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Abstract: We provide evidence that the classical scattering of two spinning black holes is

controlled by the soft expansion of exchanged gravitons. We show how an exponentiation

of Cachazo-Strominger soft factors, acting on massive higher-spin amplitudes, can be used

to find spin contributions to the aligned-spin scattering angle through one-loop order. The

extraction of the classical limit is accomplished via the on-shell leading-singularity method and

using massive spinor-helicity variables. The three-point amplitude for arbitrary-spin massive

particles minimally coupled to gravity is expressed in an exponential form, and in the infinite-

spin limit it matches the stress-energy tensor of the linearized Kerr solution. A four-point

gravitational Compton amplitude is obtained from an extrapolated soft theorem, equivalent

to gluing two exponential three-point amplitudes, and becomes itself an exponential operator.

The construction uses these amplitudes to: 1) recover the known tree-level scattering angle

at all orders in spin, 2) match previous computations of the one-loop scattering angle up to

quadratic order in spin, 3) lead to new one-loop results through quartic order in spin. These

connections map the computation of higher-multipole interactions into the study of deeper

orders in the soft expansion.
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1 Introduction

In 2014 Cachazo and Strominger [1] showed that the following universal relation holds for

tree-level gravitational amplitudes in the soft limit

Mn+1 =
n∑
i=1

[
(pi · ε)2

pi · k
− i

(pi · ε)(kµενJµνi )

pi · k
− 1

2

(kµενJ
µν
i )2

pi · k

]
Mn +O(k2). (1.1)

Here the soft momentum k corresponds to an external graviton, and we have constructed

its polarization tensor as εµν = εµεν . The sum is over the remaining external particles with

momenta pi, and the operators Ji correspond to their total angular momenta, whereas the

first term in the equation is simply the standard Weinberg soft factor [2]. The realization [3]

that soft theorems correspond to Ward identities for asymptotic symmetries at null infinity

has led to many impressive developments [1, 4–9] in that area, see [10] for a recent review.

Extensions of these relations to arbitrary subleading orders are known [7, 11–13] but are not

universal and depend both on the matter content and the type of couplings considered [14, 15].

In particular, a classical version of the soft theorem up to subsubleading order in k has

been used by Laddha and Sen [16] to derive the spectrum of the radiated power in black-

hole scattering with external soft graviton insertions. This relies on the remarkable fact that

conservative and non-conservative effects of interacting black holes can be computed from

scattering amplitudes for massive point-like particles [17–20]. Moreover, rotating black holes

admit a spin-multipole expansion in their effective potential, the order 2s of which can be

reproduced by scattering spin-s minimally coupled particles exchanging gravitons [21], as

illustrated in figure 1a.
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Figure 1: (a) Four-point amplitude involving the exchange of soft gravitons, which leads to

classical observables. The external massive states are interpreted as two black-hole sources.

(b) Comparison between the HCL and the non-relativistic limit in the COM frame [21–23].

Spin effects require subleading orders in the NR classical limit, but can be fully determined

at the leading order in HCL through the soft expansion.

Here we present a complementary picture to the one of [16] for the conservative sector

(i.e. with no external gravitons) focusing on spinning black holes. It was shown by one

of the authors in [24] that the classical (~-independent) piece of the spin-s amplitude can

be extracted from a covariant Holomorphic Classical Limit (HCL), which set the external

kinematics such that the momentum transfer k between the massive sources is null. On

the support of the leading-singularity (LS) construction [25], which drops O(~) parts, the

condition k2 = 0 reduces the amplitude to a purely classical expansion in spin multipoles

of the form ∼ knSn, where S carries the intrinsic angular momentum of the black hole

(see figure 1b). This precisely matches the soft expansion once the momentum transfer

is recognized as the graviton momentum and the classical spin vector S is identified with

the angular momentum Ji of the matter particles. On the classical side, these amplitudes

have been shown to reproduce the effective post-Newtonian (PN) potential associated to the

collision of two rotating black holes [21, 22, 24].

To see the soft expansion more explicitly, consider the energy-momentum tensor of a

single linearized Kerr black hole, which has recently been written down in an exponential

form by one of the authors [26]:

Tµν(k) = δ(p · k)p(µ exp(−ia ∗ k)ν)
ρ p

ρ +O(G), (1.2)

where (a ∗ k)µν = εµνρσa
ρkσ, and aµ = Sµ/m is the rescaled spin vector of the black hole.

The magnitude a is exactly the radius of its ring singularity. Here we have performed a

Fourier transform of the worldline formulas (18) and (32a) of [26]. Now, the interaction
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vertex between a graviton and a massive source corresponds to the contraction −hµνTµν .

After taking the graviton to be on-shell and replacing hµν by εµν = εµεν , this becomes

hµνT
µν → δ(k2)δ(p · k)(p · ε)εµpν

[
ηµν − iεµνρσkρaσ +

1

2
ηµν(a · k)2 +O(k3)

]
, (1.3)

where we have used the support of the delta functions. This expression can be written in a

simple form by introducing the spin tensor

Sµν = εµνρσpρaσ, (1.4)

satisfying Sµνpν = 0, after which it becomes

hµνT
µν → δ(k2)δ(p · k)(p · ε)2

[
1− ikµενS

µν

p · ε
− 1

2

(
kµενS

µν

p · ε

)2

+O(k3)

]
. (1.5)

The term inside the parentheses is precisely the exponential completion of the expansion

in eq. (1.1). Note that the prefactor (p · ε)2 corresponds to the contribution of the energy-

momentum tensor of the linearized Schwarzschild solution [27].

Even though the fact that classical gravitational quantities can be reproduced from QFT

computations has been known for a long time, the precise conceptual foundations of the

matching are still lacking.1 The goal of one of the authors in [24] was simply to show the

agreement of the LS method with the previous computations of [21–23]. Moreover, in [24] the

new massive spinor-helicity variables of Arkani-Hamed, Huang and Huang [29] were imple-

mented to construct operators carrying spin multipoles. These operators were then matched,

trough a change of basis, to those constructed in [21–23] in terms of polarization vectors

and Dirac spinors, enabling a systematic translation between the LS and the standard QFT

amplitude in the ~ → 0 limit. It is only after computing the effective potential from this

amplitude that one matches the post-Newtonian potential of general relativity.

The computation of the classical piece of the amplitude was made direct, through the

leading singularity, for arbitrary spin and all orders in the center-of-mass energy E. Both

the tree-level and one-loop versions of this computation correspond to a single order in the

post-Minkowskian (PM) expansion (see e.g. recent discussion in [20, 26, 27, 30–34] and many

more references therein), i.e. at a fixed power of G. However, the explicit match to the

standard QFT amplitude was only performed up to spin-1 and leading order in E (which

corresponds to the standard PN expansion). Moreover, the computation of the PN effective

potential through the Born approximation suffers some problems [19, 22]. Such potential is

not gauge-invariant, i.e. not an observable, and can undergo canonical and non-canonical

transformations that become cumbersome when spin is considered as part of the phase space.

Moreover, at one loop the Born approximation itself requires the subtraction of tree-level

pieces and suffers from some (apparent) inconsistencies already at spin-1 [23]. For these

reasons a more direct conversion from the LS into a gravitational observable is evidently

1Very recent progress on relating classical observables to quantum amplitudes has been made in [28].
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needed. Very recently, a direct approach was proposed in the amplitudes setup to evaluate

the scattering angle of classical general relativity [20], i.e. the deflection angle of two massive

particles in the large-impact-parameter regime. It was demonstrated that for scalar particles

the scattering angle computed by Westphal [35] can be obtained via a simple 2D Fourier

transform of the classical limit of the amplitude.

Here we will show that the natural extension of the scattering angle, for aligned spins as

in [26, 34], can be computed with spinning particles directly from the LS. The building blocks

needed for this computation are the three-point amplitude and the Compton amplitude for

massive spinning particles interacting with soft gravitons. We will use the soft expansion with

respect to the internal gravitons to write the building blocks in an exponentiated form, which

fits naturally into the Fourier transform leading to the first and second post-Minkowskian

(1PM and 2PM) scattering angles in a resummed form.

Summary of Results

In section 2.2 we show that the three-point scattering amplitude between two massive particles

of spin s and one graviton is given by

M(s)
3 (p1,−p2, k

−) =

(
− iκ

2

)
× 2(p · ε)2

m2s
〈2|2s exp

(
i
kµενJ

µν

p · ε

)
|1〉2s, p =

p1 + p2

2
,

(1.6)

where the exponential operator is generated by the angular momentum Jµν , as appearing in

the soft theorem (1.1). This operator acts naturally on the product states |1〉2s and |2〉2s,
which are constructed from the new spinor-helicity variables introduced by Arkani-Hamed,

Huang and Huang [29]. Denoting the operator by M̂(s)
3 we write this as

M̂(s)
3 =M(0)

3 exp

(
i
kµενJ

µν

p · ε

)
, (1.7)

where M(0)
3 corresponds to the amplitude for a massive scalar emitting a graviton. In sec-

tion 2.3 we extend this result to the distinct-helicity Compton amplitude, showing that,

M(s)
4 (p1,−p2, k

+
3 , k

−
4 ) =

1

m2s
〈2|2sM̂(s)

4 |1〉
2s, M̂(s)

4 =M(0)
4 exp

(
i
kµενJ

µν

p · ε

)
, (1.8)

up to corrections of fifth order in J (appearing only for s > 2). In the operator form, k and ε

can be chosen from either particle three or four, which simply amounts to a change of basis.

The soft theorem (1.1) in this case is extrapolated in an exponential form, and corresponds to

the simple statement of factorization of the Compton amplitudes into three-point amplitudes

given by eq. (1.7) and its plus-helicity version.

