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1 Introduction

Consider a massless scalar field φ in flat four dimensional Minkowski space interacting with

other fields. Since the scalar field is massless, it is natural to assume that at spatial infinity,

it behaves as

φ =
φ

r
+

φ(2)

r2
+O(r−3) (1.1)

(in 3+1 dimensions), where we use polar coordinates,

ds2 = −dt2 + dr2 + r2γABdx
AdxB . (1.2)

Here, γABdx
AdxB is the metric on the round 2-sphere (in standard (θ, ϕ)-variables, it reads

dθ2 + sin2 θ dϕ2). The coefficients in the expansion are allowed to be function of time and

of the angles, e.g., φ = φ(t, xA).

This behaviour would for instance hold for the Lagrangian

L = −1

2
∂µφ∂µφ− 1

2
∂µχ∂µχ− 1

2
m2χ2 +

g

2
φχ2 (1.3)
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which is the model considered in a similar context in [1, 2]. Indeed, the equation for the

scalar field is then

�φ+
g

2
χ2 = 0 . (1.4)

For static solutions where the massive field decays exponentially at infinity, the scalar field

behaves as in (1.1). This is also the behaviour found in [3, 4] for the coupled Einstein-scalar

field equations. It is therefore natural to adopt the decay (1.1), but with coefficients that

may depend on time for generic configurations.

Now, if the theory is Lorentz invariant, the boundary conditions should be Lorentz

invariant. This means in particular that the above expansion should be preserved under

boosts. This is a non trivial constraint because the boosts blow up linearly in r at infinity.

One thus gets, from δboostsφ = ξ0∂0φ + ξm∂mφ with ξµ = O(r) and the observation that

∂mφ = O(r−2), the condition

∂0φ = 0 (1.5)

in order to eliminate the O(1)-term in δboostsφ. This is an infinite number of conservation

laws since φ is a function of the angles.

These conservation laws are quite general and merely follow from the decay of the scalar

field and Lorentz invariance, which both hold even in the presence of more complicated

interactions of the massless scalar field φ. In that sense, the conservation laws do not give

much information on the dynamics. Nevertherless, it is of interest to understand their

significance.

One question that comes to mind is whether these conservation laws are related to

symmetry transformations of the action. One might (wrongly) think that the answer is

necessarily positive, by arguing that any conserved charge can be expressed in terms of

the canonically conjugate variables of the Hamiltonian formalism. By taking the Poisson

bracket of the charges with the canonical variables, one would get a transformation of

which the charge would be the Noether charge according to general theorems. Hence,

it would (incorrectly) seem that any conserved quantity could be interpreted as arising

from a symmetry transformation. In order for this reasoning to be correct, however, the

conserved quantity must have well defined Poisson brackets with the canonical variables.

It turns out that a surface term alone does not fulfill this requirement since it does not

have well defined functional derivatives by itself. Hence, in the scalar theory with above

Lagrangian, the conserved quantities
∮
S2
∞

d2x ǫ(xA)φ integrated over the 2-sphere at infinity

with an arbitrary smearing function ǫ(xA), do not generate any well-defined symmetry.

In gauge theories, one can sometimes complete the surface term by a bulk term that is

proportional to the gauge constraints (and hence does not modify the value of the charge),

in such a way that the sum “bulk term + surface term” is a well defined generator. For

instance, in electromagnetism, the infinite number of conserved charges
∮
S2
∞

d2x ǫ(xA)πr

of the asymptotic electric field π̄r over the 2-sphere at infinity can be completed by bulk

terms so that the sum has a well defined action on the canonical variables and generates

the infinite dimensional algebra of angle-dependent u(1) transformations [5–9].

Not all conserved surface terms can be extended to be well-defined generators in a

given formulation of the theory. To give an example also drawn from the electromagnetic
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context, the analog magnetic quantities
∮
S2
∞

d2x η(xA)Br
, where Br is the radial magnetic

field, which are also conserved, cannot be completed to have well-defined Poisson brackets

in the standard electric formulation. However, by going to the dual, magnetic formulation,

this infinite number of conserved charges can be completed to have well defined canonical

actions, generating a magnetic angle-dependent u(1) [10]. The property of being “Noether”

depends therefore on the formulation.

The electromagnetic analysis of [9] reveals furthermore that some integration constants

become well-defined generators only after the symplectic structure has been modified by

a surface term. This is the case for the asymptotic radial component Ar of the vector

potential, which is conserved, and which can be interpreted as a symmetry generator

provided one introduces further surface degrees of freedom at infinity (without modifying

the dynamics of the bulk degrees of freedom) and adds to the symplectic structure a surface

term at infinity.

For the scalar theory, there is no constraint and thus no obvious way to add weakly

vanishing terms that would extend the charges
∮
S2
∞

d2x ǫ(xA)φ in the bulk to make them

well-defined generators. The dual formulation, however, involves a 2-form gauge field and

gauge constraints. This suggests exploring the above question in the dual formulation.

This is the objective of this paper.

We show that scalar charges directly related to the charges exhibited above do have

a Noether interpretation in the dual theory. More precisely, we show that the charges

involving the gradient ∂Aφ of φ, i.e.,
∮
S2
∞

µA(xB)∂Aφ where µA(xB) are arbitrary functions

on the 2-sphere, can be extended in the bulk in such a way that they have well-defined

brackets. That it is the gradients ∂Aφ that appear, rather than φ itself, is not surprising

given that in the dual theory, the field φ is not globally defined whenever there are electric

sources for the dual 2-form. These are strings, and appear as magnetic sources for the

scalar field, which is not single-valued as one goes around the strings. By contrast, the

gradients ∂iφ are well defined. We also show that for the interpretation of the scalar charges

to be symmetry generators, not only does one need to go to the dual formulation where

there are constraints, but one must also introduce surface degrees of freedom at infinity

and modify the symplectic form by surface terms.

The study of the scalar charges defined at infinity has been undertaken recently from

the point of view of the dual 2-form theory in [11, 12].1 These interesting works were

motivated by the discovery of the connection between soft theorems and asymptotic sym-

metries [2, 14] (for a review and reference to the original literature, see [15]). They are

carried out at null infinity, where these infinite symmetries were first discovered [16–18]

(comprehensive reviews are given in [19–21]). We consider instead spatial infinity, where

complementary aspects of the problem — including the need for parity conditions to make

the symplectic form well defined and their connection with the matching conditions ap-

pearing in the null infinity approach — are interestingly exhibited.

Among the motivitations for studying the symmetries at spatial infinity, a very strong

one comes from the fact that the existence of null infinity with the standardly assumed

1Earlier investigations of p-forms in 2p+ 2 dimensions can be found in [13].
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smoothness properties is a delicate question in a spacetime with dynamical metric [22–26].

It is then legitimate to wonder whether the infinite-dimensional symmetries exhibited at

null infinity would still be present when a sufficiently smooth null infinity does not exist.

The analysis of the dynamics and of the asymptotic symmetries at spatial infinity shows

that this is the case and puts therefore the BMS structure on a firm basis independent of

the existence of a smooth null infinity [9, 27–29]. In particular, the vacuum degeneracy

(non trivial orbit of Minkowski space under the BMS group) clearly appears at spatial

infinity without having to invoke gravitational radiation [28].

The simplicity of the scalar field equations also serves a pedagogical purpose by shed-

ding direct light on the behaviour of the fields as one goes towards null infinity. It is indeed

easy to explicitly integrate the scalar field equations asymptotically for given initial data

on a spacelike hypersurface. One finds that even for smooth initial data, the scalar field

develops logarithmic singularities in the null infinity limit. These can be explicitly com-

puted and related to the behaviour of the initial data under parity. Similar features are

present for electromagnetism and gravity [9, 28].

Our paper is organized as follows. In section 2, we study the asymptotic formulation of

the massless scalar field. We point out the need for parity conditions on the leading orders of

the field and its conjugate momentum since otherwise, the symplectic structure would have

a logarithmic divergence. We also carefully analyse the behaviour of the scalar field as one

goes to null infinity from given initial data on a Cauchy surface and explicitly exhibit the

generic non-analytic behaviour in that limit, illustrating the phenomenon discussed in [22–

26]. Just as in the case of electromagnetism and gravity, the natural parity conditions

eliminate the leading log r divergence [9, 28]. We then turn in section 3 to the dual 2-

form formulation. We provide boundary conditions, which involve parity conditions with

a twist. This twist is given by an appropriate exterior derivative term. We then show that

because of this twist, Lorentz invariance is problematic unless one modifies the standard

symplectic structure by a surface term at infinity. The most natural way to do so is

to introduce also extra surface degrees of freedom at infinity, as in electromagnetism [9].

The resulting theory possesses an infinite number of asymptotic symmetries (“large” or

“improper” gauge transformations) which form an abelian algebra. We discuss the relation

of the corresponding charges with some of the original scalar charges displayed above. We

also compute the canonical realization of the asymptotic symmetry algebra, which we show

to be centrally extended. We end up in section 4 with conclusions and comments. Three

appendices complete the discussion by providing some useful mathematical background

(appendices A and C), or discussing some improper gauge fixings (i.e., truncations) of the

2-form theory (appendix B).

