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Abstract: We provide evidence that the classical scattering of two spinning black holes

is controlled by the soft expansion of exchanged gravitons. We show how an exponentia-

tion of Cachazo-Strominger soft factors, acting on massive higher-spin amplitudes, can be

used to find spin contributions to the aligned-spin scattering angle, conjecturally extend-

ing previously known results to higher orders in spin at one-loop order. The extraction

of the classical limit is accomplished via the on-shell leading-singularity method and us-

ing massive spinor-helicity variables. The three-point amplitude for arbitrary-spin massive

particles minimally coupled to gravity is expressed in an exponential form, and in the

infinite-spin limit it matches the effective stress-energy tensor of the linearized Kerr solu-

tion. A four-point gravitational Compton amplitude is obtained from an extrapolated soft

theorem, equivalent to gluing two exponential three-point amplitudes, and becomes itself

an exponential operator. The construction uses these amplitudes to: 1) recover the known

tree-level scattering angle at all orders in spin, 2) recover the known one-loop linear-in-spin

interaction, 3) match a previous conjectural expression for the one-loop scattering angle

at quadratic order in spin, 4) propose new one-loop results through quartic order in spin.

These connections link the computation of higher-multipole interactions to the study of

deeper orders in the soft expansion.
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1 Introduction

In 2014 Cachazo and Strominger [1] showed that the soft limit of tree-level gravity ampli-

tudes is controlled by the action of the angular momentum operator Jµν , i.e.

Mn+1 =

n∑
i=1

[
(pi · ε)2

pi · k
+ i

(pi · ε)(kµενJµνi )

pi · k
− 1

2

(kµενJ
µν
i )2

pi · k

]
Mn +O(k2), (1.1)

up to sub-subleading order. Here the soft momentum k corresponds to the external soft

graviton, and we have constructed its polarization tensor as εµν = εµεν . The sum is over

the remaining external particles with momenta pµi , and the operators Jµνi acting on them

include both orbital and spin parts of the angular momentum. The first term is simply

the standard Weinberg soft factor [2], whose universality is associated to the equivalence

principle. Following the QED results of Low [3, 4], the subleading behaviour of gravity

amplitudes was first studied long ago by Gross and Jackiw [5, 6]. Indeed, it was already
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Figure 1. (a) Four-point amplitude involving the exchange of soft gravitons, which leads to classical

observables. The external massive states are interpreted as two black-hole sources. (b) Comparison

between the HCL and the non-relativistic limit in the COM frame [27, 28, 30]. Spin effects require

subleading orders in the nonrelativistic (NR) classical limit, but can be fully determined at the

leading order in HCL through the soft expansion.

observed in [5, 6] that the subleading soft theorem follows from gauge invariance (see [7, 8]

for a modern perspective), and because of this, it also adopts a universal form up to

subleading order. Starting at sub-subleading order the soft expansion can depend on the

matter content and EFT operators present in the theory [9–11], although it is known that

gauge invariance still provides partial information at all orders [12, 13]. On a different front,

the realization that soft theorems correspond to Ward identities for asymptotic symmetries

at null infinity [14] has led to impressive and wide-reaching developments [1, 8, 15–19],

see [20] for a recent review. Following such correspondence, an infinite tower of Ward

identities has indeed been proposed to follow from all orders in the soft expansion [21].

Recently, a classical version of the soft theorem up to sub-subleading order has been

used by Laddha and Sen [22] to derive the spectrum of the radiated power in black-

hole scattering with external soft graviton insertions. This relies on the remarkable fact

that conservative and non-conservative long-range effects of interacting black holes can be

computed from the scattering of massive point-like sources [23–26]. Indeed, rotating black

holes can be treated via a spin-multipole expansion, the order 2s of which can be reproduced

by scattering spin-s minimally coupled particles exchanging gravitons [27], as illustrated

in figure 1a. The matching between these amplitudes with spin and a non-relativistic

potential for black-hole scattering has been performed explicitly in the post-Newtonian

(PN) framework [27–29].

Here we present a complementary picture to the one of [22] by employing the soft

theorem in the conservative sector (i.e. no external gravitons), focusing on rotating black

holes and at the same time extending the soft factor in (1.1) to higher orders in the soft

expansion. This is achieved in the following way: It was shown by one of the authors
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in [29] that the classical (~-independent) piece of the spin-s amplitude can be extracted

from a covariant Holomorphic Classical Limit (HCL), which sets the external kinematics

such that the momentum transfer k between the massive sources is null. On the support

of the leading-singularity (LS) construction [31], which drops O(~) parts, the condition

k2 = 0 reduces the amplitude to a purely classical expansion in spin multipoles of the form

∼ knSn, where S carries the intrinsic angular momentum of the black hole (see figure 1b).

This precisely matches the soft expansion once the momentum transfer is recognized as

the graviton momentum and the classical spin vector S is identified with the angular

momentum Ji of the matter particles.

To see the soft expansion more explicitly, consider the energy-momentum tensor of a

single linearized Kerr black hole, which has recently been written down in an exponential

form by one of the authors [32]:

Tµν(−k) = 2πδ(p · k)p(µ exp(a ∗ ik)ν)
ρ p

ρ +O(G), (1.2)

where (a ∗ k)µν = εµνρσa
ρkσ, and aµ = Sµ/m is the rescaled spin vector of the black

hole. The magnitude a is exactly the radius of its ring singularity. Here we have per-

formed a Fourier transform of the worldline formulas (18) and (32a) of [32]. Now, the

interaction vertex between a graviton and a massive source corresponds to the contraction

−hµνTµν . After we take the graviton to be on-shell and replace hµν(k) by 2πδ(k2)εµεν ,

the vertex becomes

hµν(k)Tµν(−k) = (2π)2δ(k2)δ(p · k)(p · ε)εµpν
[
ηµν − iεµνρσkρaσ +

1

2
ηµν(a · k)2 +O(k3)

]
,

(1.3)

where we have used the support of the delta functions. This expression can be written in

a simple form by introducing the spin tensor

Sµν = εµνρσpρaσ ⇒ aλ =
1

2m2
ελµνρS

µνpρ, (1.4)

satisfying Sµνpν = 0, after which it becomes

hµν(k)Tµν(−k) = (2π)2δ(k2)δ(p · k)(p · ε)2 exp

(
−ikµενS

µν

p · ε

)
(1.5)

= (2π)2δ(k2)δ(p · k)(p · ε)2

[
1− ikµενS

µν

p · ε
− 1

2

(
kµενS

µν

p · ε

)2

+O(k3)

]
.

The terms inside the parentheses look precisely like an exponential completion of the ex-

pansion in eq. (1.1). Here it naturally appeared as a rewrite of the exponential structure

of the linearized Kerr energy-momentum tensor. We will see that this structure extends

way beyond what is guaranteed by universality and it is a consequence of the ‘minimally

coupled’ nature of the Kerr solution. Note that the prefactor (p · ε)2 corresponds to the

contribution of the energy-momentum tensor of the linearized Schwarzschild solution [33].

Even though the fact that classical gravitational quantities can be reproduced from

QFT computations has been known for a long time, the precise conceptual foundations of
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the matching are still lacking.1 The goal of one of the authors in [29] was simply to show

the agreement of the LS method with the previous computations of [27, 28, 30]. Moreover,

in [29] the new massive spinor-helicity variables of Arkani-Hamed, Huang and Huang [35]

were implemented to construct operators carrying spin multipoles. These operators were

then matched, trough a change of basis, to those constructed in [27, 28, 30] in terms of

polarization vectors and Dirac spinors, enabling a systematic translation between the LS

and the standard QFT amplitude in the ~ → 0 limit. It is only after computing the ef-

fective potential from this amplitude that one matches the post-Newtonian potential of

general relativity.

The computation of the classical piece of the amplitude was made direct, through the

leading singularity, for arbitrary spin and all orders in the center-of-mass energy E. Both

the tree-level and one-loop versions of this computation correspond to a single order in

the post-Minkowskian (PM) expansion (see e.g. recent discussion in [26, 32, 33, 36–40] and

many more references therein), i.e. at a fixed power of G. However, the explicit match

to the standard QFT amplitude was only performed up to spin-1 and leading order in E

(which corresponds to the standard PN expansion). Moreover, the computation of the

PN effective potential through the Born approximation suffers some complications [25, 28].

Such potential is not gauge-invariant, i.e. not an observable, and can undergo canonical

and non-canonical transformations that become cumbersome when spin is considered as

part of the phase space. Moreover, at one loop the Born approximation itself requires the

subtraction of tree-level pieces and suffers from some (apparent) inconsistencies already at

spin-1 [30]. For these reasons a more direct conversion from the LS into a gravitational

observable is evidently needed. Very recently, a direct approach was proposed in the

amplitudes setup to evaluate the scattering angle of classical general relativity [26], i.e.

the deflection angle of two massive particles in the large-impact-parameter regime. It was

demonstrated that for scalar particles the scattering angle computed by Westphal [41] can

be obtained via a simple 2D Fourier transform of the classical limit of the amplitude.

Here we will show that the natural extension of the scattering angle, for aligned spins

as in [32, 36, 38, 40], can be computed with spinning particles directly from the LS. The

building blocks needed for this computation are the three-point amplitude and the Compton

amplitude for massive spinning particles interacting with soft gravitons. We will use the

soft expansion with respect to the internal gravitons to write the building blocks in an

exponentiated form, which fits naturally into the Fourier transform leading to the first and

second post-Minkowskian (1PM and 2PM) scattering angles in a resummed form.

Summary of results. In section 2.2 we show that the three-point scattering amplitude

between two massive particles of spin s and one graviton is given by

M(s)
3 (p1, p2, k

−) =
(
−κ

2

)
× 2(p · ε)2

m2s
〈2|2s exp

(
i
kµενJ

µν

p · ε

)
|1〉2s, p =

p1 − p2

2
, (1.6)

where the exponential operator is generated by the angular momentum Jµν , as appearing

in the soft theorem (1.1). This operator acts naturally on the product states |1〉2s or |2〉2s,
1Very recent progress on relating classical observables to quantum amplitudes has been made in [34].
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which are constructed from the new spinor-helicity variables introduced by Arkani-Hamed,

Huang and Huang [35]. Denoting the operator by M̂(s)
3 we write this as

M̂(s)
3 =M(0)

3 exp

(
i
kµενJ

µν

p · ε

)
, (1.7)

where M(0)
3 corresponds to the amplitude for a massive scalar emitting a graviton. In

section 2.3 we extend this result to the distinct-helicity Compton amplitude, showing that

M(s)
4 (p1, p2, k

+
3 , k

−
4 ) =

1

m2s
〈2|2sM̂(s)

4 |1〉
2s, M̂(s)

4 =M(0)
4 exp

(
i
k4µε4νJ

µν

p · ε4

)
, (1.8)

up to corrections of fifth order in J (appearing only for s > 2). In the operator form, k4

and ε4 can be replaced by k3 and ε3, which simply amounts to a change of basis. The soft

theorem (1.1) in this case is extrapolated in an exponential form, and corresponds to the

simple statement of factorization of the Compton amplitudes into three-point amplitudes

given by eq. (1.7) and its plus-helicity version.