The formulas (1.7) and (1.8) are the two bulding blocks needed to compute the scattering

angle. In order to recover the classical observables we introduce and compute the generalized

expectation value (GEV)

〈Ms
n〉 =

ε1,µ1...µsε2,ν1...νsM̂
µ1...µs,ν1...νs
n

εµ1...µs1 ε2,µ1...µs

=
Ms

n

εµ1...µs1 ε2,µ1...µs

. (1.9)
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Here we focus on integer-spin particles for simplicity, therefore we use polarization tensors

for spin-s. We first show that, with hµν → εµενδ(k
2),

hµνT
µν → δ(k2)δ(k · p) lim

s→∞
〈M(s)

3 〉, (1.10)

where Tµν on the LHS is the linearized stress-energy tensor of the Kerr black hole (1.5). We

then construct the aligned-spin scattering angle as in [20, 36, 37],

θ =
−E

(2mambγv)2

∂

∂b

∫
d2k

(2π)2
e−ik·b lim

sa,sb→∞
〈M(sa,sb)〉+O(G3), (1.11)

(see section 3.2 for definitions of the prefactors). Here M(sa,sb) corresponds to the 4-pt am-

plitude of figure 1a, with masses ma and mb and spins sa and sb. We compute this amplitude

at both tree and one-loop levels using the LS proposed in [24]. The Fourier transform can

be performed using the exponential forms (1.7)-(1.8). We find the following expression for

the aligned-spin scattering angle χ as a function of the masses m1 and m2, the rescaled spins

(ring-radii, intrinsic angular momenta per mass) a1 and a2, the relative velocity at infinity v,

and the (proper) impact parameter b,

θ =
GE

v2

(
(1 + v)2

b+ a1 + a2
+

(1− v)2

b− a1 − a2

)
(1.12a)

− πG2E
∂

∂b

(
m2f(a1, a2) +m1f(a2, a1)

)
+O(G3), (1.12b)

where E =
√
m2

1 +m2
2 + 2m1m2γ with γ = (1− v2)−1/2, and

f(σ, a) =
1

2a2

(
−b+

(+ κ− 2a)5

4vκ
[
(+ κ)2 − (2va)2

]3/2
)

+O(σ5), (1.12c)

with

 = vb+ σ + a, κ =
√
2 − 4va(b+ vσ). (1.12d)

This agrees with previous classical computations for two spinning black holes performed up

to spin-squared order in [32, 34], and resums those contributions in a compact form, including

higher orders. We have indicated in (1.12c) that this expression is valid up to quartic order

in one of the spins (but to all orders in the other spin), according to the minimally coupled

higher-spin amplitudes.

2 Multipole expansion of three- and four-point amplitudes

2.1 Massive spin-1 matter

We start our discussion of the multipole expansion by dissecting the case of graviton emission

by two massive vector fields. The corresponding three-particle amplitude reads2

M3(p1, p2, k) = −2(p · ε)
[
(p · ε)(ε1 · ε2)− 2kµενε

[µ
1 ε

ν]
2

]
, p =

1

2
(p1 − p2), (2.1)

2We omit the constant-coupling prefactors −i(κ/2)n−2 in front of tree-level amplitudes, we use κ =
√

32πG.

– 5 –



where p is the average momentum of the spin-1 particle before and after the graviton emission

and the polarization tensor of the graviton εµν = εµεν (with momentum k = −p1 − p2) is

split into two massless polarization vectors. The derivation of eq. (2.1) from the Proca action

is detailed in appendix A, which also motivates that the term involving ε
[µ
1 ε

ν]
2 can be thought

of as an angular-momentum contribution to the scattering. In other words, we are tempted

to interpret the combination ε
[µ
1 ε

ν]
2 as being (proportional to) the classical spin tensor.

However, we now face our first challenge: as explained in [21–23], the spin-1 amplitude

contains up to quadrupole interactions, i.e. quadratic in spin, whereas only the linear piece

is apparent in eq. (2.1). To rewrite this contribution in terms of multipoles, we can use a

redefined spin tensor

Sµν =
i

ε1 · ε2

{
2ε

[µ
1 ε

ν]
2 −

1

m2
p[µ
(
(k · ε2)ε1 + (k · ε1)ε2

)ν]
}
. (2.2)

It is introduced in appendix B via a two-particle expectation value/matrix element, which we

call the generalized expectation value (GEV)

Sµν =
ε1σΣ̂µν,σ

τετ2
ε1σεσ2

. (2.3)

Here Σ̂µν is constructed as an angular-momentum operator shifted in such a way that its

GEV satisfies the Fokker-Tulczyjew covariant spin supplementary condition (SSC) [38, 39]

pµS
µν = 0. (2.4)

In this paper we find this condition to be crucial for the matching to the rotating-black-hole

computation of [26], as the classical spin tensor Sµν (1.4) satisfies the above SSC by definition.

The purpose of this SSC is to constrain the mass-dipole components S0i of the spin tensor of

an object to vanish in its rest frame. In a classical setting it puts the reference point for the

intrinsic spin of an spatially extended object at its rest-frame center of mass.

Inserting this spin tensor in eq. (2.5), we rewrite the above amplitude as

M3(p1, p2, k) = −m2x2(ε1 · ε2)

[
1 +

i
√

2

mx
kµενS

µν +
(k · ε1)(k · ε2)

m2(ε1 · ε2)

]
, (2.5)

where for further convenience we also expressed scalar products p · ε by a helicity variable x

first introduced in [40]

x =
√

2
p · ε
m

. (2.6)

Now, in the GEV of the amplitude,

〈M3〉 =
ε1σMστ

3 ε2,τ

ε1σεσ2
= −m2x2

[
1 + i

kµενS
µν

p · ε
+

(k · ε1)(k · ε2)

m2(ε1 · ε2)

]
, (2.7)

we recognize the dipole coupling of eq. (1.5) as the term linear in both k and S. Indeed,

particles with spin couple naturally to the field-strength tensor of the graviton Fµν = 2k[µεν],
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analogously to the magnetic dipole moment FµνS
µν .3 Following the non-relativistic limit, the

third term was identified in [21–24] to be the quadrupole interaction ∝
(
FµνS

µν
)2

for spin-1.

It may seem a priori puzzling that the interaction (k · ε1)(k · ε2) is regarded as the square of

FµνS
µν . This is because the statement is true at the levels of spin operators, but not at the

level of the (generalized) expectation values, i.e. 〈FµνΣ̂µν〉2 6= 〈
(
FµνΣ̂µν

)2〉. In order to expose

the exponential structure described in the introduction and construct such spin operators at

any order, we are going to recast the multipole expansion in terms of spinor-helicity variables.

2.1.1 Spinor-helicity recap

This subsection can be skipped if the reader is familiar with the massive spinor-helicity for-

malism of Arkani-Hamed, Huang and Huang [29],4 which is well suited to describe scattering

amplitudes for massive particles with spin. Much like its massless counterpart, this formalism

allows to construct all of the scattering kinematics from basic SL(2,C) spinors that transform

covariantly with respect to the little group of the associated particle. The massive little group

is SU(2), so the Pauli-matrix map from two-spinors to momenta

pαβ̇ = pµσ
µ

αβ̇
= εab|pa〉α[pb|β̇ = |pa〉α[pa|β̇ = λ a

α λ̃β̇a, (2.8)

involves a contraction of the SU(2) indices a, b, . . . = 1, 2 (not to be confused with the spinorial

SL(2,C) indices α, β, . . . = 1, 2 and α̇, β̇, . . . = 1, 2). This is in contrast to the massless case,

where the little group is U(1), so its index is naturally hidden inside the complex nature of

massless two-spinors

kαβ̇ = kµσ
µ

αβ̇
= |k〉α[k|β̇ = λαλ̃β̇. (2.9)

Now just as λα and λ̃β̇ are convenient to built massless polarization vectors (2.11), we can

use the massive spinors λ a
α and λ̃ b

β̇
to construct spin-S external wavefunctions. For instance,

massive polarization vectors are explicitly

εabpµ =
〈p(a|σµ|pb)]√

2m
⇒


p · εabpµ = 0,

εabpµεpνab = ηµν −
pµpν
m2

εp11 ·ε11
p = εp22 ·ε22

p = 2εp12 ·ε12
p = 1,

(2.10)

where the symmetrized little-group indices (ab) represent the physical spin-projection num-

bers 1, 0,−1 with respect to a spin quantization axis, as chosen by the massive spinor basis.

Note that the dotted and undotted spinor indices themselves must always be contracted and

do not represent a quantum number.

Let us also point out here that the massless polarization vectors and hence the associated

helicity variable (2.6) can be written in terms of massless spinors as

εµ+ =
〈r|σµ|k]√

2〈rk〉
, εµ− = − [r|σ̄µ|k〉√

2[rk]
⇒ x+ =

〈r|p|k]

m〈rk〉
, x− = − [r|p|k〉

m[rk]
= − 1

x+
,

(2.11)

3We thank Yu-tin Huang for emphasizing to us the analogy to the electromagnetic Zeeman coupling.
4The spinor-helicity conventions used in the present paper are detailed in the latest arXiv version of [41].
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where x is independent of the reference momentum r on the three-point on-shell kinematics.

2.1.2 Spin-1 amplitude in spinor-helicity variables

We can now obtain concrete spinor-helicity expressions for the amplitude (2.1). Choosing he

polarization of the graviton to be negative, we have

εa1a21 · εb1b22 = − 1

m2
〈1(a12(b1〉

[
〈1a2)2b2)〉 − 1

mx
〈1a2)k〉〈k2b2)〉

]
, (2.12a)

[
(ε1 · ε2)kµε

−
ν S

µν
]a1a2b1b2 = − i√

2m2
〈1(a1k〉

[
〈1a2)2(b1〉 − 1

2mx
〈1a2)k〉〈k2(b1〉

]
〈k2b2)〉, (2.12b)

(k · εa1a21 )(k · εb1b22 ) = − 1

2m2x2
〈1(a1k〉〈1a2)k〉〈k2(b1〉〈k2b2)〉, (2.12c)

where we have reduced all [1a| and |2b] the chiral spinor basis of 〈1a| and |2b〉 using the

following identities for the three-point kinematics,5

[1ak] = x−1〈1ak〉, [2bk] = −x−1〈2bk〉, [1a2b] = 〈1a2b〉 − 1

mx
〈1ak〉〈k2b〉. (2.13)

We also use x for x− henceforth, i.e. it carries helicity −1 unless stated otherwise. From

eq. (2.12) we can see that going to the chiral spinor basis has both an advantage and a

disadvantage. On the one hand, the multipole expansion becomes transparent in the sense

that the spin order of a term is identified by the leading power of |k〉〈k|. On the other hand,

the exponential structure of the vector basis is spoiled by a shift by higher multipole terms.

However, this is just an artifact of the chiral basis, and we should see that the answer obtained

from the generalized expectation value is the same.

The main advantage of the spinor-helicity variables for what we wish to achieve in this

paper is that now we can switch to spinor tensors 〈1(a1 |⊗〈1a2)| and |2(b1〉⊗|2b2)〉, as represen-

tations of the massive-particle states 1 and 2. Introducing the symbol � for the symmetrized

tensor product, we can rewrite eq. (2.12a) as

ε1 ·ε2 = − 1

m2
〈1|�2

[
I� I− 1

mx
I�|k〉〈k|

]
|2〉�2 = − 1

m2

[
〈12〉�2− 1

mx
〈12〉�〈1k〉〈k2〉

]
, (2.14)

Here the operators have their lower indices symmetrized, i.e. (A�B)α2β2
α1β1

= Aβ1(α1
Bβ2
α2), and the

notation assumes that the reader keeps in mind the spins associated with each momentum.

