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INSTANTONS ON HYPERKÄHLER MANIFOLDS

CHANDRASHEKAR DEVCHAND, MASSIMILIANO PONTECORVO,

AND ANDREA SPIRO

Abstract. An instanton (E,D) on a (pseudo-)hyperkähler manifold M is

a vector bundle E associated to a principal G-bundle with a connection D

whose curvature is pointwise invariant under the quaternionic structures of

TxM, x ∈ M , and thus satisfies the Yang-Mills equations. Revisiting a con-

struction of solutions, we prove a local bijection between gauge equivalence

classes of instantons on M and equivalence classes of certain holomorphic

functions taking values in the Lie algebra of GC defined on an appropriate

SL2(C)-bundle over M . Our reformulation affords a streamlined proof of

Uhlenbeck’s Compactness Theorem for instantons on (pseudo-)hyperkähler

manifolds.

1. Introduction

Beginning in the mid-1970’s the self-duality equations for Yang-Mills fields

successfully captured the imagination of theoretical physicists and mathem-

aticians, epitomised by Donaldson’s flight into previously unforeseen realms

of four-manifold differential topology (reviewed for instance in [21, 29]). A

Yang-Mills field is a pair (E,D) on a Riemannian manifold (M, g), where E is

a vector bundle associated to a principle G-bundle with a connection D whose

curvature satisfies the Yang-Mills equation D ∗ F = 0. The (anti-)self-duality

equations, requiring that the curvature F of a connection D over a Rieman-

nian four-manifold (M, g) takes values in the (anti-)self-dual eigenspace of the

Hodge star-operator, implies the Yang-Mills equation in virtue of the Bian-

chi identity DF = 0. Connections satisfying the (anti-)self-dual Yang-Mills

(SDYM) equations are called (anti-) instantons. They are global minimisers

of the Yang-Mills energy functional, S(A) = ||F ||2 =
∫
M
F ∧ ∗F volg.

The quest for explicit instanton solutions [6] was initially physically motiv-

ated, for instance by the mystery of the phenomenon of quark confinement [33],

but the remarkable properties of instantons soon attracted powerful mathem-

atical treatment. First, Ward showed that solutions of the self-duality equa-

tions on R4 are encoded in certain holomorphic data on twistor space [40],
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effectively converting the problem to an algebro-geometric one. Then, Atiyah,

Hitchin and Singer [4] obtained a correspondence between solutions of the

SDYM equations on S4 and certain real algebraic bundles on the complex pro-

jective 3-space CP 3. They thus established the relation between self-duality

and holomorphic structures, yielding in particular the dimension of the mod-

uli space of solutions for any compact gauge group. This led to a sequence

of ansätze yielding SDYM solutions in terms of arbitrary solutions of linear

equations [5, 10]. Subsequently, powerful algebro-geometric results were used

to obtain a complete construction of all SDYM fields on S4 [3, 20, 2].

These developments were followed by fundamental analytical results on vari-

ational methods for Yang-Mills theory. The moduli space of instantons is a

subset of the quotient A/G of the space of all connections A with the group of

all gauge transformations G. Locally representing the connections in Coulomb

gauges Uhlenbeck [37, 38] developed analytical tools to study the singularities

of the compact moduli space of instantons. Uhlenbeck’s work, together with

the novel variational methods introduced by Taubes to study gauge invariant

theories, prepared the path for Donaldson’s seminal work.

These analytical results depended crucially on the fact that the Yang-Mills

functional and therefore also the Yang-Mills equations are conformally invari-

ant in four dimensions. Further, the above-mentioned constructions of SDYM

solutions crucially used the fact that R4 conformally compactifies to S4. All

this would seem to impede any generalisation to Yang-Mills fields in higher

dimensions. Indeed, it is known that a connection over the sphere Sd , d ≥ 5,

with sufficiently small L2-norm is necessarily flat [8]. However, the solvability

of four dimensional SDYM equations relies in particular on the fact that, being

linear algebraic constraints on the curvature, they are first-order equations for

the vector potential. This first-order property was partly responsible for the

good analytical properties of the SDYM equations. Indeed, an insistence upon

this familiar sight of partial-flatness conditions, requiring the vanishing of cer-

tain linear combinations of the curvature components, which automatically

imply the second-order Yang-Mills equations, yields the required instanton

equations in dimensions greater than four. This idea was originally pursued

in [9], where it was shown that the required equations are restrictions of the

curvature F to an eigenspace of an endomorphism on the space of two-forms

defined by an appropriate co-closed four-form Ω,

∗ (∗Ω ∧ F ) = λF , Ω ∈ Λ4T ∗M, λ ∈ R
∗ . (1.1)

The co-closedness of Ω suffices to show that a Yang-Mills curvature field satis-

fying (1.1) implies the second-order Yang-Mills equations. For d > 4, the four-

form Ω is pointwise invariant only under some proper subgroup of SOd(R).

The existence of Ω corresponds to some special holonomy on the manifold

[19, 17, 39, 36, 25, 1].
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The above-mentioned compactness results for the moduli space of Yang-

Mills fields were already generalised to higher dimensions by Uhlenbeck and

Nakajima [30]. For the higher-dimensional generalisations of the self-duality

equations the analytical programme in the spirit of Uhlenbeck and Taubes was

begun by Tian [36]. The investigation of (local) solutions of higher dimensional

equations of the form (1.1) began [41, 11, 22, 1] with the case of instantons on

spaces having hyperkähler (hk) structure (i.e. with holonomy in Spn), these

being natural generalisations of R4 = H. Some global results on general

instantons on quaternionic Kähler (qk) manifolds (with holonomy in Spn ·Sp1)

also exist; e.g. [31, 28].

The twistor formulation of SDYM, which led to the ADHM construction,

has a (local) field theory variant, the harmonic space formulation. This was

originally developed as a tool to study supersymmetric harmonic maps [22, 24].

The harmonic space formulation enlarges the CP 1 fibre of the twistor bundle

to SL2(C), yielding a total space more amenable to standard field theoretical

treatment. In the process (gauge equivalent classes of) local solutions of self-

dual theories are parametrised by a prepotential, much as the Kähler potential

parametrises Kähler metrics. In a previous paper by two of us [16], we have

given a differential geometric description of the corresponding construction

of (pseudo-)hyperkähler metrics. In the current paper we investigate prop-

erties of Yang-Mills instantons on (pseudo-)hyperkähler manifolds using the

harmonic space formulation, presenting a differential geometric formulation of

the method based on the work of [1].

The harmonic space of an hk manifold (M, g) is the trivial bundle H(M) =

SL2(C)×M →M , equipped with a certain (non-product) complex structure.

The space H(M) fibres naturally over the quotient Z(M) = SL2(C)/B×M ≃

CP 1×M , where B is the Borel subgroup of upper triangular matrices. Z(M)

is the twistor bundle of (M, g) and has a well defined complex structure, ca-

nonically determined by the hypercomplex structure of M . Now, the complex

structure of the harmonic space H(M) is the unique complex structure such

that the projection p : H(M) → Z(M) is holomorphic.

A gauge field (E,D) on a complex hyperkähler manifold (M, g) is an instan-

ton if the curvature of D is pointwise invariant under the quaternionic struc-

ture of TpM, p ∈M . Its pull-back field (E ′, D′) over H(M) admits an analytic

gauge condition, by which we mean a special class of local trivialisations (=

gauges) of E ′. This class has the crucial feature that its gauge transformations

are holomorphic, supplemented by some other conditions. In such a trivial-

isation, the potential A′ of D′ is completely determined by just one of its

components, which is moreover a holomorphic function on H(M). This com-

ponent is called the prepotential of the gauge field (E ′, D′). A freely-specifiable

holomorphic prepotential, satisfying an appropriate first-order linear equation

on H(M), encodes all local properties of the corresponding instanton solution
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on M and may be used to reconstruct the associated Yang-Mills field (E,D).

This construction, together with complete proofs of an essentially bijective

correspondence between normalised prepotentials on H(M) and moduli of

locally defined instantons onM takes up the bulk of the content of this paper.

The existence of the analytic gauge condition and the resulting holomorphic

prepotential allows the use of classical results on holomorphic functions, such

as Montel’s Theorem or Hartogs’ Removable Singularity Theorem, to invest-

igate the moduli spaces of instantons. Thus, in this formulation, holomorphy

provides very useful tools. This is analogous to Uhlenbeck’s Coulomb gauge

condition, which allows the use of the machinery of elliptic equations. As

an example, we establish some simple estimates relating Ck-norms of prepo-

tentials to those of curvatures. These estimates, combined with the classical

Montel Theorem of Complex Variable Theory, lead to a new direct proof

of Uhlenbeck’s Strong Compactness Theorem for instantons on hk manifolds

[37, 38, 18, 30, 36, 42, 43].

The paper is structured as follows. After the preliminary section §2, we

introduce the notion of harmonic space and discuss its relation with the twistor

bundle of a (pseudo-)hyperkähler manifold M in §3. In §4, we discuss the

analytic gauge condition of the pull-back of the instanton over H(M) and the

construction of the instanton field overM from the corresponding holomorphic

prepotential on H(M). Our main new contributions appear in §4 and §5,

where we introduce a convenient normalisation for equivalent prepotentials,

prove a new existence result for an essentially unique instanton corresponding

to a given prepotential, obtain curvature estimates and present our new brief

proof of the Strong Compactness Theorem for instantons on hk manifolds.

Acknowledgements. One of us (CD) thanks Hermann Nicolai and the Al-

bert Einstein Institute for providing an excellent research environment.

2. Preliminaries

2.1. Basics of hyperkähler manifolds

Given a 4n-dimensional real vector space W , we recall that a hypercomplex

structure on W is a triple (I1, I2, I3) of endomorphisms satisfying the multi-

plicative relations of the imaginary quaternions, I2α = − IdW and IαIβ = Iγ for

all cyclic permutations (α, β, γ) of (1, 2, 3). Similarly, a hypercomplex struc-

ture on a 4n-dimensional real manifold M is a triple (J1, J2, J3) of integrable

complex structures on M , with the property that each triple (Iα := Jα|x),

x ∈M , is a hypercomplex structure on TxM .

These two notions are generalised as follows. Consider the 3-dimensional

subspace QW of End (W ), which is the span QW = spanR(I1, I2, I3) of the

endomorphisms of a hypercomplex structure (Iα). A (pseudo-)quaternionic

Kähler structure on W is an inner product 〈·, ·〉 on W which is hermitian with



INSTANTONS ON HYPERKÄHLER MANIFOLDS 5

respect to QW , that is, every element J ∈ QW is skew-symmetric with respect

to 〈·, ·〉. For what concerns manifolds, we have instead the following

Definition 2.1. A 4n-dimensional (pseudo-)Riemannian manifold (M, g) of

signature (4p, 4q), p+ q = n, is a (pseudo-)quaternionic Kähler (qk) manifold

if it admits a subbundle Q ⊂ End (TM) of quaternionic structures on the

tangent spaces satisfying the following two conditions:

i) each inner product gx is Hermitian for the quaternionic structure Qx;

ii) the parallel transport of the Levi-Civita connection ∇ of g preserves Q.

Further, (M, g) is a (pseudo-)hyperkähler (hk) manifold if there exist three

global ∇-parallel sections J1, J2, J3 of Q (which are thus integrable complex

structures) determining a hypercomplex structure on each tangent space of

M .

It is well known that a qk manifold is Einstein. Moreover, it is hk if and

only if its scalar curvature is zero. In this paper we focus on hk manifolds,

denoting them by a 5-tuple (M, g, Jα, α = 1, 2, 3), where the Jα are the ∇-

parallel sections generating the bundle Q.