2 Scalar field

2.1 Action in Hamiltonian form — boundary conditions

The Hamiltonian form of the action for the scalar field reads

S[φ, π] =

∫
dt

(∫
d3xπφ̇−H

)
(2.1)

– 4 –
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where the Hamiltonian is

H =

∫
d3xHφ, Hφ =

1

2

(
π2 + ∂iφ∂iφ

)
. (2.2)

There is also the contribution from the other fields (e.g., the massive field χ in the above

model) but these can be ignored for the present discussion and we shall do so to keep the

argument as clear as possible.

We take as boundary conditions that define phase space the conditions (1.1) for the

scalar field, and π = O(r−2) for its conjugate (π ∼ φ̇)

φ =
φ

r
+

φ(2)

r2
+O(r−3), π =

π

r2
+

π(2)

r3
+O(r−4). (2.3)

We allow off-shell the various coefficients in the expansion in powers of r−1 to depend on

t and the angles xA.

Parity conditions. We furthermore impose the parity conditions that the leading order

φ should be even under the spatial reflection xi → −xi, and the leading order π should

be odd,

φ = even, π = odd . (2.4)

In polar coordinates, the reflection is written r → r, xA → −xA (although if the angles are

the standard polar angles, one has in fact θ → π − θ and ϕ → ϕ+ π).

These parity conditions make the logarithmic divergence in the kinetic term of the

action
∫
d3x

π ∂tφ
r3

actually absent. [Of course, ∂tφ turns out to vanish so that the potentially

divergent integral is zero but we cannot impose ∂tφ = 0 as a condition on the phase space

variables φ and π at a given instant of time. The definition of phase space should involve

only the “p’s and the q’s” and not the “q̇’s”. The equation ∂tφ = 0 emerges as an equation

of motion and holds on-shell, but we do not require it off-shell.]

These parity conditions are the analog for the scalar field of the parity conditions

proposed in [30] for gravity and [31] for electromagnetism, and generalized in [9, 28].

Alternative parity conditions where φ would be odd and π would be even would fulfill

the same purpose of making the symplectic form finite. Although they are incompatible

with spherical symmetry for φ, these boundary conditions are mathematically consistent.

It is of interest to consider them also, especially in the study of the behaviour of the fields

as one goes towards null infinity.

We finally note that whatever the boundary conditions are, the conserved quantities φ

do not generate symmetries since they do not have well defined Poisson brackets with the

basic canonical variables and hence cannot be viewed as Noether charges.

2.2 Poincaré invariance

The Poincaré transformations acts on the phase space variables as

δ(ξ,ξi)φ = ξπ + ξi∂iφ, δ(ξ,ξi)π = ∂i (ξ∂iφ) + ∂i
(
ξiπ
)
. (2.5)

– 5 –



J
H
E
P
0
5
(
2
0
1
9
)
1
4
7

Here,

ξ ≡ ξ⊥ = bix
i + a, ξi = bijx

j + ai (2.6)

where bi, bij = −bji, a and ai are arbitrary constants. The constants bi parametrize the

Lorentz boosts (the corresponding term −bix0 in ξi can be absorbed in ai at any given

time), whereas the antisymmetric constants bij = −bji parametrize the spatial rotations.

The constants a and ai parametrize the standard translations.

The boundary conditions, including the parity conditions, are clearly invariant under

the Poincaré algebra.

The Poincaré transformations are easily verified to leave the symplectic form invariant.

Hence, they are canonical transformations. This computation uses the parity conditions,

since otherwise an unwanted surface term at infinity remains in the variation of the sym-

plectic form (independently of the value of ∂tφ). The Poincaré generators are given by

P(ξ,ξi) =

∫
d3x

[
ξ

(
1

2
π2 +

1

2
∂iφ∂iφ

)
+ ξi (π∂iφ)

]
(2.7)

an expression that is well-defined (converges) thanks again to the parity conditions. If

the fields did not have definite parity properties, a logarithmic divergence would appear.

For instance, the first term behaves as r2dr (from the volume element d3x) times r (from

ξ) times r−4 (from π2) ∼ dr
r
, the integral of which diverges logarithmically, except if the

coefficient obtained by integrating over the angles vanishes, which is the case here because

π2 is even and ξ is odd. Parity conditions are thus also needed for finiteness of the Poincaré

charges.

2.3 Asymptotic dynamics

It is easy to write the transformation rules for the asymptotic fields φ and π. To that end,

it is convenient to go to polar coordinates. Recalling that the conjugate momentum is a

density of weight one, the asymptotic conditions read

φ =
φ

r
+

φ(2)

r2
+O(r−3), π = π +

π(2)

r
+O(r−2) (2.8)

(where π|here =
√
γ π|before). The Poincaré vector fields are

ξ = rb+ a, ξr = W, ξA = Y A +
1

r
D

A
W (2.9)

with

b = b1 sin θ cosϕ+ b2 sin θ sinϕ+ b3 cos θ, (2.10)

Y = m1

(
− sinϕ

∂

∂θ
− cos θ

sin θ
cosϕ

∂

∂ϕ

)
+m2

(
cosϕ

∂

∂θ
− cos θ

sin θ
sinϕ

∂

∂ϕ

)
+m3 ∂

∂ϕ
(2.11)

(bij = εijkm
k) and

W = a1 sin θ cosϕ+ a2 sin θ sinϕ+ a3 cos θ. (2.12)

– 6 –
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Here, DA is the covariant derivative associated with γAB and D
A

= γABDB. The Y A’s

are the Killing vectors of the round metric on the unit 2-sphere, LY γAB = 0. The function

W describes the spatial translations. One has

DADBb+ γABb = 0, DADBW + γABW = 0, LY γAB = DAYB +DBYA = 0. (2.13)

The transformation rules of the asymptotic fields under Poincaré transformations are

δ(ξ,ξi)φ = b
π√
γ
+ ξA∂Aφ, (2.14)

δ(ξ,ξi)π = −
√
γbφ+ ∂A

(
γAB

√
γb∂Bφ

)
+ ∂A

(
ξAπ

)
. (2.15)

The asymptotic fields have an autonomous evolution and transform only under boosts and

rotations. They are invariant under translations. The vacuum configuration (φ = 0, π = 0)

is invariant and has a trivial orbit.

2.4 Going to null infinity

To compare the asymptotic behaviour of the fields at spatial infinity with the asymptotic

behaviour of the fields at null infinity, we integrate the equations of motion in hyperbolic

coordinates [32],

η =
√
−t2 + r2, s =

t

r
(2.16)

which cover the region r > |t|. The inverse transformation reads

t = η
s√

1− s2
, r = η

1√
1− s2

. (2.17)

In hyperbolic coordinates, the Minkowskian metric reads

dη2 + η2habdx
adxb, (xa) ≡ (s, xA) (2.18)

with

habdx
adxb = − 1

(1− s2)2
ds2 +

γAB

1− s2
dxAdxB . (2.19)

The equation of motion for φ is (neglecting the sources, which we can do asymptotically

as these are massive)

∂µ(
√−ggµν∂νφ) = η

√
−h
(
η−1∂η(η

3∂ηφ) +DaDaφ
)
= 0 (2.20)

where Da is the covariant derivative with respect to the metric hab and Da = habDb. The

slice s = 0 coincides with the Cauchy hyperplane t = 0, on which η = r. We therefore

assume that the field has the following asymptotic expansion

φ(η, xa) =
∑

k=0

η−k−1φ(k). (2.21)

The homogeneity of the equation of motion implies that each order decouples and fulfills

DaDaφ
(k) + (k2 − 1)φ(k) = 0 (2.22)

– 7 –
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which can be rewritten as

− (1− s2)∂2
sφ

(k) +D
A
DAφ

(k) +
k2 − 1

1− s2
φ(k) = 0. (2.23)

So, for the free scalar field in hyperbolic coordinates, each order in the expansion in η−1

fulfills autonomous equations of motion, and not just the leading order.

In order to solve (2.23), we will develop each of the unknown functions in spherical

harmonics, imposing for the time being no parity condition,

φ(k) = (1− s2)
1−k
2

∑

lm

Θ
(k)
lm (s)Ylm(xA). (2.24)

The parity conditions will be taken care of below. The equation satisfied by the coefficients

Θ
(k)
lm is then

(1− s2)∂2
sΘ

(k)
lm + 2(k − 1)s∂sΘ

(k)
lm +

[
l(l + 1)− k(k − 1)

]
Θ

(k)
lm = 0. (2.25)

Defining λ = k+ 1
2 and n = l−k, we obtain a differential equation that can be straightfor-

wardly transformed into the differential equation for Gegenbauer polynomials, also called

ultraspherical polynomials. These equations are discussed in appendix A to which we refer

the reader for the details, since we shall make a large use of the properties of the solutions

of these equations recalled there.