Combining all the terms in eq. (2.12) into the amplitude, we obtain

M3(p1, p2, k
−) = x2

[
〈12〉�2 − 2

mx
〈12〉�〈1k〉〈k2〉+

1

m2x2
〈1k〉�2〈k2〉�2

]
. (2.15)

Now in the multipole expansion of the Kerr stress-energy tensor (1.5), the quadrupole

operator is of the simple form (kµενS
µν)2, whereas in our amplitude (2.5) it has the form

5The transition between the chiral spinors |pa〉 and the antichiral ones |pa] is always possible [29] via the

Dirac equations pα̇β |pa〉β = m|pa]α̇ and pαβ̇ |p
a]β̇ = m|pa〉α.
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(k · ε1)(k · ε2) ∝ 〈1k〉�2〈k2〉�2. One then could wonder if in some sense the latter is the

square of (kµενS
µν). We know show that this is precisely the case if the angular momentum

is realized as a differential operator.

In appendix C we construct the differential form of the angular-momentum operator in

momentum space starting from its definition

Jµν = ipµ
∂

∂pν
− ipν ∂

∂pµ
+ intrinsic, (2.16)

which involves the standard orbital piece and the “intrinsic” contribution dependent on spin.

This operator admits a much simpler realization in terms of spinor variables, similar to the

one derived in [42] for the massless case. For a massive particle of momentum pαβ̇ = λ a
pαλ̃pβ̇a

we find that the differential operator for the total angular momentum is given by

Jαα̇,ββ̇ = 2i

[
λ a
p(α

∂

∂λ
β)a
p

εα̇β̇ + εαβλ̃
a

p(α̇

∂

∂λ̃
β̇)a
p

]
. (2.17)

We can now act with the operator kµενJ
µν on the product state |pa〉�2 = |pa1〉 ⊗ |pa2〉.

For the negative helicity of the graviton, we have

kµε
−
ν J

µν = − 1

4
√

2
λαλβεα̇β̇Jαα̇,ββ̇ =

i√
2
〈kpa〉〈k ∂

∂λap
〉, 〈k ∂

∂λbp
〉|pa〉 = |k〉δab . (2.18)

Applying the spinor differential operator above we find6(
ikµε

−
ν J

µν

p · ε−

)
|pa〉2 = − 2

mx
|k〉〈kpa〉|pa〉, (2.19a)(

ikµε
−
ν J

µν

p · ε−

)2

|pa〉2 = − 2

m2x2
|k〉2〈kpa〉2, (2.19b)(

ikµε
−
ν J

µν

p · ε−

)j
|pa〉2 = 0, j ≥ 3. (2.19c)

Although it is the differential operator that is realized by the soft theorem, its algebraic form

is very easy to obtain on three-particle kinematics. Indeed, if we take a tensor-product version

(σµν ⊗ I+ I⊗σµν) of the standard SL(2,C) chiral generator σµν = iσ[µσ̄ν]/2 and use it as an

algebraic realization of Jµν , it is direct to check that it acts in the same way as the differential

operator above:
kµε
−
ν J

µν

p · ε−
=
i|k〉〈k|
mx

⊗ I + I⊗ i|k〉〈k|
mx

. (2.20)

6More explicitly, we have

−i
√

2(kµε
−
ν J

µν)|pa〉�2 = 〈kpb〉
{[
〈k ∂

∂λbp
〉|pa1〉

]
⊗|pa2〉+ |pa1〉⊗

[
〈k ∂

∂λbp
〉|pa2〉

]}
= |k〉〈kpa1〉⊗|pa2〉+ |pa1〉⊗|k〉〈kpa2〉 = 2|k〉〈kpa〉�|pa〉,

with similar manipulations for higher powers.
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These identities allow us to reinterpret the last two terms in the amplitude formula (2.15)

as the non-zero powers of this dipole operator acting on the on the state |2〉2:

− 2

mx
〈12〉〈1k〉〈k2〉 = i〈1|2

(
kµε
−
ν J

µν

p · ε−

)
|2〉2, (2.21a)

1

m2x2
〈1k〉2〈k2〉2 = −1

2
〈1|2

(
kµε
−
ν J

µν

p · ε−

)2

|2〉2, (2.21b)

and rewrite the amplitude as

M3(p1, p2, k
−) = x2〈1|2

{
1 + i

(
kµε
−
ν J

µν

p · ε−

)
− 1

2

(
kµε
−
ν J

µν

p · ε−

)2}
|2〉2. (2.22)

It is now clear that these terms are (1) precisely the differential operators of the soft expan-

sion (1.1) and (2) the scalar, spin dipole and quadrupole interactions in the expansion of the

Kerr energy momentum tensor (1.5). In this way, we interpret the three terms in the am-

plitude (2.15) as the multipole contributions with respect to the chiral spinor basis, despite

the fact that they do not equal the multipoles in eq. (2.5) individually. Furthermore, as the

operator (kµε
−
ν J

µν)j annihilates the spin-1 state for j ≥ 3, the three terms can be obtained

from an exponential

M3(p1, p2, k
−) = x2〈1|2 exp

(
i
kµε
−
ν J

µν

p · ε−

)
|2〉2. (2.23)

It can be checked explicitly that acting with the operator on the state 〈1|�2 yields the

same result, i.e. in this sense the operator kµενJ
µν is Hermitian. On the other hand, choosing

the other helicity of the graviton will yield the parity conjugated version of eq. (2.23), where

the parity-odd terms in the exponential switch sign, that is

M3(p1, p2, k
+) =

1

x2
[1|2 exp

(
−ikµε

+
ν J

µν

p · ε+

)
|2]2. (2.24)

In the next section we extend this procedure to arbitrary spin. Let us point out that the

explicit amplitude can be brought into a compact form by changing the spinor basis. In fact,

the three-point identities (2.13) imply that the amplitude formula (2.15) collapses into

M3(p1, p2, k
−) = [12]2x2. (2.25)

However, let us stress that this form completely hides the spin structure that was already

explicit in the vector form (2.5). The purpose of the insertion of the differential operators is

precisely to extract the spin-dependent pieces from the minimal coupling (2.25), which will

then be matched to the Kerr black hole.
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2.2 Exponential form of three-particle amplitude

In this section we generalize the previous discussion to arbitrary spin. The starting point in

this case is the three-point amplitudes for massive matter minimally coupled to gravity in the

little-group sense [29]:

M(s)
3 (p1, p2, k

+) =
〈12〉2sx−2

m2s−2
, M(s)

3 (p1, p2, k
−) =

[12]2sx2

m2s−2
. (2.26)

As explained in the previous section, in such a compact form all the dependence on the

spin tensor is completely hidden. In order to restore it, we need to write the minus-helicity

amplitude in the chiral basis

M(s)
3 (p1, p2, k

−) =
x2

m2s−2

(
〈12〉 − 〈1k〉〈k2〉

mx

)�2s

=
x2

m2s−2
〈1|2s

[
2s∑
j=0

(
2s

j

)(
− |k〉〈k|

mx

)j]
|2〉2s.

(2.27)

Here we have taken advantage of the symmetrized tensor product � that enables us to perform

the binomial expansion (we have omitted the identity factors in the tensor product). Even

though this already corresponds to an expansion in the “spin operator” of [24], here we recast

this into exponential form by inserting the differential angular momentum operator

− ikµε
−
ν J

µν

p · ε−
=

1

mx
〈kp〉〈k ∂

∂λp
〉, 〈kp〉〈k ∂

∂λp
〉|p〉 = |k〉〈kp〉. (2.28)

Indeed, it is easy to generalize the formulae (2.19) to product states of spin-s, namely(
− ikµε

−
ν J

µν

p · ε−

)j
|p〉2s =


(2s)!

(2s− j)!
|p〉2s−j

(
|k〉〈kp〉
mx

)j
, j ≤ 2s

0 , j > 2s

(2.29)

In other words, in general the operator (2.28) is nilpotent of order 2s.7 Of course, this also

admits an algebraic realization, which is the trivial extension of the formula (2.20). From

this we can derive the formal relations8(
− ikµε

−
ν J

µν

p · ε−

)�j
=


(2s)!

(2s− j)!

(
|k〉〈k|
mx

)⊗j
� I⊗2s−j , j ≤ 2s

0 , j > 2s

(2.30)

Therefore, we can rewrite eq. (2.27) as an exponential

〈1|2s
[

2s∑
j=0

(
2s

j

)(
− |k〉〈k|

mx

)j]
|2〉2s = 〈1|2s

∞∑
j=0

1

j!

(
i
kµε
−
ν J

µν

p · ε−

)j
|2〉2s

= 〈1|2s exp

(
i
kµε
−
ν J

µν

p · ε−

)
|2〉2s,

(2.31)

7Interestingly, due to its property (2.29) the spinorial differential operator (2.28) can be regarded as a

ladder operator for a spin-s representation.
8For j = 1, eq. (2.30) corresponds to the operator k · S used in [24] to perform the matching with the

standard QFT amplitude. We note, however, that the classical quantity kµενS
µν/(p · ε) matches the quantity

k · S used in [24] only when the spin tensor satisfies the SSC (2.4), as can be seen by squaring both terms.
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where we note that the exponential expansion, albeit valid to all orders, becomes trivial at

order 2s. It can be read from eq. (2.27) that the spin operator |k〉〈k| of [24] corresponds

precisely to kµε
−
ν J

µν . Moreover, in the formal limit s → ∞ the exponential can be realized

as a linear operator that does not truncate! However, let us stress that even for finite spins

the exponential operator in

M̂(s)
3 (p1, p2, k

−) =M(0)
3 exp

(
i
kµε
−
ν J

µν

p · ε−

)
, M(s)

3 =
1

m2s
〈1|2sM̂(s)

3 |2〉
2s (2.32)

is still present and can be mapped to classical observables such as the scattering angle. This

framework will be particularly useful at order G2, since the arbitrary spin version (and hence

the s→∞ limit) of the Compton amplitude is not yet known.

The transition to the positive helicity should amount to exchanging angle brackets with

square brackets. However, this procedure maps the massless polarization vectors to minus

each other (see eq. (C.7)), while the field-strength-like combination

σµαα̇σ
ν
ββ̇
k[µε

−
ν] =

1√
2
λαλβεα̇β̇, σµαα̇σ

ν
ββ̇
k[µε

+
ν] =

1√
2
λ̃α̇λ̃β̇εαβ (2.33)

does not have a relative minus sign between the helicities. The combination kµενJ
µν/(p · ε)

thus develops an additional minus sign upon a helicity flip, as in eqs. (2.23) and (2.24):

M̂(s)
3 (p1, p2, k

+) =M(0)
3 exp

(
−ikµε

+
ν J

µν

p · ε+

)
, M(s)

3 =
1

m2s
[1|2sM̂(s)

3 |2]2s. (2.34)

The form (2.32) makes explicit the fact that the higher-spin amplitude is non-local [29].

