. Data-driven, finite-dimensional approximations
of the Koopman operator, using methods such as dy-

namic mode decomposition (DMD) and its variants [22–
29], have been extensively used to analyze various flows
in recent years [21, 30]. Furthermore, in Brunton et al.

[13] and Giannakis [14], skillful data-driven predictions
of chaotic systems are obtained using Koopman-based
methods. Building on the work of Tu et al. [24] in us-
ing DMD on a Hankel matrix containing delay-embedded
observables [31], Arbabi and Mezić [26] introduced the
Hankel-DMD method and proved its convergence to the
Koopman operator. More recently, Arbabi et al. [32]
used Hankel-DMD in a predictive-control framework to
successfully stabilize a two-dimensional (2D) lid-driven
cavity flow that has bifurcated to a limit cycle. These
promising results for chaotic systems offer hope for data-
driven prediction in fully-turbulent flows, which has not
been much explored yet.
In this paper, we investigate using data-driven approx-

imations of the Koopman operator for spatio-temporal
prediction in 3D Rayleigh-Bénard convection (RBC),
which is a widely-used prototype for buoyancy-driven
turbulence and geophysical flows. We use data from
long direct numerical simulation (DNS) of RBC at the
Rayleigh number Ra = 106, at which the flow is fully
turbulent [33, 34]. While using the standard DMD for-
mulation or scalar-valued observables does not lead to
any useful prediction skill, using an appropriate vector-
valued observable in the Hankel-DMD framework ren-
ders remarkable prediction skills for the spatio-temporal
evolution of the horizontally-averaged temperature. The
approach yields similar prediction skills for the strongly-
chaotic K-S systems.
The 3D RBC system consists of fluid between two hor-

izontal walls that have a vertical spacing of H and fixed
temperature difference ∆T (the bottom wall is warmer)
[33]. The horizontal directions (x− y) are periodic. The
flow is modeled using the 3D Boussinesq equations for
velocity v, temperature T , and pressure p:
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∇ · v = 0 , ∂v/∂t+ v · ∇v = −∇p+ Pr∇2
v +RaPr T ẑ , ∂T/∂t+ v · ∇T = ∇2T . (1)

At the walls (z/H = ±0.5), v = 0. Here, Pr = 0.707
and Ra = 106 [35], which is ≈ 585 times higher than the
criticalRa at the onset of linear instability [36]. The DNS
of (1) is conducted using a Fourier-Fourier-Chebyshev
pseudo-spectral solver with the resolution 128 × 128 ×
129. A DNS dataset is generated that contains multiple
independent simulations started with different random
initial conditions.
The objective here is to find a low-dimensional model

that can provide fast and reasonably-accurate predica-
tion of the spatio-temporal evolution of horizontally-
averaged temperature in the turbulent flow governed by
(1). More specifically, we are interested in the evolution
of θ(z, t) = T − 〈T 〉 (the overbar and 〈 〉 indicate hori-
zontal and long-time averaging, respectively), and aim to
find a linear operatorA such that θi+1 = Aθi, where θi is
a vector of θ snapshot over n grid points at time t = i∆t.
To see the rationale behind seeking such low-dimensional
model and the physics involved in A, we can average the
heat equation in (1) over the horizontal directions and
then subtract the long-time mean [33]. We find that the
dynamics of θ(z, t) is governed by vertical heat fluxes due
to molecular diffusion (conduction) and turbulent eddy
diffusion. If we assume that the vertical eddy heat flux
can be expressed as a function of θ alone, and that the
linear representation of their functional relationship is
sufficiently accurate for our puprose, then one finds the
linear ordinary differential equation θ̇ = Lθ [33, 34], or,
in the discrete form, θi+1 = Aθi. The linear operators
L and A = exp (L∆t) represent molecular and eddy heat
fluxes, however, due to the lack of a complete theory for
turbulence, such a representation of eddy fluxes requires
ad hoc closure schemes [34, 37]. Instead, here we seek
to find A using a data-driven method without using any
closure model.
Using the data-driven Hankel-DMD method, N sam-

ples of vector-valued observables θi from the DNS dataset
are arranged in the Hankel matrix H

H =











θ1 θ2 . . . θN−q+1

θ2 θ3 . . . θN−q+2

...
... . . .

