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We present the appearance of nearly flat band states with nonzero Chern numbers in a two-
dimensional “diamond-octagon” lattice model comprising two kinds of elementary plaquette geome-
tries, diamond and octagon, respectively. We show that the origin of such nontrivial topological
nearly flat bands can be described by a short-ranged tight-binding Hamiltonian. By considering
an additional diagonal hopping parameter in the diamond plaquettes along with an externally fine-
tuned magnetic flux, it leads to the emergence of such nearly flat band states with nonzero Chern
numbers for our simple lattice model. Such topologically nontrivial nearly flat bands can be very
useful to realize the fractional topological phenomena in lattice models when the interaction is
taken into consideration. In addition, we also show that perfect band flattening for certain energy
bands, leading to compact localized states can be accomplished by fine-tuning the parameters of
the Hamiltonian of the system. We compute the density of states and the wavefunction amplitude
distribution at different lattice sites to corroborate the formation of such perfectly flat band states in
the energy spectrum. Considering the structural homology between a diamond-octagon lattice and
a kagome lattice, we strongly believe that one can experimentally realize a diamond-octagon lattice
using ultracold quantum gases in an optical lattice setting. A possible application of our lattice
model could be to design a photonic lattice using single-mode laser-induced photonic waveguides
and study the corresponding photonic flat bands.

I. INTRODUCTION

The physics of flat band (FB) systems has drawn a
lot of research attention in recent years [1–15]. One of
the main reasons why such dispersionless flat bands are
of great interest to the physics community is that, they
give rise to highly degenerate manifold of single-particle
states, which can act as a good platform to study rich,
strongly correlated phenomena. In a two-dimensional
electron gas (2DEG) subject to a strong magnetic field,
highly degenerate flat Landau levels are formed. It is
well-known that completely filled Landau levels exhibit
integer quantum Hall effect [16] while partially filled
Landau levels give rise to fractional quantum Hall ef-
fect [17]. Generation of nontrivial flat bands with nonzero
Chern number in 2D tight-binding lattice models may be
treated as the lattice counterpart of the Landau levels
appearing in continuum. Hence occurrence of nontrivial
flat bands in simple 2D lattice settings can play a pivotal
role in investigating profound topological phenomena in
lattice systems.

These macroscopically degenerate flat bands with van-
ishing bandwidth arise in the band structure of tight-
binding lattice models due to destructive quantum in-
terference of electron hoppings resulting in formation
of highly localized single-particle states pinned at dif-
ferent atomic sites of the lattice. Such highly lo-
calized states corresponding to the flat band energies
are often attributed to form compact localized states
(CLS) [7, 10], modes where the wave function ampli-
tudes remain nonzero over a finite number of lattice sites
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beyond which they sharply decay to zero. These flat
bands have been found really useful to investigate di-
verse intriguing phenomena in condensed matter physics,
viz., ferromagnetism and antiferromagnetism in Hubbard
models [18–20], superconductivity in 2D Dirac materi-
als [21], superfluidity [22], and unconventional Anderson
localization [23, 24] are to name a few of them.

Because of the emergence of these important features,
flat band systems have been a constant source of new
ideas to identify novel phenomena involving the interplay
between topology and quantum physics. On top of that,
over the past couple of years some significant experiments
featuring flat bands in photonic waveguide networks [25–
32], exciton-polariton condensates [33, 34], and ultracold
atomic condensates [35, 36] have ushered new light into
this research domain. Spurred by these experimental re-
sults, the search for new models with nontrivial flat band
physics and understanding their usefulness in different
lattice geometries have taken a new direction in the past
few years. In recent times, some important theoretical in-
vestigations like the role of chiral symmetry on flat bands
in a series of tight-binding lattice geometries [13], for-
mation of topological flat Wannier-Stark bands in pres-
ence of an electric field in a bipartite dice network [14],
and the emergence of flat bands in fractal-like geome-
tries with various interesting band features [15] have also
enriched the recent literature, revealing different subtle
issues about flat bands in various lattice geometries.