An adapted frame at the point x ∈ M of an hk manifold (M, g, Jα) is a

g-orthonormal frame u = (eA) : R
4n → TxM mapping the standard triple of

complex structures (i, j,k) of Hn ≃ R4n into the triple of complex structures

(Jα|x)α=1,2,3. Note that any adapted frame u = (eA) allows the identifica-

tion of the standard Sp1- and Spp,q-actions on Hn with uniquely associated

actions of Sp1- and Spp,q-actions on TxM . The family Og(M,Jα) of all adap-

ted frames is a principle bundle over M with structure group Sp1·Spp,q and is

invariant under the parallel transport of the Levi-Civita connection. Hence, if

the bundle Og(M,Jα) admits a global section, the above actions of Sp1·Spp,q
on the tangent spaces TxM combine to yield a global action of Sp1·Spp,q onto

TM .

We now fix a few technical details, which we shall need.

As the standard representation of Sp1·Spp,q on Hn = C2n, we choose the

one for which the element ( i 0
0 −i ) ∈ sp1 acts on (Hn)C ≃ C2 ⊗ C2n as the

left multiplication by the complex structure i. Hence, for any given adapted

frame u ∈ Og(M,Jα)|x, the corresponding action of ( i 0
0 −i ) on TxM coincides

with the action of the complex structure I = u∗(i). This action of Sp1·Spp,q
extends by C-linearity to the standard action of SL2(C)·Spn(C) on (Hn)C ≃

C2⊗C2n. Consequently, the C-linear extensions u : (Hn)C → TC

xM of adapted

frames give SL2(C)·Spn(C)-equivariant isomorphisms TC
xM ≃ Hx ⊗ Ex for

complex vector spaces Hx ≃ C2 and Ex ≃ C2n. These isomorphisms are

necessarily related to each other by the action of some element of Sp1·Spp,q ⊂
SL2(C)·Spn(C).
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Furthermore, as standard bases for C2 and C2n, we shall use
(
ho1 = (1, 0), ho2 = (0, 1)

)
,

(
eoa = (0, . . . , 1

a-th entry
, . . . , 0)

)
.

For any (C-linearly extended) adapted frame u : (Hn)C = C2 ⊗ C2n → TC

xM ,

we then denote by eia := u(hoi ⊗ eoa), i = 1, 2, the complex vectors in TC
xM

corresponding to the basis hoi ⊗ eoa of C2 ⊗ C2n. If u : Hn → TxM is changed

into another adapted frame

u′ = u ◦ U with U =

(
u1+ u1−
u2+ u2−

)
∈ Sp1 ⊂ SL2(C) = Sp1(C) ,

the corresponding complex basis (eja) of T
C

xM is changed into

e+a = uj+eja , e−a = ui−eia . (2.1)

Similarly, if u′ = u ◦ U is further transformed by some A = (Aba) ∈ Spp,q ⊂

Spn(C), the basis (e±a) is then transformed into e′±a = Abae±b.

Note that, since the vectors h1 ⊗ eoa and h2 ⊗ eoa are ±i-eigenvectors of the

element ( i 0
0 −i ) ≃ i ∈ Sp1, the corresponding elements e+a, e−a ∈ TC

xM are

vectors of type (1, 0) and (0, 1) with respect to the complex structure I = u(i)

of TxM .

2.2. Connections, gauges, potentials and Yang-Mills fields

In this section we briefly review certain basic facts about gauge theories

which we shall need in what follows.

Given a manifold M and a (principal or vector) bundle π : E → M , we

denote by X(M) the space of all vector fields of M and by Γ(E) the set of

all sections σ : M → E. Given X ∈ X(M) and a smooth (real or complex)

function f , we write X·f to denote the directional derivative of f along X .

Let p : P → M be a principal G-bundle and pE :E = P×G,ρV→M an

associated vector bundle with fibre V ≃ R
N , determined by a faithful linear

representation ρ : G → GL(V ). We shall refer to an open subset U ⊂ M on

which there exists a choice of gauge (local trivialisation) ϕ : P |U → U × G

of the bundle P over U as the domain of the gauge ϕ (a minor abuse of

the language). Given two gauges ϕ, ϕ′ with overlapping domains U, U′, the

transition function ϕ′ ◦ϕ−1 : (U∩U′)×G → (U∩U′)×G is a map of the form

ϕ′ ◦ ϕ−1(x, h) = (x, gx·h) for a smooth map g : U → G .

The family of the automorphisms of G defined by h 7→ gx·h is what is usually

called gauge transformation between the gauges ϕ and ϕ′. Finally, we recall

that if a principal G-bundle p : P → M admits a collection of gauges, whose

domains form an open cover ofM and whose associated gauge transformations

h 7→ gx·h are determined by maps g : U → G taking values in a fixed subgroup

Go ⊂ G, then such gauges determine a Go-subbundle po : P o → M of P , called

Go-reduction.
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A connection 1-form ω on P induces a unique covariant derivative on the

associated bundle E . We recall that a covariant derivative on E is an operator

D : X(M) × Γ(E) → Γ(E), which is R-linear in both arguments, C∞(M ;R)-

linear in X(M) and satisfies the Leibniz rule DX(fσ) = (X·f)σ + fDXσ for

each f ∈ C∞(M ;R).

Now, consider a gauge P |U
∼
→ U × G with domain U. In this gauge, any

vector in TP |U is naturally identified with a sum X(x,g) + B(x,g) ∈ T(x,g)(U ×

G) ≃ TxU+TgG and the 1-form ω on P |U ≃ U×G can be pointwise expressed

as a sum of the form

ω|(x,g) = −A(x,g) + ωGg ,

where ωG is the Maurer-Cartan form of G and, for each g ∈ G, the map

A(·,g) : U → T ∗U⊗g is a g-valued 1-form, which changes G-equivariantly with

respect to g. The 1-form A := A(·,e) : U → T ∗M ⊗ g is called the potential of

ω in the considered gauge. If two gauges P |U ≃ U × G, P |U′ ≃ U′ × G have

overlapping domains U,U′, the corresponding potentials A, A′ are related

through the gauge transformation h 7→ gx·h by means of

A′ = Adg−1 A+ g−1·dg . (2.2)

We now recall that a section σ : U → E|U ≃ U×V of the associated bundle has

the form σ(x) = (x, si(x)) for a smooth map (si) : U → V = RN . Hence, for

each vector fieldX ∈ X(U), it is possible to consider the section of E|U ≃ U×V

DXσ(x) =
(
x, (X·σi)|x + Aij(X)σj|x

)
, (2.3)

where Aij := ρ∗◦A with ρ∗ : g → gl(V ) the Lie algebra representation determ-

ined by the linear representation ρ : G → GL(V ) that gives the associated

vector bundle E = P ×G,ρ V . The gl(V )-valued 1-form Aij is called the poten-

tial ofD induced by the connection ω. The operator (2.3) is gauge independent

due to (2.2), thus globally well defined as a covariant derivative on the sections

of E.

We recall that the curvature 2-form of ω is the g-valued 2-form on P defined

by Ω = dω+ 1
2
[ω, ω]. Given a gauge ϕ : P |U → U×g and the associated gauge

ϕ̂ for E

ϕ̂ : E|U → U× V , ϕ̂
(
[ϕ−1(x, e), v)]

)
:= (x, v) ,

the curvature tensors of ω and of D are the (g- or gl(V )-valued) 2-forms Fϕ

and Fx on U, defined by

Fϕx (v, w) := 2Ω(x,e)(v, w) , F ϕ̂
x (v, w) := 2ρ∗ ◦ F

ϕ
x (v, w) , for v, w ∈ TxU .

(2.4)

Note that Fϕ can be recovered from the potential A of ω by the formula

Fϕ(X, Y ) = X·(A(Y ))− Y ·(A(X)) + [A(X), A(Y )]−A([X, Y ]) . (2.5)

and that, if h 7→ gx·h is the gauge transformation between ϕ, ϕ′, one has that

Fϕ
′

x = Adgx F
ϕ
x , F ϕ̂′

x = F ϕ̂
x . (2.6)
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This shows that the curvature tensor of ω does depend on the gauge, while

the curvature tensor of D does not. Due to this, the curvatures F ϕ̂
x combine

and determine a globally defined gl(V )-valued 2-form F on M . It can be also

checked that it satisfies the identity

F (X, Y )s = [DX , DY ]s−D[X,Y ]s for sections s ∈ Γ(E) , (2.7)

a property often used as an alternative definition of the curvature of D.

All of the above notions and properties have analogues in the case of holo-

morphic bundles, which we now briefly recall.

If (M,J) is a complex manifold, G is a complex Lie group and V is a complex

vector space, a principal G-bundle p : P → M (resp. a complex vector bundle

p : E →M with fiber V ) is called holomorphic if it is equipped with a complex

structure Ĵ , such that the right action of G on P (resp. the vector bundle

structure on E) is Ĵ-holomorphic and the projection p is a (Ĵ , J)-holomorphic

mapping. In this case, a trivialisation is called holomorphic if it is a local

holomorphic map from (P, Ĵ) (resp. (E, Ĵ)) to the cartesian product M × G

(resp. M × V ), equipped with the product complex structure.

A connection form ω on a holomorphic G-bundle (P, Ĵ) is called Ĵ-invariant

if the corresponding horizontal spaces H(x,g) = kerω(x,g) are invariant under

the complex structure Ĵ . This is equivalent to say that, in any holomorphic

trivialisation ϕ : P |U → U×G, the corresponding potential A : U → T ∗U⊗ g

takes actually values in in T 10∗M⊗g10+T 01∗M⊗g01. Here we denote by T 10
x M

and T 01M the holomorphic and anti-holomorphic distributions of M and by

g10, g01 the subalgebras of gC (both isomorphic to g), which are generated

by the vectors of type (1, 0) and (0, 1), respectively. Being each Ax, x ∈ U,

real, the projection of Ax onto T 01∗
x M ⊗ g01 is the complex conjugate of the

component in T 10∗
x M ⊗g10. So, the potential A is uniquely determined by the

associated map A10 : U → T 10∗M ⊗ g10, which we call (1, 0)-potential.

We finally remark that the covariant derivative D on an associated holo-

morphic vector bundle pE : E → M , determined by a Ĵ-invariant con-

nection ω, is characterised by the property that it transforms sections of

EC = E10 ⊕M E01, with values in E10 or in E01, into sections which are

still in E10 or in E01, respectively. The covariant derivatives of (1, 0)-type

(or (0, 1)-type) sections and the change of (1, 0)-potentials under holomorphic

gauge transformations behave exactly as in formulas (2.3) and (2.2).

We conclude this short section by recalling the definition of gauge fields. A

gauge field with structure group G is a pair (E,D), formed by:

(1) a vector bundle E, associated with a principal G-bundle p : P →M ,

(2) a covariant derivative D on E, induced by a connection ω on P .

In this case we say that (E,D) is a gauge field associated with the pair (P, ω).

If G is complex, p : P → M admits a reduction to a Go- subbundle P o ⊂ P
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with Go compact real form of G and ω restricts to a connection ωo on P o, we

say that (P, ω) is reducible to (P o, ωo) and that (E,D) is the complexification

of a gauge field with compact structure group Go.

IfM is an oriented (pseudo-)Riemannian manifold, we may define the Hodge

∗-operator, ∗ : ΛpT ∗M → Λn−pT ∗M . Then, the gauge field (E,D) is called

a Yang-Mills field if its curvature tensor F satisfies the Yang-Mills equation

D∗F = 0 .

2.3. Ck-norms and Lp-norms of curvatures

Let G be a reductive complex Lie group and Go ⊂ G a compact real form

of G. Further let go = gs+ z(go) be the decomposition of go = Lie(Go) into its

semisimple part gs and center z(go), and denote by 〈·, ·〉 any AdGo-invariant

Euclidean inner product on go which, on gs × gs, coincides with minus the

Cartan-Killing form. This allows us to define the Hermitian inner product on

g = Lie(G) = go + igo

h : g× g → C , h(X + iY,X ′ + iY ′) := 〈X + iY,X ′ − iY ′〉 (2.8)

and the associated norm ‖X + iY ‖h =
√

‖X‖2〈·,·〉 + ‖Y ‖2〈·,·〉. If (M, g) is

a Riemannian manifold, we can use the metric g to extend the Hermitian

product h of g to a positive inner product, also denoted by h, on the space of

tensor fields in ⊗ℓT ∗M ⊗ g over M . So, for any compact subset K ⊂ M , we

have the usual sup-norm for g-valued Ck functions on K

‖V ‖Ck(K,g) :=
k∑

j=0

sup
x∈K

‖∇jV |x‖h .