The formulas (1.7) and (1.8) are the two building blocks needed to compute the scat-

tering angle. In order to recover the classical observables we introduce and compute the

generalized expectation value (GEV)

〈M(s)
n 〉 =

ε2,µ1...µsM̂
µ1...µs,ν1...νs
n ε1,ν1...νs

εµ1...µs2 ε1,µ1...µs

=
M(s)

n

εµ1...µs2 ε1,µ1...µs

. (1.9)

Here we focus on integer-spin particles for simplicity, therefore we use polarization tensors

for spin s. We first show that, with hµν = 2πδ(k2)εµεν ,

hµν(k)Tµν(−k) =
1

2
(2π)2δ(k2)δ(p · k) lim

s→∞
〈M(s)

3 〉
∣∣∣∣ p1= p−k/2
p2=−p−k/2

, (1.10)

where Tµν on the l.h.s. is the linearized stress-energy tensor of the Kerr black hole (1.5).

We then construct the aligned-spin scattering angle, for two-spinning-black-hole scattering,

as in [26, 42, 43],

θ = − E

(2mambγv)2

∂

∂b

∫
d2k

(2π)2
eik·b lim

sa,sb→∞
〈M(sa,sb)

4 〉+O(G3) (1.11)

(see section 3.2 for definitions). Here M(sa,sb)
4 corresponds to the four-point amplitude of

figure 1a, with masses ma and mb and spin quantum numbers sa and sb. We compute

this amplitude at both tree and one-loop levels using the LS proposed in [29]. The Fourier

transform can be performed using the exponential forms (1.7)–(1.8).

We find the following expression for the aligned-spin scattering angle χ as a function

of the masses ma and mb, the rescaled spins (ring radii, intrinsic angular momenta per

mass) aa and ab, the relative velocity at infinity v, and the proper impact parameter b (the

impact parameter separating the zeroth-order/asymptotic worldlines defined by each black

hole’s Tulczyjew spin supplementary condition [44]):

θ =
GE

v2

[
(1 + v)2

b+ aa + ab
+

(1− v)2

b− aa − ab

]
− πG2E

∂

∂b

[
mbf(aa, ab) +maf(ab, aa)

]
+O(G3),

(1.12a)
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where E =
√
m2
a +m2

b + 2mambγ with γ = (1− v2)−1/2, and

f(σ, a) =
1

2a2

(
−b+

(+ κ − 2a)5

4vκ
[
(+ κ)2 − (2va)2

]3/2
)

+O(σ5), (1.12b)

with

 = vb+ σ + a, κ =
√
2 − 4va(b+ vσ). (1.12c)

This agrees with previous classical computations to all orders in spin at tree level (at

linear order in G) [32, 36] and through linear order in spin at one loop (at order G2) [38],

as well as with the conjectural one-loop quadratic-in-spin expression presented in [40].

Moreover, eq. (1.12) resums those contributions in a compact form, including higher orders

in spin. We have indicated that the expression (1.12b) is valid up to quartic order in

one of the spins (but to all orders in the other spin) according to the minimally coupled

higher-spin amplitudes.

2 Multipole expansion of three- and four-point amplitudes

2.1 Massive spin-1 matter

We start our discussion of the multipole expansion by dissecting the case of graviton emis-

sion by two massive vector fields. The corresponding three-particle amplitude reads2

M3(p1, p2, k) = −2(p · ε)
[
(p · ε)(ε1 · ε2)− 2kµενε

[µ
1 ε

ν]
2

]
, p =

1

2
(p1 − p2), (2.1)

where p is the average momentum of the spin-1 particle before and after the graviton

emission and the polarization tensor of the graviton εµν = εµεν (with momentum k =

−p1 − p2) is split into two massless polarization vectors. The derivation of eq. (2.1) from

the Proca action is detailed in appendix A, which also motivates that the term involving

ε
[µ
1 ε

ν]
2 can be thought of as an angular-momentum contribution to the scattering. In other

words, we are tempted to interpret the combination ε
[µ
1 ε

ν]
2 as being (proportional to) the

classical spin tensor.

However, we now face our first challenge: as explained in [27, 28, 30], the spin-1

amplitude contains up to quadrupole interactions, i.e. quadratic in spin, whereas only the

linear piece is apparent in eq. (2.1). To rewrite this contribution in terms of multipoles,

we can use a redefined spin tensor

Sµν = − i

ε1 · ε2

{
2ε

[µ
1 ε

ν]
2 −

1

m2
p[µ
(
(k · ε2)ε1 + (k · ε1)ε2

)ν]
}
. (2.2)

It is introduced in appendix B via a two-particle expectation value/matrix element, which

we call the generalized expectation value (GEV)

Sµν =
ε2σΣ̂µν,σ

τετ1
ε2σεσ1

. (2.3)

2We omit the constant-coupling prefactors −(κ/2)n−2 in front of tree-level amplitudes, we use κ =√
32πG. Also note that we work in the mostly-minus metric signature.
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Here Σ̂µν is constructed as an angular-momentum operator shifted in such a way that its

GEV satisfies the Fokker-Tulczyjew covariant spin supplementary condition (SSC) [44, 45]

pµS
µν = 0. (2.4)

In this paper we find this condition to be crucial for the matching to the rotating-black-

hole computation of [32], as the classical spin tensor Sµν (1.4) satisfies the above SSC by

definition. The purpose of this SSC is to constrain the mass-dipole components S0i of

the spin tensor of an object to vanish in its rest frame. In a classical setting it puts the

reference point for the intrinsic spin of a spatially extended object at its rest-frame center

of mass.

Inserting this spin tensor in eq. (2.5), we rewrite the above amplitude as

M3(p1, p2, k) = −m2x2(ε1 · ε2)

[
1− i

√
2

mx
kµενS

µν +
(k · ε1)(k · ε2)

m2(ε1 · ε2)

]
, (2.5)

where for further convenience we also expressed the scalar products p · ε using a helicity

variable x first introduced in [46]

x =
√

2
p · ε
m

(2.6)

(at higher points it becomes gauge-dependent but can still be used as a shorthand). Now,

in the GEV of the amplitude,

〈M3〉 =
ε2σMστ

3 ε1,τ

ε2σεσ1
= −m2x2

[
1− ikµενS

µν

p · ε
+

(k · ε1)(k · ε2)

m2(ε1 · ε2)

]
, (2.7)

we recognize the dipole coupling of eq. (1.5) as the term linear in both k and S. Indeed,

particles with spin couple naturally to the field-strength tensor of the graviton Fµν =

2k[µεν], analogously to the magnetic dipole moment FµνS
µν .3 Following the non-relativistic

limit, the third term was identified in [27–30] to be the quadrupole interaction ∝
(
FµνS

µν
)2

for spin-1. It may seem a priori puzzling that we wish to regard the interaction (k ·ε1)(k ·ε2)

as the square of FµνS
µν . This is because the statement is true at the levels of spin operators,

but not at the level of (generalized) expectation values, i.e. 〈FµνΣ̂µν〉2 6= 〈
(
FµνΣ̂µν

)2〉. In

order to expose the exponential structure described in the introduction and construct such

spin operators at any order, we are going to recast the multipole expansion in terms of

spinor-helicity variables.

2.1.1 Spinor-helicity recap

This subsection can be skipped if the reader is familiar with the massive spinor-helicity

formalism of Arkani-Hamed, Huang and Huang [35],4 which is well suited to describe

scattering amplitudes for massive particles with spin. Much like its massless counterpart,

this formalism allows to construct all of the scattering kinematics from basic SL(2,C)

3We thank Yu-tin Huang for emphasizing to us the analogy to the electromagnetic Zeeman coupling, see

e.g. [47, 48]. Indeed, in a non-covariant form, this was already related to the soft expansion long ago [49].
4The spinor-helicity conventions used in the present paper are detailed in the latest arXiv version of [50].
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spinors that transform covariantly with respect to the little group of the associated particle.

The massive little group is SU(2), so the Pauli-matrix map from two-spinors to momenta

pαβ̇ = pµσ
µ

αβ̇
= εab|pa〉α[pb|β̇ = |pa〉α[pa|β̇ = λ a

α λ̃β̇a, (2.8)

involves a contraction of the SU(2) indices a, b, . . . = 1, 2 (not to be confused with the

spinorial SL(2,C) indices α, β, . . . = 1, 2 and α̇, β̇, . . . = 1, 2). This is in contrast to the

massless case, where the little group is U(1), so its index is naturally hidden inside the

complex nature of massless two-spinors

kαβ̇ = kµσ
µ

αβ̇
= |k〉α[k|β̇ = λαλ̃β̇ . (2.9)

Now just as λα and λ̃β̇ are convenient to built massless polarization vectors (2.11), we

can use the massive spinors λ a
α and λ̃ b

β̇
to construct spin-S external wavefunctions. For

instance, massive polarization vectors are explicitly

εabpµ =
〈p(a|σµ|pb)]√

2m
⇒


p · εabp = 0,

εabpµεpνab = ηµν −
pµpν
m2

εp11 ·ε11
p = εp22 ·ε22

p = 2εp12 ·ε12
p = 1,

(2.10)

where the symmetrized little-group indices (ab) represent the physical spin-projection num-

bers 1, 0,−1 with respect to a spin quantization axis, as chosen by the massive spinor basis.

Note that the vector indices, as well as their dotted and undotted spinorial counterparts,

must always be contracted and do not represent a physical quantum number.

Let us also point out here that the massless polarization vectors and hence the associ-

ated helicity variable (2.6) can be written in terms of massless spinors as

εµ+ =
〈r|σµ|k]√

2〈rk〉
, εµ− = − [r|σ̄µ|k〉√

2[rk]
⇒ x+ =

〈r|p|k]

m〈rk〉
, x− = − [r|p|k〉

m[rk]
= − 1

x+
,

(2.11)

where x is independent of the reference momentum r on the three-point on-shell kinematics.

2.1.2 Spin-1 amplitude in spinor-helicity variables

We can now obtain concrete spinor-helicity expressions for the amplitude (2.1). Choosing

the polarization of the graviton to be negative, we have

εa1a21 · εb1b22 = − 1

m2
〈1(a12(b1〉

[
〈1a2)2b2)〉 − 1

mx
〈1a2)k〉〈k2b2)〉

]
, (2.12a)

[
(ε1 · ε2)kµε

−
ν S

µν
]a1a2b1b2 =

i√
2m2
〈1(a1k〉

[
〈1a2)2(b1〉 − 1

2mx
〈1a2)k〉〈k2(b1〉

]
〈k2b2)〉,

(2.12b)

(k · εa1a21 )(k · εb1b22 ) = − 1

2m2x2
〈1(a1k〉〈1a2)k〉〈k2(b1〉〈k2b2)〉, (2.12c)

– 8 –
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where we have reduced all [1a| and |2b] to the chiral spinor basis of 〈1a| and |2b〉 using the

following identities for the three-point kinematics,5

[1ak] = x−1〈1ak〉, [2bk] = −x−1〈2bk〉, [1a2b] = 〈1a2b〉 − 1

mx
〈1ak〉〈k2b〉.

(2.13)

We also use x for x− henceforth, i.e. it carries helicity −1 unless stated otherwise. From

eq. (2.12) we can see that going to the chiral spinor basis has both an advantage and a

disadvantage. On the one hand, the multipole expansion becomes transparent in the sense

that the spin order of a term is identified by the leading power of |k〉〈k|. On the other

hand, the exponential structure of the vector basis is spoiled by a shift by higher multipole

terms. However, this is just an artifact of the chiral basis, and we should see that the

answer obtained from the generalized expectation value is the same.