One of the key challenges in generating FB states is to
keep the hoppings to be short-ranged. One may use the
spectral flattening technique, i. e., adiabatically trans-
forming the original Hamiltonian to a new one with FB
states. However, that may often lead to long-range hop-
pings to be considered in the underlying Hamiltonian [1],
which could be difficult to realize experimentally. Other
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FIG. 1: Schematic diagram of a 2D diamond-octagon lattice
model. The unit cells are marked by dotted lines and con-
sist of four atomic sites. The hopping parameter along the
arms of the diamond and the octagon plaquettes is denoted
by t, and the diagonal hopping integral inside each diamond
plaquette is represented by λ. Each diamond plaquette is
threaded by a uniform external magnetic flux Φ. The arrow-
heads in the counterclockwise direction indicate the direction
of the forward hopping in presence of Φ.

interesting flat band optimization techniques for short-
range hopping models have also been proposed in recent
times [37, 38]. It is worth mentioning that, one can-
not have nontrivial topology, finite-range hopping and
exactly flat bands simultaneously – only two of these
three criteria can be realized simultaneously [39, 40]. In
the present paper, we propose and study a discrete 2D
diamond-octagon lattice model with short-ranged hop-
ping and an external magnetic flux piercing through the
diamond plaquettes. This setting leads to the appear-
ance of nontrivial nearly flat band states bearing topo-
logical properties. Such a lattice model has been in-
corporated in recent times to study different interesting
phenomena, such as topological phase transition induced
by spin-orbit coupling and non-Abelian gauge fields [41],
rich magnetic and metal-insulator phases with Hubbard
interaction [42], and quantum magnetic phase transition
with a competitive effect between the temperature and
the repulsive on-site interaction [43].

In this work we analyze the band spectrum of diamond-
octagon lattice in a single particle picture. This lattice
geometry realizes a four-band model in the momentum
space. Each diamond-shaped loop is pierced by a uniform
external magnetic flux which breaks the time-reversal
symmetry appending an Aharonov-Bohm phase [44] to
the hopping parameter along the arms of each diamond
plaquette. This leads to gapping out of the band spec-
trum with bands having nonzero Chern numbers. We
furthermore show that one can fine-tune the hopping pa-
rameters along with a suitable value of the magnetic flux
to achieve the optimal band flatness for the bands hav-

ing the nontrivial topological index in the form of nonzero
Chern number. It has been argued previously by other
groups that perfect flatness for a band in real materials is
not a stringent requirement provided that the bandwidth
remains much smaller than the band gap [1–3]. These
nearly flat bands having strong resemblance with the
Landau levels appearing in a continuum 2DEG model, set
up a good foundation to explore new strongly correlated
topological states of matter. We note that such tight-
binding lattice models with a variety of lattice geome-
tries such as Lieb [45, 46], kagome [47], honeycomb [48],
square [49], etc. have been proposed to be realized using
ultracold fermionic or bosonic atoms in optical lattices.

In what follows, we give an illustration of our model
and present the important findings. In Sec. II, we in-
troduce our lattice model and discuss the short-ranged
tight-binding Hamiltonian describing the spinless parti-
cles moving on the lattice. In Sec. III, we discuss the
condition for generating the nearly flat bands in the band
spectrum, and present the results for the Berry curvature
and the Chern numbers corresponding to the nontrivial
topological flat bands. This is followed by Sec. IV, where
we describe how to create perfect flat bands in the band
structure by tuning the combination of hopping parame-
ters and the magnetic flux. We also compute the average
density of states and the wavefunction amplitude distri-
bution on different lattice sites corresponding to such per-
fect flat band states. In Sec. V, we depict the scope of a
possible experimental set up using single-mode photonic
waveguide structure to realize our lattice model in an
actual experiment. Finally, in Sec. VI, we draw our con-
clusion with a summary of our results and their utility
with the scope of future study in this direction.