Similarly, for each p ∈ [1,+∞), we may use the Lp-space Lp(U, g), the com-

pletion of the space of all C0-maps V : U → g with bounded values for the

integral
∫
U
‖V ‖ph volg, equipped with the usual Lp-norm

‖ · ‖Lp(U) :=

(∫

U

‖ · ‖ph volg

) 1
p

.

All such norms immediately generalise to spaces of g-valued r-forms.

Consider now a gauge field (E,D) associated with the pair (P, ω) and a

trivialisation ϕ : P |U → U × G in which the curvature tensors of ω and D

are Fϕ and F = F ϕ̂, respectively. Then, for any compact subset K ⊂ U, we

define

‖F‖(ϕ)
Ck(K)

:= ‖Fϕ‖Ck(K,g) , ‖F‖(ϕ)
Lp(U) := ‖Fϕ‖Lp(U,g) . (2.9)

Now consider the cases when (P, ω) is reducible to a pair (P o, ωo) with struc-

ture group given by the compact Go. Since the h-norms are AdGo-invariant, if

we consider only the gauges which determine such a reduction, then the norms

(2.9) do not depend on ϕ and they coincide with the usual Ck- and Sobolev

norms of curvatures for gauge fields with compact structure groups.
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2.4. Lifting gauge fields

Let (E,D) be a gauge field onM associated with a pair (P, ω). If π : N→M

is a principal H-bundle over M , the lift of (P, ω) is the pair (P ′, ω′) given by

a) the lifted G-bundle p′ : P ′ := π∗P → N , i.e. the submanifold

π∗P := {(y, U) ∈ N × P such that p(U) = π(y)} ⊂ N × P

equipped with the natural projection p′ : π∗P → N , p′(y, u) := y

b) the pull-back connection ω′ := π′∗ω on P ′ = π∗P determined by the

projection π′ : P ′ ⊂ N × P → P .

The lift of the gauge field (E,D) is the gauge field (E ′ = π∗E,D′ = π∗D) on

N given by

i) the lifted vector bundle q′ : E ′ = π∗E = P ′ ×G,ρ V → N over N

ii) the covariant derivative D′ = π∗D on E ′ induced by ω′.

We now briefly discuss the problem of characterising the gauge fields (E ′, D′)

on principal H-bundles π : N → M which are lifts of gauge fields onM . Given

π : N →M and (E,D) as above, for each X ∈ h = Lie(H), the corresponding

1-parameter subgroup exp(RX) ⊂ H has clearly a natural right action on N

and determines a natural 1-parameter group of diffeomorphisms on the lifted

bundle P ′ ⊂ N × P given by

R′ : R −→ Diff(P ′) , R′
t(y, u) = (Rexp(t)(y), u) .

Note that each mapR′
t is a bundle automorphism that preserves the connection

ω′ and induces a bundle automorphism of the associated vector bundle E ′ =

π∗E that commutes with the covariant derivative D′ = π∗D. Therefore, the

vector field X ′ on P ′, whose flow is the 1-parameter group of automorphisms

Rt, is such that

a) p′∗(X
′) = X and π′

∗(X
′) = 0; here X is identified with the vertical

vector field of the H-bundle N

b) ıX′ω′ = 0 and 0 = LX′ω′ = ıX′dω′ + d(ıX′ω′) = ıX′dω′;

c) if A is the potential of ω′ in a gauge π∗P |U ≃ U × G, the vector field

X ′ has the form X ′
(y,g) = Xy +Xg(y)|g where X

g(y) is the left-invariant

vector field of G defined by ωG(Xg(y)) = A(Xy).

Note that (b) implies also that

ıX′Ω′ = 0 and hence that ıXF
′ = 0 for X ∈ k . (2.10)

All this has the following converse.

Proposition 2.2. Let (E ′, D′) be a gauge field associated with a pair (P ′, ω′)

on an H-bundle π : N → M and, for any given gauge with domain U ⊂ N ,

denote by F′, F ′ the curvature tensors of ω′ and D′.
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If H is simply connected, then (E ′, D′) is the lift of a gauge field on M if

and only if, for each X ∈ h, the associated infinitesimal transformation on N

is such that a) ıXF
′ = 0 or, equivalently, ıXF

′ = 0 in any gauge and b) the

unique ω′-horizontal vector field X ′ on P ′, which projects onto X, is complete.

Proof. The necessity follows from previous remarks. Assume now that for

each X ∈ h, conditions (a) and (b) hold. Since ıX′ω′ = 0, we have that

LX′ω′ = ıX′dω′ + d(ıX′ω′) = ıX′Ω′ = 0, from which it follows that the flow

of X ′ commutes with the right G-action of P ′ and preserves ω′. We also

have that, for any X, Y ∈ h, their ω′-horizontal lifts X ′, Y ′ are such that

ω′([X ′, Y ′]) = Ω′(X ′, Y ′) = 0. This means that [X ′, Y ′] is the ω′-horizontal lift

of the Lie bracket [X, Y ]. We therefore conclude that the collection of vector

fields

h′ := { X ′ is ω′-horizontal lift of some X ∈ h }

is a finite dimensional Lie algebra of complete vector fields on P ′. By a classical

theorem of Palais [32], this implies the existence of a right H-action on P ′

whose infinitesimal transformations are precisely the ω′-horizontal vector fields

X ′ ∈ h′. All orbits of this action are regular and simply connected, because

all of them are coverings of the simply connected H-orbits on N . Moreover,

each transformation of this action is a bundle automorphism, which preserves

the connection 1-form ω′ and commutes with the G-action. Hence, the orbit

space P = P ′/H is a G-bundle over M := P ′/H ′ ×G = P/G and is equipped

with the g-valued 1-form ω defined by

ω[u](v) := ω′
u(v

′) for some v′ ∈ TuP
′ that projects onto v ∈ T[u]P

′/H ′ .

One can directly check that ω is a connection and that ω′ is the pull-back of

ω on P ′. The associated bundle E of P → M = P/G, equipped with the

covariant derivation D determined by ω, is the desired gauge field, of which

(E ′, D′) is a lift.

3. Harmonic spaces of (pseudo-)hyperkähler manifolds

In the rest of this paper (M, g, Jα) denotes an hk manifold and (E,D) a

complex gauge field on (M, g, Jα) associated with a pair (P, ω) with complex

structure group G. We shall mostly assume that G is the complexification

of a compact real form Go and that (P, ω) is the complexification of a pair

(P o, ωo), with structure group Go. We shall simply say that (E,D) is the

“complexification” of a gauge field having compact structure group Go.

3.1. The twistor bundle of a (pseudo-)hyperkähler manifold

Let (M, g, Jα) be a 4n-dimensional hk manifold. It is well known that for

a point z = (a, b, c) ∈ S2(≃ CP 1), the tensor field I(z) := aJ1 + bJ2 + cJ3
is an integrable complex structure on M and that the twistor bundle Z(M)
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of M is simply the trivial CP 1-bundle Z(M) := M × {I(z), z ∈ S2} → M .

Since each z ∈ S2 corresponds to a distinct integrable complex structure, the

twistor bundle Z(M) is foliated by the complex submanifolds M × {z} ≃M ,

each equipped with the corresponding complex structure I(z). Such complex

structures combine with the classical complex structure of CP 1 and determine

a natural almost complex structure on Z(M), which we denote by Î. It was

proved to be integrable in [34].

We remark that the complex structures on TxM, x ∈M ,

I(z)|x := aJ1|x + bJ2|x + cJ3|x , z = (a, b, c) ∈ S2 ≃ CP 1 ,

coincide with the complex structures of the form I = u∗(i) ∈ span(Iα := Jα|x),

given by adapted frames u of TxM as mentioned in §2.1. It follows that each of

the 2n-tuples of complex vectors e+a (resp. e−a), which are part of the complex

bases (2.1), is actually a frame of holomorphic (resp. anti-holomorphic) vectors

for a complex leaf M × {I(z)} ⊂ Z(M).

3.2. The harmonic space of a (pseudo-)hyperkähler manifold

The harmonic space of a 4n-dimensional hk manifold (M, g, Jα) is the trivial

bundle H(M) = M × SL2(C) → M , endowed with an integrable complex

structure I defined as follows. For each point (x, U) ∈ H(M) consider the

natural direct sum decomposition T(x,U)H(M) = TxM + TUSL2(C) ≃ TxM +

sl2(C), where TUSL2(C) is identified with sl2(C) by means of right invariant

vector fields. Then let I(x,U) be the unique complex structure on T(x,U)H(M)

given by

I(x,U)|TxM := I(z)|x, z = U ·[0 : 1] ∈ CP 1(≃ S2) and I(x,U)|sl2(C) = Jo , (3.1)

where Jo is the complex structure of sl2(C) given by the multiplication by

( i 0
0 i ). From the above identification TUSL2(C) ≃ sl2(C), it follows that along

each fiber {x} × SL2(C), the I-holomorphic distribution is generated by right

invariant vector fields of SL2(C).

The collection I of such pointwise defined complex structures is a globally

defined almost complex structure onH(M), which can be seen to be integrable

as follows. The family of restricted complex structures I|M×{U} = I(z)|M×{U}

on the manifolds M × {U}, U ∈ SL2(C), is invariant under the natural left

action of SL2(C) on H(M). Thus, the Lie derivative of an I-holomorphic

vector field that is tangent to the (horizontal) slices M × {U} by means

of an infinitesimal transformations of this SL2(C)-action always gives an-

other I-holomorphic vector field, which is horizontal. On the other hand,

the infinitesimal transformations of the left action of SL2(C) on each ver-

tical fiber {x} × SL2(C) ≃ SL2(C) are nothing but the right invariant vec-

tor fields of SL2(C). This implies that the Lie bracket between a horizontal

I-holomorphic vector field and a vertical I-holomorphic vector field is a hori-

zontal I-holomorphic vector field. This property together with the fact that
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both the horizontal and vertical I-holomorphic distributions are involutive

proves that the whole I-holomorphic distribution of H(M) is involutive, i.e.

that I is globally integrable.

Remark 3.1. Note that H(M), considered as a principal SL2(C)-bundle over

M , can be (locally) identified with a bundle of vertical complex frames (e+, e−)

for the fibers of the rank 2 holomorphic vector bundle π : H →M introduced

by Salamon in [34] for general quaternionic Kähler manifolds. (Note that the

fibers of H are the spaces Hx defined in §2.1.) The explicit construction of

the complex structures of H(M) and H directly yields that the projection

p : H(M) → H \ {0} , p((x, (e+, e−)) = e+ ∈ Hx, x ∈ M

is holomorphic. Thus H(M) fibers holomorphically over the twistor space

Z(M) = P (H) ≃ M × CP 1 with typical fiber given by the subgroup B ⊂

SL2(C) of upper triangular matrices. Thus, Z(M) ≃ H(M)/B = M ×
SL2(C)/B.

By construction, the harmonic space H(M) is equipped with the I-invariant

integrable distribution D given by the tangent spaces of the leaves M × {U}.

The two complex subdistributions of DC, spanned by the holomorphic and

anti-holomorphic vector fields, will be denoted by D+, D− ⊂ DC. By the

remarks at the end of §3.1, for (x, U) ∈ H(M) there is at least one adapted

frame u : Hn → TxM , more precisely, a frame with u(i) = I
(z)
x , z = U ·[0 : 1],

such that the corresponding 2n-tuples (e+a) and (e−a) are bases for the vector

spaces D+|(x,U) and D−|(x,U), respectively.