The main advantage of the spinor-helicity variables for what we wish to achieve in

this paper is that now we can switch to spinor tensors 〈1(a1 | ⊗ 〈1a2)| and |2(b1〉 ⊗ |2b2)〉, as

representations of the massive-particle states 1 and 2. Introducing the symbol � for the

symmetrized tensor product, we can rewrite eq. (2.12a) as

ε1 ·ε2 = − 1

m2
〈1|�2

[
I�I− 1

mx
I�|k〉〈k|

]
|2〉�2 = − 1

m2

[
〈12〉�2− 1

mx
〈12〉�〈1k〉〈k2〉

]
. (2.14)

Here the operators have their lower indices symmetrized, i.e. (A � B)α2β2
α1β1

= Aβ1(α1
Bβ2
α2),

and the notation assumes that the reader keeps in mind the spins associated with each

momentum. Combining all the terms in eq. (2.12) into the amplitude, we obtain

M3(p1, p2, k
−) = x2

[
〈12〉�2 − 2

mx
〈12〉�〈1k〉〈k2〉+

1

m2x2
〈1k〉�2〈k2〉�2

]
. (2.15)

Now in the multipole expansion of the Kerr stress-energy tensor (1.5), the quadrupole

operator is of the simple form (kµενS
µν)2, whereas in our amplitude (2.5) it has the form

(k · ε1)(k · ε2) ∝ 〈1k〉�2〈k2〉�2. One then could wonder if in some sense the latter is the

square of (kµενS
µν). We now show that this is precisely the case if the angular momentum

is realized as a differential operator.

In appendix C we construct the differential form of the angular-momentum operator

in momentum space starting from its definition

Jµν = ipµ
∂

∂pν
− ipν ∂

∂pµ
+ intrinsic, (2.16)

which involves the standard orbital piece and the “intrinsic” contribution dependent on

spin. This operator admits a much simpler realization in terms of spinor variables, similar

to the one derived in [51] for the massless case. For a massive particle of momentum

pαβ̇ = λ a
pαλ̃pβ̇a we find that the differential operator for the total angular momentum is

given by

Jαα̇,ββ̇ = 2i

[
λ a
p(α

∂

∂λ
β)a
p

εα̇β̇ + εαβλ̃
a

p(α̇

∂

∂λ̃
β̇)a
p

]
. (2.17)

5The transition between the chiral spinors |pa〉 and the antichiral ones |pa] is always possible [35] via

the Dirac equations pα̇β |pa〉β = m|pa]α̇ and pαβ̇ |p
a]β̇ = m|pa〉α.
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We can now act with the operator kµενJ
µν on the product state |pa〉�2 = |pa1〉⊗ |pa2〉.

For the negative helicity of the graviton, we have

kµε
−
ν J

µν =
1

4
√

2
λαλβεα̇β̇Jαα̇,ββ̇ = − i√

2
〈kpa〉〈k ∂

∂λap
〉, 〈k ∂

∂λbp
〉|pa〉 = |k〉δab . (2.18)

Applying the spinor differential operator above, we find6(
ikµε

−
ν J

µν

p · ε−

)
|p〉2 =

2

mx
|k〉〈kp〉|p〉, (2.19a)(

ikµε
−
ν J

µν

p · ε−

)2

|p〉2 =
2

m2x2
|k〉2〈kp〉2, (2.19b)(

ikµε
−
ν J

µν

p · ε−

)j
|p〉2 = 0, j ≥ 3. (2.19c)

Although it is the differential operator that realizes the soft theorem, its algebraic form

is easy to obtain on three-particle kinematics. Indeed, if we take a tensor-product version

−(σµν ⊗ I + I⊗ σµν) of the standard SL(2,C) chiral generator σµν = iσ[µσ̄ν]/2 and use it

as an algebraic realization of Jµν , it is direct to check that it acts in the same way as the

differential operator above:

ikµε
−
ν J

µν

p · ε−
=
|k〉〈k|
mx

⊗ I + I⊗ |k〉〈k|
mx

. (2.20)

These identities allow us to reinterpret the last two terms in the amplitude for-

mula (2.15) as the non-zero powers of this dipole operator acting on the state |1〉2:

− 2

mx
〈12〉〈1k〉〈k2〉 = 〈2|2

(
ikµε

−
ν J

µν
1

p1 · ε−

)
|1〉2, 1

m2x2
〈1k〉2〈k2〉2 =

1

2
〈2|2

(
ikµε

−
ν J

µν
1

p1 · ε−

)2

|1〉2,

(2.21)

and rewrite the amplitude as

M3(p1, p2, k
−) = x2〈2|2

{
1 + i

(
kµε
−
ν J

µν
1

p1 · ε−

)
− 1

2

(
kµε
−
ν J

µν
1

p1 · ε−

)2}
|1〉2. (2.22)

It is now clear that these terms

• match the differential operators of the soft expansion (1.1);

• correspond to the scalar, spin dipole and quadrupole interactions in the expansion of

the Kerr energy momentum tensor (1.5) and its spin-1 amplitude representation (2.7).

Note that the sign flip in the dipole term comes from the sign difference between

the algebraic and differential Lorentz generators, as pointed out in the beginning of

appendix C.

6More explicitly, we have

i
√

2(kµε
−
ν J

µν)|pa〉�2 = 〈kpb〉
{[
〈k ∂

∂λbp
〉|pa1〉

]
⊗|pa2〉+ |pa1〉⊗

[
〈k ∂

∂λbp
〉|pa2〉

]}
= |k〉〈kpa1〉⊗|pa2〉+ |pa1〉⊗|k〉〈kpa2〉 = 2|k〉〈kpa〉�|pa〉,

with similar manipulations for higher powers.
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In this way, we interpret the three terms in the amplitude (2.15) as the multipole contri-

butions with respect to the chiral spinor basis, despite the fact that they do not equal the

multipoles in eq. (2.5) individually. Furthermore, as the operator (kµε
−
ν J

µν)j annihilates

the spin-1 state for j ≥ 3, the three terms can be obtained from an exponential

M3(p1, p2, k
−) = x2〈2|2 exp

(
i
kµε
−
ν J

µν

p · ε−

)
|1〉2. (2.23)

It can be checked explicitly that acting with the operator on the state 〈2|2 yields the

same result, i.e. in this sense the operator kµενJ
µν/(p · ε) is self-adjoint.7 On the other

hand, choosing the other helicity of the graviton will yield the parity conjugated version of

eq. (2.23):

M3(p1, p2, k
+) =

1

x2
[2|2 exp

(
i
kµε

+
ν J

µν

p · ε+

)
|1]2. (2.24)

In the next section we extend this procedure to arbitrary spin. Let us point out that

the explicit amplitude can be brought into a compact form by changing the spinor basis. In

fact, the three-point identities (2.13) imply that the amplitude formula (2.15) collapses into

M3(p1, p2, k
−) = [12]2x2. (2.25)

However, let us stress that this form completely hides the spin structure that was already

explicit in the vector form (2.5). The purpose of the insertion of the differential operators

is precisely to extract the spin-dependent pieces from the minimal coupling (2.25), which

will then be matched to the Kerr black hole.

2.2 Exponential form of three-particle amplitude

In this section we generalize the previous discussion to arbitrary spin s. Concentrating our

attention on integer spin allows us to ignore factors of (−1)2s. The starting point in this

case is the three-point amplitudes for massive matter minimally coupled to gravity in the

little-group sense [35]:

M(s)
3 (p1, p2, k

+) =
〈12〉2sx−2

m2s−2
, M(s)

3 (p1, p2, k
−) =

[12]2sx2

m2s−2
. (2.26)

As explained in the previous section, in such a compact form all the dependence on the

spin tensor is completely hidden. In order to restore it, we need to write the minus-helicity

amplitude in the chiral basis

M(s)
3 (p1, p2, k

−) =
x2

m2s−2

(
〈21〉+

〈2k〉〈k1〉
mx

)�2s

=
x2

m2s−2
〈2|2s

[
2s∑
j=0

(
2s

j

)(
|k〉〈k|
mx

)j]
|1〉2s,

(2.27)

where we have taken advantage of the symmetrized tensor product � that enables us to

perform the binomial expansion (we have suppressed the identity factors in the tensor

7The division by p · ε implicitly relies on the fact that the action of kµενJ
µν on the helicity variable x

vanishes. Note also that kµενJ
µν/(p · ε) should become kµενJ

µν
2 /(p2 · ε) when acting on |2〉2.
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product). Even though this already corresponds to an expansion in the “spin operator”

of [29], here we recast this into exponential form by inserting the differential angular mo-

mentum operator

i
kµε
−
ν J

µν

p · ε−
=

1

mx
〈kp〉〈k ∂

∂λp
〉, 〈kp〉〈k ∂

∂λp
〉|p〉 = |k〉〈kp〉. (2.28)

Indeed, it is easy to generalize the formulae (2.19) to product states of spin-s, namely

(
i
kµε
−
ν J

µν

p · ε−

)j
|p〉2s =


(2s)!

(2s− j)!
|p〉2s−j

(
|k〉〈kp〉
mx

)j
, j ≤ 2s,

0 , j > 2s.

(2.29)

In other words, in general the operator (2.28) is nilpotent of order 2s.8 Of course, this

also admits an algebraic realization, which is extends the formula (2.20). From this we can

derive the formal relations9

(
i
kµε
−
ν J

µν

p · ε−

)�j
=


(2s)!

(2s− j)!

(
|k〉〈k|
mx

)⊗j
� I⊗2s−j , j ≤ 2s,

0 , j > 2s.

(2.30)

Therefore, we can rewrite eq. (2.27) as an exponential

〈2|2s
[

2s∑
j=0

(
2s

j

)(
|k〉〈k|
mx

)j]
|1〉2s= 〈2|2s

∞∑
j=0

1

j!

(
i
kµε
−
ν J

µν

p · ε−

)j
|1〉2s

= 〈2|2sexp

(
i
kµε
−
ν J

µν

p · ε−

)
|1〉2s, (2.31)

where we note that the exponential expansion, albeit valid to all orders, becomes trivial at

order 2s. It can be read from eq. (2.27) that the spin operator |k〉〈k| of [29] corresponds

precisely to kµε
−
ν J

µν . Moreover, in the formal limit s→∞ the exponential can be realized

as a linear operator that does not truncate! However, let us stress that even for finite spins

the exponential operator in

M̂(s)
3 (p1, p2, k

−) =M(0)
3 exp

(
i
kµε
−
ν J

µν

p · ε−

)
, M(s)

3 =
1

m2s
〈2|2sM̂(s)

3 |1〉
2s (2.32)

is still present and can be mapped to classical observables such as the scattering angle.

This framework will be particularly useful at order G2, since the arbitrary spin version

(and hence the s→∞ limit) of the Compton amplitude is not yet known.

8Interestingly, due to its property (2.29) the spinorial differential operator (2.28) can be regarded as a

ladder operator for a spin-s representation.
9For j = 1, eq. (2.30) corresponds to the operator k · S used in [29] to perform the matching with

the standard QFT amplitude. We note, however, that the classical quantity kµενS
µν/(p · ε) matches the

quantity k · S used in [29] only when the spin tensor satisfies the SSC (2.4), as can be seen by squaring

both terms.
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Analogously, it can be shown that the transition to the positive helicity amounts to

exchanging angle brackets with square brackets:

M̂(s)
3 (p1, p2, k

+) =M(0)
3 exp

(
i
kµε

+
ν J

µν

p · ε+

)
, M(s)

3 =
1

m2s
[2|2sM̂(s)

3 |1]2s. (2.33)

The forms (2.32) and (2.33) make explicit the fact that the higher-spin amplitude is

non-local [35]. However, despite the appearance of the factor p · ε in the denominator,

the exponential factor is gauge-invariant due to the three-particle kinematics. We further

recognize in the argument of the exponential the same structure as the one appearing in

the Cachazo-Strominger soft theorem. In fact, as will be made explicit in the next section,

the extended soft factor of Cachazo and Strominger is just an instance of a three-point

amplitude of higher-spin particles. The poles present in the extended soft factor (1.1)

simply arise when gluing these three-point amplitudes.

