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Abstract: We study the longitudinal magnetotransport in three-dimensional multi-Weyl
semimetals, constituted by a pair of (anti)-monopole of arbitrary integer charge (n), with
n = 1, 2 and 3 in a crystalline environment. For any n > 1, even though the distribution
of the underlying Berry curvature is anisotropic, the corresponding intrinsic component of
the longitudinal magnetoconductivity (LMC), bearing the signature of the chiral anomaly,
is insensitive to the direction of the external magnetic field (B) and increases as B2, at
least when it is sufficiently weak (the semi-classical regime). In addition, the LMC scales as
n3 with the monopole charge. We demonstrate these outcomes for two distinct scenarios,
namely when inter-particle collisions in the Weyl medium are effectively described by (a)
a single and (b) two (corresponding to inter- and intra-valley) scattering times. While
in the former situation the contribution to LMC from chiral anomaly is inseparable from
the non-anomalous ones, these two contributions are characterized by different time scales
in the later construction. Specifically for sufficiently large inter-valley scattering time the
LMC is dominated by the anomalous contribution, arising from the chiral anomaly. The
predicted scaling of LMC and the signature of chiral anomaly can be observed in recently
proposed candidate materials, accommodating multi-Weyl semimetals in various solid state
compounds.
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1 Introduction

Quantum phenomena can have macroscopic manifestations, such as the anomaly-induced
transport in systems, constituted by linearly dispersing massless Weyl fermions in three
dimensions. The most celebrated ones are the chiral magnetic and chiral vortical effects [1–
5], both being intimately related with quantum anomalies [6, 7]. The non-dissipative current
describing these phenomena is given by

J = σB B + σω ω, (1.1)

where B and ω are magnetic and vorticity fields, respectively. Here, σB and σω respectively
corresponds to the chiral magnetic and chiral vortical conductity.

At the classical level, massless left- and right-handed Weyl spinors separately exhibit
chiral symmetries and independent rotations of the phase can be performed for each species.
By contrast, at the quantum level at most one of these rotations can be preserved (leav-
ing the path-integral action invariant), a phenomenon known as quantum anomaly. In
particular, the electromagnetic gauge invariance requires U(1)e = U(1)L + U(1)R to be
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Figure 1. Quasiparticle spectra in a multi-Weyl system along various high-symmetry directions
in the close vicinity of Weyl nodes, characterized by an integer monopole charge n. Note that
dispersion always scales linearly with pz (see panel A) for any n. But, in the px − py plane the
energy scales as E ∼ |p⊥| for n = 1 (see panel B), E ∼ |p⊥|2 for n = 2 (see panel C) and E ∼ |p⊥|3

for n = 3 (see panel D), where p⊥ =
√
p2x + p2y. A rotational symmetry is always present in the

px − py plane. Here, momentum p = (px, py, pz) is measured from the Weyl node. Note that for
n > 1 the system looses the Lorentz covariance.

preserved, while its chiral counterpart U(1)5 = U(1)L − U(1)R suffers an anomalous viola-
tion [8, 9]. In three spatial dimensions there may be two different sources to the anomalous
non-conservation of the chiral charge. The first one, the so-called pure gauge anomaly, is
present when parallel electric and magnetic field are switched on in the system [10, 11].
The second one is called mixed gauge-gravitational anomaly and violates the conservation
of chiral charge when the system is placed on a curved background [12]. Even though sig-
natures of these anomalies can be found in transport, for concreteness we only consider the
imprint of pure gauge anomaly in multi-Weyl systems 1. In the high-energy physics such an
effect is expected to be present in the quark-gluon plasma, experimentally created in heavy-
ion collisions (see Ref. [16] and references therein). Furthermore, chiral anomaly leaves its
signature in condensed matter systems, accommodating emergent Weyl quasiparticles at
low-energies [17]. Due to a no-go theorem [18], Weyl fermions are always realized in pairs

1For a detailed description of the effect of the mixed-gauge gravitational anomaly on transport coefficients
see Refs. [7, 13, 14]. For an experimental signature of such an anomaly in a Weyl semimetal consult Ref. [15].
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(except on the surface of a time-reversal invariant four-dimensional topological insulators)
and each copy can be classified according to its chirality : left or right. On the other hand,
it has been shown that chiral magnetic effect vanishes in Weyl semimetals at equilibrium
(for a detailed discussion see [19–21]). Therefore, nonequilibrium signatures need to be
explored in order to measure the effects of anomalies in Weyl materials.