II. THE MODEL AND THE MATHEMATICAL
FRAMEWORK

We consider a diamond-octagon lattice model on a two-
dimensional plane comprising two elementary plaquette
geometries, viz., diamond and octagon, respectively as
shown in Fig. 1. The building block of the lattice struc-
ture is a diamond-shaped loop consisting of four atomic
sites. This basic unit cell is repeated periodically over
a two-dimensional plane to form the whole lattice struc-
ture. Each diamond plaquette is pierced by a uniform
magnetic flux perpendicular to the plane of lattice which
introduces an Aharonov-Bohm phase to the hopping pa-
rameter when an electron hops along the boundary of
a diamond loop. The tight-binding Hamiltonian of this
model in Wannier basis can be written as,

H =
∑
m,n

[∑
i

εic
†
m,n,icm,n,i

]
+
[∑

i,j

Tijc†m,n,icm,n,j+H.c.
]
,

(1)
where the first summation runs over the unit cell index
(m,n) as shown in Fig. 1. c†m,n,i (cm,n,i) is the creation

(annihilation) operator for an electron at site i in the
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(m,n)-th unit cell and εi is the on-site potential for the
i-th atomic site. Tij is the hopping parameter between
the i-th and the j-th sites, and it can take two possi-
ble values depending on the position of the sites i and
j. Tij = t for an electron hopping along the boundary
of a diamond plaquette or along the line in between two
consecutive diamond loops, and Tij = λ for an electron
hopping along the diagonals inside a diamond plaque-
tte. Each diamond plaquette is pierced by an external
magnetic flux Φ which incorporates an Aharonov-Bohm
phase factor to hopping parameter t→ t exp (±iΘ), when
the electron hops around the closed loop in a diamond
plaquette. Here, Θ = 2πΦ/4Φ0, Φ0 = hc/e being the fun-
damental flux quantum, and the sign ± in the exponent
indicates the direction of the forward and the backward
hoppings.

By adopting a momentum (k) space description using
a discrete Fourier transform, the Hamiltonian in Eq. (1)
can be recast as,

H =
∑
k

Ψ†kH(k)Ψk, (2)

where Ψ†k ≡
(
c†kx,ky,A

c†kx,ky,B
c†kx,ky,C

c†kx,ky,D

)
, and

H(k) is given by,

H(k) =


0 teiΘ teiky + λ te−iΘ

te−iΘ 0 teiΘ te−ikx + λ

te−iky + λ te−iΘ 0 teiΘ

teiΘ teikx + λ te−iΘ 0

 .

(3)

We have taken εi = 0, i ∈ {A,B,C,D}. One can extract
all the interesting features about the band structure of
the system from Eq. (3). The results are presented in the
next section.

III. GENERATION OF NEARLY FLAT
TOPOLOGICAL BANDS

The standard prescription for investigating any spe-
cial feature of a lattice model is to frame the tight-
binding Hamiltonian in k-space, and then minutely study
its band structure by playing around the parameters of
Hamiltonian, namely, short-ranged hopping strengths, or
some external perturbations like magnetic field, electric
field, disorder, etc. These effects often lead to some in-
teresting topological properties in simple tight-binding
lattice models. In the present study we embark on such
a lattice geometry. Our aim is to discover whether this
lattice structure can show up some nontrivial topologi-
cal properties in its band structure under certain special
condition of the parameters space of the corresponding
Hamiltonian.

The Hamiltonian in Eq. (3) describes our model. It
is apparent from Eq. (3) that the Hamiltonian breaks

FIG. 2: Plot of the band structure for the 2D diamond-
octagon lattice model prescribed in Fig. 1. The lowest and the
third band show nontrivial topological character with nonzero
integer values of the Chern numbers, viz., C = −1 and C = 1,
while the remaining two bands are topologically trivial with
zero Chern numbers. We tune a minimal nonzero value of
the external magnetic flux Φ = Φ0/10, and the short-ranged
hopping parameters are set to be t = 1 and λ = 1, respec-
tively. These are the optimized values of the parameters to
achieve the optimized flatness of the two topologically non-
trivial bands.