The formula (2.32) is our first main result. Note that this holds for the full three-point

amplitude with no classical limit whatsoever. This formula matches precisely the Kerr

energy-momentum tensor (1.5), with M(0)
3 = m2x2 corresponding to the scalar piece (the

Schwarsczhild case). In section 3 we will use this compact form to compute the scattering

angle of two Kerr black holes at linear order in G.

2.3 Exponential form of gravitational Compton amplitude

The task of this section is to extend the construction presented in the previous one to the

Compton amplitude, without the support of three-particle kinematics.10 In particular, we

will show that for the cases of interest the following holds

M̂(s)
4 (p1, p2, k

+
3 , k

−
4 ) =M(0)

4 exp

(
i
kµενJ

µν

p · ε

)
. (2.34)

Here the linear and angular momentum p and Jµν in the exponential operator may act

either on massive state 1 or 2. Moreover, the momentum k and the polarization vector ε

can be associated to either of the two gravitons. Explicitly, we have

[2|2s exp

(
i
k3µε

+
3νJ

µν

p · ε+
3

)
|1]2s = 〈2|2s exp

(
i
k4µε

−
4νJ

µν

p · ε−4

)
|1〉2s. (2.35)

The importance of this amplitude (as opposed to the same-helicity case) is that it

controls the classical contribution at order G2, as was shown directly in [26, 29]. in [29] the

classical piece was argued to lead to the correct 2PN potential after a Fourier transform.

In the new approach of [26] the classical contribution in the spinless case was identified

by computing the scattering angle. In section 3 we will use the Compton amplitude as an

input for computing the scattering angle with spin up to order S4, agreeing with previously

known results at order S2. We will see that this exponential form is extremely suitable for

the computation of the latter as a Fourier transform.

10Historically, the Compton amplitude was the prototype in the discovery of subleading soft theorems [3,

5, 6]. The construction provided in section 2.4 is in a sense reminiscent of Low’s original derivation of the

subleading factor in QED [3].
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Our strategy is the following: we first consider the action of the exponentiated soft

factor acting on the three-point amplitude, as an all-order extension of the Cachazo-

Strominger soft theorem. We have checked that this agrees with the known versions of

the Compton amplitude [35, 52] for s ≤ 2. We leave the problem of obtaining the case

s ≥ 2 for future investigation, but we will comment on it at the end of section 2.4.

To obtain eq. (2.34) we first propose an all-order extension of the soft expansion (1.1)

with respect to the graviton k4 = |4〉[4|:[
(p1 · ε4)2

p1 · k4
exp

(
i
k4µε4νJ

µν
1

p1 · ε4

)
+

(p2 · ε4)2

p2 · k4
exp

(
i
k4µε4νJ

µν
2

p2 · ε4

)
+

(k3 · ε4)2

k3 · k4
exp

(
i
k4µε4νJ

µν
3

k3 · ε4

)]
M(s)

3 (p1, p2, k
+
3 ).

(2.36)

As stated in the introduction, two main problems arise when trying to interpret eq. (1.1)

as an exponential acting on the lower-point amplitude. The first is that gauge invariance

of the denominator pi · ε4 is not guaranteed. Here we simply fix ε−4 =
√

2|4〉[3|/[43], so the

last term in eq. (2.36) vanishes, as we will show in a moment. The second problem is that

one still has to sum over two exponentials, which would spoil the factorization of eq. (2.34).

The solution is that in this case both exponentials give the exact same contribution. In

the language of the previous section, this is the fact that one can act with the operator

k4µε4νJ
µν/(p · ε4) either on 〈2|2s or |1〉2s, giving the same result.

Let us first inspect the three-point amplitude entering eq. (2.36),

M(s)
3 (p1, p2, k

+
3 ) =M(0)

3

〈12〉2s

m2s
, M(0)

3 = m2x2
3 =
〈4|1|3]2

〈34〉2
=
〈4|1|2|4〉2

〈34〉4
, (2.37)

where we used ε+
3 =

√
2|4〉[3|/〈43〉. As explained in [1], in order for the action of the

differential operator to be well defined, we need to solve momentum conservation and

express M(0)
3 in terms of independent variables. Solving for |3] and |4] yields the last

expression in eq. (2.37). Now to evaluate the third term in eq. (2.36), we recall from

appendix C

J self-dual
3αα̇,ββ̇

= 2iλ3(α
∂

∂λ
β)
3

εα̇β̇ ⇒ k4µε4νJ
µν
3 = − i√

2
〈43〉〈4 ∂

∂λ3
〉. (2.38)

As the only place where 〈3| appears in eq. (2.37) is in the contraction with |4〉, we see

that the above differential operator annihilates the scalar three-point amplitude M(0)
3 .

Moreover, since the prefactor 〈12〉2s in the spin-s amplitude M(s)
3 does not depend on |3〉,

we conclude that the exponential operator in the third term of (2.36) acts always trivially.

The zeroth-order of the soft theorem ∝ (k3 · ε4)2 then vanishes by going to the chosen

gauge, hence the last term drops as promised.

Let us now look at the angular momenta of the massive particles. A similar inspec-

tion of 〈4|1|2|4〉 = 〈4 1a〉[1a2b]〈2b4〉 shows that the scalar piece M(3)
0 is in the kernel of

the operators

k4µε4νJ
µν
1 = − i√

2
〈41a〉〈4 ∂

∂λa1
〉, k4µε4νJ

µν
2 = − i√

2
〈42a〉〈4 ∂

∂λa2
〉. (2.39)
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Therefore, eq. (2.36) is simplified to

M(0)
3

[
(p1 · ε4)2

p1 · k4
exp

(
i
k4µε4νJ

µν
1

p1 · ε4

)
+

(p2 · ε4)2

p2 · k4
exp

(
i
k4µε4νJ

µν
2

p2 · ε4

)]
〈12〉2s

m2s
. (2.40)

Moreover, our choice of the reference spinor for ε4 implies p1 · ε4 = −p2 · ε4 = p · ε,
where p = (p1 − p2)/2 is the average momentum of the massive particle before and after

Compton scattering.

From the discussion of the previous section on the action of the angular-momentum

operator on 〈2|2s and |1〉2s, we also have

exp

(
i
k4µε4νJ

µν
1

p1 · ε4

)
〈12〉2s = exp

(
i
k4µε4νJ

µν
2

p2 · ε4

)
〈12〉2s = 〈2|2s exp

(
i
k4µε4νJ

µν

p · ε4

)
|1〉2s.

(2.41)

Hence we obtain

1

m2s
M(0)

3

[
(p1 · ε4)2

p1 · k4
+

(p2 · ε4)2

p2 · k4

]
〈2|2s exp

(
i
k4µε4νJ

µν

p · ε4

)
|1〉2s, (2.42)

where we recognize the scalar Weinberg soft factor. Recall that in this gauge k3 · ε4 = 0,

so there is no contribution from the other graviton. As an easy check, we observe that

the scalar Compton amplitude, written e.g. in [35, 52], can be constructed solely from this

soft factor:

M(0)
4 =M(0)

3

[
(p1 · ε4)2

p1 · k4
+

(p2 · ε4)2

p2 · k4

]
= − 〈4|1|3]4

(2p1 · k4)(2p2 · k4)(2k3 · k4)
. (2.43)

This proves that eq. (2.34) can be obtained from the all-order extension of the soft theo-

rem (2.36). Finally, the property (2.35) is checked by repeating the computation for the

opposite-helicity graviton k3.

2.4 Factorization and soft theorems

In view of the exponentiation formulas, we now show how factorization is realized in this

operator framework. For the pole (k3 + k4)2 → 0 it is evident, so we will focus on the

pole (p1 · k4) → 0. In that limit the scalar part factors as M(0)
4 → M(0)

3,LM
(0)
3,R/(2p1 · k4)

corresponding to the product of the respective three-point amplitudes. Let us denote the

internal momentum by pI = p1 + k4. Unitarity demands that the operator piece in (2.34)

behaves as

〈2|2s exp

(
i
k4µε4νJ

µν

p·ε4

)
|1〉2s→ 1

m2s
[2|2s exp

(
i
k3µε3νJ

µν

p·ε3

)
|Ia]2s〈Ia|2s exp

(
i
k4µε4νJ

µν

p·ε4

)
|1〉2s.

(2.44)

Here the insertion of pI = |Ia]〈Ia| is needed since the exponential operators act on different

bases. In order to show the above property, it is enough to write the left factor in the

chiral basis, as in section 2.2, which is possible on the three-particle kinematics of the

factorization channel:

1

m2s
[2|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|Ia]2s〈Ia|2s exp

(
i
k4µε4νJ

µν

p · ε4

)
|1〉2s (2.45)

=
1

m2s
〈2 Ia〉2s〈Ia|2s exp

(
i
k4µε4νJ

µν

p · ε4

)
|1〉2s = 〈2|2s exp

(
i
k4µε4νJ

µν

p · ε4

)
|1〉2s.
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On the other hand, we could have inserted the resolution of the identity in the right factor

1

m2s
[2|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|Ia]2s〈Ia|2s exp

(
i
k4µε4νJ

µν

p · ε4

)
|1〉2s

=
1

m2s
[2|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|Ia]2s[Ia1]2s = [2|2s exp

(
i
k3µε3νJ

µν

p · ε3

)
|1]2s.

(2.46)

Putting this together with the scalar piece we can write, for instance,

M(s)
4 −−−−−→

p1·k4→0

M(0)
3,LM

(0)
3,R

2p1 · k4

1

m2s
〈2|2s exp

(
i
k4µε4νJ

µν

p · ε4

)
|1〉2s (2.47)

=
M(0)

3,R

2p1 · k4
exp

(
i
k4µε4νJ

µν
1

p1 · ε4

)
M(0)

3,L

〈12〉2s

m2s
=

(p1 · ε4)2

p1 · k4
exp

(
i
k4µε4νJ

µν
1

p1 · ε4

)
M(s)

3,L.

Here, using M(0)
3,R =M(0)

3 (p1, pI , k
−
4 ) = 2(p1 · ε−4 )2, we have recovered the extension of the

soft theorem (2.36), that we used as a starting point of this section, in the limit p1 ·k4 → 0.

The origin of the exponential soft factor in this case is nothing but the three-point amplitude

of spin-s particles, written as a series in the angular momentum. Therefore, in our case the

statement of the subsubleading soft theorem (1.1) follows from factorization of amplitudes

of massive particles with spin.

Let us remark that, in analogy to the three-point case, the exponential factor can be

brought into a compact form using identities like (2.29). For example, one can check that

〈2|2s exp

(
i
k4µε4νJ

µν
1

p1 · ε4

)
|1〉2s =

[
〈21〉+

[43]

〈4|1|3]
〈24〉〈41〉

]2s

= m2s

(
[13]〈42〉+ 〈14〉[32]

〈4|1|3]

)2s

,

(2.48)

which converts the Compton amplitude into the form

M(s)
4 = − 〈4|1|3]4−2s

(2p1 · k4)(2p2 · k4)(2k3 · k4)

(
[13]〈42〉+ 〈14〉[32]

)2s
(2.49)

that is given in [35]. We remark, however, that this expression completely hides the spin

dependence that we need here for the classical computation.