However, despite the appearance of the factor p · ε in the denominator, the exponential factor

is gauge-invariant due to the three-particle kinematics. We further recognize in the argument

of the exponential the same structure as the one appearing in the Cachazo-Strominger soft

theorem. In fact, as will be made explicit in the next section, the extended soft factor of

Cachazo and Strominger is just an instance of a three-point amplitude of higher-spin particles.

The poles present in the extended soft factor (1.1) simply arise when gluing these three-point

amplitudes.

The formula (2.32) is our first main result. Note that this holds for the full three-

point amplitude with no classical limit whatsoever. This formula matches precisely the Kerr

energy-momentum tensor (1.5), with M(0)
3 = m2x2 corresponding to the scalar piece (the

Schwarsczhild case). In section 3 we will use this compact form to compute the scattering

angle of two Kerr black holes at linear order in G.

2.3 Exponential form of gravitational Compton amplitude

The task of this section is to extend the construction presented in the previous one to the

Compton amplitude, without the support of three particle kinematics. In particular, we will

show that for the distinct-helicity amplitude the following holds

M̂(s)
4 (p1, k

+
2 , k

−
3 , p4) =M(0)

4 exp

(
i
kµενJ

µν

p · ε

)
, p =

1

2
(p1 − p4). (2.35)
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Here the momentum k and the polarization vector ε in the exponential operator can be

associated to either of the two gravitons. The only difference comes from the choice of the

spinor basis. Explicitly, we have

[1|2s exp

(
i
k2µε2νJ

µν

p · ε2

)
|4]2s = 〈1|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s. (2.36)

Analogously, Jµν can be associated to either of the massive particles. As we explain later,

the polarization vectors may be chosen such that p1 · ε = −p4 · ε = p · ε, so the denominator

is also universal.

The importance of this amplitude (as opposed to the same-helicity case) is that it controls

the classical contribution at order G2, as was shown directly in [20, 24]. In [24] the classical

piece was argued to lead to the correct 2PN potential after a Fourier transform. In the new

approach of [20] the classical contribution in the spinless case was identified by computing the

scattering angle. In section 3 we will use the Compton amplitude as an input for computing

the scattering angle with spin up to order S4, agreeing with previously known results at order

S2. We will see that this exponential form is extremely suitable for the computation of the

latter as a Fourier transform.

Our strategy is the following: we first consider the action of the exponentiated soft factor

acting on the three-point amplitude, as an all order extension of the Cachazo-Strominger

soft theorem. We have checked that this agrees with the known versions of the Compton

amplitude [29, 43], at least for s ≤ 2. We leave the problem of s ≥ 2 for future investigation,

but we will comment on its origin at the end of this section.

The proof of eq. (2.35) starts by considering an all-order extension of the soft expan-

sion (1.1) with respect to the graviton k3 = |3〉[3|:[
(p1 · ε3)2

p1 · k3
exp

(
i
k3µε3νJ

µν
1

p1 · ε3

)
+

(p4 · ε3)2

p4 · k3
exp

(
i
k3µε3νJ

µν
4

p4 · ε3

)
+

(k2 · ε3)2

k2 · k3
exp

(
i
k3µε3νJ

µν
2

k2 · ε3

)]
M(s)

3 (p1, k
+
2 , p4).

(2.37)

As stated in the introduction, two main problems arise when trying to interpret eq. (1.1)

as an exponential acting on the lower-point amplitude. The first is that gauge invariance

of the denominator pi · ε3 is not guaranteed. Here we simply fix ε−3 =
√

2|3〉[2|/[32], so the

last term in eq. (2.37) vanishes, as we will show in a moment. The second problem is that

one still has to sum over two exponentials, which would spoil the factorization of eq. (2.35).

The solution is that in this case both exponentials give the exact same contribution. In the

language of the previous section, this is the fact that one can act with the operator k3µε3νJ
µν

either on 〈1|2s or |2〉2s, giving the same result.

Let us first inspect the three-point amplitude entering eq. (2.37),

M(s)
3 =M(0)

3

〈14〉2s

m2s
, M(0)

3 = m2x2
2 =
〈3|1|2]2

〈23〉2
=
〈3|1|4|3〉2

〈23〉4
, (2.38)
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where we used ε+
2 =

√
2|3〉[2|/〈32〉. As explained in [1], in order for the action of the dif-

ferential operator to be well defined, we need to solve momentum conservation and express

M(0)
3 in terms of independent variables. Solving for |2] and |3] yields the last expression in

eq. (2.38). Now to evaluate the first term, we recall from appendix C

J self-dual
2αβ,α̇β̇

= 2iλ2(α
∂

∂λ
β)
2

εα̇β̇ ⇒ k3µε3νJ
µν
2 =

i√
2
〈32〉〈3 ∂

∂λ2
〉. (2.39)

As the only place where 〈2| appears in eq. (2.38) is in the contraction with |3〉, we see that

the above differential operator annihilates the scalar three-point amplitude M(0)
3 . Moreover,

since the prefactor 〈14〉2s in the spin-s amplitude M(s)
3 does not depend on |2〉, we conclude

that the third term in the expansion (2.37) vanishes to all orders, as promised.

Let us now look at the angular momenta of the massive particles. A similar inspection of

〈3|1|4|3〉 = 〈31a〉[1a4b]〈4b3〉 shows that the scalar pieceM(3)
0 is in the kernel of the operators

k3µε3νJ
µν
1 =

i√
2
〈31a〉〈3 ∂

∂λa1
〉, k3µε3νJ

µν
4 =

i√
2
〈34a〉〈3 ∂

∂λa4
〉. (2.40)

Therefore, eq. (2.37) is simplified to

M(0)
3

[
(p1 · ε3)2

p1 · k3
exp

(
i
k3µε3νJ

µν
1

p1 · ε3

)
+

(p4 · ε3)2

p4 · k3
exp

(
i
k3µε3νJ

µν
4

p4 · ε3

)]
〈14〉2s

m2s
. (2.41)

Moreover, our choice of the reference spinor for ε3 implies p1 · ε3 = −p4 · ε3 = p · ε, where

p = (p1 − p4)/2 is the average momentum of the massive particle before and after Compton

scattering.

From the discussion of the previous section on the action of the angular-momentum

operator on 〈1|2s and |4〉2s, we also have

exp

(
i
k3µε3νJ

µν
1

p1 · ε3

)
〈14〉2s = exp

(
i
k3µε3νJ

µν
4

p4 · ε3

)
〈14〉2s = 〈1|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s. (2.42)

Hence we obtain

1

m2s
M(0)

3

[
(p1 · ε3)2

p1 · k3
+

(p4 · ε3)2

p4 · k3

]
〈1|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s, (2.43)

where we recognize the scalar Weinberg soft factor. Recall that in this gauge p2 · ε3 = 0, so

there is no contribution from the second graviton. As an easy check, we observe that the

scalar Compton amplitude, written e.g. in [29, 43], can be constructed solely from this soft

factor:

M(0)
4 =M(0)

3

[
(p1 · ε3)2

p1 · k3
+

(p4 · ε3)2

p4 · k3

]
= − 〈3|1|2]4

(2p1 · k3)(2p4 · k3)(2k2 · k3)
. (2.44)

This proves (2.35) can be obtained from the all-order extension of the soft theorem (2.41).

Finally, the property (2.36) is checked by repeating the computation the opposite-helicity

graviton k2.
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2.4 Factorization and soft theorems

In view of the exponentiation formulas, we now show how factorization is realized in this
operator framework. For the pole (k3 + k4)2 → 0 it is evident, so we will focus on the

pole (p1 · k2) → 0. In that limit the scalar part factors as M(0)
4 → M(0)

3,LM
(0)
3,R/(2p1 · k2)

corresponding to the product of the respective three point amplitudes. Let us denote the
internal momentum by pI = p1 + k2. Unitarity demands that the operator piece in (2.35)
behaves as

〈1|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s → 1

m2s
[1|2s exp

(
−ik2µε2νJ

µν

p · ε2

)
|Ia]2s〈Ia|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s.

(2.45)

Here the insertion of pI = |Ia]〈Ia| is needed since the exponential operators act on different
bases. In order to show the above property, it is enough to write the left factor in the chiral
basis, as in section 2.2, which is possible on the three-particle kinematics of the factorization
channel:

1

m2s
[1|2s exp

(
−ik2µε2νJ

µν

p · ε2

)
|Ia]2s〈Ia|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s

=
1

m2s
〈1Ia〉2s〈Ia|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s = 〈1|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s.

(2.46)

On the other hand, we could have inserted the resolution of the identity in the right factor

1

m2s
[1|2s exp

(
−ik2µε2νJ

µν

p · ε2

)
|Ia]2s〈Ia|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s

=
1

m2s
[1|2s exp

(
−ik2µε2νJ

µν

p · ε2

)
|Ia]2s[Ia4]2s = [1|2s exp

(
−ik2µε2νJ

µν

p · ε2

)
|4]2s.

(2.47)

Putting this together with the scalar piece we can write, for instance,

M(s)
4 −−−−−→

p1·k2→0

M(0)
3,LM

(0)
3,R

2p1 · k2
〈1|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|4〉2s (2.48)

=
M(0)

3,L

2p1 · k2
exp

(
i
k3µε3νJ

µν
4

p · ε3

)
M(0)

3,R〈14〉2s =
(p1 · ε2)2

p1 · k2
exp

(
i
k3µε3νJ

µν
4

p · ε3

)
M(s)

3,R,

where we usedM(0)
3 (p1, pI , k

+
2 ) = 2(p1 · ε2)2. This recovers the extension of the soft theorem,

that we used as a starting point of this section, in the limit p1 · ε2 → 0. The origin of the

exponential soft factor in this case is nothing but the three-point amplitude of spin-s particles,

written as a series in the angular momentum. Therefore, in our case the statement of the

subsubleading soft theorem (1.1) follows from factorization of amplitudes of massive particles

with spin.

Let us remark that, in analogy to the three-point case, the exponential factor can be

brought into a compact form using spinorial identities. For example, one can check that

〈1|2s exp

(
i
k3µε3νJ

µν
4

p · ε3

)
|4〉2s =

[
〈14〉+

[23]

[2|1|3〉
〈13〉〈34〉

]2s

= (−m)2s

(
[12]〈34〉+ 〈13〉[24]

〈3|1|2]

)2s

,

(2.49)
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which converts the Compton amplitude into the form

M(s)
4 =

(−1)2s+1〈3|1|2]4−2s

(2p1 · k3)(2p4 · k3)(2k2 · k3)

(
[12]〈34〉+ 〈13〉[24]

)2s
(2.50)

that is given in [29]. We remark, however, that this expression completely hides the spin

dependence that is needed for the classical computation.