the time-reversal symmetry for a nonzero value of the
Aharanov-Bohm phase Θ, which implies to have Φ 6= 0.
Breaking of such time-reversal symmetry in the system
by introduction of a complex phase factor in the hopping
parameter through a staggered magnetic flux [50, 51] or
through some artificial gauge field [1, 52] have insight-
ful consequences on the band structure as well as to the
topological properties of the system as evinced in other
previous important studies. At Φ 6= 0, band gap opens
up in between different bands of our system. In presence
of such gap opening in the system, we have calculated
the Chern numbers corresponding to different bands of
the system, and discovered that two of the bands possess
nonzero Chern numbers indicating nontrivial topologi-
cal character of those bands. The scenario in which we
are interested in, is to have the optimized flatness of the
bands carrying nonzero Chern numbers. To acquire such
a condition, we optimize the values of parameters of the
Hamiltonian such as the hopping strengths and the ex-
ternal magnetic flux. It turns out that for the optimized
nearly flat bands with nonzero Chern numbers, the val-
ues of the parameters are found to be Φ = Φ0/10, t = 1,
and λ = 1. The flatness ratio [37, 38] for the Chern
bands with these model parameters is approximately 5.
We first numerically evaluate the values of the hopping
integrals t and λ for which we have perfectly flat bands
in the spectrum in absence of any magnetic flux. Then
we tune the magnetic flux to a nonzero value to have the
gap opening in the band spectrum. Under this condi-
tion, we fix the magnetic flux to a value where we get the
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maximum gap to bandwidth ratio for the Chern bands.
We note that for a minimal deviation from these partic-
ular values of the model parameters, the band features
will not alter a lot. Thus, there is a realistic possibility
to realize our results in an actual experimental situation

where one needs a little bit of relaxation on the exact
conditions of the parameters.

To study the topological properties of the bands we
calculate the Berry curvature of all the bands using the
standard formula [53, 54] given by,

Ωn(k) =
∑
m 6=n

−2Im [〈Un(k)|∂H(k)/∂kx|Um(k)〉〈Um(k)|∂H(k)/∂ky|Un(k)〉]
(En − Em)2

, (4)

where Un(k) is the n-th eigenstate of H(k) with an en-
ergy eigenvalue En(k). Using Eq. (4), one can easily
evaluate the value of the Chern number for each of the
bands of the system using the following expression,

C =
1

2π

∫
BZ

Ωn(k)dk, (5)

where BZ stands for the first Brillouin zone of the cor-
responding lattice structure. We have taken the lattice
constant a to be unity throughout our calculations. Us-
ing the above prescription, we have discovered that in
our four-band lattice model, two of the bands, viz., the
third and the lowest one possess nonzero Chern numbers
C = ±1 exhibiting the topological character, and the re-
maining two bands are topologically trivial with C = 0 as
indicated in Fig. 2. We show the variations for the Berry
curvature in the momentum space corresponding to the
topologically nontrivial bands in Fig. 3. One can easily

FIG. 3: Plot of the Berry curvature distribution in momen-
tum space corresponding to the topologically nontrivial bands
carrying integer Chern numbers. Panel (a) is for the lowest
band (n = 1) with C = −1 and panel (b) is for the third band
(n = 3) with C = 1.

observe the distinct features appearing in the Berry cur-
vature distributions for the topologically nontrivial bands
as apparent from Figs. 3(a) and 3(b).