It was pointed out in [35] that the formula (2.49) is only valid up to s ≤ 2. For higher

spins, one has to eliminate the spurious pole 〈4|1|3] that appears at the fifth order by

adding contact terms. From our perspective, this spurious pole corresponds precisely to

the contribution from p1 ·ε4 appearing at higher orders in the soft expansion (2.48). Let us

remark, however, that our result (2.34) non-trivially extends the Cachazo-Strominger soft

theorem in the case of the Compton amplitude for minimally coupled spinning particles.

This is because for s = 2 the exponential is truncated only at the fourth order in the

angular momentum, whereas only the second order was guaranteed by the soft theorem.

This extension is what enables us in section 3 to obtain the scattering angle at order S4,

by means of a Fourier transform acting directly on the exponential. We leave the study of

the contributions from contact terms at higher spin orders for future work.
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3 Scattering angle as leading singularity

3.1 Linearized stress-energy tensor of Kerr solution

In section 2 we have shown that the three-point and Compton amplitudes can be written

in an exponential form. We have also motivated the definition of a generalized expecta-

tion value of an operator O acting on two massive states, represented by their polariza-

tion tensors,

〈O〉 =
ε2,µ1...µsOµ1...µs,ν1...νsε1,ν1...νs

ε2,µ1...µsε
µ1...µs
1

. (3.1)

Let us first show how to apply this definition to match the form of the stress-energy

tensor of a single Kerr black hole that we derived in the introduction:

hµν(k)Tµν(−k) = (2π)2δ(k2)δ(p · k)(p · ε)2 exp

(
−ikµενS

µν

p · ε

)
. (3.2)

There is a subtle but important point already present in this classical matching that will

guide us in the following subsection on a path to the classical scattering angle. The crucial

difference between the angular momentum operator Jµν appearing in the soft theorem and

the classical spin Sµν appearing in the expansion of Tµν is that the latter satisfies the

SSC (2.4). Moreover, there is an obvious sign flip in the respective exponents, due to the

sign difference between the differential and algebraic generators, as mentioned in section 2.1

and appendix C. Therefore, following section 2.1 (see also appendix B) we relate the two by

Jµν = −Sµν +
1

m2
pµpαJ

αν − 1

m2
pνpαJ

αµ, (3.3)

which implies that the soft operator reads, at p · k = 0,

kµενJ
µν

p · ε
= −kµενS

µν

p · ε
+

1

m2
kµpνJ

µν . (3.4)

The key observation is that this operator acts on a chiral representation. That is, for

negative helicity, if the states are built from the spinors |1〉2s and |2〉2s then the operator

is algebraically realized by Jµν = −σµν = −iσ[µσ̄ν]/2, which is self-dual. This means that

1

m2
kµpνJ

µν =
i

2m2
εµνρσkµpνJρσ = − i

2m2
εµνρσkµpνSρσ = −ia · k. (3.5)

On the three-point kinematics, one can show that

a · k = ±ikµε
±
ν S

µν

p · ε±
, (3.6)

so eq. (3.4) becomes
kµενJ

µν

p · ε
= −2

kµενS
µν

p · ε
. (3.7)

It can be checked that this factor-of-two relation is independent of the helicity of the

graviton. To compute the generalized expectation value, we will also need to consider the
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product ε
(s)
1 · ε

(s)
2 . To that end we use the following representation of polarization tensors,

obtained as tensor products of the spin-1 polarization vectors (2.10)

ε
(s)
1 = ε⊗s1 =

2s/2

ms

(
|1〉[1|

)�s
, ε

(s)
2 = ε⊗s2 =

2s/2

ms

(
|2〉[2|

)�s
, (3.8)

where we now take p2 to be outgoing, so |2〉 is minus that of section 2. This leads to

lim
s→∞

m2sε2,µ1...µsε
µ1...µs
1 = lim

s→∞
〈21〉s[12]s = lim

s→∞
〈2|2s

(
1 +
|k〉〈k|
mx

)s
|1〉2s

= lim
s→∞
〈2|2s

[
s∑
j=0

(
s

j

)(
|k〉〈k|
mx

)j]
|1〉2s = lim

s→∞
〈2|2s

[
s∑
j=0

(
2s

j

)(
|k〉〈k|
2mx

)j]
|1〉2s

= lim
s→∞
〈2|2s exp

(
i

2

kµενJ
µν

p · ε

)
|1〉2s = lim

s→∞
exp

(
−ikµενS

µν

p · ε

)
〈21〉2s,

(3.9)

where we have used the s → ∞ limit of (2.30) and in the last line we extracted the

operator as a GEV. The same manipulation can be done for the three-point minus-helicity

amplitude:

lim
s→∞

m2sε2,µ1...µsM
(s),µ1...µs,ν1...νs
3 ε1,ν1...νs = m2x2 lim

s→∞
exp

(
−2i

kµενS
µν

p · ε

)
〈21〉2s. (3.10)

Here we would like to emphasize a key point. Even though the exponential operator is

always present at finite spin, it is only in the infinite-spin limit that the expansion does

not truncate. This leads to

lim
s→∞
〈M(s)

3 〉 = 2(p · ε)2 exp

(
−ikµενS

µν

p · ε

)
, (3.11)

which recovers the Kerr gravitational coupling (3.2), as promised in eq. (1.10), — this time

with the SSC condition incorporated. The plus-helicity graviton gives the same GEV. One

can also keep the minus helicity and redo the computation in the antichiral basis:

lim
s→∞

m2sε2,µ1...µsM
(s),µ1...µs,ν1...νs
3 ε1,ν1...νs = m2x2 lim

s→∞
[21]2s, (3.12a)

lim
s→∞

m2sε2,µ1...µsε
µ1...µs
1 = lim

s→∞
exp

(
−ikµε

+
ν S

µν

p · ε+

)
[21]2s = lim

s→∞
exp

(
i
kµε
−
ν S

µν

p · ε−

)
[21]2s.

(3.12b)

Therefore, the GEV (3.11) is invariant with respect to the choice of the spinor basis as well.

Finally, we notice that the self-dual condition is natural when considering a definite-

helicity coupling, e.g. kµε
−
ν J

µν projects out the anti-self-dual piece. However, we should

keep in mind that this is just an artifact of our choice of chiral spinor basis to describe

that coupling. It would be interesting to find a non-chiral form, analogous to the vector

parametrization of section 2.1, in such a way that the amplitude already contains the

covariant-SSC spin tensor built in.
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3.2 Kinematics and scattering angle for aligned spins

We now consider scattering of two massive spinning particles, one with mass ma, spin

(quantum number) sa, initial momentum p1, and final momentum p2, and the other with

mass mb, spin sb, initial momentum p3, and final momentum p4,

p2
1 = p2

2 = m2
a, p2

3 = p2
4 = m2

b , (3.13)

following here the conventions of [29]. The total amplitude

M(sa,sb)
4 =

p2

p1

p4

p3

(3.14)

is a function of the external momenta and the external spin states (polarization tensors).

We define as usual

s = p2
tot, t = k2, (3.15)

where ptot is the total momentum, and k is the momentum transfer,

ptot = p1 + p3 = p2 + p4, k = p2 − p1 = p3 − p4. (3.16)

The Mandelstam variable s, the total center-of-mass-frame energy E, the relative velocity

v (between the inertial frames attached to the incoming momenta p1 and p3, with v > 0),

and the corresponding relative Lorentz factor γ — each of which determines all the others,

given fixed rest masses ma and mb — are related by

s = E2 = m2
a +m2

b + 2mambγ,
p1 · p3

mamb
= γ =

1√
1− v2

. (3.17)

At t = 0, it is convenient to fix the little-group scaling of the internal graviton (for

tree-level one-graviton exchange). Following [29], we can choose it as

xb =
√

2
pb · ε−(−k)

mb
= −
√

2
pb · ε−

mb
= 1. (3.18)

This implies

x−1
a = −

√
2
pa · ε+

ma
= − 〈r|pa|k]

ma〈r k〉
= γ(1− v), xa =

√
2
pa · ε−

ma
= − [r|pa|k〉

ma[r k]
= γ(1 + v).

(3.19)

We consider the case, in the classical limit, in which the two particles’ rescaled spin vec-

tors

aµa =
1

2m2
a

εµνρσp
ν
aS

ρσ
a , aµb =

1

2m2
b

εµνρσp
ν
bS

ρσ
b , (3.20)

are aligned with the system’s total angular momentum. They are orthogonal to the constant

scattering plane, and are conserved. The scattering plane is defined containing all the

momenta, see e.g. [32]. Here pa is the average momentum pa = (p1 + p2)/2 = p1 +O(k) =
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p4

k

Figure 2. Tree-level singularity for one-graviton exchange.

p2 + O(k), similarly for pb. In this “aligned-spin case”, up to order G2, we will find that

the classical scattering angle θ by which both bodies are scattered in the center-of-mass

frame, is given by the same relation as for the spinless case [26, 42, 43],

θ +O(θ3) = 2 sin
θ

2
= − E

(2mambγv)2

∂

∂b

∫
d2k

(2π)2
eik·b lim

sa,sb→∞
〈M(sa,sb)

4 〉+O(G3), (3.21)

where 〈M(sa,sb)
4 〉 is the generalized expectation value of the amplitude (3.14), the momen-

tum transfer k is integrated over the 2D scattering plane, and b is the vectorial impact

parameter with magnitude b, counted from the second particle to the first as in [32]. Com-

pared to the nonspinning/scalar case, this version of (3.21) differs only in that the aligned

spin components aa and ab, the magnitudes of the vectors in (3.20), will appear as scalar

parameters in the amplitude. While we do not claim to provide a first-principles deriva-

tion of the applicability of (3.21) to the spinning case with aligned spins, we find that its

use here produces results which are (quite nontrivially) fully consistent with the results

of [32, 36, 38, 40] for aligned-spin scattering angles for binary black holes.

3.3 First post-Minkowskian order

At 1PM or tree level, the leading-singularity prescription reduces to a t-channel residue

equivalent to one-graviton exchange [31]. The reason that this leads to classical effects is

that the O(t0) piece, which is dropped, is ultralocal after a Fourier transform [25, 53]. In

contrast to the one-loop case, the HCL defined as the leading order in t is trivially imple-

mented from the fact that the computation is done under the support of the factorization

channel. Following sections 3.1 and 4.2 of [29], the LS for the amplitude (3.14) with one

graviton exchange is obtained by gluing two massive higher-spin three-point amplitudes at

minimal coupling, see figure 2. These amplitudes are now given in the exponential form

by eqs. (2.32) and (2.33) in the chiral basis. Summing over helicities, we have

M̂(sa,sb)
4 =

1

t

[
M̂(sa)

3 (p1,−p2, k
−)⊗ M̂(sb)

3 (p3,−p4,−k+)

+ M̂(sa)
3 (p1,−p2, k

+)⊗ M̂(sb)
3 (p3,−p4,−k−)

]
=
m2
am

2
b

t

[
x2
a

x2
b

exp

(
i
kµε
−
ν J

µν
a

pa · ε−

)
+
x2
b

x2
a

exp

(
−i
kµε
−
ν J

µν
b

pb · ε−

)]
.