3.3. The complexified harmonic space

Consider an n-dimensional complex manifold (N, J) and denote by AJ the

complete atlas of holomorphic coordinates, i.e., of systems of coordinates ξ =

(zi) : U ⊂ N → Cn in which the integrable complex structure J has the

standard form J = i ∂
∂zj

⊗ dzj − i ∂

∂zk
⊗ dzk. We define the complexification of

(N, J) as the pair (NC, ı) given by:

a) the complex manifoldNC := N×N having complex structure J̃ defined

at each point (x, y) ∈ N ×N by J̃(x,y)(v, w):=Jx(v)−Jy(w)

b) the standard diagonal embedding ı : N → NC, ı(x) = (x, x).

Note that the complex structure J̃ of NC is defined in such a way that the cor-

responding atlas AJ̃ of holomorphic coordinates is generated by coordinates

of the form ξ̃ = (zi, z′j) : U× V → C
2n for some (local) holomorphic coordin-

ates (zi), (z′j) of (N, J). So, the anti-holomorphic involution τ : NC → N ,

τ(x, y) = (y, x) has a fixed point set which is precisely the totally real sub-

manifold ı(N) ≃ N .

The above construction yields the following very convenient extension of

harmonic spaces. Let HC(M) be the cartesian product HC(M) = M ×M ×



14 C. DEVCHAND, M. PONTECORVO, AND A. SPIRO

SL2(C), equipped with the unique (integrable) complex structure I(C), which

coincides with the right invariant complex structure along the (vertical) leaves

{x} × {y} × SL2(C) ≃ SL2(C) (see (3.1)) and with the complex structure

of the complexification of (M, I(z)), z = U ·[0 : 1], along each horizontal leaf

M×M×{U}. In other words, HC(M) is the union of the complexifications of

the manifolds (M, I(z)), z ∈ S2, and not the complexification of the harmonic

space H(M). Nevertheless, we call HC(M) the complexified harmonic space.

Both of the plus and minus distributions D± ⊂ TCH(M) naturally extend

to holomorphic distributions on HC(M). In order to see this, just consider

the distribution D′ on HC(M), determined by the tangent spaces to all leaves

M×M×{U} and the associated complex subdistribution D10
I(C)

⊂ D′C spanned

by I(C)-holomorphic vector fields. The subdistributions of D10
I(C)

that project

isomorphically onto the tangent spaces either on the first or the second copy

of M coincide with the distributions D± at the points of the real submanifold

H(M) ⊂ HC(M). For simplicity, we shall denote these subdistributions of

D10
I(C)

also by D±.

4. Instantons on hk manifolds and prepotentials

4.1. Instantons on hyperkähler manifolds

As usual, let (M, g, Jα) be an hk manifold and denote by TC

xM ≃ Hx ⊗
Ex, x ∈ M , the isomorphisms described in §2.1. The space of complex 2-

forms Λ2T ∗C
x M splits into three irreducible SL2(C)·Spn(C) moduli:

Λ2T ∗C
x M ≃ CωHx ⊗ S2E∗

x + S2H∗
x ⊗ CωEx + S2H∗

x ⊗ Λ2
0E

∗
x . (4.1)

Here ωHx and ωEx are the SL2(C)- and Spn(C)-invariant symplectic forms of

Hx and Ex, respectively, and Λ2
0Ex is the irreducible Spn(C)-submodule of

Λ2Ex complementary to CωEx . Since the isomorphism TC

xM ≃ Hx ⊗ Ex is

unique up to an action of an element in Sp1·Spp,q, the decomposition (4.1) is

independent of the isomorphism chosen.

Now, given a gauge field (E,D) on an hk manifold, we split the (C-linear

extension of the) curvature tensor Fx, x ∈M as follows:

Fx = F (1)
x + F (2)

x with F (1)
x ∈ CωHx⊗S

2E∗
x ⊗ End (Ex)

F (2)
x ∈ (S2H∗

x⊗(CωEx + Λ2
0E

∗
x))⊗ End (Ex) .

A gauge field (E,D) is called instanton if the F (2) component of its curvature

tensor vanishes everywhere. Such instantons provide minima of the Yang-

Mills functional
∫
M
|F |2ωg and are thus solutions of the Yang-Mills equations

[41]. Such instanton equations have been been studied by several authors

[34, 28, 9, 36, 1, 12].

Notice that the vanishing of F (2) corresponds to simple conditions on the

components F±a|±b = F (e±a, e±b) with respect to the complex frames (e±a)
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defined in (2.1). In fact, F (2) = 0 if and only if

F+a|+b = F−a|−b = 0 , F+a|−b = −F−a|+b , F+a|−b = F+b|−a . (4.2)

In four dimensions these are precisely the well-known anti-self-duality equa-

tions.

4.2. Central and exponential-central gauges on harmonic spaces

A gauge ϕ = (ϕV, ϕG) : P |V→V × G for the G-bundle P naturally corres-

ponds to a gauge for its lift P ′ on the harmonic space H(M), namely the

gauge ϕ defined on the restriction of P ′ to V× SL2(C) ⊂ H(M) by

ϕ : P ′|V×SL2(C) → V× SL2(C)×G , ϕ(u, U) := (ϕV(u), U, ϕG(u)) .

Such a gauge is called the central gauge determined by ϕ [24, 1].

Let us now introduce a very convenient special class of central gauges. Given

xo ∈ M , for any unit vector v ∈ TxoM we denote by γ
(v)
t = expxo(tv) the radial

geodesic determined by v. Now let V ⊂ TxoM be a neighbourhood of xo such

that the exponential map expxo : V ⊂ TxoM → M is a diffeomorphism onto

its image U = expxo(V). A gauge ϕ : P |U → U×G on the domain U = exp(V)

is called exponential if the corresponding potential A satisfies the following

conditions:

(a) A|xo = 0 and

(b) A(γ̇
(v)
t ) = 0 for all vectors γ̇

(v)
t tangent to the radial geodesics.

We shall call the central gauges for P ′ on H(M) determined by exponential

gauges for P on M exponential central (or just exp-central). We recall that

for any xo ∈ M there is always an exponential gauge on some appropriate

neighbourhood of xo [37]. Thus, for any (xo, U) ∈ H(M) there exists an

exp-central gauge for P ′ on a neighbourhood of (xo, U).

It is also known that for all cases in which (E,D) is the complexification

of a gauge field (Eo, Do) with compact structure group Go ⊂ G, if A is the

potential in an exponential gauge ϕ for the bundle P o with domain U ⊂ M ,

then there exists a constant cU, which depends only on U, such that

‖A‖C0(K,g) ≤ cU‖F‖
(ϕ)

C0(K,g) for K ⊂⊂ U , (4.3)

(see e.g. [37, Lemma 2.1]). Similar estimates clearly hold for potentials and

curvatures of the lifted gauge fields (E ′, D′) in exp-central gauges.

4.3. Prepotentials for instantons on hk manifolds

We recall that any hk manifold (M, g, (Jα)) has a natural structure of a

real analytic manifold and that in such a structure, the tensors g and Jα are

real-analytic [26]. Hence, if we lift g to H(M) as a tensor field with values

in D∗ ⊗ D∗, using real-analyticity, for each point (x, U) ∈ H(M) ⊂ HC(M)
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we may determine a tubular SL2(C)-invariant neighbourhood W ⊂ HC(M) of

(x, U), to which g extends as a C-linear tensor field in DC∗ ×DC∗.

We claim that an analogous extension property holds also for an instanton

on an hk manifold provided that it is a complexification of an instanton with

compact structure group. To prove this, let us introduce some additional

convenient notation. Given a gauge field (E,D) associated with (P, ω), let

H ⊂ TP ′ and HC ⊂ TCP ′ be respectively the real and complex horizontal

distributions of P ′ given by the kernels of the lifted connection ω′ on P ′.

Further, for any (real or complex) vector field X on H(M), let us denote by

Xh the uniquely associated vector field on P ′ with values in H or HC which

projects onto X .

Proposition 4.1. If (E,D) is an instanton on (M, g, (Jα)), which is the com-

plexification of a gauge field with compact structure group Go, all data of the

lifted pairs (E ′, D′) and (P ′, ω′) on H(M) are real analytic. Moreover, there

is a complex structure J ′ on P ′, invariant under G = (Go)C, which makes

p′ : P ′ → H(M) and the associated vector bundle pE
′

: E ′ → H(M) holo-

morphic bundles over H(M) with J ′-invariant connections.

It follows that, for any (xo, U) ∈ H(M) ⊂ HC(M), there are unique real-

analytic extensions of (E ′, D′) and (P ′, ω′) to some SL2(C)-invariant tubular

neighbourhood W ⊂ HC(M) of the real submanifold U := W∩H(M) contain-

ing (xo, U). Further, both the extended bundles E ′, P ′ have naturally extended

complex structures that make them holomorphic bundles over (HC(M), I(C))

and the extended connection ω′ is J ′C-invariant with respect to the complex

structure J ′C of P ′.

Finally, the components in holomorphic gauges of the extended connection

ω′ and of its (1, 0)-potential are holomorphic functions of any set of com-

plex coordinates (zℓ, wm, (uir)) of the complex manifold (HC(M) = M ×M ×

SL2(C), I
C) that correspond to complex coordinates (zℓ, zm = wm, (uir)) of the

submanifold H(M) ⊂ HC(M),

Proof. To prove these statements, we need the following simple lemma.

Lemma 4.2. The complex gauge field (E,D) is an instanton if and only if

the curvature F ′ of its lift (E ′, D′) on H(M) is such that

F ′(X+, Y+) = 0 = F ′(X+, Y+) for X+, Y+ ∈ D+ . (4.4)

Proof of Lemma. As observed above, each space D+|(x,U) or (more precisely,

its isomorphic projection onto TC

xM) is spanned by the vectors e+a of the

adapted frames u : Hn → TxM . Hence the curvature of (E,D) satisfies the

first condition in (4.2) if and only if F ′(X+, Y+) = 0 and F ′(X−, Y−) = 0 for

X±, Y± ∈ D±. The other conditions in (4.2) are direct consequences of the

decomposition of DC|(x,U) ≃ TC

xM into irreducible SU2-moduli.
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Due to this lemma and (2.4), the curvature 2-form Ω′ of the lifted connection

ω′ identically vanishes on any pair of horizontal lifts X01h, Y 01h ∈ HC of vector

fields X01, Y 01 in the anti-holomorphic distribution D− + V 01 = T 01H(M)

of (H(M), I), where D− and V 01 are the I-anti-holomorphic horizontal and

vertical distributions of H(M) described in §3.2. It follows that the subbundle

S01 ⊂ TCP ′ generated by the vectors X01h and the anti-holomorphic vertical

distribution of P ′ is an involutive complex distribution. The same holds for the

subbundle S10 = S01 ⊂ TCP ′. Hence the direct sum decomposition TCP ′ =

S10 + S01 corresponds to a G-invariant integrable complex structure J ′ on P ′.

Consequently, there is an atlas of complex charts for the complex manifold

(P ′, J ′) making P ′ a holomorphic G-bundle over H(M). Moreover, the lift

P o′ on H(M) of the bundle P o with compact structure group is necessarily a

real analytic submanifold of P ′ since it is the fixed point set of an appropriate

real analytic involution. One can also check that the restricted distribution

H|P o′ coincides with the distribution given by the J ′-invariant subspaces of

the tangent spaces of P o′. Since the latter is a real analytic distribution on

P o′ and the distribution H of P ′ is the unique G-invariant extension of H|P o′ ,

we conclude that also H is J ′-invariant on P ′. Consequently, the first claim

follows immediately.