One of the most exciting features about our result is
that the bands having nonzero Chern numbers are nearly
flat. Such nearly flat bands with nonzero Chern numbers
can be thought of as the lattice analogue of the Lan-
dau levels appearing in a continuum system. Thus, at

fractional filling, our lattice model can act as a poten-
tial setting to investigate and understand the fractional
quantum Hall physics in a lattice model with the inter-
actions between the particles being treated as just sub-
leading corrections. We note that the inclusion of the
diagonal hopping λ in between the sites inside the dia-
mond plaquette in our model plays an important role in
generating the flat bands for our system. Such diago-
nal hopping parameters in between the lattice sites have
been taken into consideration previously for some other
interesting tight-binding lattice models [1, 55]. One can
easily verify that, in absence of λ, the band structure
of our lattice model will give rise to two interpenetrat-
ing conical shapes as shown in Ref. [43]. We also note
that some interesting topological quantum phase transi-
tions have been reported earlier [56] on the similar lattice
structures considering a different Hamiltonian with up to
third nearest neighbor hopping parameter. They have
discussed the possibility of having topological approxi-
mate flat bands as well as higher Chern numbers in the
system for certain other parameter regimes. However,
in our model we only consider short-ranged hopping pa-
rameters to show the topological properties of the band
structure. In addition to that, we have discovered that
perfect band flattening can also be achieved for our model
for certain combinations of the parameter values. This is
discussed in detail in the next section.

IV. FORMATION OF PERFECT FLAT BANDS

The focus of this section is to explore the conditions
for obtaining the complete FB states for our lattice sys-
tem. In tight-binding lattice models often the interplay
between the lattice topology and the destructive quan-
tum interference among the particle hoppings lead to
formation of perfect FB states. The particles in these
states do not hop to the neighboring lattice sites and
form highly localized states. The effective mass of the
particles in such situation can be thus viewed as infi-
nite. This phenomenon can appear both in absence and
in presence of broken time-reversal symmetry in the lat-
tice systems [50, 51].

First we analyze the case with Φ = 0, i. e., in absence
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FIG. 4: Formation of complete flat bands both in absence and
in presence of the external magnetic flux Φ. The left panel is
for Φ = 0 and the right panel corresponds to Φ = Φ0/3. We
set t = 1 and λ = 1.

of time-reversal symmetry breaking. For Φ = 0, our lat-
tice model yields two perfectly flat dispersionless bands in
the band spectrum at energies EFB = 0 and −2t, respec-
tively, as shown in Fig. 4(a). The values of the hopping
parameters for these flat bands are t = 1 and λ = 1, re-
spectively. The two flat bands are accompanied by two
dispersive bands in the spectrum, one of which is com-
pletely isolated from the rest of the bands and the other
one is sandwiched in between the two perfect flat bands.
This is in marked contrast with the frustrated hopping
models, in which the dispersionless energy band occurs
only at the maximum or minimum of the spectrum in
absence of any magnetic field [50, 57]. Such flat bands
appearing in absence of any magnetic flux allow for the
formation of compact localized states (CLS) [10, 13]. In
CLS, the compact eigenstates are perfectly localized over
a few lattice sites, with exactly vanishing wavefunction
amplitudes on all other sites [13, 15]. Using a standard
technique [15], we have worked out the distribution of
wavefunction amplitudes at different lattice sites corre-
sponding to the CLS for our model. The results are pre-
sented in Fig. 5. It is clear from Figs. 5(a) and 5(b)
that the wavefunctions corresponding to the FB states
are localized over a couple of lattice sites with nonzero
amplitudes (marked by dark colored circles), and beyond
that the wavefunction amplitudes decay to zero (marked
by light gray circles). We note that, the perfect flat bands
for Φ = 0 can be attributed to the fact that the diamond-
octagon lattice is a line graph of the Lieb lattice [58].