...
θq θq+1 . . . θN











, (2)

where q is the delay-embedding dimension (part of the
dataset used in (2) is referred to as the training set here-
after). The size of H is (n× q)× (N − q + 1). Following
the Exact DMD formulation [24], we then construct

X = H(:, 1 : N − q) , Y = H(:, 2 : N − q + 1) , (3)

and conduct reduced singular value decomposition X =
USV †, in the subspace of leading r singular vectors (†

indicates conjugate transpose). The data-driven approx-
imation of A using Hankel-DMD is computed as

AHDMD = U †Y V S−1, (4)

which has the size r × r.

Once AHDMD is calculated, a future vector-valued ob-
servable θm+1, that was not part of the training set, can
be predicted from

Θ
r
m+1 = AHDMDΘ

r
m, (5)

where Θ
r
m+1, a vector of length r, is Θm+1 =

[θm−q+2 θm−q+3 · · · θm+1]
∗, a vector of length n × q,

projected onto the subspace (∗ indicates transpose). All
values in Θm = [θm−q+1 θm−q+2 · · · θm]∗ (and its pro-
jection onto the subspace, Θr

m), are either known from
the initial condition or already predicted.

To test the predictive capabilities of Hankel-DMD,
we have first computed AHDMD using θi from all grid
points in the vertical direction (i.e. n = 129) and
a training set with N = 188000, which is of length
tN = N∆t ≈ 21900τadv, where τadv is the advective
time-scale [35]. Empirically-found optimal parameters
r = 1100 and q = 22 are used [33]. Figure 1(a) compares
the predicted time-series θpred (from (5)) at a given point
against the true time-series from DNS (θDNS). The test-
ing set (t ≥ 0) and the training set have no overlap and
are chosen from separate independent simulations. The
time-series of θpred and θDNS agree well until ≈ 529τadv,
when the time-series of θpred diverges and decays to zero.
Similar high prediction skills and behavior are observed
for the principal component (PC) of the leading mode of
θ(z, t) obtained from proper orthogonal decomposition
(Figure 1(b)). These comparisons show the remarkable
capability of AHDMD in accurately predicting not only
the evolution of the DNS time-series at different time-
scales, but also the amplitude and time of extreme events
that are a few standard deviations large. Figure 2 fur-
ther shows that AHDMD can in fact accurately predict
the evolution of the entire profile of θ. A property of
θpred, which is highly desirable, is that it always satisfies
the boundary conditions (θ = 0 at the walls) even though
the boundary conditions are not explicitly enforced dur-
ing prediction.

It should again be emphasized that in the results pre-
sented above, no DNS data from t ≥ 0 have been used
during prediction, i.e. solving Eq. (5). In fact, the only
θDNS used during prediction are the last q = 22 snap-
shots (≈ 3τadv) from t < 0 needed as the initial condi-
tions in (5).

To examine how the prediction skills of AHDMD scale
with N , we define the relative error E(t) = {‖θpred −
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FIG. 1. (a) Time-series of θ at z/H = −0.18. The vertical dotted line shows the time tl at which θpred (dashed blue line)
begins to consistently diverge from θDNS (solid red line). σ is the standard deviation of the time-series. (b) Same as (a) but for
PC1. (c) Relative error E, averaged over 8 independent tests, as N is varied. The longest dataset was used in (a)-(b). Time is
scaled by advective time-scale τadv, which is related to other internal time-scales of the system as τadv ≈ 0.36τd ≈ 0.04/Λmax,
where τd is the e-folding decorrelation time of PC1 and Λmax is the largest positive Lyapunov exponent.

FIG. 2. Snapshots of θDNS (solid red line) and θpred (dashed blue line) at five times showing the skills of AHDMD in predicting
the profile of θ(z, t). θpred is computed using the same AHDMD as in Figure 1(a)-(b). While θpred might seem to start to
deviate from θDNS at some times, e.g. t/τadv = 121, the prediction converges back to θDNS , e.g. t/τadv = 330 or 418, before
it starts to consistently diverge at ≈ 529τadv.