It was pointed out in [29] that the formula (2.50) is only valid up to s ≤ 2. For higher

spins, one has to eliminate the spurious pole 〈3|1|2] that appears at the fifth order by the

addition of contact terms. From our perspective, this spurious pole corresponds precisely to

the contribution from p · ε3 appearing at higher orders in the soft expansion. Let us remark,

however, that our result (2.35) non-trivially extends the Cachazo-Strominger soft theorem

in the case of the Compton amplitude for spinning particles. This is because for s = 2 the

exponential is truncated only at the fourth order in the angular momentum, whereas only

the second order was guaranteed by the soft theorem. This extension is what enables us in

section 3 to obtain the scattering angle at order S4, by means of a Fourier transform acting

directly on the exponential. We leave the study of the contributions from contact terms at

higher spin orders for future work.

3 Scattering angle as Leading Singularity

3.1 Linearized stress-energy tensor of Kerr Solution

In section 2 we have shown that the three-point and Compton amplitudes can be written in

an exponential form. We have also motivated the definition of a generalized expectation value

of an operator O acting on two massive states, represented by their polarization tensors,

〈O〉 =
ε1,µ1...µsOµ1...µs,ν1...νsε2,µ1...µs

ε1,µ1...µsε
µ1...µs
2

. (3.1)

Let us first show how to apply this definition to match the form of the stress-energy

tensor of a single Kerr black hole, derived in the introduction:

hµνT
µν(k) = δ(k2)δ(k · p)(p · ε)2 exp

(
i
kµενS

µν

p · ε

)
, (3.2)

where we have flipped the sign of k. There is a subtle but important point already present in

this classical matching that will guide us in the following subsection on a path to the classical

scattering angle. A crucial difference between the angular momentum operator Jµν appearing

in the soft theorem and the classical spin Sµν appearing in the expansion of Tµν comes from

the SSC satisfied by the latter. Following section 2.1 (see also appendix B) we relate the two

by

Jµν = Sµν +
1

m2
pµpαJ

αν − 1

m2
pνpαJ

αµ, (3.3)

– 16 –



which implies that the soft operator reads, at k2 = 0,

kµενJ
µν

p · ε
=
kµενS

µν

p · ε
+

1

m2
kµpνJ

µν . (3.4)

The key observation is that this operator acts on a chiral representation. That is, the

states are built from the spinors |1〉2s and |2〉2s and therefore the operator is algebraically

realized by Jµν = iσ[µσ̄ν]/2, which is self-dual. This means that

1

m2
kµpνJ

µν =
i

2m2
εµνρσkµpνJρσ =

i

2m2
εµνρσkµpνSρσ = ia · k. (3.5)

On the three-point kinematics, one can show that i(a · k) = kµενS
µν/(p · ε), so eq. (3.4)

becomes
kµενJ

µν

p · ε
= 2

kµενS
µν

p · ε
. (3.6)

It can be checked that this relation is independent of the helicity of the graviton. To compute

the generalized expectation value, we will also need to consider the product ε
(s)
1 ·ε

(s)
2 . To that

end we use the following representation of polarization tensors, obtained as tensor products

of the spin-1 polarization vectors (2.10)

ε
(s)
1 = ε⊗s1 =

2s/2

ms

(
|1〉[1|

)�s
, ε

(s)
2 = ε⊗s2 =

2s/2

ms

(
|2〉[2|

)�s
, (3.7)

where p2 is now outgoing, so |2〉 is minus that of section 2. This leads to

lim
s→∞

m2sε1,µ1...µsε
µ1...µs
2 = lim

s→∞
〈12〉s[21]s

= lim
s→∞
〈1|2s

(
1− |k〉〈k|

mx

)s
|2〉2s

= lim
s→∞
〈1|2s

(
1 +

i

2s

kµενJ
µν

p · ε

)s
|2〉2s

= lim
s→∞
〈1|2s exp

(
i

2

kµενJ
µν

p · ε

)
|2〉2s

= lim
s→∞

exp

(
i
kµενS

µν

p · ε

)
〈12〉2s,

(3.8)

where we used the s→∞ limit of (2.30) and in the last line we extracted the operator as a

GEV. The same manipulation can be done for the three-point minus-helicity amplitude:

lim
s→∞

m2sε1,µ1...µsM
(s),µ1...µs,ν1...νs
3 ε2,ν1...νs = m2x2 lim

s→∞
exp

(
2i
kµενS

µν

p · ε

)
〈12〉2s. (3.9)

Here we would like to emphasize a key point. Even though the exponential operator is

always present at finite spin, it is only in the infinite spin limit that the expansion does not

truncate. This leads to

lim
s→∞
〈M(s)

3 〉 = 2(p · ε)2 exp

(
i
kµενS

µν

p · ε

)
, (3.10)
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which recovers eq. (3.2), this time with the SSC condition incorporated. One can also keep

the minus helicity and redo the computation in the antichiral basis:

lim
s→∞

m2sε1,µ1...µsM
(s),µ1...µs,ν1...νs
3 ε2,ν1...νs = m2x2 lim

s→∞
[12]2s, (3.11a)

lim
s→∞

m2sε1,µ1...µsε
µ1...µs
2 = lim

s→∞
exp

(
− ikµενS

µν

p · ε

)
[12]2s. (3.11b)

Therefore, the GEV is invariant with respect to the choice of the spinor basis.

Finally, we notice that the self-dual condition is natural when considering a definite-

helicity coupling, e.g. kµε
−
ν J

µν projects out the anti-self-dual piece. However, we should keep

in mind that this is just an artifact of our choice of chiral spinor basis to describe that coupling.

It would be interesting to find a non-chiral form, analogous to the vector parametrization of

section 2.1, in such a way that the amplitude already contains the covariant-SSC spin tensor

built in.

3.2 Kinematics and scattering angle for aligned spins

We now consider scattering of two massive spinning particles, one with mass ma, spin (quan-

tum number) sa, initial momentum p1, and final momentum p2, and the other with mass mb,

spin sb, initial momentum p3, and final momentum p4,

p2
1 = p2

2 = m2
a, p2

3 = p2
4 = m2

b , (3.12)

following here the conventions of [24]. The total amplitude

M(sa,sb)
4 =

p2

p1

p4

p3

(3.13)

is a function of the external momenta and the external spin states (polarization tensors). We

define as usual

s = p2
tot, t = k2, (3.14)

where ptot is the total momentum, and k is the momentum transfer,

ptot = p1 + p3 = p2 + p4, k = p2 − p1 = p3 − p4. (3.15)

The Mandelstam variable s, the total center-of-mass-frame energy E, the relative velocity v

(between the inertial frames attached to the incoming momenta p1 and p3, with v > 0), and

the corresponding relative Lorentz factor γ — each of which determines all the others, given

fixed rest masses ma and mb—are related by

s = E2 = m2
a +m2

b + 2mambγ,
p1 · p3

mamb
= γ =

1√
1− v2

. (3.16)
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p2
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p4

k

Figure 2: Tree-level singularity for one-graviton exchange

At t = 0, it is convenient to fix the little-group scaling of the internal graviton (for

tree-level one-graviton exchange). Following [24], we can choose it as

x3 =

√
2p3 · ε−

mb
= 1. (3.17)

This implies

x−1
1 = −

√
2p1 · ε+

ma
= − [r|p1|k〉

ma[rk]
= −γ(1 + v), x1 =

√
2p1 · ε−

ma
= − [k|p1|r〉

ma〈kr〉
= γ(1− v).

(3.18)

We consider the case, in the classical limit, in which the two particles’ rescaled spin

vectors,

aµa =
1

2m2
a

εµνρσp
ν
aS

ρσ
a , aµb =

1

2m2
b

εµνρσp
ν
bS

ρσ
b , (3.19)

are aligned with the system’s total angular momentum. They are orthogonal to the constant

scattering plane, and are conserved. The scattering plane is defined containing all the mo-

menta, see e.g. [26]. Here pa is the average momentum pa = (p1 + p2)/2 = p1 + O(k) =

p2 +O(k), similarly for pb. In this “aligned-spin case”, up to order G2, we will find that the

classical scattering angle θ by which both bodies are scattered in the center-of-mass frame, is

given by the same relation as for the spinless case [20, 36, 37],

θ +O(θ3) = 2 sin
θ

2
=

−E
(2mambγv)2

∂

∂b

∫
d2k

(2π)2
e−ik·b lim

sa,sb→∞
〈M(sa,sb)〉+O(G3), (3.20)

where 〈M(sa,sb)
4 〉 is the generalized expectation value of the amplitude (3.13), and the momen-

tum transfer k is integrated over the 2D scattering plane, with b being the vectorial impact

parameter with magnitude b.

3.3 First post-Minkowskian order

At 1PM or tree level, the leading-singularity prescription reduces to a t-channel residue equiv-

alent to one-graviton exchange [25]. The reason that this leads to classical effects is that the

O(t0) piece, which is dropped, is ultralocal after a Fourier transform [19, 44]. In contrast to

the one-loop case, the HCL defined as the leading order in t is trivially implemented from the
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fact that the computation is done under the support of the factorization channel. Following

sections 3.1 and 4.2 of [24], the LS for the amplitude (3.13) with one graviton exchange is

obtained by gluing two massive higher-spin three-point amplitudes at minimal coupling, see

figure 2. These amplitudes are now given in the exponential form by eqs. (2.32) and (2.34)

in the chiral basis. Summing over helicities, we have

M̂(sa,sb)
4 =

1

t

[
M̂(sa)

3 (p1,−p2, k
−)⊗ M̂(sb)

3 (p3,−p4,−k+)

+ M̂(sa)
3 (p1,−p2, k

+)⊗ M̂(sb)
3 (p3,−p4,−k−)

]
= 8πG

m2
am

2
b

−t

[
x2

1

x2
3

exp

(
i
kµε
−
ν J

µν
a

p1 · ε−

)
+
x2

3

x2
1

exp

(
−i
kµε
−
ν J

µν
b

p3 · ε−

)]
.