(3.22)
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Here we will take the limit where both massive particles’ spin quantum numbers (sa and sb)

go to infinity. After using eqs. (3.6) and (3.7) valid on the three-point kinematics, we can

rewrite the exponents in a form independent of the polarization vector:

+i
kµε
−
ν J

µν
a

pa · ε−
= −2i

kµε
−
ν S

µν
a

pa · ε−
= +2aa · k = +2iεµνρσ

pµapνbk
ρaσa

mambγv
= +2ik × p̂ · aa, (3.23a)

−i
kµε
−
ν J

µν
b

pb · ε−
= +2i

kµε
−
ν S

µν
b

pb · ε−
= −2ab · k = −2iεµνρσ

pµapνbk
ρaσb

mambγv
= −2ik × p̂ · ab. (3.23b)

Here we used the on-shell equality iεµνρσp
µ
apνbk

ρaσ = mamb

√
γ2 − 1(k · a) to reintroduce

the Levi-Civita tensor and thus to expose the scalar triple products in the center-of-mass

frame, where p̂ is the unit vector in the direction of the relative momentum. Moreover,

recall that on the three-point helicity factors satisfy the seemingly contradictory conditions

xa/xb = γ(1 + v) and xb/xa = γ(1 − v), as indicated by eqs. (3.18) and (3.19). Finally,

restoring the prefactor of −(κ/2)2 = −8πG, and dividing by the normalization factor

arising from the generalized expectation value as in eq. (3.9),

(ε1 · ε2)(ε3 · ε4) → exp
(
ik × p̂ · (aa − ab)

)
(3.24)

(with the relative sign due to the direction of k), we obtain

〈M4〉 = 8πG
m2
am

2
b

−t
γ2
∑
±

(1± v)2 exp
(
±ik × p̂ · (aa + ab)

)
. (3.25)

Inserting this into the scattering-angle formula (3.21) gives

θtree = −GE
v2

∑
±

(1± v)2 ∂

∂b

∫
d2k

2πk2 exp
(
ik ·

[
b± p̂× (aa + ab)

])
=
GE

v2

∑
±

(1± v)2 ∂

∂b

[
log
∣∣b± p̂× (aa + ab)

∣∣ = log
(
b± (aa + ab)

)]
=
GE

v2

∑
±

(1± v)2

b± (aa + ab)
,

(3.26)

having used p̂ × a = ab/b for both spins in the aligned-spin configuration. This precisely

matches the result for the 1PM aligned-spin binary-black-hole scattering angle found in [32].

Finally, let us emphasize that, as stated in the introduction, this already differs from

the strategy implemented in e.g. [27, 28], where the full tree-level amplitude for s = {1
2 , 1, 2}

was computed in the first place. Only then it was expanded in the NR limit k = (0,k)→ 0

under the COM frame. The evaluation of spin effects requires tracking subleading orders in

the momentum transfer k (denoted there by~q), which in general contain both classical and

quantum pieces, depending on whether they include the corresponding power of the spin

vector. This is precisely what the LS singles out by dropping the (quantum) contraction

t = k2 in favor of the (classical) tensor structures ∼ knSn. At tree level this is equivalent

to set the HCL t = 0, but at one loop the HCL is needed to drop further quantum

contributions from the LS, as we shall explain in the next subsection.
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Figure 3. Triangle leading-singularity configuration.

3.4 Second post-Minkowskian order

In this section we derive a compact form for the 2PM (or O(G2)) aligned-spin scattering

angle. It is obtained from the one-loop version of the four-point amplitude (3.14) through

the triangle leading singularity proposed in [29] for computing its classical piece. The LS

is now given by a contour integral for a single complex variable y that remains in the loop

integration after cutting the three propagators of figure 3:

`2(y) = m2
b , (p3 − `(y))2 = 0, (p4 − `(y))2 = 0. (3.27)

It was argued in [29, 31, 54] that for the spinless case the Compton amplitude for identical

helicities leads to no classical contribution. This fact is also true for arbitrary spin, as

will be proven somewhere else. This implies that only the opposite-helicity case treated in

section 2.3 is needed, together with three-point interactions. The derivation is thus valid

(to describe minimally coupled elementary particles) at least up to O(a4
a) and to all orders

in ab, where aa is the rescaled spin of the particle that appears in the Compton amplitude,

and ab is the spin of other particle. As explained already in [29, 35] and emphasized in

section 2.3 the Compton amplitude needs the introduction of contact terms for sa > 2.

Nevertheless, the exponential structure found already for sa ≤ 2 fits very nicely into the

Fourier transform and leads to a compact formula for the scattering function, which can

be computed directly once the multipole operators have been identified. The final formula

resums all orders in both spins, but is not justified starting at O(a5
a). We finally expand in

spins and find perfect agreement with the linear- and quadratic-order-in-spin results of [38]

and [40]. The computation of the possible contributions to the LS from contact terms

arising in the higher-spin Compton amplitude is left for future work.

Our strategy is to identify the spin-multipole-coupling operators k × p̂ · aa and k ×
p̂ · ab in the exponential form of the three and four point amplitudes entering the triangle

leading singularity, see figure 3. This is done on the support of the Holomorphic Classical

Limit,11 which accounts for a null momentum transfer k2 = 0 and recovers the three-

11The name “Holomorphic Classical Limit” is due to the external momenta being complex at that point.
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point kinematics studied in section 2. The soft expansion in k accounts for a simultaneous

expansion in both powers of spin.

Let us first recap the triangle leading singularity, also introducing a more economic

formulation of it. It consists of a contour integral obtained by gluing three-point amplitudes

with the Compton amplitude. Our starting point is the expression

i(κ/2)4

8mb

√
−t

∫
ΓLS

dy

2πy
M̂(sa)

4 (p1,−p2, k
+
3 , k

−
4 )⊗M̂(sb)

3 (p3,−`,−k−3 )
|`〉2s〈`|2s

m2s
b

M̂(sb)
3 (−p4, `,−k+

4 ),

(3.28)

where we have inserted the operator |`〉〈`| in-between the three-point amplitudes to denote

operator multiplication, in the same sense as in section 2.1. Here ΓLS is the leading-

singularity contour that can be obtained at either |y| = ε or |y| → ∞. The loop momenta,

together with their corresponding spinors, are functions of y given by eq. (3.17) of [29].

Here we will only need the following limits:

|k3] =
1

2
|k](1 + y) +O

(√
−t
mb

)
, 〈k3| =

1

2y
〈k|(1 + y) +O

(√
−t
mb

)
,

|k4] =
1

2
|k](1− y) +O

(√
−t
mb

)
, 〈k4| = −

1

2y
〈k|(1− y) +O

(√
−t
mb

)
, (3.29)

〈k3k4〉 =

√
−t
y

+O
(

t

m2
b

)
, 〈k4|p1|k3] =

maγ

2y
[2y − v(1 + y2)]

√
−t+O

(
t

m2
b

)
.

Recall that at t = 0 the momentum transfer reads k = |k]〈k| and the scaling of the

spinors |k], 〈k| is fixed by the condition (3.18). In turn, this fixes the little-group scaling

of both internal gravitons k3 and k4. We can now insert the exponential expressions (for

sa ≤ 2) and evaluate the scalar pieces, obtaining

i(κ/2)4

8mb

√
−t

∫
ΓLS

dy

2πy
M(0)

4 (p1,−p2,k
+
3 ,k

−
4 )M(0)

3 (p3,−`,−k−3 )M(0)
3 (−p4, `,−k+

4 )

×exp

(
i
k4µε

−
4νJ

µν
a

p1 ·ε−4

)
⊗exp

(
−i
k3µε

−
3νJ

µν
b

p3 ·ε−3

)
=−

iκ4m2
am

3
bγ

2

29v2
√
−t

∫
ΓLS

dy [2y−v(1+y2)]4

2πy3(1−y2)2
exp

(
i
k4µε

−
4νJ

µν
a

p1 ·ε−4

)
⊗exp

(
−i
k3µε

−
3νJ

µν
b

p3 ·ε−3

)
,

(3.30)

to leading orders in t.

Before proceeding to compute the GEV, let us clarify an important point. Recall that

in the tree-level case the exponential operator was truncated at order 2s in the expansion.

The infinite spin limit did not alter the lower orders in the exponential but simply accounted

for promoting such finite number of terms to a full series. We assume such condition still

holds for the Compton amplitude, that is, the first five orders reproducing the exponential

expansion are not spoiled in the infinite spin limit. The reason is that at arbitrary spin,

the introduction of contact terms is only needed to cancel the spurious pole coming from

the exponent, which appears as a pole in the amplitude only at fifth order.

With the previous consideration, the above operator formula in the infinite spin limit is

fourth-order exact in the expansion of the left exponential and fully exact in the expansion
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of the right exponential. Let us now proceed to evaluate the exponents of both. The

exponential factor on the right can be obtained straight at t = 0 kinematics. In fact, using

k3 =
(1 + y)2

4y
k, (3.31)

we find

exp

(
−i
k3µε

−
3νJ

µν
b

p3 · ε−3

)
= exp

(
−i(1 + y)2

4y

kµε
−
ν J

µν
b

p3 · ε−

)
= exp

(
−i(1 + y)2

2y
k × p̂ · ab

)
, (3.32)

where the polarization vector ε−3 for k3 can be taken as the vector ε− for k, up to a scale

that cancels. We have again identified kµενJ
µν
b /(p3 ·ε3) = 2k×p̂·ab as the classical operator

that will enter the GEV, whereas the y dependence contributes to the contour integral.

Now, recall that the left exponential corresponds to the Compton amplitude and was

fixed in section 2.3 using k3 · ε4 = 0, i.e.

ε−4 = −
√

2
|k3]〈k4|
[k3k4]

, (3.33)

which is singular at t = 0. In order to evaluate, it we will need the following trick. First

note that at t 6= 0 the numerator is gauge invariant, hence we can write

k4µε
−
4νJ

µν
a = k4µε̂

−
4νJ

µν
a , (3.34)

where

ε̂−4 = −
√

2
|r]〈k4|
[rk4]

(3.35)

and |r] is some reference spinor such that [rk4] 6= 0. This means that in the limit we have

lim
t→0

k4µε
−
4νJ

µν
a

p1 · ε−4
=
(
k4µε̂

−
4νJ

µν
a

)
t=0

lim
t→0

(p1 · ε−4 )−1

=

(
k4µε̂

−
4νJ

µν
a

p1 · ε̂−4

)
t=0

× (p1 · ε̂−4 )
∣∣
t=0

lim
t→0

(p1 · ε−4 )−1 . (3.36)

The limit can be evaluated directly using eq. (3.29). We find

lim
t→0

(p1 · ε−4 ) = − γma

2
√

2y2

[
2y − v(1 + y2)

]
. (3.37)

On the other hand, recall that at t = 0 we recover three-particle kinematics for p1, p2 and

k. This means that the combination

(p1 · ε̂−4 )
∣∣
t=0

= − [r|p1|k4〉√
2[rk4]

∣∣∣∣
t=0

= +
1

y

[r|p1|k〉√
2[rk]

(3.38)

is independent of the choice of r. Using eq. (3.19) we can identify this factor with

−1

y
(p1 · ε−) = −γma√

2y
(1 + v). (3.39)
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Putting all together in (3.36) and using k4 = − (1−y)2

4y k, we have

lim
t→0

k4µε
−
4νJ

µν
a

p1 · ε−4
=

(
k4µε̂

−
4νJ

µν
a

p1 · ε̂−4

)
t=0

× 1

y
(p1 · ε−)× 2

√
2y2

γma

[
2y − v(1 + y2)

]−1

= − (1− y)2(1 + v)

4y − 2v(1 + y2)

(
kµε
−
ν J

µν
a

p1 · ε−

)
= −(1− y)2(1 + v)

2y − v(1 + y2)
k × p̂ · aa.