θDNS‖/ ‖θDNS‖}, where ‖ ‖ and { } indicate the Eu-
clidean norm and running average over 3τadv, respec-
tively. From inspecting a number of test results, the pre-
diction horizon tl, at which θpred starts to consistently
diverge from θDNS , can be reasonably defined as when
E remains above 30% for at least 4τadv. Figure 1(c)
shows E(t) for three training datasets with N = 45000
(≈ 5.2 × 103τadv), N = 87000 (≈ 10.1 × 103τadv), and
N = 188000 (≈ 21.9 × 103τadv). As N is almost dou-

bled from 45000 to 87000, the prediction horizon nearly
doubles too, and Eave (which is E averaged over 8 inde-
pendent tests and averaged from t = 0 to tl) decreases
from 16.3% to 9.72%. However, as N is further (more
than) doubled to 188000, tl increases from 390τadv to
529τadv (just a 36% improvement), and Eave decreases
only by ≈ 1%.

Figure 3 further shows the scaling of the prediction
horizon with the size of the training set. We have also
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FIG. 3. Scaling of prediction horizon with the length of the
training set tN : (a) t′l, (b) tl.

defined another measure of prediction horizon t′l as when
E first exceeds 20%, which can be important in practical
applications. t′l increases monotonically but sub-linearly
with tN , reaching ≈ 22τadv for the largest training set.
As alluded to in Figure 1(c), while tl increases with N ,
the scaling is sub-linear, e.g. tl/tN declines from 4.2% to
2.5% as tN is increased by a factor of 8.1 (Figure 3(b)).
The results indicate reaching a limit of predictability. Us-
ing the algorithm of Sano and Sawada [38], we have found
the largest positive Lyapunov exponent of θDNS to be
Λmax ≈ 0.04/τadv. Therefore, with the longest train-
ing set, tl ≈ 21.1/Λmax. The limit of predictability, in
particular in the presence of uncertainties in the initial
conditions, should be further investigated in future work.

The skillful predictions with AHDMD presented above
hinge on two critical components of the formulation in
(2)-(4): the use of i) delay-embedding and ii) vector-
valued observables. With q = 1, the formulation is re-
duced to the original DMD method [22, 24], which we
found to have very little prediction skill, as θpred van-
ishes in a fraction of τadv. This can be attributed to the
observation that the eigenvalues of AHDMD , and in par-
ticular the slowest-decaying ones, are much closer to the
unit circle compared to those of ADMD ; consequently,
the DMD modes decay at much faster rates.

Using scalar-valued observables (i.e. n = 1) in Hankel-
DMD does not lead to any useful prediction skill. For
example, for the same training set, AHDMD computed
using θ from a single point at z/H = −0.18 can predict
the time-series at that point only up to tl ≈ 0.82τadv
(case C1 in Table I), while AHDMD computed using
all 129 grid points has remarkable prediction skills at
z/H = −0.18 (Figure 1(a)) and can predict the time-
series up to tl ≈ 529τadv. Given the spatio-temporal cor-
relations of the turbulent flow, it is not surprising that
adding more spatial points enhances the performance of
AHDMD ; however, it is of practical interest to explore
how the prediction skill is affected if the data is subsam-
pled. This is important for problems in which the data is
only sparsely available (e.g. due to practical limitations)
and/or to keep the size of H and AHDMD computation-
ally tractable (e.g. in large-scale 3D problems). Table I

compares the prediction skills of AHDMD computed us-
ing several different n and nb (number of points within
the thermal boundary layer). Testing several subsam-
pling schemes showed that choosing points symmetrically
(with respect to z = 0) always results in better prediction
skills; thus in all cases in Table I except for C1 (discussed
earlier), points are chosen symmetrically. As expected,
increasing n improves the prediction horizon and accu-
racy. Increasing nb, however, does not have a substantial
impact on the prediction horizon/accuracy, except for
the case with large n (C9), in which t′l and Eave (but not
tl) are improved over the case C8 (same n but nb = 0).
The weak effect of nb is of practical significance because
collecting measurements from thin boundary layers can
be challenging. Furthermore, case C9 shows that using
only half of the points, AHDMD still has reasonable pre-
diction horizon/accuracy, which encourages seeking an
optimal subsampling strategy in future work (it is worth
higlighting that optimal sensor placement is currently a
major challenge in estimation/control of spato-temporal
systems [39]).