(3.21)

Here we will take the limit where both massive particles’ spin quantum numbers (sa and sb)

go to infinity. After using eq. (3.6) in the first equalities below, it follows from the three-

point kinematics and from eqs. (3.16) and (3.27) that the exponents can be rewritten in the

following forms independent of the polarization vector,

+i
kµε
−
ν J

µν
a

p1 · ε−
= +2i

kµε
−
ν S

µν
a

p1 · ε−
= +2iεµνρσ

pµ1p
ν
3

mambγv
kρaσa = +2ik × p̂ · aa, (3.22a)

−i
kµε
−
ν J

µν
b

p3 · ε−
= −2i

kµε
−
ν S

µν
b

p3 · ε−
= −2iεµνρσ

pµ1p
ν
3

mambγv
kρaσb = −2ik × p̂ · ab, (3.22b)

where p̂ is the unit vector in the direction of the relative momentum in the center-of-mass

frame. Finally, using eqs. (3.18) and (3.17) for the x-factors, and dividing by the normalization

factor arising from the generalized expectation value as in eq. (3.8),

(ε1 · ε2)(ε3 · ε4)→ exp
(
ik × p̂ · (aa − ab)

)
(3.23)

(with the relative sign due to the direction of k), we obtain

〈M〉 = 8πG
m2
am

2
b

−t
γ2
∑
±

(1± v)2 exp
(
∓ik × p̂ · (aa + ab)

)
. (3.24)

Inserting this into the scattering-angle formula (3.20) gives

θtree = −GE
v2

∑
±

(1± v)2 ∂

∂b

∫
d2k

2πk2 exp
(
−ik · [b± p̂× (aa + ab)]

)
=
GE

v2

∑
±

(1± v)2 ∂

∂b

[
log
∣∣∣b± p̂× (aa + ab)

∣∣∣ = log
(
b± (aa + ab)

)]
=
GE

v2

∑
±

(1± v)2

b± (aa + ab)
,

(3.25)

having used p̂ × a = ab/b for both spins in the aligned-spin configuration. This precisely

matches the result for the 1PM aligned-spin binary-black-hole scattering angle found in [26].
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Finally, let us emphasize that, as stated in the introduction, this already differs from the

strategy implemented in e.g. [21, 22], where the full tree-level amplitude for s = {1
2 , 1, 2}

was computed in first place. Only then it was expanded in the NR limit k = (0,k) → 0

under the COM frame. The evaluation of spin effects requires tracking subleading orders

in the momentum transfer k (denoted there by ~q), which in general contain both classical

and quantum pieces, depending on whether they include the corresponding power of the spin

vector. This is precisely what the LS singles out by dropping the (quantum) contraction

t = k2 in favor of the (classical) tensor structures ∼ knSn. At tree level this is equivalent to

set the HCL t = 0, but at one loop the HCL is needed to drop further quantum contributions

from the LS, as we shall explain in the next subsection.

3.4 Second post-Minkowskian order

In this section we derive a compact form for the 2PM (or O(G2)) aligned-spin scattering

angle. This is obtained from the one-loop version of the previous 4pt amplitude, through

the triangle LS proposed in [24] for computing its classical piece. The LS now consists in a

contour integral for a single complex variable y remaining in the loop integration after cutting

the three propagators of figure 3:

`2(y) = m2
b , (p3 − `(y))2 = 0 , (p4 − `(y))2 = 0 . (3.26)

It was argued in [24, 25, 45] that for the spinless case the Compton amplitude for same

helicities leads to no classical contribution. This fact is also true for arbitrary spin, as will

be proven somewhere else. This implies that only the opposite helicity case treated in 2.3

is needed, together with three-point interactions. The derivation is thus valid (to describe

minimally coupled elementary particles) at least up toO(a4
a) and to all orders in ab, where aa is

the rescaled spin of the particle that will appear in the Compton amplitude, and ab the other.

As explained already in [24, 29] and emphasized in section 2.3 the Compton amplitude needs

the introduction of contact terms for sa > 2. Nevertheless, the exponential structure found

already for sa ≤ 2 very nicely fits into the Fourier transform and leads to a compact formula

for the scattering function, which can be computed directly once the multipole operators

have been identified. The final formula resums all orders in both spins, but is not justified

starting at O(a5
a). We finally expand in spins and find perfect agreement with the linear- and

quadratic-order-in-spin results of [32] and [34]. The computation of the possible contributions

to the LS from contact terms arising in the higher-spin Compton amplitude is left for future

work.

Our strategy is to identify the spin-multipole-coupling operators k× p̂ ·aa and k× p̂ ·ab
in the exponential form of the three and four point amplitudes entering the triangle leading

singularity, see figure 3. This is done under the support of the Holomorphic Classical Limit9

which accounts for a null momentum transfer k2 = 0 and recovers the three point kinematics

9The name “Holomorphic Classical Limit” is due to the external momenta being complex at that point.
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Figure 3: Triangle leading-singularity configuration

studied in section 2. The soft expansion in k accounts for a simultaneous expansion in both

powers of spin.

Let us first recap the triangle leading singularity, also introducing a more economic for-

mulation of it. This consists of a contour integral obtained by gluing three-point amplitudes

with the Compton amplitude. Our starting point is the expression

κ2

26

mb√
−t

∫
ΓLS

dy

y
M̂(sa)

4 (psa1 ,−p
sa
2 , k

+
3 , k

−
4 )⊗ M̂(sb)

3 (psb3 ,−`,−k
−
3 )|`]2s〈`|2sM̂(sb)

3 (−psb4 , `,−k
+
4 ),

(3.27)

where we have inserted the operator |`]〈`| in-between the three-point amplitudes to denote

operator multiplication, in the same way as in section 2.1. Here ΓLS is the leading-singularity

contour which can be obtained at either |y| = ε or |y| → ∞. The loop momenta, together

with their corresponding spinors, are functions of y given by equation (3.17) of [24]. Here we

will only need the following limits:

|k3] =
1

2
|k](1 + y) +O

(√
−t
mb

)
, |k3〉 = − 1

2y
〈k|(1 + y) +O

(√
−t
mb

)
,

|k4] =
1

2
|k](1− y) +O

(√
−t
mb

)
, |k4〉 =

1

2y
〈k|(1− y) +O

(√
−t
mb

)
,

〈k3k4〉 =

√
−t
y

+O

((√
−t
mb

)2
)
,

〈k3|p1|k4] = maγ
√
−t2y − v(1 + y2)

2y
+O

((√
−t
mb

)2
)
.

(3.28)

Recall that at t = 0 the momentum transfer reads k = |k〉[k| and the scaling of the

spinors |k〉, |k] is fixed by the condition (3.17). In turn, this fixes the little-group scaling of

both internal gravitons k3 and k4. We can now insert the exponential expressions (for sa ≤ 2)
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and evaluate the scalar pieces, obtaining

κ2

26

∫
ΓLS

dy

y
M(0)

4 (p1,−p2, k
+
3 , k

−
4 )M(0)

3 (p3,−`,−k−3 )M(0)
3 (−p4, `,−k+

4 )

× exp

(
i
k4µε

+
4νJ

µν
a

p1 · ε+
4

)
⊗ exp

(
i
k3µε

−
3νJ

µν
b

p3 · ε−3

)
=
κ2

26

mb√
−t

∫
ΓLS

dy [2y − v(1 + y2)]4

y3(1− y2)2
exp

(
i
k4µε

+
4νJ

µν
a

p1 · ε+
4

)
⊗ exp

(
i
k3µε

−
3νJ

µν
b

p3 · ε−3

)
,

(3.29)

to leading orders in t.

Before proceeding to compute the GEV, let us clarify an important point. Recall that

in the tree-level case the exponential operator was truncated at order 2s in the expansion.

The infinite spin limit did not alter the lower orders in the exponential but simply accounted

for promoting such finite number of terms to a full series. We assume such condition still

holds for the Compton amplitude, that is, the first five orders reproducing the exponential

expansion are not spoiled in the infinite spin limit. The reason is that at arbitrary spin, the

introduction of contact terms is only needed to cancel the spurious pole coming from the

exponent, which appears as a pole in the amplitude only at fifth order.

With the previous consideration, the above operator formula in the infinite spin limit is

fourth order exact in the expansion of the left exponential and fully exact in the expansion of

the right exponential. Let us now proceed to evaluate the exponents of both. The exponential

factor on the right can be obtained straight at t = 0 kinematics. In fact, using

k3 = −(1 + y)2

4y
k, (3.30)

we find

exp

(
i
k3µε3νJ

µν
b

p3 · ε3

)
= exp

(
− i(1 + y)2

4y

kµε3νJ
µν
b

p3 · ε3

)
= exp

(
i
(1 + y)2

2y
k × p̂ · ab

)
, (3.31)

where the vector ε−3 can be taken as a polarization vector for k, up to a scale that cancels. We

have again identified kµενJ
µν
b /(p3·ε3) = 2k×p̂·ab (with a sign flip due to the negative helicity)

as the classical operator that will enter the GEV, whereas the y dependence contributes to the

contour integral. Now, recall that the left exponential corresponds to the Compton amplitude

and was fixed in section 2.3 using k3 · ε+
4 = 0, i.e.

ε+
4 =
√

2
|k3〉[k4|
〈k3k4〉

, (3.32)

which is singular at t = 0. In order to evaluate it we will need the following trick. First note

that at t 6= 0 the numerator is gauge invariant, hence we can write

k4µε
+
4νJ

µν
a = k4µε̂

+
4νJ

µν
a , (3.33)

– 23 –



where

ε̂+
4 =
√

2
|r〉[k4|
〈rk4〉

(3.34)

and |r〉 is some reference spinor such that 〈k4r〉 6= 0. This means that in the limit we have

lim
t→0

k4µε
+
4νJ

µν
a

p1 · ε+
4

=
(
k4µε̂

+
4νJ

µν
a

)
t=0

lim
t→0

(
p1 · ε+

4

)−1
. (3.35)

The limit can be evaluated directly using eq. (3.28). We find

lim
t→0

(
p1 · ε+

4

)
=
γma

2
√

2

[
2y − v(1 + y2)

]
. (3.36)

Now recall that at t = 0 we recover three particle kinematics for p1, p2 and k. This means

that the combination

p1 · ε̂+
4

∣∣
t=0

=
〈r|p1|k4]√

2〈rk4〉

∣∣∣∣
t=0

=
y√
2

〈r|p1|k]

〈rk〉
(3.37)

is independent of the choice of r and hence can be identified with

y(p1 · ε+) = y
γma√

2
(1 + v), (3.38)

as follows from (3.13). Putting all together, and using k4 = (1−y)2

4y , we have

lim
t→0

k4µε
+
4νJ

µν
a

p1 · ε+
4

=
(
k4µε̂

+
4νJ

µν
a

)
t=0

2
√

2

γma

[
2y − v(1 + y2)

]−1

=

(
k4µε̂

+
4νJ

µν
a

p1 · ε̂+
4ν

)
t=0

× y(p1 · ε+)× 2
√

2

γma

[
2y − v(1 + y2)

]−1

=
(1− y)2(1 + v)

4y − 2v(1 + y2)

(
kµε

+
ν J

µν
a

p1 · ε+
ν

)
=

(1− y)2(1 + v)

2y − v(1 + y2)
k × p̂ · ab.