Next we consider the scenario with Φ 6= 0, which
breaks the time-reversal symmetry for our model. In
presence of the time-reversal symmetry breaking, the
bands are gapped out. It turns out that for a nonzero
value of the magnetic flux between 0 and Φ0, the FB
states get destroyed, leading to dispersive bands in the
band spectrum with opening of gaps in between them.
However, we have discovered that for certain special val-
ues of the magnetic flux Φ, the FB states re-emerge in
the spectrum. For example, an isolated completely FB
state emerges at the energy EFB = −t in the spectrum
for a value of the magnetic flux Φ = Φ0/3 as depicted in
Fig. 4(b). The values of the hopping integrals are t = 1
and λ = 1, respectively. The resulting FB (n = 2), how-

E= −2

+1

−1

 0
0E=

(b)(a)

FIG. 5: Distribution of wavefunction amplitudes at different
lattice sites for the compact localized states corresponding to
the FB states with energies (a) E = 0 and (b) E = −2. The
on-site energy for all the sites is set to zero, and the values of
the other parameters are Φ = 0, t = 1, and λ = 1. The values
of the wavefunction amplitudes at different lattice sites are
+1, −1, and 0, respectively.

ever, turns out to be topologically trivial with zero Chern
number while the dispersive bands, namely, the lowest
(n = 1) and the third (n = 3) one show up topologi-
cal character with nonzero integer values of the Chern
numbers, viz., C = −1 and +1, respectively. We note
that this result is consistent with the previous interesting
studies on other similar tight-binding lattice models such
as kagome or hexagonal lattice [51] and Lieb lattice [59].
One can also have similar situation for Φ = 2Φ0/3. We
note that, for Φ = 0 we have the gapless perfectly flat
bands in the spectrum, and as we tune Φ to a nonzero
value, there is a gap opening and appearance of nearly
flat bands in the spectrum with nonzero Chern numbers.
So we have a clear transition from perfectly flat band
states to nearly flat Chern bands as we change the mag-
netic flux Φ from a zero to a nonzero value.

FIG. 6: Plot of the average density of states (ADOS) for a
2D diamond-octagon lattice structure with system size L =
50 × 50. For panel (a) we have Φ = 0 and for panel (b) we
set Φ = Φ0/3. The other parameters are same as in Fig. 4.
The FB states in the ADOS spectrum are indicated by red
arrowheads.

To substantiate the fact that the particles dwelling in
a complete FB state are highly localized, we compute the
average density of states (ADOS) corresponding to the
results presented in Figs. 4(a) and 4(b). Using the stan-
dard Green’s function technique, ADOS can be defined
as,

ρ(E) = − 1

Nπ
Im [Tr G(E)] , (6)
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where G(E) = [z+I −H]
−1

is the Green’s function with
z+ = E + iδ (δ → 0+), N is the total number of sites
in the system, and ‘Tr’ denotes the trace of the Green’s
function G. Using Eq. (6), we calculate the ADOS for
our lattice model with a system size L = 50 × 50, L
being the number of unit cells. The results are shown
in Figs. 6(a) and 6(b). Evidently, the presence of highly
localized spiky states exactly at the FB energies confirms
the appearance of the complete FB states in our lattice
model.

FIG. 7: Plot of the energy eigenvalue spectrum against the
magnetic flux Φ (measured in units of the fundamental flux
quantum Φ0 = hc/e) for a finite system of size L = 10 × 10,
L being the number of unit cells.

Before ending this section, we present the energy eigen-
value spectrum of the real-space Hamiltonian against the
variation of the magnetic flux (Φ) for a finite system with
system size L = 10×10. This is exhibited in Fig. 7. This
result gives us the flavor about the real-space energy spec-
trum of the system in presence of Φ. From Fig. 7, we can
clearly observe the formation of multiple bands and gaps
in the spectrum as a function of Φ. A variation in the
value of the magnetic flux leads to band overlapping in
spectrum, and the whole pattern is flux periodic. The
spectrum will be more and more dense as we increase
the system size, but the overall shape will remain the
same.

V. POSSIBLE EXPERIMENTAL REALIZATION
OF THE MODEL

In this section, we will discuss the possibility of
an experimental realization of our lattice model using
photonic waveguide structure. The femtosecond laser-
writing technique along with the aberration-correction
methods [27] allow us for the precise fabrication of
two-dimensional arrays of sufficiently deep single-mode
waveguides. The advantage of such techniques over other
photonic platforms is that the laser-writing parameters
can be optimized to produce low propagation loss over a

long distance implicating single-mode waveguides to op-
erate at a particular wavelength. In addition to that,
this method also gives us an efficient control over the
inter-waveguide coupling strengths allowing us to explore
different parameter regimes. Such techniques have been
successfully implemented in recent times to accomplish
experimental realization of flat bands in a Lieb photonic
structure [26, 27], and soon followed by other photonic
lattice geometries [28, 29, 31, 32].