Any non-orthogonal arrangement of the electric E and magnetic B fields (such that
E · B 6= 0) causes a violation of the conservation of chiral charge. But, for the sake of
concreteness, we restrict ourselves to the situation where the external electric and mag-
netic fields are always parallel to each other. We show that the system then becomes
more conductive with an increasing magnetic field, an effect often refered as negative lon-
gitudinal magnetoresistance (LMR), a hallmark signature of the Adler-Jackiw-Bell chiral
anomaly [22]. Such an observation should be contrasted with the situation in a normal
metal, without any Berry curvature, where magnetoresistence is typically positive.

In the language of condensed matter physics, the Weyl nodes, where Kramers non-
degenerate valence and conduction bands touch each other, act as source and sink of Abelian
Berry flux or curvature. Typically, Weyl points with different chiralities are separated in
the momentum space. Otherwise, such defects in the reciprocal space can be characterized
with an integer monopole number that in turn also defines the topological invariant of
the system (see Appendix A). In fact the Berry flux and quantum anomalies are directly
connected [23], as we demonstrate here for multi-Weyl semimetals (see Ref. [24]).

So far, both theoretical [3, 25–35] and experimental [36–40] focus have largely been
centered around simple Weyl systems, possessing pairs of (anti-)monopole with unit charge
(n = 1). However, various condensed matter systems endow an unprecedented opportunity
to explore the territory of multi-Weyl semimetals, characterized by pairs of (anti)-monopole
of arbitrary integer charge n [41–44]. The quasiparticle dispersion for any n > 1 possesses
a natural anisotropy, as displayed in Fig. 1. But, underlying discrete rotational symmetry
in a lattice imposes a strict restriction on the available monopole charge in real materi-
als, namely |n| ≤ 3 [44]. Thus far most of the known examples of Weyl materials have
n = 1 [17, 45, 46]. Nevertheless, Weyl points with n = 2 (known as double-Weyl nodes)
can in principle be found in HgCr2Se4 [41, 42] and SrSi2 [43], and A(MoX)3 (with A=Rb,
Tl; X=Te) can accommodate Weyl points with n = 3 (known as triple-Weyl nodes) [47].
We also note that charge-neutral BdG-Weyl quasiparticles with n = 2 can also be found
in superconducting states of 3He-A [48], URu2Si2 [49], UPt3 [50], SrPtAs [51], YPtBi [52],
for example. Therefore, unveiling the imprint of chiral anomaly in general Weyl semimet-
als, besides its genuine fundamental importance, is also experimentally pertinent. In this
article we study longitudinal magnetotrasport (LMT) in multi-Weyl semimetals, in the
semi-classical regime. More specifically, resorting to the kinetic theory we compute the
total out of equilibrium longitudinal magnetoconductivity (LMC) in the parameter regime
T �

√
B � µ, where T is the temperature and µ is the chemical potential, measured from

the Weyl nodes. Note that semiclassical theory of transport is applicable in a parameter
regime where quantum corrections can be neglected. In our analysis T � µ, and hence the
chemical potential or Fermi momentum sets the infrared cutoff in the system. The semi-
classical theory is then applicable when

√
B � µ. By contrast, if T � µ then semiclassical
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appraoch is valid when
√
B � T [53]. Manifestation of chiral anomaly in thermal transport

for neutral BdG-Weyl quasiparticles is, however, left as a subject for a future investigation.
Kinetic theory can capture the longitudinal magnetotransport in the weak magnetic

field limit when ωcτ � 1, where ωc is the cyclotron frequency and τ is the average relax-
ation time, dominantly arising from elastic scattering due to impurities. In the analysis
of longitudinal magnetotransport, which necessarily involves charge pump from the left to
the right chiral Weyl point, the relaxation time (τ) is set by backscattering. In this regime
the Landau levels are not sharply formed (justifying the approach based on kinetic theory)
and the path between two successive collision is approximately a straight line. Therefore,
in the semi-classical (or weak magnetic field) regime, τ is independent (effectively) of the
magnetic field strength and we treat it as a phenomenological input in our analysis from
outset. By contrast, in the strong magnetic field limit, the path between two successive
collision gets sufficiently curved, such that τ ≡ τ(B) in addition to (ωc/µ � 1), and the
analysis of magnetotransport demands a quantum mechanical analysis [54]. We here focus
only on the former situation.