(3.39)

Attaching the same normalization from the previous section in order to compute the

GEV, we write the leading order (i.e. dropping O(t0) terms) of our contour integral as

〈M〉 ∝ 1√
−t

∫
ΓLS

dy

2πi

γ2[2y − v(1 + y2)]4

8v2y3(1− y2)2
exp

(
i

1 + y2 − 2vy

2y − v(1 + y2)
k× p̂ ·aa + i

1 + y2

2y
k× p̂ ·ab

)
,

(3.40)

As already explained, ΓLS can be chosen as a contour around zero or infinity. This inversion

accounts for a parity conjugation of the amplitude, and the equivalence follows from parity

invariance of the triangle diagram [25]. Here let us unify both descriptions by means of the

change of variables

z =
1 + y2

2y
. (3.41)

Both contours around y = ∞ and y = 0 are mapped to z = ∞. At the same time the

polynomial structure gets reduced to at most quadratic, at the cost of introducing a branch
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cut in the integral. Now, after restoring overall factors, we have

〈M〉 = 4π2mb
G2m2

am
2
b√

−t

∫
ΓLS

dz

2πi

γ2(1− vz)4

v2(z2 − 1)3/2
exp

(
i
z − v
1− vz

k × p̂ · aa + izk × p̂ · ab
)
.

(3.42)

Note that the branch cut singularity is induced by the massive propagators inside the Compton

amplitude and does not lead to classical contributions. The essential singularity z = 1/v is

induced by the unphysical pole p1 · ε4 in the exponential expansion. We take the contour

around infinity to be ΓLS = {|z| = R} for some large but finite radius, R > max{ 1
v , 1}, for

reasons we will explain in a moment. Finally, the contribution to the scattering angle reads

θ/ = −πG2mbE
∂

∂b

∫
ΓLS

dz

2πi

γ2(vz − 1)4

2v2(z2 − 1)3/2

∫
d2k

2π|k|
exp
(
−ik ·

[
b− zp̂× ab −

z − v
1− vz

p̂× aa

])
= −πG2mbE

∂

∂b

∫
ΓLS

dz

2πi

γ2(1− vz)4

2v2(z2 − 1)3/2

(
b− zab −

z − v
1− vz

aa

)−1
, (3.43)

having specialized to aligned spins. The total one-loop contribution to the scattering angle is

θ/ + θ., where θ. is obtained by exchanging ma ↔ mb and aa ↔ ab.

Let us now discuss the choice of contour ΓLS. Denoting aa = σ and ab = a, we will argue

that the contour integral is given by∫
|z−z+|=ε∪ |z|→∞

dz

2πi

(vz − 1)5

(z2 − 1)3/2(z − z+)(z − z−)
, (3.44)

where

z+ + z− =
bv + a+ σ

av
, z+z− =

b+ vσ

av
, (3.45)

and we select z+ by demanding z+ → ∞ as a → 0. Now, for finite order in spin the

leading-singularity prescription simply grabs the pole at z = ∞ and drops the branch cut

contribution together with the pole at z = 1/v. We see that the infinite-spin limit resums

part of the contributions from both z = ∞ and z = 1/v into finite poles located at z+ and

z−, respectively. This can be seen by noticing that in the expansion around a, σ → 0 we

have z+ → ∞ and z+ → 1/v. This is the reason we considered a contour at finite radius in

eq. (3.42), which after the resummation encloses both z =∞ and z = z+.

With this contour prescription, evaluating the integral in eq. (3.43) yields the explicit

results given by eq. (1.12) in the introductory summary. Let us stress that the formulas (3.43)

and (1.12) can only be expected to be valid up to fourth order in σ. Nevertheless, they

condense non-trivial information for the scattering angle up to that order into a simple contour

integral. We have checked that these results precisely match the linear- and quadratic-order-

in-spin classical computations of [32, 34].

4 Discussion

In this work we have presented a new connection between extended soft theorems and conser-

vative classical gravitational observables, in particular for scattering of spinning black holes.
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This extends the approach initiated in [24, 25] to construct such quantities in an economic

way through leading singularities. It also complements the general picture regarding the

extraction of classical results from on-shell methods, provided e.g. in [19, 33, 46].

It is clear that a more precise definition is needed for the generalized expectation value

that we used. Our construction can be thought as the average of an operator O as given

by two particle states in the scattering amplitude, which is mapped to the expectation value

of a classical observable Ocl = 〈O〉. Interestingly, this matches their effective counterpart,

as computed for instance in the worldline formalism, in the case where the operator Ocl is

constant [26, 31]. An extension of the GEV may be needed to incorporate time dependence,

such as what occurs with classical momentum deflection or spin holonomy [32].

The natural desired extension of the leading-singularity method is the computation of

higher orders, both in loops and powers of spin. Examples of higher-loop leading singularities

were computed for gravitational theories in [25], so it would be interesting to see if these can

be also applied to compute classical observables. On the other hand, extending the range

of validity in powers of spin is now clearly related to the problem of understanding deeper

orders in the soft expansion. More precisely, it is known that these orders depend both on the

matter content and the coupling to gravity [14, 15], hence one could hope that such problem

is tractable at least for matter minimally coupled to gravity [29], thus describing black holes.

It was already pointed out in [21] that amplitudes for massive spin-s particles lead to

a classical potential for bodies with spin-induced multipoles such as black holes or neutron

stars. The amplitudes match the classical potential up to the 22s-pole level, or up to order S2s,

where S is the body’s intrinsic angular momentum:

• a scalar particle corresponds to a monopole (with no higher multipoles);

• a spin-1/2 particle adds only a dipole ∝ S, yielding the O(S1) spin-orbit effects which

are universal (body-independent) in gravity;

• a spin-1 particle further adds a spin-induced quadrupole ∝ S2, specifically matching

the quadrupole of a spinning BH when constructed with minimal coupling. Note that

the quadrupole level corresponds to the order at which the soft theorem stops being

universal.

• a spin-3/2 particle adds a BH octupole ∝ S3, etc.

The complete spin-multipole series of a BH is seemingly obtained by taking the limit s → ∞
for a massive spin-s particle minimally coupled to gravity. This correlation was shown by

Vaidya [21] with explicit calculations at leading post-Newtonian orders, corresponding to the

nonrelativistic limits of tree-level amplitudes, up to the spin-2 or S4 level. In this paper,

we have provided further evidence that this correspondence holds, fully relativistically, to all

orders in spin at tree level, and for at least the first few orders in spin at one-loop order. It

is, however, not yet clear why we should expect this correspondence between classical black
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holes and minimally coupled quantum particles with s→∞ and ~→ 0, and to what extent

we should expect it to hold.

It was found in [47], by means of a BCFW argument, that in the MHV sector of gravity

amplitudes there is also a natural exponential completion of the soft theorem. A general

statement for gravity amplitudes is however still missing. There are a few evident problems

for the naive extrapolation of the formula (1.1) to higher orders. As we have seen, increasing

the powers of angular momentum, encoded in the gauge-invariant combination (kµενJ
µν
i ),

requires decreasing the powers of the numerator (p · εi), which generates unphysical poles.

Moreover, the first two orders enjoy gauge invariance thanks to fundamental conservation laws

corresponding to the linear and angular momenta of the scattering particles [1]. Reinserting

powers of (p · εi) in higher orders would then impose additional constraints that go beyond

these conservation laws. Therefore, when exponentiating the soft factor, a very specific choice

of the polarization vectors is required. This is precisely what is done in [47], where this choice

arises naturally from a BCFW deformation. A second problem that we dealt with here is the

sum over different particles, which destroys the realization of the exponential as an overall

factor acting onMn−1. We showed that in the cases of interest for computing the scattering

angle at tree level and one loop, these two problems can be overcome by a judicious choice

of the polarization vectors.

An obvious question which arises from this construction is whether it is possible to

establish a link between BMS symmetries studied at null/spatial infinity [3, 4, 6, 8–10] (or

at the black hole horizon [48, 49]) and classical observables arising from massive amplitudes.

The natural candidate for such a connection is radiative effects [50–54], as explored in [16]

from the point of view of soft theorems. Finally, it would be also interesting to see a link

between the exponentiation presented here and the exponentiation of IR divergences that has

been known in QED for a long time [2, 10, 55]. The latter one has recently appeared in the

computation of tail effects from the EFT perspective [50, 56, 57].
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A Three-point amplitude with spin-1 matter

Here we compute the three-point amplitude (2.1) starting from the massive spin-1 Lagrangian

L = −1

4
FµνF

µν +
m2

2
AµA

µ, (A.1)

where Fµν = ∂µAν − ∂νAµ. In order to compute the minimal cubic vertex to gravity, one

needs to the extract the energy-momentum tensor sourced by this field. In principle, this can

be done by covariantizing this action, i.e. by promoting ∂µ → ∇µ, and then inspecting the

metric variation, Tµν = 2√
−g

∂(
√
−gL)

∂gµν . Let us, however, take an alternative route of computing

the energy-momentum tensor directly in flat space. The reason is that this procedure will

explicitly identify the contribution of the intrinsic angular momentum of the particle.

A textbook application of Noether’s theorem for translations yields the following tensor

TµνN = −Fµσ∂νAσ − ηµνL ⇒ ∂µT
µν
N = 0. (A.2)

Its contraction with an on-shell graviton, εµνT
µν
N , fails to give the correct three-point am-

plitude, as opposed to the one obtained from covariantization. The reason is that TµνN lacks

symmetry in its indices (notice e.g. ∂νT
µν
N 6= 0), therefore its orbital angular momentum

Lλµν = xµT λνN − xνT
λµ
N is not conserved. Let us fix that by generalizing TµνN to a larger class

of tensors that are all conserved due to eq. (A.2):

Tµν = TµνN + ∂λB
λµ ν , Bλµ ν = −Bµλ ν ⇒ ∂µT

µν = 0, (A.3)

where the Belinfante tensor Bµνρ may be adjusted to yield a symmetric energy-momentum

tensor matching the gravitational one. To do that, we apply Noether’s theorem to Lorentz

transformations. The conservation of the total angular momentum Lλµν +Sλµν then implies

TµνN − T
νµ
N = −∂λSλµν , Sλµν = −i ∂L

∂(∂λAσ)
Σµν,σ

τA
τ = iF λσΣµν

στA
τ . (A.4)

Here Σµν are the Lorentz generators Σµν,σ
τ = i[ηµσδντ − ηνσδµτ ] that will help us identify

the spin contribution inside the three-point amplitude. Imposing the corrected tensor to be

symmetric now yields the condition ∂λB
λ[µ ν] = 1

2∂λS
λµν , which is solved by

Bλµ ν =
1

2

[
Sλµν + Sµ νλ − Sν λµ

]
. (A.5)

Contracting the resulting energy-momentum tensor with a traceless symmetric gravi-

ton hµν and integrating by parts, we obtain the gravitational interaction vertex

−hµνTµν = hµνF
µσ∂νAσ − i(∂λhµν)F νσΣλµ

στA
τ , (A.6)

where we suppress the coupling-constant factor κ/2. Its momentum-space version in the

scattering amplitude gives the following contributions:

hµνF
µσ∂νAσ → −(p2 · ε3)

[
(p1 · ε3)(ε1 · ε2)− (p1 · ε2)(ε1 · ε3)

]
+ (1↔ 2), (A.7a)

−i(∂µhνρ)F ρσΣµν
στA

τ → ip3µε3ν

[
(p1 · ε3)(ε1 ·Σµν ·ε2)− (ε1 · ε3)(p1 ·Σµν ·ε2)

]
+ (1↔ 2). (A.7b)
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where the transverse polarization vectors ε1 and ε2 correspond to the massive spin-1 matter

and two copies of ε3 belong to the massless graviton. Putting the above terms together

and using the three-point on-shell kinematic conditions p1 · p3 = p2 · p3 = 0, we obtain the

amplitude

M3 = 2i(p1 · ε)
[
(p1 · ε)(ε1 · ε2)− 2p3µε3νε

[µ
1 ε

ν]
2

]
, (A.8)

The second term in eq. (A.8) comes from ε1 ·Σµν ·ετ2 = 2iε
[µ
1 ε

ν]
2 , which in appendix B we

interpret as a spin expectation value, so it can be regarded as the spin contribution to the

gravitational interaction.