(3.40)

Attaching the same normalization (3.24) as in the previous section in order to compute

the GEV, we write the leading order (i.e. dropping O(t0) terms) of our contour integral as

−
iκ4m2

am
3
bγ

2

29v2
√
−t

∫
ΓLS

dy [2y − v(1 + y2)]4

2πy3(1− y2)2
exp

(
−i 1 + y2 − 2vy

2y − v(1 + y2)
k× p̂ ·aa− i

1 + y2

2y
k× p̂ ·ab

)
.

(3.41)

As already explained, ΓLS can be chosen as a contour around zero or infinity. This inversion

accounts for a parity conjugation of the amplitude, and the equivalence follows from parity

invariance of the triangle diagram [31]. Here let us unify both descriptions by means of the

change of variables

z =
1 + y2

2y
. (3.42)

Both contours around y = ∞ and y = 0 are mapped to z = ∞. At the same time the

polynomial structure gets reduced to at most quadratic, at the cost of introducing a branch

cut in the integral. We now have the one-loop triangle contribution as

〈M/〉 = −4π2G
2m2

am
3
b√

−t

∫
ΓLS

dz

2πi

γ2(1− vz)4

v2(z2 − 1)3/2
exp

(
−i z − v

1− vz
k×p̂·aa−izk×p̂·ab

)
, (3.43)

which now incorporates the second helicity assignment for the exchanged gravitons. We

have also inserted a factor of −4 to account for the HCL difference between a triangle

integral and its leading singularity. Note that the branch cut singularity is induced by

the massive propagators inside the Compton amplitude and does not lead to classical

contributions. The essential singularity at z = 1/v is induced by the unphysical pole p1 · ε4

in the exponential expansion. We take the contour around infinity to be ΓLS = {|z| = R}
for some large but finite radius, R > 1/v, for reasons we will explain in a moment. Then

the contribution to the scattering angle (3.21) reads

θ/ = πG2E
mb

2v4

∂

∂b

∫
ΓLS

dz

2πi

(1− vz)4

(z2 − 1)3/2

∫
d2k

2π|k|
exp
(
ik ·
[
b− zp̂× ab −

z − v
1− vz

p̂× aa

])
= πG2E

mb

2v4

∂

∂b

∫
ΓLS

dz

2πi

(1− vz)4

(z2 − 1)3/2

∣∣∣b− zab − z − v
1− vz

aa

∣∣∣−1
, (3.44)

where we have specialized to aligned spins. The total one-loop contribution to the scattering

angle is θ/ + θ., where θ. is obtained by exchanging ma ↔ mb and aa ↔ ab.

Let us now discuss the choice of contour ΓLS in∫
ΓLS

dz

2πi

(1− vz)4

(z2 − 1)3/2

∣∣∣b− zab − z − v
1− vz

aa

∣∣∣−1
=

1

va

∫
ΓLS

dz

2πi

(vz − 1)5

(z2 − 1)3/2(z − z+)(z − z−)
,

(3.45a)
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where

z+ + z− =
bv + aa + ab

vab
, z+z− =

b+ vaa
vab

. (3.45b)

The root z+ is distinguished from z− by demanding z+ → ∞ as ab → 0. We now show

that the appropriate leading singularity in the contour integral is given by the residues at

z+ and ∞, by ensuring the consistency of the small-spin expansion. If we were to take

an expansion around aa, ab → 0 the poles at z+ and z− would disappear at every order,

leaving poles only at z = ∞ and z = 1/v together with the branch cut at z ∈ (−1, 1). In

that case, the leading-singularity prescription in the integral (3.43) simply grabs the pole

at z = ∞ and drops the branch cut contribution together with the pole at z = 1/v. The

non-expanded expression (3.45a) resums part of the contributions from both z = ∞ and

z = 1/v into poles located at z+ and z−, respectively. This can be seen by noticing that

z+ → ∞ and z− → 1/v as aa, ab → 0. This is the reason we consider a contour at finite

radius R > 1/v in eq. (3.43), so that, as long as R < z+ as well, the contour integral can

be evaluated from the poles at z =∞ and z = z+.

With this contour prescription, evaluating the integral in eq. (3.44) yields the explicit

results given by eq. (1.12) in the introductory summary. Let us stress that the formu-

las (3.44) and (1.12) can only be expected to be valid up to fourth order in aa. Neverthe-

less, they condense non-trivial information for the scattering angle up to that order into a

simple contour integral. We have checked that these results precisely match the one-loop

linear-in-spin classical computation of [38], as well as the conjectural one-loop quadratic-in-

spin expression given in [40], based on results from the exact quadrupolar test-black-hole

limit [55] expanded to order G2 and on next-to-next-to-leading-order post-Newtonian re-

sults [56, 57].

4 Discussion

In this work we have presented a new connection between extended soft theorems and con-

servative classical gravitational observables, in particular for scattering of spinning black

holes. This extends the approach initiated in [29, 31] to construct such quantities in an eco-

nomic way through leading singularities. It also complements the general picture regarding

the extraction of classical results from on-shell methods, provided e.g. in [25, 39, 58].

It is clear that a more precise definition is needed for the generalized expectation value

that we used. Our construction can be thought as the average of an operator O as given by

two particle states in the scattering amplitude, which is mapped to the expectation value

of a classical observable Ocl = 〈O〉. Interestingly, this matches their effective counterpart,

as computed for instance in the worldline formalism, in the case where the operator Ocl is

constant [32, 37]. An extension of the GEV may be needed to incorporate time dependence,

such as what occurs with classical momentum deflection or spin holonomy [38].

The natural desired extension of the leading-singularity method is the computation of

higher orders, both in loops and powers of spin. Examples of higher-loop leading singulari-

ties were computed for gravitational theories in [31], so it would be interesting to see if these

can be also applied to compute classical observables. On the other hand, extending the
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range of validity in powers of spin is now clearly related to the problem of understanding

deeper orders in the soft expansion. More precisely, it is known that these orders depend

both on the matter content and the coupling to gravity [9, 10], hence one could hope that

such problem is tractable at least for matter minimally coupled to gravity [35], thus de-

scribing black holes. Our methodology clearly resembles a soft bootstrap approach [59],

and it would be desirable to formally implement it via recursion relations [60, 61].

It was already pointed out in [27] that amplitudes for massive spin-s particles lead to

a classical potential for bodies with spin-induced multipoles such as black holes or neutron

stars. The amplitudes match the classical potential up to the 22s-pole level, or up to

order S2s, where S is the body’s intrinsic angular momentum:

• a scalar particle corresponds to a monopole (with no higher multipoles);

• a spin-1/2 particle adds only a dipole ∝ S, yielding the O(S1) spin-orbit effects which

are universal (body-independent) in gravity;

• a spin-1 particle further adds a spin-induced quadrupole ∝ S2, specifically matching

the quadrupole of a spinning black hole when constructed with minimal coupling.

Note that the quadrupole level corresponds to the order at which the soft theorem

stops being universal.

• a spin-3/2 particle adds a black-hole octupole ∝ S3, etc.

The complete spin-multipole series of a black hole is seemingly obtained by taking the

limit s → ∞ for a massive spin-s particle minimally coupled to gravity. This correlation

was shown by Vaidya [27] with explicit calculations at leading post-Newtonian orders,

corresponding to the nonrelativistic limits of tree-level amplitudes, up to the spin-2 or S4

level. In this paper, we have provided further evidence that this correspondence holds, fully

relativistically, to all orders in spin at tree level, and for at least the first few orders in spin

at one-loop order. It is, however, not yet clear why we should expect this correspondence

between classical black holes and minimally coupled quantum particles with s → ∞ and

~→ 0, and to what extent we should expect it to hold.

It was found in [62], by means of a BCFW argument, that in the MHV sector of

gravity amplitudes there is also a natural exponential completion of the soft theorem.

A general statement for gravity amplitudes is however still missing. There are a few

evident problems for the naive extrapolation of the formula (1.1) to higher orders. As we

have seen, increasing the powers of angular momentum, encoded in the gauge-invariant

combination (kµενJ
µν
i ), requires decreasing the powers of the numerator (p · εi), which

generates unphysical poles. Moreover, the first two orders enjoy gauge invariance thanks

to fundamental conservation laws corresponding to the linear and angular momenta of

the scattering particles [1]. Reinserting powers of (p · εi) in higher orders would then

impose additional constraints that go beyond these conservation laws. Therefore, when

exponentiating the soft factor, a very specific choice of the polarization vectors is required.

This is precisely what is done in [62], where this choice arises naturally from a BCFW

deformation. A second problem that we dealt with here is the sum over different particles,
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which destroys the realization of the exponential as an overall factor acting on Mn−1. We

showed that in the cases of interest for computing the scattering angle at tree level and one

loop, these two problems can be overcome by a judicious choice of the polarization vectors.

An obvious question which arises from this construction is whether it is possible to

establish a link between BMS symmetries studied at null/spatial infinity [14, 15, 17–20]

(or at the black hole horizon [63, 64]) and classical observables arising from massive ampli-

tudes. The natural candidate for such a connection is radiative effects [65–69], as explored

in [22] from the point of view of soft theorems. Finally, it would be also interesting to

see a link between the exponentiation presented here and the exponentiation of IR diver-

gences [2, 20, 70–72] that has been known in QED for a long time. The latter one has

recently appeared in the computation of tail effects from the EFT perspective [65, 73, 74].
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A Three-point amplitude with spin-1 matter

Here we compute the three-point amplitude (2.1) starting from the massive spin-1 La-

grangian

L = −1

4
FµνF

µν +
m2

2
AµA

µ, (A.1)

where Fµν = ∂µAν − ∂νAµ. In order to compute the minimal cubic vertex to gravity, one

needs to the extract the energy-momentum tensor sourced by this field. In principle, this

can be done by covariantizing this action, i.e. by promoting ∂µ → ∇µ, and then inspecting

the metric variation, Tµν = 2√
−g

∂(
√
−gL)

∂gµν . Let us, however, take an alternative route of

computing the energy-momentum tensor directly in flat space. The reason is that this

procedure will explicitly identify the contribution of the intrinsic angular momentum of

the particle.

A textbook application of Noether’s theorem for translations yields the following tensor

TµνN = −Fµσ∂νAσ − ηµνL ⇒ ∂µT
µν
N = 0. (A.2)
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Its contraction with an on-shell graviton, εµνT
µν
N , fails to give the correct three-point

amplitude, as opposed to the one obtained from covariantization. The reason is that

TµνN lacks symmetry in its indices (notice e.g. ∂νT
µν
N 6= 0), therefore its orbital angular

momentum Lλµν = xµT λνN − xνT
λµ
N is not conserved. Let us fix that by generalizing TµνN

to a larger class of tensors that are all conserved due to eq. (A.2):

Tµν = TµνN + ∂λB
λµ ν , Bλµ ν = −Bµλ ν ⇒ ∂µT

µν = 0, (A.3)

where the Belinfante tensor Bµνρ [75, 76] may be adjusted to yield a symmetric energy-

momentum tensor matching the gravitational one. To do that, we apply Noether’s theorem

to Lorentz transformations. The conservation of the total angular momentum Lλµν +Sλµν

then implies

TµνN − T
νµ
N = −∂λSλµν , Sλµν = −i ∂L

∂(∂λAσ)
Σµν,σ

τA
τ = iF λσΣµν

στA
τ . (A.4)

Here Σµν are the Lorentz generators Σµν,σ
τ = i[ηµσδντ − ηνσδ

µ
τ ] that will help us identify

the spin contribution inside the three-point amplitude. Imposing that the corrected tensor

Tµν be symmetric now yields the condition ∂λB
λ[µ ν] = 1

2∂λS
λµν , which is solved by

Bλµ ν =
1

2

[
Sλµν + Sµ νλ − Sν λµ

]
. (A.5)

Contracting the resulting energy-momentum tensor with a traceless symmetric gravi-

ton hµν and integrating by parts, we obtain the gravitational interaction vertex

−hµνTµν = hµνF
µσ∂νAσ − i(∂λhµν)F νσΣλµ

στA
τ , (A.6)

where we suppress the coupling-constant factor κ/2. Its momentum-space version in the

scattering amplitude gives the following contributions:

hµνF
µσ∂νAσ → −(p2 · ε3)

[
(p1 · ε3)(ε1 · ε2)− (p1 · ε2)(ε1 · ε3)

]
+ (1↔ 2), (A.7a)

−i(∂µhνρ)F ρσΣµν
στA

τ → ip3µε3ν

[
(p1 · ε3)(ε1 ·Σµν ·ε2)− (ε1 · ε3)(p1 ·Σµν ·ε2)

]
+ (1↔ 2).