Concerning the second claim, the same arguments as above yield the exist-

ence of a complex structure J ′C on the extended bundle P ′ (and, consequently,

a corresponding complex structure on the associated bundle E ′), which makes

it a holomorphic bundle over the complex manifold (HC(M), I(C)) and leaves

invariant the horizontal distribution H determined by the extended connection

1-form ω′. The final claim is a consequence of the fact that the extension to

W ⊂ HC(M) of every real analytic datum on H(M) is obtained by consider-

ing the power series of such a datum in the variables (zℓ, wm := z̄m, (uiℓ)) as

a power series in the independent complex variables (zℓ, wm, (uiℓ)), thus holo-

morphic in both the variables zℓ and wm. The holomorphy in the uiℓ follows

from the fact that ω′ is the lift of a connection form of p : P → M to the

bundle p′ : P ′ → H(M).

Consider the basis (Ho
0 , H

o
++, H

o
−−) of sl2(C) defined by

Ho
0 :=

(
1 0

0 −1

)
, Ho

++ :=

(
0 1

0 0

)
, Ho

−− :=

(
0 0

1 0

)
(4.5)

and denote by H0, H++, H−− the associated holomorphic vector fields on

H(M), determined as holomorphic parts of the infinitesimal transformations

of the right actions of the one-parameter groups generated by Ho
0 , H

o
++, H

o
−−.

The restrictions of such vector fields Hα to each vertical fiber {x}×SL2(C) ≃

SL2(C) are left invariant and generate a Lie algebra isomorphic to sl2(C).

We may now prove the theorem, on which all our results are based (see also

[1], Prop. 7 and Thm.4).
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Theorem 4.3. Given a real analytic complex instanton (E,D) and a point

(xo, xo, U) ∈ H(M), there exists an SL2(C)-invariant neighbourhood U ⊂

HC(M) of (xo, U) and a holomorphic gauge ϕ : P ′|U → U×G of the HC(M)-

extension of the lifted bundle of P with associated (1, 0)-potential A satisfying

the conditions

A(H0) = A(X−) = 0 , X− ∈ D− . (4.6)

Such a potential A is uniquely determined by the g-valued function A−− :=

A(H−−) in the following sense: given the lift (Ê ′, D̂′) on H(M) of a real

analytic complex instanton (Ê, D̂) on M , if Ê ′|U coincides with E ′|U and if

furthermore the (1, 0)-potential Â of (Ê ′, D̂′) in a holomorphic gauge satisfies

(4.6), then

D̂′|U∩H(M)=D
′|U∩H(M) ⇐⇒ Â(H−−)|U∩H(M)=A(H−−)|U∩H(M) . (4.7)

Remark 4.4. Note that by D̂′|U∩H(M)=D
′|U∩H(M) we mean that the differen-

tial operators D′, D̂′ are identical, not just equivalent up to an automorph-

ism (gauge transformation) of Ê ′|U. However, (4.7) implies a bijective cor-

respondence between covariant derivatives and their potential components

A−− = A(H−−). This induces a natural bijective correspondence between

equivalence classes of instantons up to local automorphisms and equivalence

classes of (1, 0)-potential components A−− = A(H−−) up to appropriate gauge

transformations (2.2). In fact, the required gauge transformations are precisely

those leaving condition (4.6) unchanged.

Proof. Let us extend (P ′, ω′) to an SL2(C)-invariant tubular neighbourhood

W ⊂ HC(M) ofH(M) and consider the two G-invariant complex distributions

Dh
− and Dh

−⊕ < Hh
0 > on the extended bundle P ′, the former generated by the

horizontal lifts Xh of the complex vector fields in D−, the latter generated by

the complex vector fields in Dh
− and the horizontal lift Hh

0 of the holomorphic

vector fieldH0 ofH
C(M). We recall that the distributionD− is spanned by the

complex vector fields e−a described in §2.1. Using this and the identification,

described in Remark 3.1, between the points of H(M) and the frames for the

fibers Hx of the bundle H, the distribution D− is seen to be invariant under

the flow of the vector field H0. This implies that the horizontal distribution

Dh
− is invariant under the flow of the horizontal vector field Hh

0 .

By Lemma 4.2, the curvature 2-form Ω′ of ω′ vanishes identically on the

distribution Dh
−, meaning that Dh

− is involutive. Moreover, from the last

claim in Proposition 4.1, Dh
− is generated by holomorphic vector fields of the

holomorphic bundle π : P ′ → W ⊂ HC(M). Hence, by the complex Frobenius

Theorem, for each yo = (xo, xo, U, g) ∈ P ′|H(M) there is an SL2(C)×G-invariant

neighbourhood P ′|U of yo, which is holomorphically foliated by integral leaves

of Dh
−. Note that the union of the Hh

0 -orbits of the points of one such integral

leaf is an integral leaf of the larger complex distribution Dh
−⊕ < Hh

0 >. It

follows that P ′|U is actually holomorphically foliated by the integral leaves of
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this larger distribution and we may consider a holomorphically parameterised

family of integral leaves of this distribution, which fills a complex submanifold

S′ transversal to the G-orbits at each point. Without loss of generality, we

may also assume that such a submanifold S′ projects biholomorphically onto

an SL2(C)-invariant neighbourhood U ⊂ HC(M) of (xo, xo, U) and hence it is

a graph of a holomorphic section of the G-bundle P ′. Associated with such a

section, there is a unique holomorphic gauge ϕ : P ′|U → U × G mapping S′

onto the trivial section U× {e} of the trivial bundle U×G. By construction,

the (1, 0)-potential A in such a gauge satisfies (4.6).

Suppose now that (Ê ′, D̂′) is a real analytic lifted instanton associated

with the pair (P̂ ′, ω̂′), and assume that Â(H−−)|U∩H(M)=A(H−−)|U∩H(M). By

real analyticity, we may assume that U is such that Â(H−−)|U = A(H−−)|U.

Thus, the horizontal lifts Hh
α, Ĥ

h
α of the holomorphic vector fields Hα, α ∈

{0,++,−−}, determined by the connection forms ω′ and ω̂′, respectively, have

the forms

Ĥh
0 = Hh

0 , Ĥh
−− = H−− + Â−− = H−− + A−− = Hh

−−,

Ĥh
++ = H++ + Â++ , Hh

++ = H++ + A++ , (4.8)

where we denote by A±± := A(H±±), Â±± := Â(H±±) the components along

the vector fields H±± of the corresponding (1, 0)-potentials. Setting B++ :=

Â++ − A++, the expansions (4.8) can be written as

Ĥh
0 = Hh

0 , Ĥh
++ = Hh

++ +B++ , Ĥh
−− = Hh

−− . (4.9)

Since the considered principal bundles P ′, P̂ ′ are lifts to H(M) of bundles over

M , the Lie brackets among the horizontal lifts of vector fields HA coincide with

the Lie brackets among their projections (see (2.10)) so that

[Ĥh
0 , Ĥ

h
++] = 2Ĥh

++ , [Ĥh
++, Ĥ

h
−−] = Ĥh

0 .

This and (4.9) imply that the g-valued holomorphic function B++ is such that

Hh
0 ·B++ = 2B++ , Hh

−−·B++ = 0 .

On the other hand, by Proposition 2.2, the vector fields Hh
0 , H

h
++, H

h
−− gener-

ate a right holomorphic SL2(C)-action on P ′|U and the bundle P ′|U is foliated

by regular orbits of this action (thus, each such orbit is identifiable with a

copy of SL2(C)). We may therefore apply Lemma 5.3 in [16] (see also [24],

§4.3) – considered for the pair of vector fields H0, H−− in place of the pair H0,

H++ – to the restrictions of B++ to each such orbit. This lemma implies that

B++ is identically vanishing along each such orbit. It follows that B++ ≡ 0,

i.e. Â++ ≡ A++, and that Ĥh
++ = Hh

++.

In order to conclude that D̂′ = D′, it is now sufficient to prove the existence

of a collection of holomorphic vector fields (e+a, e−b) on U ⊂ HC(M) with the

following two properties: a) they span a distribution which is complementary
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to the one generated by the vector fields HA and b) the remaining compon-

ents Â±a := A(e±a) and A±a = A(e±a) of the potentials of D̂′ and D′ are

identical. Let us consider a set of (locally defined) holomorphic vector fields

(e−a) generating the distribution D− and projecting pointwise onto vectors

e−a ∈ TCM determined by adapted frames as in §2.1. Since the vector fields

e−a are eigenvectors with eigenvalue −1 for the action of the complex vec-

tor field H0, the vectors e+a := [H++, e−a] are eigenvectors with eigenvalue

+1 for the same action. This implies that the e+a generate the distribution

D+ and that (e+a, e−b) is a collection of generators for the distribution D10
IC

complementary to the distribution spanned by the HA. Moreover, their cor-

responding lifts eh±a, ê
h
±a, determined by the two connection forms ω′, ω̂′, are

such that

[Hh
++, e

h
−a] = eh+a , [Ĥh

++, ê
h
−a] = êh+a . (4.10)

Setting A±a:=A(e±a), Â±a:=Â(e±a) and recalling that, by hypothesis, A−a =

Â−a = 0, we have that (4.10) implies −eh−a·A++ = A+a and −eh−a·Â++ = A+a.

Since we have proven that Â++ ≡ A++, this gives Â±a ≡ A±a, as desired.

We call the g-valued map A−−|U∩H(M) := A(H−−|U∩H(M)), which uniquely

determines the extended holomorphic function A−−|U and thereby the gauge

field (E ′|U, D
′), a prepotential on U ∩ H(M) for the instanton (E,D). The

holomorphic gauges of the (extended) lifted bundle P ′ in which the potential

of ω′ satisfies (4.6) are called analytic.

Remark 4.5. The previous literature on the harmonic space formulation e.g.

[23, 22, 24, 1] used gauge conditions A0 = A+a = 0 and prepotentials A++.

Here we choose to reverse the role of the signs. This has the advantage that

prepotentials are holomorphic rather than anti-holomorphic with respect to

the complex structure I of H(M) (see Remark 4.7).

4.4. Analytic gauges, bridges and normalisations

Assume that our instanton (E,D) is the complexification of an instanton

with compact structure group Go over the hk manifold (M, g, (Jα)). Around

each (xo, U) ∈ H(M) there are two very important classes of gauges to be

considered: the exp-central gauges and the analytic gauges. Let us briefly

compare their main features:

– If ϕ : P ′|V×SL2(C) → V×SL2(C)×G is (the restriction to H(M) ⊂ HC(M)

of) an analytic gauge, the corresponding holomorphic potential A for ω

is such that A0 := A(H0) is identically vanishing and A(X−) = 0 for any

vector field X− ∈ D−. In contrast with this, the functions A±± := A(H±±)

and the functions A(X+), X+ ∈ D+, are in general non-trivial.

– If ϕ̃ : P ′|V×SL2(C) → V × SL2(C) × G is an exp-central gauge, the cor-

responding potential Ã is such that the components Ãα = Ã(Hα), α ∈

{0,++,−−}, identically vanish, while all functions Ã(X±), X± ∈ D±, are
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in general non-trivial, being nevertheless constrained by the conditions (a),

(b) in §4.2.

The maps g : U × SL2(C) → G, which give the gauge transformations h →

g(x,U)·h from central gauges to analytic gauges are usually called bridges (e.g.

[23, 24, 1]). Now, since G is the complexification of the compact Lie group

Go, it is reductive and the exponential e(·) : g → G is a surjective local

diffeomorphism. This means that any bridge g(x,U) can be written as g(x,U) =

eψ(x,U) for some appropriate g-valued function ψ. We call ψ a g-bridge.

In the next lemma we shall give the proof of existence of bridges and g-

bridges, having the special property that the prepotentials determined in the

newly built analytic gauges satisfy additional normalisation conditions, which

drastically reduce their degrees of freedom. Such normalised analytic gauges

can be considered as complex analogues of the Coulomb gauges for arbitrary

gauge fields.