The zeroth order coefficient Θ(0) satisfies Legendre’s equation and will be given in

terms of Legendre polynomials and Legendre functions of the second kind. The general

solution for arbirary k is given by

Θ
(k)
lm = Θ

P (k)
lm P̃

(k+ 1

2
)

l−k (s) + Θ
Q(k)
lm Q̃

(k+ 1

2
)

l−k (s) (2.26)

in terms of the P̃
(k+ 1

2
)

l−k (s) and Q̃
(k+ 1

2
)

l−k (s) of appendix A, which leads to

φ =
∑

k,l,m

η−k−1(1− s2)
1−k
2

[
Θ

P (k)
lm P̃

(k+ 1

2
)

l−k (s) + Θ
Q(k)
lm Q̃

(k+ 1

2
)

l−k (s)

]
Ylm(xA). (2.27)

The easiest way to make contact with null infinity is to introduce the rescaled radial

coordinate ρ = η
√
1− s2 [33–35]. The field φ then takes the form

φ = (1− s2)
∑

k,l,m

ρ−1−k

[
Θ

P (k)
lm P̃

(k+ 1

2
)

l−k (s) + Θ
Q(k)
lm Q̃

(k+ 1

2
)

l−k (s)

]
Ylm(xA). (2.28)

Null infinity is given by the limits s → ±1 while keeping ρ and xA fixed. As all P̃ and

Q̃’s are bounded except the Q̃
( 1

2
)

n that diverge logarithmically, the general expression we

obtained for φ goes to zero at null infinity.

The link with standard retarded null coordinates (u, r) is given by

s = 1 +
u

r
, ρ = −2u− u2

r
, 1− s2 = −2u

1

r
+O(r−2) (2.29)

– 8 –
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where we take u < 0 which is relevant to the limit of going to the past of future null infinity.

Expressing φ in terms of u, r, we get

φ =
(
r−1+O(r−2)

)∑

l,m

Θ
Q(0)
lm

(
P
( 1

2
)

l (1)Q
( 1

2
)

0 (1+u/r)+R
( 1

2
)

l (1)

)
Ylm(xA)+

1

r

∑

l,m

Θ
P (0)
lm P

( 1

2
)

l (1)Ylm(xA)

+r−1
∑

k>0,l,m

(−2u)−k

[
Θ

P (k)
lm P̃

(k+ 1

2
)

l−k (1)+Θ
Q(k)
lm Q̃

(k+ 1

2
)

l−k (1)

]
Ylm(xA)+O(r−2)

(2.30)

where we have written the Legendre functions of the second kind Q
( 1
2
)

l in terms of Legendre

polynomials (see appendix A).

Now, one has

Q
( 1
2
)

0 (s) =
1

2
log

1 + s

1− s
(2.31)

from which one gets

Q
( 1
2
)

0 (1 + u/r) =
1

2

(
log r − log(−u) + log(2 + u/r)

)

=
1

2

(
log(r) + log 2− log(−u)

)
+ o(1). (2.32)

All branches of solutions contribute at most with a 1
r
contribution at null infinity

except for the leading Q branch corresponding to leading parity odd solutions. If this

branch is non-zero, the scalar field will have a term of the form log r
r

. It is interesting to

see that this logarithmic branch in r is paired with a logarithmic divergence in u for the

coefficient of the 1
r
term. This second linked divergence is coming from the log(−u) term

in equation (2.32).

If the leading Q branch is absent, i.e. if Θ
Q(0)
lm = 0, then at null infinity, we have

φ = φ(u, xA)1
r
+ O(r−2) and, in the limit u → −∞, the leading term tends to a function

on the circle controlled by the leading P branch

lim
u→−∞

φ(u, xA) =
∑

l,m

Θ
P (0)
lm Ylm(xA). (2.33)

This is the asymptotic behaviour near null infinity assumed in [11, 12].

Parity conditions and matching conditions. The asymptotic behaviour on spacelike

hyperplanes of the explicit solution found above in hyperbolic coordinates can easily be

worked out by considering the hyperplane s = 0. One finds

φ = lim
r→∞

rφ =
∑

l,m

[
Θ

P (0)
lm P

( 1

2
)

l (0) + Θ
Q(0)
lm Q

( 1

2
)

l (0)

]
Ylm(xA), (2.34)

π = lim
r→∞

r2
√
γ ∂tφ = sin θ

∑

l,m

[
Θ

P (0)
lm ∂sP

( 1

2
)

l (0) + Θ
Q(0)
lm ∂sQ

( 1

2
)

l (0)

]
Ylm(xA), (2.35)

reproducing (2.8).
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Due to the parity properties

Ylm(−xA) = (−1)lYlm(xA) (2.36)

(⇔ Ylm(π − θ, ϕ+ π) = (−1)lYlm(θ, ϕ)) of the spherical harmonics, and

P
( 1

2
)

l (−s) = (−1)lP
( 1

2
)

l (s), Q
( 1

2
)

l (−s) = (−1)l+1Q
( 1

2
)

l (s) (2.37)

of the Legendre polynomials/functions, which imply

P
( 1

2
)

l (0) = 0, ∂sQ
( 1

2
)

l (0) = 0 for odd l’s,

and

Q
( 1

2
)

l (0) = 0, ∂sP
( 1

2
)

l (0) = 0 for even l’s,

we see that Θ
P (0)
lm control the even part of φ and the odd part of π while Θ

Q(0)
lm control the

other parity components.

Thus, in order to fulfill (2.4), we must take Θ
Q(0)
lm = 0, i.e., set the leading Q branch

equal to zero. This eliminates, as we have seen, the dominant logarithmic behaviour at

null infinity. This is in line with the investigations performed at null infinity, where this

singular behaviour is usually assumed to be absent. As in the cases of electromagnetism and

gravity [9, 28], the parity conditions at spacelike infinity eliminate the leading singularities

at null infinity.

Furthermore, the solutions φ(0)(s, xA) with Θ
Q(0)
lm =0 fulfill φ(0)(s, xA) = φ(0)(−s,−xA)

due to the combined parity properties of the spherical harmonics and the Legendre poly-

nomials. This implies the matching conditions

lim
u→−∞

φ(u, xA) = lim
v→∞

φ(v,−xA) (2.38)

of [15] relating the leading order of the fields on the past boundary of future null infinity

with the leading order of the fields on the future boundary of past null infinity at the

antipodal points. This is again just as in the cases of electromagnetism and gravity [9, 28].

We should stress in closing this subsection that even though the leading divergence is

eliminated at null infinity by the condition Θ
Q(0)
lm = 0, subleading terms of the form log r

rm

(m ≥ 2) will generically appear. In many analyses of the asymptotic properties at null

infinity, such terms are excluded, a condition that is too strong and unnecessary from the

point of view of the description of the dynamics on Cauchy hypersurfaces. It is interesting

to point out in this respect that the alternative parity conditions obtained by setting the

leading P branch equal to zero and keeping the leading Q branch are perfectly regular from

the point of view of spacelike infinity and leads therefore also to a consistent, self-contained

Hamiltonian description (it is only at null infinity that logarithmic divergences appear).

3 Two-form gauge field

We now turn to the dual formulation.

– 10 –



J
H
E
P
0
5
(
2
0
1
9
)
1
4
7

In four dimensions, a scalar field is dual to a 2-form gauge field with action

S[Bµν ] = −1

6

∫
d4xCλµνC

λµν . (3.1)

Here, the curvature Cλµν is defined by

Cλµν = ∂λBµν + ∂µBνλ + ∂νBλµ (3.2)

and is invariant under the gauge transformations

δBµν = ∂µǫν − ∂νǫµ (3.3)

which are reducible, since

ǫµ = ∂µη (3.4)

yields δBµν = 0.

3.1 Hamiltonian and constraints

The action in Hamiltonian form reads

S[Bij , π
ij , B0i] =

∫
d4x

{
πij∂tBij −B0iGi −

(
1

2
πijπij +

1

6
CijkC

ijk

)}
(3.5)

where πij are the momenta conjugate to Bij . The B0i are the Lagrange multipliers for the

constraints Gi ≈ 0, with

Gi = −2∂jπ
ji (3.6)

(“Gauss law”).

One can relate the 2-form action (3.5) to the scalar field action (2.1) by the following

change of variables:

πij =
1√
2
εijk∂kφ, Cijk =

1√
2
εijkπ . (3.7)

As shown in appendix B, the two actions differ by a surface term at the time boundaries

and a surface term at spatial infinity. The suface term at the time boundaries depends on

the arguments of the transition amplitude (what is kept fixed at the time boundaries in the

path integral — or in the action principle) and must be determined on this ground. The

surface term at spatial infinity is crucial for a proper definition of the symplectic structure.