(A.7b)

where the transverse polarization vectors ε1 and ε2 correspond to the massive spin-1 matter

and two copies of ε3 belong to the massless graviton. Putting the above terms together

and using the three-point on-shell kinematic conditions p1 · p3 = p2 · p3 = 0, we obtain

the amplitude

M3 = 2(p1 · ε)
[
(p1 · ε)(ε1 · ε2)− 2p3µε3νε

[µ
1 ε

ν]
2

]
. (A.8)

The second term in eq. (A.8) comes from ε1 ·Σµν ·ετ2 = 2iε
[µ
1 ε

ν]
2 , which in appendix B we

interpret as a spin expectation value, so it can be regarded as the spin contribution to the

gravitational interaction.
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B Spin tensor for spin-1 matter

Here we construct the spin tensor for a massive spin-1 particle for the three-particle kine-

matics of section 2.1. The starting point is the one-particle expectation value of the angular-

momentum operator in the quantum-mechanical sense:

Sµνp =
〈p|Σµν |p〉
〈p|p〉

=
ε∗pσΣµν,σ

τετp
ε∗p · εp

= 2iε∗[µp εν]
p , Σµν,σ

τ = i[ηµσδντ − ηνσδµτ ], (B.1)

where for now we suppress the spin-projection/little-group labels of the states. We also

used the Lorentz generators Σµν in the vector representation. Due to the transversality of

the both massive polarization vectors, p · εp = 0, this spin tensor immediately satisfies the

SSC (2.4).

Now a natural way to extend eq. (B.1) to the case of two different states (one incoming

with momentum p1 and one outgoing with p2) is to introduce a generalized expectation

value such that it gives one for a unit operator:

Sµν12 =
〈2|Σµν |1〉
〈2|1〉

=
ε∗2σΣµν,σ

τετ1
ε∗2 · ε1

=
2iε
∗[µ
2 ε

ν]
1

ε∗2 · ε1
. (B.2)

Since in section 2 we consider all momenta incoming, we suppress the conjugation sign12

and rewrite the above as

Sµν12 = −2iε
[µ
1 ε

ν]
2 /(ε1 · ε2), (B.4)

which is the (normalized) angular momentum contribution obtained in appendix A from

Noether’s theorem. Now in a classical computation [32] it is desirable to consider a spin

tensor that satisfies the spin supplementary condition (2.4). Although eq. (B.4) is a le-

gitimate definition, it does not satisy the covariant SSC (2.4) with respect to the average

momentum p = (p1 − p2)/2 of the massive particle before and after graviton emission:

pµS
µν
12 = − i

2

(
(k · ε2)εν1 + (k · ε1)εν2

)
/(ε1 · ε2) 6= 0, (B.5)

where k = −p1 − p2 is the momentum transfer. However, the spin tensor is intrinsically

ambiguous, as the separation between the orbital and intrinsic pieces of the total angular

momentum is relativistically frame-dependent. In a classical setting, for instance, the

reference point for the intrinsic angular momentum of a spatially extended body (as opposed

to its overall orbital momentum about the origin) is at its center of mass, but it gets shifted

by a frame change (see e.g. [77]). This ambiguity allows the spin tensor to be transformed

12The conjugation rule between the incoming and outgoing states in the massive spinor-helicity for-

malism amounts to lowering and raising the little-group indices, as indicated by the completeness re-

lation in eq. (2.10). For instance, in the helicity basis [35, 50] of spinors for a massive momentum

pµ = (E,~p) = (E,P p̂), the one-particle spin quantization is explicitly

m〈aµ〉abp =
1

2m
εµνλρ(εpab · Σνλ · εabp )pρ =


sµp , a = b = 1,

0, a+ b = 3,

−sµp , a = b = 2,

pµ = (E,~p) = (E,P p̂),

sµp =
1

m
(P,Ep̂).

(B.3)
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as Sµν → Sµν + p[µrν], where the difference p[µrν] for some vector rν accounts for the

relative shift between Sµν and Lµν ∼ p[µ∂/∂pν]. Adjusting rν to accommodate for the

SSC (2.4), we obtain

Sµν = Sµν12 +
2

m2
pλS

λ[µ
12 p

ν] = − i

ε1 · ε2

{
2ε

[µ
1 ε

ν]
2 −

1

m2
p[µ
(
(k · ε2)ε1 + (k · ε1)ε2

)ν]
}
, (B.6)

where we have used that p2 = m2 for a null momentum transfer k. Finally, we note that

in the classical limit k → 0 we retrieve the spin tensor (B.4) as the covariant-SSC one.

C Angular-momentum operator

Here we consider the total angular momentum

Jµν = Lµν + Sµν , Lpos.
µν = 2ix[µ

∂

∂xν]
(C.1)

in terms of the spinor-helicity variables. The starting point is the momentum-space form

of the orbital piece

Lµν = 2ip[µ
∂

∂pν]
= pσΣ σ

µν, τ

∂

∂pτ
, (C.2)

in which we encounter the Lorentz generators Σµν again. Since Σµν,στ is antisymmetric in

both pairs of indices, we notice the subtle difference in signs between the actions of the

differential and algebraic operators, Lµνp
ρ = −Σ ρ

µν, σpσ, also valid for Jµν below.

Massless case. Let us warm up with the case of a massless kµ = 〈k|σµ|k]/2. The

spinorial version of the angular momentum (C.2) is [51]

Jµν =

[
λασµν, βα

∂

∂λβ
+ λ̃α̇σ̄

µν,α̇

β̇

∂

∂λ̃β̇

]
, (C.3)

where the matrices

σµν, βα =
i

4

(
σµαγ̇ σ̄

ν,γ̇β − σναγ̇ σ̄µ,γ̇β
)
, σ̄µν,α̇

β̇
=
i

4

(
σ̄µ,α̇γσν

γβ̇
− σ̄ν,α̇γσµ

γβ̇

)
(C.4)

are the left-handed and right-handed representations of the Lorentz-group algebra. Note

that the spinor map {λα, λ̃α̇} → kµ is not invertible for massless particles, but we can still

use the chain rule

∂

∂λα
=
∂kµ

∂λα
∂

∂kµ
=

1

2
σµ
αβ̇
λ̃β̇

∂

∂kµ
,

∂

∂λ̃α̇
=

1

2
σ̄µ,α̇βλβ

∂

∂kµ
(C.5)

to check the consistency between eqs. (C.2) and (C.3). Namely, the action of spinorial

generator on a function of momentum kµ coincides with that of the vectorial one.

The generator (C.3), which can be more concisely written in spinor indices as

Jαα̇,ββ̇ = σµαα̇σ
ν
ββ̇
Jµν = 2i

[
λ(α

∂

∂λβ)
εα̇β̇ + εαβλ̃(α̇

∂

∂λ̃β̇)

]
, (C.6)
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has more information than its momentum-space counterpart, as it cares about the helicity

of the massless particle. For instance, when we write the polarization tensors in terms of

spinor-helicity variables,

ε+
αα̇ =

√
2
|r〉α[k|α̇
〈rk〉

, ε−αα̇ = −
√

2
|k〉α[r|α̇

[rk]
, (C.7)

we do not regard them as functions of kµ but rather of its spinors λα and λ̃α̇. Of course,

an integer spin should not by itself depend on the auxiliary spinors. Fortunately, we can

show that the action of the differential operator (C.6) is precisely that of the algebraic

generator Σµν , which constitutes the intrinsic angular momentum

(εSµν)τ = εσΣµν,σ
τ = 2iε[µδν]

τ ⇒ (εSαα̇,ββ̇)γγ̇ = 2i[εαα̇εβγεβ̇γ̇ − εαγεα̇γ̇εββ̇ ]. (C.8)

Specializing to the negative-helicity case for concreteness, we indeed find

Jαα̇,ββ̇ε
−
γγ̇ = (ε−Sαα̇,ββ̇)γγ̇ +

2
√

2i

[q k]2
εαβ [q|α̇[q|β̇ |k〉γ [k|γ̇ . (C.9)

Here the last term is a gauge contribution explicitly proportional to kγγ̇ , so it can be

discarded in a physical amplitude.

Therefore, we conclude that the spinorial differential operator (C.6) incorporates both

the orbital and intrinsic contributions, so it is the total angular-momentum operator.

Massive case. It is direct to generalize the above discussion to massive momenta pµ =

〈pa|σµ|pa]/2 [78]. The angular-momentum operator in the space of massive spinors {λaα, λ̃bβ̇}
is given by

Jµν =

λαaσµν, βα ∂

∂λβa
+ λ̃ aα̇ σ̄

µν,α̇

β̇

∂

∂λ̃a
β̇

 , Jαα̇,ββ̇ = 2i

[
λ a

(α

∂

∂λβ)a
εα̇β̇ + εαβλ̃

a
(α̇

∂

∂λ̃β̇)a

]
.

(C.10)

This operator is by construction invariant under the little group SU(2). Using the chain rule

∂

∂λαa
=

∂pµ

∂λαa
∂

∂pµ
=

1

2
σµ
αβ̇
λ̃β̇a

∂

∂pµ
,

∂

∂λ̃aα̇
= −1

2
σ̄µ,α̇βλβa

∂

∂pµ
, (C.11)

it is again easy to check that the action on a function of pαβ̇ = λaαεabλ̃
b
β̇

is the same as

that of eq. (C.2). Finally, the action on polarization tensors can be tested to be a Lorentz

transformation. The spin-s tensors are parametrized in terms of massive spinor-helicity

variables as

εa1...a2sα1α̇1...αsα̇s
=

2s/2

ms
λ(a1
α1
λ̃a2α̇1
· · ·λa2s−1

αs λ̃
a2s)
α̇s

, (C.12)

with an obvious extension by an additional factor of Dirac spinor [35, 50] for half-integer

spins. Indeed, since Jµν is a first-order differential operator, it distributes when acting on

εa1···a2s and naturally expands into the left- and right-handed Lorentz generators:

Jµνεa1...a2sα1α̇1...αsα̇s
=

2s/2

ms

{[
εα1β

(
λα(a1σµν, βα

)]
λ̃a2α̇1
· · ·λa2s−1

αs λ̃
a2s)
α̇s

+λ(a1
α1

[
λ̃a2α̇ σ̄

µν,α̇
α̇2

]
· · ·λa2s−1

αs λ̃
a2s)
α̇s

+ . . .

}
.

(C.13)
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