In order to properly state such a normalisation, we need to introduce some

appropriate notation. Given xo ∈M and a (sufficiently small) simply connec-

ted neighbourhood V ⊂ M of xo, let (e+a, e−b) be a 4n-tuple of holomorphic

vector fields of HC(M) that generate the distributions D± ⊂ TC(V × V ×

SL2(C)) (⊂ TCHC(M)), constructed as in the proof of Theorem 4.3. Then,

pick an element Uo ∈ SL2(C), say Uo = ( 1 0
0 1 ), and let λa, µ : V×V×SL2(C) →

C2n, a = 1, . . . , 2n, be a set of 2n + 1 holomorphic functions satisfying the

following conditions

H++·λ
a = 0 , H++·µ = −1 , H0·λ

a = H0·µ = 0 ,

e+b·λ
a = δab , e+b·µ = 0 , λa|(xo,xo,Uo) = µ|(xo,xo,Uo) = 0 .

(4.11)

By [16, Lemma 5.2], functions satisfying the first line of these conditions surely

exist and are determined up to addition of a holomorphic function constant

along each SL2(C)-orbits. Using the commutation relations between H++,

H0 and e+a, we can see that also the second line of these conditions can

be satisfied, fixing the λa and µ completely. Now consider the holomorphic

distribution D̃ ⊂ TC(V× V× SL2(C)) generated by the vector fields

e+a , H++ , H̃−− := H−− + λae−a + µH0 ,

which can be directly checked to be involutive. Finally let Ŝ and S be two

complex submanifolds of V × V × SL2(C) ⊂ HC(M), one included in the

other, which are integral leaves of the holomorphic distributions D+ and D̃,

respectively, and both passing through (xo, xo, Uo). Note that each tangent

space of S is complementary to D−|(x,y,U)+ < H0|(x,y,U) >.

We may now state and prove the advertised existence result.

Lemma 4.6. Let ϕ̃ : P ′|V×SL2(C) → V× SL2(C)× G be an exp-central gauge,

determined by an exponential gauge for (P, ω) on a simply connected neigh-

bourhood V ⊂ M around xo ∈ M , and Ã the associated potential for ω. Let
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also Ŝ ⊂ S ⊂ V × V × SL2(C) be the pair of complex submanifolds passing

through (xo, Uo) described above. If V is sufficiently small, there exists an ana-

lytic gauge ϕ : P ′|V×V×SL2(C) → V×V× SL2(C)×G, in which the prepotential

A−− is such that

H0·A−− = −2A−− , e−a·A−− = 0 , H−−·A−− = 0 ,

A−−|Ŝ = −λaÃ−a|Ŝ , H++·A−−|Ŝ = −λaÃ+a|Ŝ. (4.12)

Proof. For simplicity, we use ϕ̃ to identify P ′|V×SL2(C) with V× SL2(C)× G

so that we may assume that the considered exp-central gauge is nothing but

the identity map. Let us consider the integral leaves in V× V × SL2(C)× G

of the holomorphic distribution Dh
−+ < Hh

0 >, which passes through the

points of the manifold S × {e} ⊂ V × V × SL2(C) × {e}. Being horizontal,

they are transversal to the G-orbits and, by dimension counting, they fill

a submanifold S′ ⊂ P ′ which projects diffeomorphically onto an SL2(C)-

invariant neighbourhood V′×V′×SL2(C) of (xo, xo, Uo). Thus there is a gauge

ϕo : P ′|V×V×SL2(C) → V × V × SL2(C) × G, which maps S′ into the submani-

fold V×V× SL2(C)×{e} and which we may assume to satisfy the condition

ϕo|S×{e} = IdS×{e} (see also the proof of Theorem 4.3). By construction, ϕo

is an analytic gauge and the bridge g(x,y,U) from ϕ̃ = Id to ϕo is such that

h 7→ go(x,y,U)·h = e·h for each (x, y, U) ∈ S. Hence, writing this bridge in the

form go(x,y,U) = eψ
o(x,y,U) for an appropriate g-bridge ψo, we have that ψo|S ≡ 0.

Note that ψo satisfies the equations H0·ψ
o = 0 and e−a·ψ

o + Ã(e−a) = 0 be-

cause of the following three properties: a) in any central gauge the potential

Ã satisfies Ã(H0) = 0; , b) the potential Ao in the analytic gauge ϕo satisfies

(4.6) and c) the potentials Ã and Ao are related by (2.2).

Let us now denote by Ao−− the prepotential of the given instanton in this

gauge ϕo. Expanding the identities Fϕo(H0, H−−) = Fϕo(e−a, H−−) = 0 in

terms of the potential Ao in this gauge and recalling that, being an ana-

lytic gauge, we have Ao0 = Ao−a = 0, we find that H0·A
o
−− = −2Ao−− and

e−a·A
o
−− = 0, i.e. the first two conditions of (4.12). We remark that these two

conditions are satisfied by any prepotential, being merely consequences of the

above properties of the curvature.

However, the prepotential Ao−− does not necessarily satisfy the other condi-

tions in (4.12) also. To get a prepotential with such additional properties, we

need to further change ϕo into a new (further restricted) gauge ϕ, which pre-

serves the property of being analytic, i.e. with (1, 0)-potential components A0

and A−a identically vanishing and with A−− satisfying the first pair of equa-

tions in (4.12). In order to determine this new analytic gauge ϕ, let us consider

the (2n+2)-dimensional involutive distribution D̂ ⊂ TC(V×V×SL2(C)×G)

generated by the holomorphic vector fields H0, H±± + Ao±± and e−a. Then,

for each point (x, y, Uo, g) of the manifold Ŝ×G, consider the unique integral
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leaf through (x, y, Uo, g) of this distribution T(x,y,Uo,g) ⊂ V× V× SL2(C)×G.

Now we may determine a G-equivariant g-valued holomorphic function h−− on

T(x,y,Uo,g) (the G-equivariance being with respect to the standard right action

of G on V × V × SL2(C) × G and the adjoint G-action on g) satisfying the

equations

H0·h−− = −2h−− , H−−·h−− = −H−−·A
o
−− − [h−−, A

o
−−] , e−a·h−− = 0 .

(4.13)

Once again, the existence of such an h can be checked using [16, Lemma 5.3].

Indeed, one can construct a solution to the first two conditions as follows.

Along the image of T(x,y,Uo,g) under the inverse gauge transformation ϕ̃◦ϕo−1(=

ϕo−1) (note that, by G-equivariance of the trivialisation, each intersection of

the submanifold ϕo−1(T(x,y,Uo,g)) with a vertical set {(x̃, ỹ)} × SL2(C) × G is

entirely included in a submanifold of the form {(x̃, ỹ)}×SL2(C)×{g}) we may

consider a G-equivariant g-valued solution h̃−− to the differential problem

H0·h̃−− = −2h̃−− , H−−·h̃−− = −H−−·
(
Ao−− ◦ ϕo

)
, eo−a·h̃−− = 0 .

(4.14)

By [16, Lemma 5.3], applied to the pair of vector fields H0, H−− in place of

the pair H0, H++, such a solution h̃−− exists. The corresponding function

h−− = h̃−− ◦ ϕo−1 is therefore a solution to (4.13). Note that the solution

h̃−− to (4.14) is uniquely determined up to addition of a solution k̃−− of the

associated system

H0·k̃−− = −2k̃−− , H−−·k̃−− = 0 , eo−a·k̃−− = 0

and that such a solution k̃−− can be assumed to take any desired valued at

the points of V × V × {Uo} × G. This can be checked by observing that an

explicit expression for any holomorphic solution k̃−− is actually determined in

[16, Lemma 5.3] as

k̃−−(x, y, U, g) =
∑

m,n≥0
m+n=2

cmn(x, y, g)(u
1
−)

m(u2−)
n ,

with U = (ui±). Observing that the matrix Uo = I2 has entries u1−, u
2
− equal

to 0, 1, respectively, by appropriately choosing the component c02(x, y, g), the

function can take any desired value at the points of V× V× {Uo} ×G. Since

ϕo((V×V×{Uo}×G)∩ Ŝ) ⊂ (V×V×{Uo}×G)∩ Ŝ, such a residual degree

of freedom for the h̃−− can be used to make the restriction h−−|Ŝ∩T(x,Uo,g)

identically zero.

We combine the solutions along the leaves T(x,y,Uo,g), (x, y, Uo, g) ∈ Ŝ × G,

into a global solution of (4.13) on V × V × SL2(C) × G and restrict such a

globally defined g-valued map h−− to the submanifold V×V×SL2(C)×{e} ≃

V × V × SL2(C). Then, along each integral leaf in V × V × SL2(C) of the

distribution spanned by Hα and e−a, we may consider a new g-valued function
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ψ′ satisfying the differential problem

H0·ψ
′ = 0 , H−−·ψ

′ = h−− , e−a·ψ
′ = 0 .

The same argument as before shows the existence of such a solution. Moreover,

the residual degree of freedom in the choice of the solution may be used to set it

to 0 at each point of the form (x, y, Uo). Combining the solutions along all the

considered integral leaves, we get a global solution ψ′ such that ψ′(x, y, Uo) = 0

for all (x, y) ∈ V× V and satisfying the differential problem

H0·ψ
′ = 0 , H−−·(H−−·ψ

′) = −H−−·A
o
−− − [H−−·ψ

′, Ao−−] , e−a·ψ
′ = 0 .

(4.15)

Let us now consider the new gauge ϕ, obtained by applying to the analytic

gauge ϕo the gauge transformation g(x,y) = eψ
′

(x,y), (x, y) ∈ V × V. Recall-

ing that Ao0 = Ao−a = 0, we see that the potential in the new gauge ϕ has

components A0, A−−, A−a given by

A0 = e− adψ′ (Ao0 +H0·ψ
′) = 0 , A−a = e− adψ′ (Ao−a + e−a·ψ

′) = 0 ,

A−− = e− adψ′ (Ao−− +H−−·ψ
′) . (4.16)

From this and (4.15), it follows that

H−−·A−− = eadψ′
(
[H−−·ψ

′, Ao−−] +H−−·A
o
−− +H−−·(H−−·ψ

′)
)
= 0

and, with a similar computation, that H0·A−− = −2A−− and e−a·A−− = 0.

In other words, the new prepotential A−− satisfies all three conditions in the

first line of (4.12). To check the last two normalising conditions, we recall at

first that in any central frame, the corresponding potential Ã satisfies

H0·Ã−a = −Ã−a , H++·Ã−a = Ã+a , H−−·Ã−a = 0 .

Hence, if we differentiate the identity ψo|S = 0 in directions tangent to S,

using (4.11), (4.12) and commutation relations we get

e+a·ψ
o|S = H++·ψ

o|S = H−−·ψ
o|S + λaÃ−a|S = 0 . (4.17)

Since eψ
o
|S = Id, we conclude that Ao−−|S = Ã−−|S +H−−·ψ

o|S = −λaÃ−a|S.

Now, from (4.15), the property that Ŝ ⊂ S and ψ′|Ŝ = H−−·ψ
′|Ŝ = 0, the

second line in (4.12) follows immediately.

The g-bridge ψ, the corresponding analytic gauge ϕ and the associated pre-

potential A−− established by Lemma 4.6 are called normalised at (xo, xo, Uo).

Remark 4.7. The proof of the previous theorem shows that any prepotential

A−− (not just the normalised ones) is such thatX−·A−− = 0 for any horizontal

vector field in the distribution D−. On the other hand, we also have that:

a) F (V, ·) = 0 for any vertical vector field V of HC(M), i.e. for any V

which is tangent to the vertical fibers {(x, y)} × SL2(C) of H
C(M).
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b) The vertical anti-holomorphic distribution of HC(M) is spanned by

right-invariant vector fields along the fibers {x}×SL2(C), which there-

fore commute with the left-invariant holomorphic vector field H−−.

c) The holomorphic potential A in an analytic gauge vanishes identically

along the anti-holomorphic vector fields of HC(M). This is due to Pro-

position 4.1 and the fact that the analytic gauges are holomorphic with

respect to the complex structures of the extended P ′ over (HC(M), IC).

From (a), (b), (c) and the explicit expression of F in terms of a potential

it follows that, for any anti-holomorphic vertical vector field V 01 of HC(M),

we have V 01·A−− = 0. This and the above property X−·A−− = 0 prove

that for any prepotential A−− defined on some open set W of the complexified

harmonic space (HC(M), IC), the restriction A−−|H(M)∩W is also holomorphic

with respect to the complex structure I of the harmonic space H(M).