The change of variables (3.7) needs some qualifications. The field φ is well-defined

because the conjugate momenta πij fulfill the constraints Gi ≈ 0, which are the necessary

conditions for ∂kφ = 1√
2
εkijπ

ij to be integrable. If there were electric sources for the 2-

form (strings), which are magnetic sources for φ, these would modify Gauss law and the

integrability conditions for ∂kφ would fail at the location of the sources. Accordingly, the

integral of ∂kφ on a closed line linking the source would not vanish and φ would not return

to its original value for such a loop. So, while the gradients of the field φ are well-defined,

its zero-mode is multiple-valued. One way to deal with this problem is to proceed “à la

Dirac” [36] and introduce “Dirac membranes” attached to the strings [37, 38]. The Dirac

membranes are pure gauge objects and are only needed in the scalar field formulation.
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By contrast, the electric sources for φ, which are magnetic sources for the 2-form, do

not lead to a difficulty in the change of variables (3.7). For any given π, the equations (3.7)

admit a solution forBij . What happens is that only the definition of the momenta conjugate

to Bij is affected by the presence of the sources for φ. But the relationship πij ↔ Ḃij is

not used in (3.7), which is therefore unchanged. The relationship πij ↔ Ḃij emerges as the

Hamiltonian equation of motion for πij . For instance, in the case of the Lagrangian (1.3),

the coupling term
∫
d3xφχ2 in the Hamiltonian for the scalar field leads to the non local

term
∫
d3x△−1

(
εijk∂

kπij
)
χ2 in the Hamiltonian for the 2-form gauge field, which modifies

the conjugate momentum πij by the non-local contribution ∼ △−1
(
εijk∂k(χ

2)
)
.

Asymptotic conditions — parity conditions. The fall-off of the scalar field and its

conjugate momentum implies (i) that up to an exterior derivative, the 2-form components

Bij decay in Cartesian coordinates as 1
r
with a leading term that is even under parity;2

and (ii) that the components πij decays in Cartesian coordinates as 1
r2

with a leading term

that is odd under parity.

The exterior derivative term ∂iΛj − ∂iΛj is admissible in the asymptotic fall-off of Bij

since it drops out from Cijk. One could a priori think that Λi is completely arbitrary.

There are constraints, however, coming from the fact that the symplectic form and the

charges should be finite, which are fulfilled if Λi = O(r0) as we shall assume here (although

we have not explored whether a more flexible asymptotic behaviour could be consistently

considered). This leads us to the following boundary conditions at spatial infinity, which

we express in polar coordinates,3

BrA = BrA +O

(
1

r

)
, BAB = rBAB +O(1), (3.8)

πrA =
πrA

r
+O

(
1

r2

)
, πAB =

πAB

r2
+O

(
1

r3

)
(3.9)

with

BrA = B
even
rA + ΛA − ∂AΛr, (3.10)

BAB = B
odd
AB + ∂AΛB − ∂BΛA, (3.11)

πrA = πrA
odd, πAB = πAB

even (3.12)

where

B
even
rA (−xA) = B

even
rA (xA), (3.13)

B
odd
AB (−xA) = −B

odd
AB (xA), (3.14)

πrA
odd(−xA) = −πrA

odd(x
A), πAB

even(−xA) = πAB
even(x

A). (3.15)

2This means that B is an odd pseudo-2-form and that its conjugate is an even pseudo-bivector (density),

see appendix C.
3Parity properties of pseudo-2-forms are as follows. If the leading components Bij in Cartesian coor-

dinates are even (odd pseudo-2-form), then the leading components in the coordinate system (r, xA) with

r → r and xA → −xA (e.g., (xA) = (x, y)) have “exchanged” parity properties because the frame {∂r, ∂A}

has same orientation as its image {∂r,−∂A} under parity (while {∂i} and {−∂i} have opposite orientation).

Thus, BrA will be even up to an exterior derivative while BAB will be odd. Similarly, πrA will be odd

while πAB will be even. Parity properties of components in spherical coordinates (r, θ, ϕ) will be however

the standard ones. See appendix C for more information.
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Here

Λr = Λr +O

(
1

r

)
, ΛA = rΛA +O(1) . (3.16)

All fields with an overbar depend again only on the angles and time, i.e., are time-dependent

fields on the sphere at infinity. Since the even part of ΛA and odd part of Λr can be absorbed

through redefinitions of Bij , one could assume that ΛA is odd and Λr is even, but we shall

not do so.

In addition to the asymptotic fall-off (3.8), (3.9) and the parity conditions (3.10)–

(3.15), we also impose that the constraint vector-densities Gi ≡ ∂jπ
ij decay one order

faster than the decay that follows from (3.9), i.e., Gr = o(r−1) and GA = o(r−2), which is

equivalent to

∂Aπ
Ar = 0, πrA − ∂Bπ

BA = 0. (3.17)

The parity conditions supplemented by these constraint conditions make the symplectic

form finite. They are the analogs of the parity conditions for electromagnetism and gravity

considered in [9, 28]. As for the scalar field, opposite parity conditions can be consistently

defined (which would also cover the case of a true (non “pseudo”) 2-form) but we shall not

develop them explicitly here, referring simply to the scalar field analysis.

3.2 Boosts — surface degrees of freedom

Problem with boosts. The Poincaré transformation laws are given by

δξBij =
ξ√
g
πij + ξmCmij + ∂iζj − ∂jζi, δξπ

ij = ∂k

(
ξ
√
g Ckij

)
+ 3∂k(ξ

[kπij]) (3.18)

where ζr = ζr + O(r−1) and ζA = rζA + O(1) is the parameter of a gauge transformation

which one can include in the definition of the Poincaré transformations of the gauge-variant

fields Bij . Definite choices will be made below. It is easy to verify that the asymptotic

conditions are Poincaré invariant.

The Poincaré transformations are also easily verified to leave the symplectic form

σbulk ≡
∫
d3x dV π

ij ∧ dV Bij invariant, except the boosts, which present subtleties. We

thus focus on boosts from now on, for which ξi = 0 and ξ = br. Asymptotically, these read

explicitly

δξBrA =
b√
γ
γABπ

rB + ζA − ∂Aζr, δξBAB =
b√
γ
πAB + ∂AζB − ∂BζA, (3.19)

δξπ
rA =

√
γ γAC D

B (
bCrCB

)
, (3.20)

δξπ
AB = −b

√
γ γACγBDCrCD (3.21)

where

CrCD = BCD − ∂CBrD + ∂DBrC . (3.22)

We note incidentally that these transformations present a striking difference with re-

spect to the corresponding ones for gravity and electromagnetism. They mix radial and
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angular components of the dynamical variables. For that reason, “twisted parity con-

ditions” where one modifies the parity of the angular components without changing the

parity of the radial ones [29], do not appear to be available.

One finds for the variation of the symplectic form under boosts,

δξΩ
bulk = dV

(
iξΩ

bulk
)

=

∮
d2x

√
γ b γCA γDB dV CrCD dV BAB (3.23)

where we have omitted the ∧ symbol and where dV is the exterior derivative in field space.

The function CrCD is odd, as is b. This means that only the even part of BAB contributes

to the integral. This even part is not zero, however, and although it is given by an exterior

derivative, the integral (3.23) does not vanish. Something must therefore be done for the

boosts to be canonical transformations.

Various possibilities exist. A minimal one, which does not require extra variables,

is given in appendix B. We explain here a different route, which is in the line of what

one does for electromagnetism (for which the minimal version does not exist) [9]. This

approach is richer, in the sense that it displays more symmetries and enables one to view

some of the conserved quantities exhibited above as corresponding Noether charges. [In

fact, the minimal approach can be viewed as resulting from an improper — and hence non

permissible — gauge fixing of the non-minimal one, which eliminates physical degrees of

freedom — see appendix B.]

In this non minimal approach, one introduces surface degrees of freedom at spatial

infinity with appropriate Lorentz transformations and adds surface terms to the bulk sym-

plectic form in such a way that the total symplectic form is invariant.

There are two equivalent technical ways to introduce the surface degrees of freedom at

infinity. One can either just introduce these degrees of freedom only at spatial infinity, or

one can introduce fields in the bulk that match these degrees of freedom at infinity, with the

condition that their conjugate momentum is contrained to vanish. In this manner, there is

no new physical bulk degree of freedom that is introduced (the new bulk degrees of freedom

are pure gauge). But with the surface modification of the symplectic form, some non trivial

degrees of freedom remain at infinity. Both methods are described for electromagnetism

in [9] and shown to be equivalent. We shall follow below the second procedure.

New surface degrees of freedom. Inspired by the electromagnetic results, we add

to the original 2-form canonical pair (Bij , π
ij) subject to Gauss’ law −2∂iπ

ij ≈ 0, the

following conjugate pairs,

(pi,Ψi) (πΦ,Φ) (3.24)

with the constraints

pi ≈ 0, πΦ ≈ 0. (3.25)

The first pair is the direct analog of the pair (Ψ, πψ) introduced in [9] for electromagnetism.