B Spin tensor for spin-1 matter

Here we construct the spin tensor for a massive spin-1 particle for the three-particle kine-

matics of section 2.1. The starting point is the one-particle expectation value of the angular-

momentum operator in the quantum-mechanical sense:

Sµνp =
〈p|Σµν |p〉
〈p|p〉

=
ε∗pσΣµν,σ

τετp
ε∗p · εp

= 2iε∗[µp εν]
p , Σµν,σ

τ = i[ηµσδντ − ηνσδµτ ], (B.1)

where for now we suppress the spin-projection/little-group labels of the states. We also used

the Lorentz generators Σµν in the vector representation. Due to the transversality of the both

massive polarization vectors, p · εp = 0, this spin tensor immediately satisfies the SSC (2.4).

Now a natural way to extend eq. (B.1) to the case of two different states (one incoming

with momentum p1 and one outgoing with p2) is to introduce a generalized expectation value

such that it gives one for a unit operator:

Sµν12 =
〈1|Σµν |2〉
〈1|2〉

=
ε∗1σΣµν,σ

τετ2
ε∗1 · ε2

=
2iε
∗[µ
1 ε

ν]
2

ε∗1 · ε2
. (B.2)

Since in section 2 we consider all momenta incoming, we suppress the conjugation sign10 and

rewrite the above as

Sµν12 = 2iε
[µ
1 ε

ν]
2 /(ε1 · ε2), (B.4)

which is the (normailzed) angular momentum contribution obtained in appendix A from

Noether’s theorem. Now in a classical computation [26] it is desirable to consider a spin

tensor that satisfies the spin supplementary condition (2.4). Although eq. (B.4) is a legitimate

10The conjugation rule between the incoming and outgoing states in the massive spinor-helicity formalism

amounts to lowering and raising the little-group indices, as indicated by the completeness relation in eq. (2.10).

For instance, in the helicity basis [29, 41] of spinors for a massive momentum pµ = (E, ~p ) = (E,P p̂), the

one-particle spin quantization is explicitly

m〈aµ〉abp =
1

2m
εµνλρ(εpab · Σνλ · εabp )pρ =


sµp , a = b = 1,

0, a+ b = 3,

−sµp , a = b = 2,

pµ = (E,~p) = (E,P p̂),

sµp =
1

m
(P,Ep̂).

(B.3)

– 29 –



definition, it does not satisy the covariant SSC with respect to the average momentum p =

(p1 − p2)/2 of the massive particle before and after graviton emission:

pµS
µν
12 =

i

2

(
(k · ε2)εν1 + (k · ε1)εν2

)
/(ε1 · ε2) 6= 0, (B.5)

where k = −p1 − p2 is the momentum transfer. However, the spin tensor is intrinsically

ambiguous, as the separation between the orbital and intrinsic pieces of the total angular

momentum is relativistically frame-dependent. In a classical setting, for instance, the refer-

ence point for the intrinsic angular momentum of a spatially extended body (as opposed to

its overall orbital momentum about the origin) is at its center of mass, but it gets shifted by

a change frame (see e.g. [58]). This ambiguity allows the spin tensor to be transformed as

Sµν → Sµν + p[µrν], where the difference p[µrν] for some vector rν accounts for the relative

shift between Sµν and Lµν ∼ p[µ∂/∂pν]. Adjusting rν to accommodate for the SSC (2.4), we

obtain

Sµν = Sµν12 +
2

m2
pλS

λ[µ
12 p

ν] =
i

ε1 · ε2

{
2ε

[µ
1 ε

ν]
2 −

1

m2
p[µ
(
(k · ε2)ε1 + (k · ε1)ε2

)ν]
}
, (B.6)

where we have used that p2 = m2 for a null momentum transfer k. Finally, we note that in

the classical limit k → 0 we retrieve the spin tensor (B.4) as the covariant-SSC one.

C Angular-momentum operator

Here we consider the total angular momentum

Jµν = Lµν + Sµν , Lpos.
µν = 2ix[µ

∂

∂xν]
(C.1)

in terms of the spinor-helicity variables. The starting point is the momentum-space form of

the orbital piece

Lµν = 2ip[µ
∂

∂pν]
= pσΣ σ

µν, τ

∂

∂pτ
, (C.2)

in which we encounter the Lorentz generators Σµν again.

Massless Case

Let us warm up with the case of a massless kµ = 〈k|σµ|k]/2. The spinorial version of the

orbital angular momentum (C.2) is

Lµν =

[
λασµν, βα

∂

∂λβ
+ λ̃α̇σ̄

µν,α̇

β̇

∂

∂λ̃β̇

]
, (C.3)

where the matrices

σµν, βα =
i

4

(
σµαγ̇ σ̄

ν,γ̇β − σναγ̇ σ̄µ,γ̇β
)
, σ̄µν,α̇

β̇
=
i

4

(
σ̄µ,α̇γσν

γβ̇
− σ̄ν,α̇γσµ

γβ̇

)
(C.4)
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are the left-handed and right-handed representations of the Lorentz-group algebra. Note that

the spinor map {λα, λ̃α̇} → kµ is not invertible for massless particles, but we can still use the

chain rule
∂

∂λα
=
∂kµ

∂λα
∂

∂kµ
=

1

2
σµ
αβ̇
λ̃β̇

∂

∂kµ
,

∂

∂λ̃α̇
=

1

2
σ̄µ,α̇βλβ

∂

∂kµ
(C.5)

to check the consistency between eqs. (C.2) and (C.3). Namely, the action of spinorial gener-

ator on a function of momentum kµ coincides with that of the vectorial one.

The generator (C.3), which can be more concisely written in spinor indices as

Lαα̇,ββ̇ = σµαα̇σ
ν
ββ̇
Lµν = 2i

[
λ(α

∂

∂λβ)
εα̇β̇ + εαβλ̃(α̇

∂

∂λ̃β̇)

]
, (C.6)

has more information than its momentum-space counterpart, as it cares about the helicity

of the massless particle. For instance, when we write the polarization tensors in terms of

spinor-helicity variables,

ε+
αα̇ =

√
2
|r〉α[k|α̇
〈rk〉

, ε−αα̇ = −
√

2
|k〉α[r|α̇

[rk]
, (C.7)

we do not regard them as functions of kµ but rather of its spinors λα and λ̃α̇. Of course, an in-

teger spin should not by itself depend on the auxiliary spinors. Fortunately, we can show that

the action of the differential operator (C.6) is precisely that of the algebraic generator Σµν ,

which constitutes the intrinsic angular momentum

(εSµν)τ = εσΣµν,σ
τ = 2iε[µδν]

τ ⇒ (εSαα̇,ββ̇)γγ̇ = 2i[εαα̇εβγεβ̇γ̇ − εαγεα̇γ̇εββ̇]. (C.8)

Specializing for concreteness to the negative-helicity case, we find

Lαα̇,ββ̇ε
−
γγ̇ = (ε−Sαα̇,ββ̇)γγ̇ +

2
√

2i

[q k]2
εαβ[q|α̇[q|β̇|k〉γ |k〉γ̇ . (C.9)

Here the last term is a gauge term explicitly proportional to kγγ̇ , so it can be discarded in a

physical amplitude.

Therefore, we conclude that the spinorial differential operator (C.6) incorporates both the

orbital and intrinsic contributions and so serves as the total angular-momentum operator Jµν .

Massive Case

It is direct to generalize the above discussion to massive momenta pµ = 〈pa|σµ|pa]/2. The

angular-momentum operator in the space of massive spinors {λaα, λ̃bβ̇} is given by

Jµν =

[
λαaσµν, βα

∂

∂λβa
+ λ̃ aα̇ σ̄

µν,α̇

β̇

∂

∂λ̃a
β̇

]
, Jαα̇,ββ̇ = 2i

[
λ a

(α

∂

∂λβ)a
εα̇β̇ + εαβλ̃

a
(α̇

∂

∂λ̃β̇)a

]
.

(C.10)

This operator is by construction invariant under the little group SU(2). Using the chain rule

∂

∂λαa
=

∂pµ

∂λαa
∂

∂pµ
=

1

2
σµ
αβ̇
λ̃β̇a

∂

∂pµ
,

∂

∂λ̃aα̇
= −1

2
σ̄µ,α̇βλβa

∂

∂pµ
, (C.11)
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it is again easy to check that the action on a function of pαβ̇ = λaαεabλ̃
b
β̇

is the same as that

of eq. (C.2). Finally, the action on polarization tensors can be tested to be a Lorentz trans-

formation. The spin-s tensors are parametrized in terms of massive spinor-helicity variables

as

εa1...a2sα1α̇1...αsα̇s
=

2s/2

ms
λ(a1
α1
λ̃a2α̇1
· · ·λa2s−1

αs λ̃
a2s)
α̇s

. (C.12)

with an obvious extension by an additional factor of Dirac spinor [29, 41] for half-integer

spins. Indeed, since Jµν is a first-order differential operator, it distributes when acting on

εa1···a2s and naturally expands into the left- and right-handed Lorentz generators:

Jµνεa1...a2sα1α̇1...αsα̇s
=

2s/2

ms

{[
εα1β

(
λα(a1σµν, βα

)]
λ̃a2α̇1
· · ·λa2s−1

αs λ̃
a2s)
α̇s

+λ(a1
α1

[
λ̃a2α̇ σ̄

µν,α̇
α̇2

]
· · ·λa2s−1

αs λ̃
a2s)
α̇s

+ . . .

}
.

(C.13)
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