5. Existence, uniqueness and compactness theorems

5.1. Existence and uniqueness of an instanton with a given prepo-

tential

Theorem 5.1. Let V ⊂ M be open and simply connected. For any map

A−− : V×SL2(C) ⊂ H(M) → g, which is holomorphic (i.e. with X−·A−− = 0

for any X− ∈ D− and holomorphic in the complex coordinates of SL2(C)) and

satisfies

H0·A−− = −2A−− , (5.1)

there is a unique instanton (E|V, D) on V and an analytic gauge ϕ :P |V×SL2(C)→
(V×SL2(C))×G, for which A−− is the prepotential in that gauge.

Proof. In order to prove the existence of an associated instanton, we proceed

as in the proof of [1, Thm. 4] and we consider an orbit {x}×O ⊂ V×SL2(C)

of the Borel subgroup B ⊂ SL2(C), generated by 〈Ho
−−, H

o
0〉 ⊂ sl2(C), i.e.

B =

{ (
ζ 0

z ζ−1

)
, (ζ, z) ∈ C

∗ × C

}
⊂ SL2(C) .

Along such an orbit, we may consider the unique g-valued connection for the

G-bundle {x} × O × G, whose (1, 0)-potential is defined by A(H−−) = A−−

and A(H0) := 0. Due to (5.1) and the fact that [H0, H−−] = −2H−−, such a

connection has zero curvature. Hence there exists a new holomorphic gauge

ϕ : {x} × O × G → {x} × O × G which fixes all points of {x} × O × {e}

and transforms A into the identically vanishing potential. By (2.2), this is

tantamount to saying that the associated gauge transformation g(x,U), (x, U) ∈
{x} × O, is a solution to the differential problem

H0·g = 0 , H−−·g + A−− = 0 , g|(x,U) = e . (5.2)
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Since the space of all B-orbits {x}×O in V×SL2(C) is diffeomorphic to V×CP 1

and is therefore simply connected, all these new gauges combine into a globally

defined gauge

ϕ : V× SL2(C)×G→ V× SL2(C)×G , (5.3)

which maps each B×G-orbit into itself and satisfies (5.2) at all points. We

may now consider the g-valued map on V× SL2(C)

A++ : V× SL2(C) → g , A++ := −(H++·g)g
−1 .

Combining this function with the g-valued maps A−− and A0 = 0, we may

construct the G-invariant vector fields Hh
0 , H

h
±± on V×SL2(C)×G, which on

the submanifold V× SL2(C)× {e} are

Hh
0 |V×SL2(C)×{e} := H0|V×SL2(C)×{e} ,

Hh
±±|V×SL2(C)×{e} := H±±|V×SL2(C)×{e} + A±± .

(5.4)

By real analyticity, there is an open U⊂HC(M) with U∩H(M) = V×SL2(C),

where these vector fields extend as holomorphic fields on U×G. Moreover,

by the construction of A−− and of the map (5.3), along each fiber {x} ×
SL2(C) × G, the functions A0 := 0, A±± can be considered as the three

components of the holomorphic potential of a connection for the G-bundle

π(x) : {x}×SL2(C)×G → {x}×SL2(C), which is transformed by the gauge ϕ

into the trivial potential. This means that the associated covariant deriv-

ative has identically vanishing curvature, i.e. F (Hα, Hβ) ≡ 0 for all α, β ∈

{0,++,−−}.

These connections on the submanifolds {x}×G of the open set U×SL2(C)×

G can be considered as restrictions of a G-connection on the (trivial) bundle

p : U × G → U, with associated holomorphic potential A : U → T ∗U ⊗ g

satisfying

A(Hα) := Aα , α ∈ {0,++,−−} ,

A(X−) := 0 , for any X− ∈ D− , (5.5)

A(e+a) := −e−a·A++ for any frame field (e+a, e−b) generating D+ ⊕D−

and projecting onto the complex frames (e±a) of M

described in §2.1 (for their existence, see below).

We now need to show that the curvature of the associated covariant derivative

D′ satisfies the following equalities for each X±, Y± ∈ D±:

F (X+, Y+) = 0 = F (X−, Y−) ,

F (Hα, X+) = 0 = F (Hα, X−) , α ∈ {0,++,−−} .
(5.6)

This would conclude the proof. Indeed, by Proposition 2.2 and Lemma 4.2,

it would imply that the corresponding gauge field (E ′|U, D
′) is the extension

to U ⊂ HC(M) of the lift of an instanton (E|V, D) on V and with A−− as

prepotential. Further, by the above definition of the potential, the trivial
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gauge ϕ = IdV×V×SL2(C)×G would be an analytic gauge for such an instanton.

Hence, by Theorem 4.3, any instanton having prepotential A−− in such a

gauge would necessarily coincide with (E|V, D).

In order to prove (5.6), for each given point (xo, yo, Uo) ∈ U ⊂ HC(M) =

M ×M × SL2(C) we select a (locally defined) collection of I(C)-holomorphic

vector fields (e+a, e−a), which generate the distribution D+ ⊕D− and project

to the complex vectors in TCM determined by adapted frames of M and de-

scribed in §2.1. A collection of vector fields e±a of this kind can be constructed

through the following three step procedure:

1) Pick a local section σ : U′ → Og(V×V, Jα) of the bundle of adapted frames

over V× V.

2) Consider the restrictions to the section σ(U′) of the canonical horizontal

vector fields ∇e±a := e±a+Γ±a
J
I determined by the Levi-Civita connection

(here, the Γ±a
J
I are the Christoffel symbols).

3) Take the projections (e±a) of the vector fields ∇e±a := e±a+Γ±a
J
I onto the

underlying open set U′.

Since the Levi-Civita connection has vanishing torsion, the vector fields e±a
constructed in this way are such that

[e+a, e+b] = 0 = [e−a, e−a] . (5.7)

Further, just by looking at the standard action of the Ho
α ∈ sl2(C) on the

elements (hoi ⊗ eoa) ⊂ C2 ⊗C2n ≃ (Hn)C, the actions of the vector fields Hα of

HC(M) =M ×M × SL2(C) on the e±a are

[H0, e±a] = ±e±a , [H±±, e±a] = 0 , [H±±, e∓a] = e±a . (5.8)

Hence, by (2.5) and the assumption A(H0) = A(e−a) = 0,

F (H0, e−a) = F (e−a, e−b) = 0 . (5.9)

From condition A(e+a) = −e−a·A(H++), we also have

F (H++, e−a) = −e−a·A(H++)− A(e+a) = 0 ,

F (H−−, e−a) = −e−a·A(H−−) = −e−a·A−−
(5.1)
= 0 .

(5.10)

Finally, from (5.9), (5.10), the property F (Hα, Hβ) = 0 and Bianchi identities
∑

cyclic permutations
of (1,2,3)

D′
Xi1
F (Xi2 , Xi3) + F (Xi1, [Xi2 , Xi3]) = 0 (5.11)

with X1, X2, X3 equal to the triple H++, H−−, e−a or to the triple H++, H0,

e−a, we get that F (H−−, e+b) = 0 = F (H0, e+b). All this shows that

F (e−a, e−b) = 0 ,

F (Hα, e−a) = 0 , α ∈ {0,++,−−} ,

F (H0, e+a) = F (H−−, e+a) = 0 .

(5.12)
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Now, in order to conclude the proof we need the following

Lemma 5.2. The components F (H++, e+a), F (e+a, e+b), 1 ≤ a, b ≤ 2n, of

the above defined covariant derivative D′ are identically vanishing.

Proof of Lemma. We recall that, by real analyticity, F (H++, e+a), F (e+a, e+b)

are extended as holomorphic functions on an SL2(C)-invariant neighbourhood

U × {e} ⊂ HC(M) × {e} of V× SL2(C)× {e}. Note also that, due to (5.12)

and Bianchi identities amongst the vector fields H0, H++, e+a or H++, H−−,

e+a, respectively, we have that

D′
H0
F (H++, e+a) = 3F (H++, e+a) ,

D′
H−−

F (H++, e+a) = 0 .
(5.13)

If we consider the (holomorphic extensions of the) G-invariant vector fields

Hh
0 , H

h
±± on V× SL2(C)×G defined by (5.4) and the G-equivariant function

F+++a : U×G→ g , F+++a|U×{e} := F (H++, e+a) ,

we see that (5.13) is equivalent to the system of equations for the F+++a

Hh
0 ·F+++a = 3F+++a ,

Hh
−−·F+++a = 0 .

(5.14)

By [16, Lemma 5.3] (or, more precisely, by its analogue involving the vector

field H−− in place of H++) the restriction of (5.14) to each orbit O ⊂ U×G of

the SL2(C)-action generated by the Hh
α, admits exactly one solution, namely

the identically zero function. It follows that F+++a = F (H++, e+a) ≡ 0 on

V× SL2(C)×G.

Let us now focus on the components F (e+a, e+b). By (5.12) and Bianchi

identities (5.11) amongst the vector fields H0, e+a, e+b and H−−, e+a, e+b, we

have that

D′
H0
F (e+a, e+b) = 2F (H++, e+a) ,

D′
H−−

F (e+a, e+b) = F (e+a, e−b)− F (e+b, e−a) = 0 ,
(5.15)

where the last equality is a consequence of the fact that A−a = 0 and of

F (e+a, e−b) = e−b· (e−a·A++)
[e−a,e−b]=0

= e−a· (e−b·A++) = F (e+b, e−a) . (5.16)

By the same argument as before, the unique G-equivariant extension of the

g-valued function F++ab := F (e+a, e+b) is solution to the differential problem

Hh
0 ·F++ab = 2F++ab and H

h
−−·F++ab = 0. As above, by [16, Lemma 5.3], we

get that F++ab = F (e+a, e+b) vanishes identically.

From (5.12) and Lemma 5.2, all conditions in (5.6) are satisfied.
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5.2. Bounds for normalised prepotentials

Let V × SL2(C) be an SL2(C)-invariant open subset of H(M) with V ⊂

M relatively compact and simply connected and such that V × SL2(C) is

a domain for both an exp-central gauge ϕ̃ and an analytic gauge ϕ for an

instanton (E,D) which is normalised around (xo, xo, Uo := I2)∈V×V×SL2(C),

with xo ∈ V. Let us also denote by A−− : V × SL2(C)→g the corresponding

normalised prepotential.

Theorem 5.3. There exists a relatively compact simply connected neighbour-

hood V′ ⊂ V of xo, such that for each compact subset K ⊂ V′ × SL2(C), there

is a constant cK,V > 0, depending just on the compact sets K and V, such that

‖A−−‖C0(K,g) ≤ cK,V‖F‖
(ϕ̃)

C0(V,g)
. (5.17)

Proof. Let Ŝ ⊂ V×V×SL2(C) be the complex submanifold passing through

(xo, xo, I2) and defined in §4.4, and for each (x, y, U) ∈ Ŝ, let S(x,y,U) be the

unique integral leaf through (x, y, U) of the complex distribution generated by

the holomorphic vector fields e−a and H0 of H
C(M). Let also V′ be a relatively

compact connected open subset of V which contains (xo, xo, I2) and such that

the SL2(C)-invariant set V′ × V′ × SL2(C) is included in

V′ × V′ × SL2(C) ⊂
⋃

(x,y,U)∈Ŝ

S(x,y,U) ∩ (V× V× SL2(C)) . (5.18)

The existence of such a V′ is guaranteed by the fact that the family of integral

leaves S(x,y,U) is SL2(C)-invariant. The condition (5.18) is chosen to ensure that

any point of V′ ×V′ × SL2(C) ⊂ HC(M) lies in some (connected) intersection

S(x,y,U) ∩ (V× V× SL2(C)).