The second pair arises because of the reducibility of the gauge transformations.
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In addition to the above asymptotic fall-off of the pair (Bij , π
ij), we impose the asymp-

totic behaviour

Ψr =
Ψr

r
+O

(
1

r2

)
, ΨA = ΨA +O

(
1

r

)
, pr = O

(
1

r

)
, pA = O

(
1

r2

)
,

Φ =
Φ

r
+O

(
1

r2

)
, πΦ = O

(
1

r

)
(3.26)

(in polar coordinates) on the new fields.

Symplectic structure. The complete symplectic structure is taken to be

Ω =

∫
d3x

(
dV π

ijdV Bij + dV p
idV Ψi + dV πΦdV Φ

)

+

∮
d2x

√
γ
(
−2γABdV BrAdV ΨB + 2dV ΨrdV Φ

)
(3.27)

and differs from the above Ωbulk by terms that vanish on the constraint surface and by

boundary terms. This is the standard “dp dq” symplectic form, modified by surface terms

that are such that the boosts are canonical transformations (see below).

It is not necessary to introduce parity conditions on the new variables to make the

symplectic form finite because the new momenta decrease sufficiently fast at infinity.

Hamiltonian and action. The Hamiltonian H is taken to be

H =

∫
d3xH (3.28)

with

H =
1

2
√
g
πijπij +

√
g

6
CijkC

ijk −Bij∇ipj + ∂iΦp
i +∇iΨiπΦ − 2Ψi∂jπ

ji. (3.29)

It is a direct generalization of the Hamiltonian taken in the electromagnetic case. The

integrand weakly coincides with the energy density

1

2
√
g
πijπij +

√
g

6
CijkC

ijk (3.30)

as it should. All the extra terms vanish with the constraints. Their specific form has been

chosen for later convenience.

The action reads

S[Bij , π
ij ,Ψi, p

i,Φ, πΦ; ρ
a] =

∫
dt

[∫
d3x

(
πij∂tBij+pi∂tΨi+πΦ∂tΦ

)
−H−

∫
d3x ρaGa

]

+

∫
dt

∮
d2x

√
γ
(
−2γABBrA∂tΨB+2Ψr∂tΦ

)
(3.31)

where ρa stands for all the Lagrange multipliers enforcing the constraints collectively de-

noted Ga ≈ 0.
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The new fields boundary fields fulfill

∂tΨB = 0, ∂tΨr = 0, ∂tΦ = 0 (3.32)

and one can easily check that they affect the equations of motion of the original 2-form field

only by terms that vanish when the constraints are taken into account. Note in particular

that the equation ∂tBrA = 0, which follows from extremization of the action with respect

to ΨA, is a consequence of the equations for the 2-form.

As in the case of electromagnetism, Ψi and the temporal components of the 2-form

both multiply Gauss’ law in the action. There is therefore some redundancy, which can

be eliminated by identifying Ψi and B0i and keeping only one term proportional to Gauss’

constraint in the action.4 With that identification, the surface degrees of freedom Ψi are

the O(r−1) pieces of B0i. As we shall see, they are not pure gauge.

In a gauge system, there is always some ambiguity in the Hamiltonian, to which one

can always add combinations of the constraints, corresponding to the fact that a time

translation can be accompanied by gauge transformations. The particular choice of Hamil-

tonian (3.29) was guided by the identification Ψi = B0i and the request to implement the

(generalized) Lorentz gauge ∂µB
µν +∂νΦ = 0. This request makes Lorentz invariance easy

to control (see below). The Lorentz gauge conditions determine the evolution of the new

fields, since they read in 3+1 notations ∂tΨi = ∂jBji+∂iΦ and ∂tΦ = ∂iΨi. These are in-

deed just the equations of motion following from our choice of Hamiltonian, as announced

(in other words, the Lorentz gauge is equivalent to ρa = 0 for the Lagrange multipliers

associated with the new constraints once the identification of Ψi with B0i is made). The

extra term ∂νΦ is introduced in the (generalized) Lorentz gauge to avoid the constraint

∂iΨi = 0 that would follow from the condition ∂µB
µν = 0 without Φ-term. We want the

Lorentz gauge conditions to be only evolution equations, as in electromagnetism. The need

for Φ is a feature that is present because the gauge symmetries of the 2-form are redundant.

It has no analog in electromagnetism. Note that the Lorentz gauge implies that the leading

orders Ψi and Φ are indeed constant, i.e., ∂tΨi = 0 and ∂tΦ = 0 are the first terms in the

expansion of the Lorentz gauge conditions.

Boosts. We now extend the boost transformation laws to include the new fields. These

transformations must fulfill the following requirements:

• They must be canonical transformations, i.e., LξΩ = dV (iξΩ) = 0.

• They must reduce to the previous transformations for the 2-form fields and their

momenta, at least when the constraints hold.

• They must preserve the constraint surface.

4Technically, one might describe the procedure as follows. Following strictly Dirac’s method for the

original second-order 2-form action, one would introduce a conjugate momentum for all 2-form components

including B0i. There is then a primary constraint πB0i
≈ 0. The “total Hamiltonian” and the “total action”

involves only the primary constraints multiplied by arbitrary Lagrange multipliers. When setting B0i = Ψi

(and πB0i
= pi) and keeping only ΨiG

i (without the additional copy B0iG
i), one effectively sticks to this

total action (with the extra “non minimal” variables (Φ, πφ) added because of reducibility). One does not

go to the (physically equivalent) extended formalism with secondary constraints multiplied also by arbitrary

Lagrange multipliers, which exhibits more explicitly all the gauge freedom. The condition B0i = Ψi is a

gauge condition that reduces the “extended formalism” to the “total formalism”.
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The following transformations fulfill these requirements,

δξBij =
ξ√
g
πij + ∂i(ξΨj)− ∂j(ξΨi), δξπ

ij = ∂k

(
ξ
√
g Ckij

)
+ ξ∇[ipj], (3.33)

δξΨi = ∇j(ξBji) + ξ∂iΦ, δξp
i = 2ξ∂jπ

ji +∇i(ξπΦ), (3.34)

δξΦ = ξ∇iΨi, δξπΦ = ∂i(ξp
i) (3.35)

which implies

δξBrA =
b√
γ
γABπ

rB + bΨA − ∂A(bΨr), (3.36)

δξBAB =
b√
γ
πAB + ∂A(bΨB)− ∂B(bΨA), (3.37)

δξπ
rA =

√
γ γAC D

B (
bCrCB

)
, (3.38)

δξπ
AB = −b

√
γ γACγBDCrCD, (3.39)

δξΨr = −D
A
(bBrA)− bΦ, δξΨA = D

B
(bBBA) + bBrA + b∂AΦ, (3.40)

δξΦ = b(Ψr +D
A
ΨA). (3.41)

[The above transformations were obtained by demanding that they should coincide

with the Lie derivatives of Bµν and Φ (which is a scalar) under boosts, if one uses the

equations of motion of the fields to eliminate their time derivatives.]

One has dV (iξΩ) = 0 so that iξΩ = dV Pξ,0 with a generator Pξ,0 given by

Pξ,0 =

∫
d3x ξH+ Bξ,0, (3.42)

Bξ,0 =

∮
d2x 2bπrAΨA +

∮
d2x

√
γ b

(
ΨAΨ

A −BrAB
A

r + 2ΨrD
A
ΨA

+(Ψr)
2 + (Φ)2 − 2BrAD

A
Φ− 1

2
BABB

AB
+B

AB
(∂ABrB − ∂BBrA)

)
. (3.43)

Poincaré generators. The other Poincaré transformations have also a well defined gen-

erator. As is well known, transformations of the fields under a symmetry are defined up

to a gauge transformation in any gauge theory. For spatial translations and rotations, we

adjust the gauge transformation in such a way that the action of these spatial symmetries

on the fields is the ordinary Lie derivative, where Ψi is a spatial vector and Φ is a spatial

scalar. Spatial translations and rotations are then generated by

P0,ξi =

∫
d3x(πijLξkBij + piLξkΨi + πφLξkΦ) (3.44)

− 2

∮
d2x

√
γ
(
BrAγ

AB(Y C∂CΨB + ∂BY
CΨC) + ΦY A∂AΨr

)
. (3.45)

The boundary term in the expression of the rotation charges (angular momentum) is es-

sential in order to fulfill iξkΩ = dV P0,ξk .
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For the generator of time translations, we take the same expression (3.42) as for the

boosts, but with ξ = a. The boundary term is then zero and the generator reads

Pa,0 = a

∫
d3xH. (3.46)

This amounts again to a specific choice of the improper gauge transformation included in

what is meant by a “time translation” and is again a matter of choice. Our choice leads to

the simple algebra (3.48), (3.49). The generator (3.42) is thus generally valid for

ξ = b(xA)r + a. (3.47)

The algebra of the Poincaré generators is given by

{Pξ1,ξ
i
1

, Pξ2,ξ
i
2

} = P
ξ̂,ξ̂i

, (3.48)

ξ̂ = ξi1∂iξ2 − ξi2∂iξ1, ξ̂i = ξj1∂jξ
i
2 − ξj2∂jξ

i
1 + gij(ξ1∂jξ2 − ξ1∂jξ2). (3.49)

That the algebra of the charges reproduces the algebra of the asymptotic symmetries follows

in fact from general theorems [39].