It is also informative to examine the performance and
prediction characteristics of the data-driven framework
(2)-(4) for the K-S equation, which is a commonly-used
prototype for chaotic systems. As described in Supple-
mental Material [33], the K-S equation is numerically
integrated for a broad range of chaoticity and attrac-
tor dimension. Tests show skillful spatio-temporal pre-
dictions by AHDMD , including for high-dimensional and
strongly-chaotic cases. Similar to the behavior observed
for the turbulent RBC: i) the Hankel-DMD prediction
is accurate until the prediction horizon tl (often around
30/Λmax), after which the prediction rapidly diverges
from the true time-series and vanishes, and ii) tl and Eave

improve as N increases, but the scaling is sub-linear and
the improvements become increasingly slow at larger N .

In summary, we show the high prediction skills of
the data-driven Hankel-DMD framework when used

TABLE I. Comparison between t′l, tl, and Eave for different
subsampling schemes. nb is the number of grid points inside
the thermal boundary layer. Results are from the longest
training set (tN ≈ 21.9 × 103τadv). See the Supplemental
Material [33] for the extended version and further discussions.

Case n nb t′l/τadv tl/τadv Eave(%)
C1 1 0 0.82 0.82 17.4
C2 5 0 2.80 276 15.7
C3 5 2 2.72 277 16.4
C4 11 0 4.86 305 13.7
C5 11 2 4.88 306 13.7
C6 29 0 7.34 361 12.7
C7 29 4 7.35 361 12.2
C8 65 0 13.2 432 11.7
C9 65 30 21.4 432 10.4

Full grid 129 60 21.8 529 8.82
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with vector-valued observables for a fully-turbulent flow
(RBC) and highly-chaotic system (K-S). While here we
focused on RBC, a prototype for geophysical turbulence,
the framework is readily applicable to any turbulent
flow. In future work, the prediction skills for data with
measurement noise, sparsely-available/subsampled data,
non-stationary data, and 3D observables (e.g. (v, T ))
should be further studied.

We highlight that while AHDMD is skillful for short-
term forecasts, it cannot accurately predict the long-term
response of the system to an external forcing, e.g. heat-
ing f(z). Khodkar and Hassanzadeh [40] and Khodkar
et al. [34] have recently shown, using the same RBC sys-
tem, that two other techniques, one data-driven based on
using the fluctuation-dissipation theorem [41, 42], and
another based on the Green’s function (GRF) method
(which involves simulations with many weak, localized
forcings applied one at a time [43, 44]) can compute the
system’s linear response function L that accurately pre-
dicts the long-term response as L−1f , while not having
skills for short-term prediction. Interestingly, the first
few slowest-decaying eigenvectors of AHDMD and LGRF

are strikingly similar [33], suggesting that a close exam-
ination of these two vastly different techniques together
might provide a deeper insight into the dynamics that
they capture and their prediction skills.

It should be also mentioned that the system identi-
fication method matrix pencil (which is called Loewner
method when used in frequency-domain) in time-domain
is mathematically equivalent to Hankel-DMD [45]. This
approach has been recently used for data-driven model-
reduction of nonlinear systems such as Burgers’ equation
[46–48]. The underlying connections between the ma-
trix pencil and Hankel-DMD techniques warrant further
investigation [49].

Finally, a data-driven method called linear inverse

modeling (LIM) [50] has been long used for forecasting
low-frequency climate phenomena such as El Niño and
Madden-Julian Oscillation [12, 51, 52]. LIM is derived
from the Fokker-Planck equation, but is mathematically
equivalent to standard DMD [24, 40]. The findings of
this paper suggest that augmenting LIM with delay-
embedding and ensuring rich-enough vector-valued
observables might significantly help such data-driven
weather/climate forecasting efforts, especially for the
highly turbulent midlatitude circulation.
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[23] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and

D. S. Henningson, J. Fluid Mech. 641, 115 (2009).
[24] J. H. Tu, C. W. Rowley, L. D. M., S. L. Brunton, and

J. N. Kutz, J. Comp. Dyn. 1, 391 (2014).
[25] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, J.

Nonlin. Sci. 25 (2015).
[26] H. Arbabi and I. Mezić, SIAM J. Appl. Dyn. Syst. 16,

2096 (2017).
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[29] M. Korda and I. Mezić, J. Nonlin. Sci. 28, 687 (2018).
[30] C. W. Rowley and S. T. M. Dawson, Annu. Rev. Fluid

Mech. 49, 387 (2017).
[31] F. Takens, Lect. Notes Math. 898, 366 (1981).
[32] H. Arbabi, M. Korda, and I. Mezić, arXiv:1804.05291
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