Let K ⊂ V′ × SL2(C) ⊂ H(M)(⊂ HC(M)) be compact and denote by

K ′ ⊂ Ŝ the set of points (x, y, U) ∈ Ŝ such that S(x,y,U) ∩K 6= ∅. The set K ′

is compact. Indeed, it is the intersection between Ŝ and the compact set of

the (regular) orbits of the points of K by the action on V×V× SL2(C) of the

local group generated by the holomorphic vector fields H0 and e−a.

Since A−− satisfies (4.12), by integration of the conditions e−a·A−− = 0 and

H0·A−− = −2A−− along each connected intersection S(x,y,U)∩V×V×SL2(C),

it follows that there exists a constant C
V
> 0, depending only on V, such that

‖A−−‖C0(K,g) ≤ CV

(
sup

(x,y,U)∈K ′⊂Ŝ

‖A−−‖

)
= CV‖A−−‖C0(K ′,g) .

On the other hand, by the second line in (4.12),

‖A−−‖C0(K ′,g) ≤ C ′
K ′‖Ã‖C0(K ′,g)

for some constant C ′
K ′ depending only on the set K ′ or, equivalently, only

on the compact set K. From this and the fact that Ã does not depend on

the coordinates of SL2(C), we infer that ‖A−−‖C0(K,g) ≤ C
V
C ′
K ′‖Ã‖C0(p1(K ′),g),
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where p1 : H(M) = M × SL2(C) → M is the projection onto the first factor.

Since p1(K
′) ⊂ V, the claim follows from (4.3).

5.3. The second prepotential and the curvature of instantons

Let V × SL2(C) be an SL2(C)-invariant open subset of H(M) with simply

connected V ⊂M , which is domain for both an exp-central gauge ϕ̃ and a (not

necessarily normalised) analytic gauge ϕ. Further, let A−− : V× SL2(C) → g

be the prepotential of an instanton (E ′, D′) in the analytic gauge ϕ.

Definition 5.4. The second prepotential in the analytic gauge ϕ is the g-

valued map A++ := A(H++) : V× SL2(C) → g, determined by the evaluation

of the holomorphic (1, 0)-potential A of the extension on HC(M) of the pair

(P ′, ω′) along the vector field H++.

In what follows, to keep a clear distinction between A−− and A++, we

sometimes call A−− the first prepotential. Either function yields a complete

local description of instantons on hk manifolds, since either one is completely

determined by the other. However, in our framework, some features of the

two descriptions are complementary:

1) A−− is holomorphic on (H(M), I) and is a solution to the simple first

order linear equation H0·A−− = −2A−−. If no normalisation is taken,

there are no further restrictions. However, there is no direct way to

compute the curvature tensor from A−−.

2) A++ satisfies a (set of) second order nonlinear equations, but in terms

of it the curvature is given by the simple formula,

F
ϕ(e+a, e−b) = e−a·(e−b·A++) , (5.19)

i.e. the non-trivial components of the curvature are just the second

order derivatives of A++ along the anti-holomorphic directions e−a.

The above-mentioned nonlinear equation for A++ has been used in various

contexts in the physics literature, where it is known as the Leznov equation

(see e.g. [27, 14, 35, 13, 15, 12]). The next lemma provides useful relations

between the Ck-norms of the two types of prepotentials.

Proposition 5.5. Let A−− : V × SL2(C) → g be the (first) prepotential for

an instanton and A++ the corresponding second prepotential. Then:

1) A−− is the unique solution to the differential problem for the unknown

B−−,

H++·B−− = H−−·A++ − [A++, B−−] , H0·B−− = −2B−− . (5.20)

A similar claim holds for A++, provided appropriate sign changes are

made.
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2) For each k ≥ 1, there exist constants Mk,,Mk
′ > 0, depending only on k,

such that for x ∈ V,

‖A−−|{x}×SU2
‖Ck(SU2,g) ≤Mk‖A++|{x}×SU2

‖Ck(SU2,g) , (5.21)

‖A++|{x}×SU2‖Ck(SU2,g) ≤Mk
′‖A−−|{x}×SU2‖Ck(SU2,g) . (5.22)

Proof. (1) Let (E ′|V×SL2(C), D
′) be the lifted instanton, for which A±±, A0(=

0) are components of the potential in some analytic gauge ϕ. The expression

in terms of curvature components of the identity Fϕ(H++, H−−) = 0 shows

that A−− solves (5.20). This solution is unique. Indeed, if there were another

solution to (5.20), say A′
−−, the g-valued map B̃−− := AdΨ(A

′
−−−A−−) (here

Ψ is the gauge transformation from ϕ to an exp-central gauge) would be a

solution to the differential problem H++·B̃−− = 0, H0·B̃−− = −2B̃−−. This

fact and [16, Lemma 5.3] would imply that B̃−− = 0. Interchanging the signs,

the corresponding claim for A++ follows.

(2) Consider the real basis for su2 ⊂ sl2(C) given by the elements

Go
1 := Ho

++ −Ho
−− =

(
0 1

−1 0

)
, Go

2 := iHo
++ + iHo

−− :=

(
0 i

i 0

)
,

Go
0 = iHo

0 =

(
i 0

0 −i

)
,

(5.23)

and let G0 = iH0, G1 = H++−H−−, G2 = iH+++ iH−− be the corresponding

vector fields on H(M) =M × SL2(C). Note that, for each (x, U) ∈M × SU2,

the real vectors Gα|(x,U), 1 ≤ α ≤ 3, give a frame for the tangent space of the

totally real submanifold {x} × SU2 of {x} × SL2(C).

Let (E ′|V×SL2(C), D
′) be the lifted instanton, for which A±±, A0 are compon-

ents of the potential in some analytic gauge ϕ. Since A0 = 0 and the curvature

F ′ of (E ′|V×SL2(C), D
′) vanishes identically along any vector field that is tangent

to the fibres of H(M), at each (x, U) ∈ {x} × SU2 we have that

0 = iF ′(H0, H−−) = iH0·A−− + 2iA−− = G0·A−− + 2iA−− ,

0 = 2F ′(H++, H−−) = 2H++·A−− − 2H−−·A++ + 2[A++, A−−] =

= (G1 − iG2)·A−− + (G1 + iG2)·A++ + 2[A++, A−−] .

(5.24)

Hence, the restrictions V−− := A−−|{x}×SU2 ,W++ := A++|{x}×SU2 solve the

system

G0·V−− + 2iV−− = 0 ,

(G1 − iG2)·V−− + 2 adW++(V−−) = −(G1 + iG2)·W++ .
(5.25)

We claim that if (5.25) is considered as a system of equations for V−− with

coefficients determined by W++, then it is equivalent to a system given by an

appropriate first order elliptic operator P with trivial kernel (for definition and

first properties of elliptic operators, we refer to [7, Appendix G]). To check
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this, consider the subbundle E of the bundle P := SU2×(g×g×g×g) → SU2,

defined by

E = {(x, U ;X, Y, Z,W ) ∈ P : X = Z, Y =W} .

We consider E equipped with the Hermitian product along the fibres determ-

ined by (2.8). Then, define

P : C∞(M × SU2,E) −→ C∞(M × SU2,E) ,

P

(
X
Y
X
Y

)
:=




G0+2iI G1+iG2+2adW++
0 0

G1−iG2+2adW++
G0−2iI 0 0

0 0 −G0−2iI G1+iG2+2adW++

0 0 G1−iG2+2 −G0+2iI


 ·

(
X
Y
X
Y

)

(5.26)

One can directly check that P is a first order elliptic operator. Moreover,

kerP = {0}. Indeed, a quadruple (X, Y,X, Y ) is in kerP if and only if X and

Y are both solutions on SU2 to the system of equations for g-valued maps f

H0·f = −2f ,

H++·f + adW++(f) = 0 .
(5.27)

By applying the inverse of a gauge transformation from a central to the ana-

lytic gauge ϕ, the (flat) connection on SU2, determined by the potential

(A0 = 0, A++, A−−−), is transformed into the (flat) connection determined

by a potential with trivial components (A′
0 = 0, A′

++ = 0, A′
−− = 0). In

particular, the solution f to (5.27) is transformed into a solution f̃ of the

system

H0·f̃ = −2f̃ ,

H++·f̃ = 0 .
(5.28)

By [16, Lemma 5.3] (applied to each component of the matrix valued function

f̃), we get that f̃ is equal to 0. This shows that (5.28) has (X, Y,X, Y ) =

(0, 0, 0, 0) as the unique solution.

We may now conclude the proof of (2). In fact, it suffices to observe that

(5.25) is equivalent to saying that the section of E, given by the quadruple

(V−−, V−−,V−−, V−−), is a solution to the differential problem

P

(
V−−

V−−

V−−

V−−

)
=

(
−(G1−iG2)·W++

−(G1+iG2)·W++

−(G1−iG2)·W++

−(G1+iG2)·W++

)
(5.29)

Since P is elliptic with kerP = {0}, classical Schauder estimates (see e.g. [7,

Appendix H]) imply that, for each k ≥ 1 there are constants Nk, Mk > 0 such

that

‖V−−‖Ck(SU2,g) ≤ Nk

∥∥∥∥∥

(
−(G1−iG2)·W++

−(G1+iG2)·W++

−(G1−iG2)·W++

−(G1+iG2)·W++

)∥∥∥∥∥
Ck−1(SU2,g)

≤Mk‖W++‖Ck(SU2,g) .

This gives (5.21). The proof of (5.22) is similar.
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5.4. The local compactness theorem

To conclude this paper, as an example of the utility of the harmonic space

formulation, we present a streamlined proof of Uhlenbeck, Nakajima and

Tian’s celebrated local compactness theorem for Yang-Mills fields in the spe-

cific case of hk instantons.

From the classical estimates in [37, 30] (see also [36, 43]), we know that for

any geodesic ball BR = BR(xo) of radius R of an m-dimensional Riemannian

manifold (M, g), the C0-norms of curvatures of Yang-Mills fields are controlled

by their corresponding L2- or L
m
2 -norms and R. In fact, there are constants

ε, C, cm > 0 such that

‖F‖L2(BR) < εRm−4 implies ‖F‖C0(BR/4,g) ≤
C

R
m
2

‖F‖L2(BR) (5.30)

‖F‖
L
m
2 (BR)

< cm implies ‖F‖C0(BR
2
,g) ≤

2mC

Rn
‖F‖L2(BR

2
) (5.31)

Combining these estimates with Theorem 5.3 yields

Theorem 5.6 (Local Compactness Theorem for instantons on hk manifolds).

Let BR = BR(xo) ⊂ M be a geodesic ball in a 4n-dimensional hk manifold

(M, g, Jα), which is included in a relatively compact neighbourhood V′ of xo
where Theorem 5.3 holds. Further let (E|BR = BR × V,D(k)) be a sequence of

(trivialised) instantons, each with the same compact structure group Go and

corresponding normalised prepotential A
(k)
−− on BR × SL2(C).

If the curvatures are such that ‖F (k)‖L2(BR) < εR4(n−1) for all k, with ε > 0

as in (5.30), then there exists a subsequence (E|BR, D
(kn)), whose curvatures

F (kn) converge uniformly to the curvature of a limit instanton (E|BR, D
(∞)).

The same conclusion holds if the curvatures are such that ‖F (k)‖L2n(B2R) < c4n
with constant c4n > 0 as in (5.31).

Proof. By (5.30), (5.31), (5.17), the sequence of normalised holomorphic pre-

potentials A
(k)
−− is uniformly bounded on any compact subsetK of BR×SL2(C).

It follows from Montel’s Theorem that there is a subsequence A
(kn)
−− converging

uniformly on compacta to a holomorphic map A
(∞)
−− , which is the prepotential

of some instanton due to Theorem 5.1. Using (5.22), we may also assume that

the second prepotentials A
(kn)
++ and all their derivatives converge uniformly on

compacta to the second prepotential A
(∞)
++ and its derivatives corresponding to

the instanton determined by A
(∞)
−− . Thus, by (5.19), the curvatures converge

uniformly on compacta as well.
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