3.3 Gauge transformations

The gauge transformations are given by

δǫ,µ,λBij = ∂iǫj − ∂jǫi, δǫ,µ,λΨi = µi, δǫ,µ,λΦ = λ (3.50)

with

ǫi = ǫi +O

(
1

r

)
, µi =

µi

r
+O

(
1

r2

)
, λ =

λ

r
+O

(
1

r2

)
. (3.51)

In polar coordinates, this yields for the leading orders

δǫ,µ,λBrA = ǫA − ∂Aǫr, δǫ,µ,λBAB = ∂AǫB − ∂BǫA (3.52)

δǫ,µ,λΨr = µr, δǫ,µ,λΨA = µA, δǫ,µ,λΦ = λ (3.53)

where

ǫA = rǫA +O(1), ǫr = ǫr +O(r−1), µA = µA +O(r−1), (3.54)

µr = r−1µr +O(r−2), λ = r−1λ+O(r−2). (3.55)

The associated generator is easily computed

Gǫ,µ,λ =

∫
d3x
(
ǫi(−2∂jπ

ji) + µip
i + λπΦ

)
+ 2

∮
d2xπrAǫA

+ 2

∮
d2x

√
γ
(
Ψ

A
(ǫA − ∂Aǫr)− µABrA − µrΦ+ λΨr

)
. (3.56)

The charges (3.56) exhibit a number of interesting features. First we note that they are

generically non-zero, since the asymptotic values of the gauge parameters are generically

non-zero. This means that they generically define improper gauge transformations [40]. It
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is only when Gǫ,µ,λ ≈ 0 that the transformations are proper gauge transformations with no

effect on the physical system. The charges involve asymptotic features of the 2-form field

and of the additional degrees of freedom, and differ from the conserved line integrals that

measure the strength of string sources when these are present.

Second, we observe that the transformations generated by Gǫ,µ,λ are reducible. If

ǫA = ∂Aχ and ǫr = χ (for some χ) i.e., ǫA = ∂Aǫr, then the terms in Gǫ,µ,λ containing ǫi

vanish. This is clear for the term in Ψ
A
. This is also clear for the term in πrA if one recalls

that ∂Aπ
rA = 0.

Third we note that one can express the contribution to Gǫ,µ,λ involving πrA in terms

of the original scalar field. One has πrA = εAB∂Bφ and thus

2

∮
d2xπrAǫA = 2

∮
d2x εAB∂Bφ ǫA. (3.57)

(One can also write −2
∮
d2x

√
γ µABrA in terms of the conjugate momentum π but the

expression is non local.) If Ψ
A
happens to be even, this is the only contribution to Gǫ,µ,λ

involving ǫoddA . If Ψ
A
has also an odd part, 2

∮
d2x εAB∂Bφ ǫA coincides with the generator

of the ǫA transformation only in the “frame” where Ψ
A
odd = 0. That these two quantities are

not always equal is as it should sinceGǫ,µ=0,λ=0 and 2
∮
d2x εAB∂Bφ ǫA transform differently

under improper asymptotic symmetries: 2
∮
d2x εAB∂Bφ ǫA is invariant, while Gǫ,µ=0,λ=0

transforms due to the central charges that are present in the algebra.

Indeed the algebra of the asymptotic charges reproduces the algebra of the asymptotic

transformations that they generate up to central charges that may be present [39]. In our

case, the transformations commute, so everything boils down to the central charges which

turn out to be present and non-trivial given that the algebra of the transformations is

abelian.

One evaluates the central charges as follows,

[Gǫ1,µ1,λ1
, Gǫ2,µ2,λ2

] = δǫ2,µ2,λ2
Gǫ1,µ1,λ1

(3.58)

= 2

∮
d2x

√
γ
(
µ(2)A(ǫ

(1)
A − ∂Aǫ

(1)
r )− µ(1)A(ǫ

(2)
A − ∂Aǫ

(2)
r )
)

+2

∮
d2x

√
γ
(
− µ(1)

r λ
(2)

+ λ
(1)

µ(2)
r

)
. (3.59)

A similar computation yields the poisson brackets between the improper gauge sym-

metries and the Poincaré transformations

[Gǫ,µ,λ, Pξ,ξi ] = δξ,ξiGǫ,µ,λ = G
ǫ̂,µ̂,λ̂

(3.60)

where

ǫ̂i = −Lξkǫi − ξµi, λ̂ = −Lξkλ− ξ∇iµi, (3.61)

µ̂i = −Lξkµi − ξ∂iλ−∇j
(
ξ(∂jǫi − ∂iǫj)

)
. (3.62)
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The resulting action of the Poincaré transformations on the asymptotic symmetry param-

eters is then

δ(Y,b,T,W )ǫA = LY ǫA + bµA, δ(Y,b,T,W )ǫr = LY ǫr + bµr, (3.63)

δ(Y,b,T,W )µA = LY µA + b∂Aλ+ b(ǫA − ∂Aǫr) +DB
(
b(∂BǫA − ∂AǫB)

)
, (3.64)

δ(Y,b,T,W )µr = LY µr − bλ−DA
(
b(ǫA − ∂Aǫr)

)
, (3.65)

δ(Y,b,T,W )λ = LY λ+ bµr + bDAµA. (3.66)

4 Conclusions

We have indicated here how one could relate some of the conserved quantities appearing

in the scalar field theory to generators of asymptotic symmetries in the dual 2-form for-

mulation. These charges act on variables that are not present in the original scalar field

formulation and this explains why they cannot be viewed as generators there. Going to

the original formulation in terms of the scalar field involves in fact a truncation.

Two major features characterize the construction: asymptotic conditions fulfilling par-

ity conditions that involve a twist given by an improper gauge transformations and intro-

duction of extra surface degrees of freedom at spatial infinity. While the first step is

common to electromagnetism and gravity, the second one was found so far to be needed

for the same reason (necessity to make the boosts canonical transformations) only in elec-

tromagnetism [28]. Perhaps the description of superrotations [41, 42], which has not yet

been achieved in the canonical formalism on spacelike Cauchy surfaces, would also need

the introduction of surface degrees of freedom.

Even though the followed procedures are rather different, it is reassuring that some of

the features encountered in our analysis at spatial infinity are also present at null infin-

ity [11]: need to introduce new surface degrees of freedom, absence of generator associated

with the zero mode of the scalar field φ, no action of the symmetry transformations on φ.

The detailed connection between the two approaches has not been worked out, however,

and would deserve further study.

The classical vacuum of the theory is naturally defined by setting all fields equal to zero.

The infinite-dimensional symmetry exhibited here acts non trivially on this vacuum. As

it follows from (3.52) and (3.53), improper gauge transformations generate non vanishing

values of the asymptotic fields so that the orbit of the vacuum is non trivial. In other

words, the vacuum is degenerate, as in the electromagnetic or gravitational cases. The

energy of all these vacua is the same and equal to zero.

We have also studied in detail the behaviour of the scalar field as one approaches null

infinity. This constitutes an excellent laboratory for exhibiting in a simple context free

from gauge invariance questions the type of non-analytic behaviour that emerges as one

takes that limit.

Finally, we have shown that the algebra of the canonical generators of asymptotic

symmetries is a non trivial central extension of the abelian algebra of the symmetries. As a
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result, contrary to the gravity or electromagnetic cases, the various vacua are characterized

by different values of the charges asociated with the new symmetry.
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A Ultraspherical polynomials and functions of the second kind

The relevant equation for our analysis is

(1− s2)∂2
sY

(λ)
n + (2λ− 3)s∂sY

(λ)
n + (n+ 1)(n+ 2λ− 1)Y (λ)

n = 0, (A.1)

λ = k +
d− 3

2
, n = l − k.

(A.2)

(d = 4 in our case so that λ = k+ 1
2 , but the analysis proceeds in the same way for arbitrary

spacetime dimension d. Note that 2λ is always an integer.)