FIG. 8: Schematic representation of a possible proposed
photonic waveguide network corresponding to the 2D lattice
model depicted in Fig. 1. Each lattice site is substituted by
single-mode waveguides to form the waveguide structure.

Considering the structural homology of our lattice
model in comparison with other 2D lattice geometries
such as Lieb or kagome structure, we strongly empha-
size that our lattice structure can be fabricated expedi-
tiously using photonic waveguides to study the formation
of the flat bands and other related interesting proper-
ties. A schematic representation of such possible pho-
tonic waveguide structure corresponding to our lattice
geometry has been displayed in Fig. 8. The values of the
system parameters for these photonic waveguide struc-
tures, such as lattice period, propagation distance, and
operating wavelength are typically chosen in the range of
20-30 µm, 7-10 cm, and 500-800 nm, respectively [26–29].
The exact value of these parameters may vary slightly
depending on the experimental conditions for obtaining
the flat bands. The effect of the external magnetic field
can be simulated in a coupled waveguide network by in-
corporating a synthetic magnetic field through a proper
longitudinal modulation of the propagation constants of
the waveguides [29]. The phenomenon of time-reversal
symmetry breaking in circuit-QED based photon lattices
has also been reported earlier [60]. Such mechanisms
could be helpful to accomplish our results in presence
of an external magnetic field in an actual experimen-
tal setup using photonic waveguides. In addition to the
advancement of the fundamental understanding of the
physics of flat bands, the photonic flat band networks can
also have technological importance in photonics, such as
slow light propagation [61], where the suppression of the
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wave group velocity can provide enhancement of non-
linear effects, and promising solution for buffering and
time-domain processing of optical signals. Our lattice
model implemented using a photonic waveguide network
can provide a potential platform to realize such useful
devices in photonics. Apart from the photonic lattice
structure, there has been a remarkable technological ad-
vancement in developing artificial lattice structures using
ultracold atomic condensates in optical lattices [62]. This
can also be utilized to engineer our lattice model in ex-
periments, and study its interesting novel properties in
a very controllable and clean environment without the
presence of the impurities appearing in a typical solid
state system.

VI. SUMMARY AND FUTURE OUTLOOK

In this paper, we have investigated the energy spec-
trum of a tight-binding diamond-octagon lattice model
containing flat band states. We have perceived that for a
suitable combination of the hopping parameters and an
external magnetic flux, it is possible to realize nearly flat
band states with nonzero Chern numbers for this model.
The presence of such bands in the energy spectrum may
lead to a very interesting scenario for incarnating strongly
correlated electronic states with nontrivial topological
properties. For a fractional filling in the ground state
of our system, one can envision the fractional quantum
Hall physics in a lattice model. In addition to that, we

have also revealed the existence of perfectly flat band
states in our lattice model, forming compact localized
states. The calculation of the density of states and the
wavefunction amplitude distribution on lattice sites cor-
roborate the formation of the compact localized states
corresponding to the flat band states in our model. Our
work has put forward a simple example of a 2D tight-
binding lattice model to understand certain important
flat band physics in a lattice system. We believe that
the experimental realization of our model using untra-
cold atoms in optical lattices is definitely on the card,
and may unfold interesting topological phases of matter.
One can also fabricate a photonic diamond-octagon lat-
tice using single-mode photonic waveguides controlled by
femtosecond laser pulses [27, 28] to study the photonic
flat bands in such a lattice model. The investigation of
the robustness of these flat band states encountered in
our model under different perturbing effects such as spin-
orbit interaction, disorder etc. could be an open direction
for further exploration.
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