• n ≥ 0. We can easily obtain the solutions for n ≥ 0 by considering the following

rescaling

Y (λ)
n (s) = (1− s2)λ−

1

2ψ(λ)
n (s). (A.3)

The equation for ψ
(λ)
n then takes the form

(1− s2)∂2
sψn − (2λ+ 1)s∂sψn + n(n+ 2λ)ψn = 0. (A.4)

For λ > 1
2 and n = N, this equation has a polynomial solution known as ultraspherical

polynomial or Gegenbauer’s polynomial P
(λ)
n [43]. These polynomials satisfy

P (λ)
n (−s) = (−)nP (λ)

n (s), P (λ)
n (1) =

(
n+ 2λ− 1

n

)
(A.5)

and can be constructed using the following recurrence formula

nP (λ)
n (s) = 2(n+ λ− 1)sP

(λ)
n−1(s)− (n+ 2λ− 2)P

(λ)
n−2(s), n > 1, (A.6)

P
(λ)
0 (s) = 1, P

(λ)
1 (s) = 2λs. (A.7)

When λ = 1
2 , we recover Legendre Polynomials. The function of the second kind

Q
(λ)
n is the solution of the differential equation (A.4) which is linearly independent

of P
(λ)
n . The full set can be constructed using the same recurrence relation with a

different starting point:

nQ(λ)
n (s) = 2(n+ λ− 1)sQ

(λ)
n−1(s)− (n+ 2λ− 2)Q

(λ)
n−2(s), n > 1, (A.8)

Q
(λ)
0 (s) =

∫ s

0
(1− x2)−λ− 1

2dx, Q
(λ)
1 (s) = 2λsQ

(λ)
0 (s)− (1− s2)−λ+ 1

2 . (A.9)
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They take the general form

Q(λ)
n (s) = P (λ)

n (s)Q
(λ)
0 (s) +R(λ)

n (s)(1− s2)−λ+ 1

2 (A.10)

where R
(λ)
n are polynomials of degree n − 1 and satisfy Q

(λ)
n (−s) = (−)n+1Q

(λ)
n (s).

The values of λ relevant for our analysis are half integers and integers. In these cases

Q
(λ)
n (s) diverges at s = ±1: for λ = 1

2 , the Legendre function of the second kind

diverges logarithmically while the other values of λ lead to

lim
s→1

(1− s2)λ−
1

2Q(λ)
n (s) =

1

2λ− 1
, k = 2, 3, . . . . (A.11)

The general solution for Y
(λ)
n is then given by

Y (λ)
n (s) = AP̃ (λ)

n (s) +BQ̃(λ)
n (s), (A.12)

P̃ (λ)
n (s) = (1− s2)λ−

1

2P (λ)
n (s), Q̃(λ)

n (s) = (1− s2)λ−
1

2Q(λ)
n (s), ∀n ≥ 0,

(A.13)

P̃ (λ)
n (−s) = (−)nP̃ (λ)

n (s), Q̃(λ)
n (−s) = (−)n+1Q̃(λ)

n (s). (A.14)

For all values of λ, the Q̃ branch of Y will dominate in the limit s → ±1. If λ = 1
2 ,

the Q̃ branch will diverge logarithmically while the P̃ branch will be finite. For all

half integer value of λ ≥ 1, the Q̃ branch will be finite and will tend to a non-zero

constant at s = ±1 while the P̃ branch will go to zero.

• 0 > n > 1 − 2λ. The pattern here is similar: we have a polynomial branch and a

“second” class branch. The two sets of solutions can be constructed with the following

recurrence relation:

(2λ+n−1)P̃
(λ)
n−1(s) = 2(n+λ)sP̃ (λ)

n (s)−(n+1)P̃
(λ)
n+1(s), λ > 2, n < −2, (A.15)

P̃
(λ)
−1 (s) =

∫ s

0
(1−x2)λ−

3

2dx, P̃
(λ)
−2 (s) = sP̃

(λ)
−1 (s)+

1

2(λ−1)
(1−s2)λ−

1

2 ,

(A.16)

the polynomial branch being given by the following starting point

Q̃
(λ)
−1(s) = 1, Q̃

(λ)
−2(s) = s. (A.17)

In order to prove this recurrence, one needs the following relation

(1− s2)∂sP̃
(λ)
n = (n+ 1)(sP̃ (λ)

n − P̃
(λ)
n+1) (A.18)

and its equivalent in terms of Q̃. We have chosen the notation in order to have

consistent parity conditions

P̃ (λ)
n (−s) = (−)nP̃ (λ)

n (s), Q̃(λ)
n (−s) = (−)n+1Q̃(λ)

n (s). (A.19)

The general solution for Y
(λ)
n keeps the form

Y (λ)
n (s) = AP̃ (λ)

n (s) +BQ̃(λ)
n (s), 0 > n > 1− 2λ. (A.20)
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An important difference from the regime n ≥ 0 is that both branches have now the

same asymptotic behaviour in the limit s → ±1: they both tend to a non-zero finite

value. In particular, if λ is a half integer, both branches are polynomials.

Except for the already solved case where l = k = 0 and d = 4, n+ 2λ = l + k + d− 4 > 0

which means that we don’t have to consider the solutions in the regime n ≤ −2λ.

B Symplectic form — alternative approaches — improper gauge fixings

B.1 Relation between the kinetic terms of the scalar field action and the 2-

form action

Under the change of variables (3.7), the kinetic terms of the scalar field action (2.1) and of

the 2-form action (3.5) can be checked to be related as
∫

d3xπ∂tφ = dt

∫
d3x

1√
2
φǫijk∂iBjk +

∫
d3xπij∂tBij +

∮
d2xπAB∂tBAB. (B.1)

The total derivative term dt
∫
d3x 1√

2
φǫijk∂iBjk corresponds to a change of representation,

from the “coordinate representation” to the “momentum representation” (keeping Bij fixed

at the time boundaries amounts to keeping the momentum π fixed there) and has an analog

for systems with a finite number of degrees of freedom. More unusual is the surface term

at spatial infinity
∮
d2xπAB∂tBAB, which modifies the symplectic structure of the 2-form.

The Hamiltonians are easily verified to be the same.

B.2 Description of minimal approach

Since the scalar field system presents no problem with boosts, one expects that keeping the

surface term
∮
d2xπAB∂tBAB in the 2-form kinetic term should lead to a formulation that

is relativistically invariant without extra degrees of freedom. This is indeed the case and

constitutes the “minimal solution” to the difficulty with boosts pointed out in the text.

With the action

S[Bij , π
ij ;B0] =

∫
d4x

{
πij∂tBij −B0i(−2∂jπ

ji)−
(

1

2
√
g
πijπij +

√
g

6
HijkH

ijk

)}

+

∫
dt

∮
d2xπAB∂tBAB, (B.2)

leading to the symplectic form

Ωmin =

∫
d3x dV π

ij ∧ dV Bij +

∮
d2x dV π

AB ∧ dV BAB, (B.3)

the Poincaré transformations are all canonical transformations. Their generators are

given by

P(ξ,0) =

∫
d3x ξ

(
1

2
√
g
πijπij +

√
g

6
HijkH

ijk

)
, (B.4)

P(0,ξi) =

∫
d3x ξiHijkπ

jk. (B.5)
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Gauge transformations are generated by parameters of the form

ǫA = rǫA +O(1), ǫr = ǫr +O(r−1). (B.6)

The associated generator is easily computed

Gǫ =

∫
d3xǫiGi + 2

∮
d2xǫA(π

rA − ∂Bπ
BA) =

∫
d3xǫiGi (B.7)

where we used the fact that we imposed the constraints asymptotically. This has the effect

of setting all charges on-shell to zero: all allowed gauge transformations have well-defined

generators that are proportional to the constraints. In the minimal formulation, there are

therefore no improper gauge transformations left and no surface charges.

B.3 Hyperbolic coordinate formulation

The same conclusion follows from an analysis in hyperbolic coordinates, which we briefly

discuss.

The asymptotic conditions on Bµν in hyperbolic coordinates that are compatible with

the ones given previously for φ are

Bηa = Bηa +O(η−1), Bab = ηBab +O(1) (B.8)

Cηab = Bab + ∂bBηa − ∂aBηb +O(η−1) (B.9)

(modulo parity conditions that play no role in the discussion of this subsection).

The bulk action Sbulk[Bµν ] =
∫
d4x

√
−g
6 CµνρC

µνρ does not lead to a well defined

variaional principle with these boundary conditions. Evaluating the variation of the action,

we get

δSbulk =

∫
d4x ∂ρ

(√−gCρµν
)
δBµν +

∮
d3x

√
−hhachbd

(
Bab + ∂bBηa − ∂aBηb

)
δBcd

(B.10)

which is not zero even on-shell due to the surface term. Given that time translations in

hyperbolic coordinates involve boosts, this is the way the difficulty with boosts appears in

the hyperbolic formulation.

The minimal way to take care of the surface term is to modify the action by a bound-

ary term

S =

∫
d4x

√−g

6
CµνρC

µνρ −
∮

d3x
√
−h

1

2
CηabCη

ab
(B.11)

with

Cηab = Bab + ∂bBηa − ∂aBηb . (B.12)

The variation of the modified action leads to

δS =

∫
d4x ∂ρ

(√−gCρµν
)
δBµν + 2

∮
d3x

√
−hhacDb

(
Bab + ∂bBηa − ∂aBηb

)
δBηc.

(B.13)

The extra boundary term is now proportional to a bulk equation of motion:

∂ρ(
√−gCρηa) = η−3

√
−hhacDb

(
Bab + ∂bBηa − ∂aBηb

)
+O(η−4) (B.14)

so that the action is truly stationary when the bulk EOM hold.
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Due to the fact that both the bulk and the boundary term in the action are build out

of gauge invariant objects, there are no extra constraints on the gauge parameters. All

parameters of the form

ǫη = ǫ(s, xA) +O(η−1), ǫa = ηǫa(s, x
A) +O(1) (B.15)

generate a symmetry of the action. The absence of extra constraints on the boundary values

of these parameters, in particular the possibility of an arbitrary dependence on time, means

that they are proper gauge transformations of the system. This theory does not have any

non-trivial boundary charges, as we saw previously in the standard Hamiltnian formulation.

B.4 Minimal formulation as resulting from an improper gauge fixing

We can view the minimal formulation as resulting from an improper gauge fixing of the

full theory with action (3.31). From that point of view, the minimal formulation is thus a

truncation of the richer theory that exhibits all the symmetries.

Using the (improper) gauge transformations with parameter µi, one can impose the

following conditions

Ψr = 0, πrA +
√
γΨ

A
= 0. (B.16)

These transformations are improper and set to zero the conserved charges associated with

ǫA and λ. These conditions eliminate therefore all asymptotic symmetries: µi is frozen by

the (improper) gauge conditions while the other transformations become pure gauge since

they have a vanishing charge for all remaining configurations.

With the supplementary conditions (B.16), the boundary term in the symplectic struc-

ture reduces to

− 2

∮
d2x

√
γdV π

rAdV BrA. (B.17)

Using the asymptotic behaviour of the fields, including the parity conditions and the asymp-

totic form of the constraints, it is then easy to verify that (B.17) becomes

+

∮
d2x

√
γdV π

ABdV BAB (B.18)

which is precisely the boundary term of the minimal formulation.

The original Poincaré transformations given in (3.33)–(3.46) do not preserve the im-

proper gauge fixing. Nevertheless, one can check that the compensating improper gauge

transformation needed to restore the gauge fixing conditions (B.16) is integrable and that

the resulting total generator match the one given in (B.4) and (B.5) for the Poincaré

trasformatinos of the minimal description.

We should close this section by stressing that the process of gauge fixing improper gauge

transformations is “illegal” since these do change the physical state of the system [40]. The

passage to the minimal formulation truncates physical (surface) degrees of freedom from the

point of view of the complete theory. As a result, one looses in particular the symmetries

that act on these degrees of freedom that have been improperly dropped.
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C Tensors, pseudo-tensors and parity conditions

A function f(xi) is even or odd according to whether f(−xi) = f(xi) or −f(xi). We have

contemplated tensor fields of various types and considered the parity of their components

viewed as functions. A more intrinsic definition can be given.

Let T be a tensor field. Let T ∗ be its image under the central reflection (antipodal

map) yi → y′i = f i(ym) (which is xi → −xi in cartesian coordinates, but we formulate the

definition in arbitrary coordinates). For instance, one has for a covariant tensor of rank k,

T ∗
i1···ik(y

m) =
∂f j1

∂yi1
· · · ∂f

jk

∂yik
Tj1···jk(f

m(yn)) . (C.1)

A tensor field will have definite parity if T ∗ = ±T . The + case defines even tensors, the −
case defines odd tensors.

In cartesian coordinates x′i = −xi and the transformed tensor T ∗ is,5

T ∗
i1···ik(x

m) =
∂x′j1

∂xi1
· · · ∂x

′jk

∂xik
Tj1···jk(x

′m) = (−1)kTi1···ik(−xm). (C.2)

From (C.2), one sees that the components in cartesian coordinates of an even tensor of even

(respectively, odd) rank are even (respectively, odd), while the components in cartesian

coordinates of an odd tensor of even (respectively, odd) rank are odd (respectively, even).

The parity properties of the components depend on the coordinate system. Two other

coordinate systems have been considered in the text:

• (“Unorthodox”) polar coordinates (r, xA), where r =
√∑

i (x
i)2 and xA are coordi-

nates on the 2-sphere such that the central reflection reads

r → r′ = r, xA → x′A = −xA (C.3)

For instance, (xA) =
(
x1

r
, x

2

r

)
.

• Standard polar coordinates (r, θ, ϕ) for which the central reflection reads

r → r′ = r, θ → θ′ = π − θ, ϕ′ = ϕ+ π. (C.4)

Note that dxi → −dxi, dr → dr, dxA → −dxA, dθ → −dθ and dϕ → dϕ. Note also

for later purposes that while the Jacobian J of the central reflexion is equal to −1 in

Cartesian coordinates, it is equal to +1 in the polar coordinates (r, xA) and to −1 in the

polar coordinates (r, θ, ϕ).

To illustrate how the components of a tensor of definite parity behave under reflection,

consider for instance an even 2-form C ≡ 1
2Cijdx

i∧dxj . The condition C∗ = C, equivalent

to even Cij ’s in cartesian coordinates, implies that the CrA are odd and the component

CAB even. By contrast, Crθ and Cθϕ are odd and Crϕ is even.

5We consider only covariant tensors (“with all indices down”), as one can do by using the cartesian

metric, which is even.

– 26 –



J
H
E
P
0
5
(
2
0
1
9
)
1
4
7

Tensor densities involving
√
g (like the conjugate momenta) behave under inversion as

tensors in the coordinate systems considered here since
√
g′ =

√
g in all cases. This is not

true for pseudo-tensors, which involve the determinant J of the reflection (with its sign) in

their transformation law. For instance, in cartesian coordinates

T ∗
i1···ik(x

m) = J
∂x′j1

∂xi1
· · · ∂x

′jk

∂xik
Tj1···jk(x

′m) = (−1)k+1Ti1···ik(−xm) (C.5)

with

J = det

(
∂x′m

∂xn

)
. (C.6)

If we keep the convention that an even pseudo-tensor must be such that T ∗ = T , and that

an odd pseudo-tensor fulfills T ∗ = −T , as it is natural from the intrinsic point of view,

one then finds that the parity of the components are reversed with respect to what they

are in the tensor case in coordinate systems where J = −1, but are the same in coordinate

systems for which J = 1.

To take the example of an odd pseudo-2-form B (B∗ = −B) relevant to our discussion

in the text, one finds that

• the cartesian components Bij are even (J = −1);

• BrA are even and BAB is odd (J = 1);

• Brθ and Bθϕ are odd while Brϕ is even (J = −1).

The conjugate momentum is an even pseudo-bivector (density)π (π∗ = π) and so

• the cartesian components πij are odd (J = −1);

• πrA are odd and πAB is even (J = 1);

• πrθ and πθϕ are even while πrϕ is odd (J = −1).

It is instructive to check compatibility of this behaviour with the relationship πij =

ǫijk∂kφ with an even scalar field φ. One finds:

• The cartesian components πij are indeed odd since ∂kφ is odd.

• The (r, A) components fulfill: the components πrA = ǫAB∂Bφ are odd since ∂Bφ is

odd; the component πAB = ∂rφ is even since ∂rφ is even.

• The components in standard polar coordinates fulfill: the components πrθ = ∂ϕφ

and πθϕ = ∂rφ are even while πrϕ = −∂θφ is odd. This matches the parity of the

components of the gradients of φ.

Take for instance φ = sin θ. The only non-vanishing component of the conjugate mo-

mentum in standard polar coordinates is πrϕ, which is equal to πrϕ = − cos θ, which

is odd. In the coordinates (r, xA), with x1 = sin θ cosϕ and x2 = sin θ sinϕ, one gets

πr1 = D ∂r
∂ym

∂x1

∂yn
πmn = sinϕ and πr2 = − cosϕ which are both odd. Here D is the deter-

minant of the Jacobian matrix of the transformation, D = (sin θ cos θ)−1.
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[43] G. Szegő, Orthogonal Polynomials, in Colloquium Publications of the American Mathematical

Society. Volume 23, fourth edition, chatper IV, section 4.7, Providence (1975).

– 30 –

https://doi.org/10.1016/0370-2693(86)90547-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B167,69%22
https://doi.org/10.1063/1.527249
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,27,489%22
https://doi.org/10.1016/0550-3213(77)90426-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B122,61%22
https://arxiv.org/abs/hep-th/0306074
https://inspirehep.net/search?p=find+EPRINT+hep-th/0306074
https://doi.org/10.1103/PhysRevLett.105.111103
https://arxiv.org/abs/0909.2617
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2617

	Introduction
	Scalar field
	Action in Hamiltonian form — boundary conditions
	Poincaré invariance
	Asymptotic dynamics
	Going to null infinity

	Two-form gauge field
	Hamiltonian and constraints
	Boosts — surface degrees of freedom
	Gauge transformations

	Conclusions
	Ultraspherical polynomials and functions of the second kind
	Symplectic form — alternative approaches — improper gauge fixings
	Relation between the kinetic terms of the scalar field action and the 2-form action
	Description of minimal approach
	Hyperbolic coordinate formulation
	Minimal formulation as resulting from an improper gauge fixing

	Tensors, pseudo-tensors and parity conditions