We now provide a brief synopsis of our main findings. We here investigate the LMC
in a mutli-Weyl system within the framework of semi-classical theory by considering two
possible scenarios, when (a) relaxation of both regular and axial charge is controlled by only
one effective time scale in the system (see Sec. 3.1), and (b) there exists two scattering times
in the system (see Sec. 3.2), arising from the inter-valley (τinter) and intra-valley (τintra)
processes, for example. While τinter is responsible for the relaxation of the axial charge, the
intra-valley scattering ensures the isotropy of the distribution function. Irrespective of these
details, we show that LMC (σjj) always increases as σjj ∼ B2 for any value of n as well
as for any choice of j = x, y, z, which can possibly be observed in experiments. Moreover,
σjj scales as n3 with the monopole charge (see Sec. 4). However, with a single relaxation
time in the system, the contribution of chiral anomaly to LMC cannot be separated from
the non-anomalous ones (see Sec. 4.1). Such a separation arises quite naturally in the
presence of two scattering times in the medium. In particular, we explicitly demonstrate
that when the inter-valley scattering time is sufficiently longer than in intra-valley one (i.e.
τinter � τintra), the postive LMC is dominated by the anomalous contribution, bearing the
signature of the chiral anomaly (see Sec. 4.2).

The rest of the paper is organized as follows. In the next section we introduce the
low-energy model for a multi-Weyl semimetal and compute the Berry curvature. In Sec. 3,
we discuss the general formalism of kinetic theory in the context of Weyl semimetals. Sec. 4
is devoted to the longitudinal magnetotransport in a multi-Weyl metal. The concluding
remarks and a discussion on related issues are presented in Sec. 5. Additional technical
details are relegated to the Appendices.

2 Berry curvature and topology of a multi-Weyl semimetal

We begin the discussion by computing the Berry curvature and the associated integer
topological invariant of a multi-Weyl semimetal, featuring Weyl nodes with arbitrary integer
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monopole charge n. The low-energy Hamiltonian of a multi-Weyl semimetal is given by [41,
42, 44, 55, 56]

Hn (p) = αnp
n
⊥ [cos (nφp)σx + sin (nφp)σy] + vpzσz ≡ εp (np · σ) , (2.1)

where φp = tan−1 (py/px), p⊥ =
√
p2
x + p2

y, np = (αnp
n
⊥ cos (nφp) , αnp

n
⊥ sin (nφp) , vpz)ε

−1
p ,

and the set of Pauli matrices σ = (σx, σy, σz) operate on the (pseudo-)spin indices. Mo-
mentum p is measured from the Weyl node. The energy dispersion in the close proximity
to a Weyl node is given by ±εp, where ± respectively corresponds to the conduction and
valence bands, and

εp =
√
α2
np

2n
⊥ + v2p2

z. (2.2)

The quasiparticle spectra in a multi-Weyl semimetal along various high symmetry directions
are shown in Fig. 1. Due to the doubling theorem Weyl nodes always appear in pairs [18],
which we refer here as valley degrees of freedom.
The components of the Berry curvature close to a Weyl node are defined as

Ω±p a = ±1

4
εabcnp ·

(
∂np

∂pb
× ∂np

∂pc

)
, (2.3)

for the conduction (Ω+
p ) and valence (Ω−p ) bands. For concreteness, we now focus on the

conduction band and for brevity take Ω+
p → Ωp. For a multi-Weyl semimetal we then find

Ω
(s)
p =

s

2

nvα2
n

ε3p
p

2(n−1)
⊥ (px, py, npz) , (2.4)

with s = ± corresponds to two valley. Notice that upon integrating the Berry curvature
over a closed surface Σ, we find the integer topological invariant of a multi-Weyl semimetal

s n =
1

2π

∮
Σ

Ω
(s)
p · dS, (2.5)

where dS is the differential area vector (see Appendix A for details). Therefore, the integer
topological invariant of a Weyl node measures the amount of Berry flux enclosed by a unit
area surface, and the Weyl nodes act as source and sink of Abelian Berry curvature of
strength n.

At this point it is worth pausing to appreciate the dimensionality of various physical
quantities in the natural units, in which we set ~ = c = kB = 1. Here the Fermi velocity
(vF ) plays the role of the velocity of light (c). In units of energy, the electric charge has
dimension zero, while electric and magnetic fields have dimensions two, v is dimensionless
and αn has dimension 1−n 2. At last, the central quantity of this study, the conductivity,
has dimension one, as guaranteed by the gauge invariance.

2While the Fermi velocity vF and α1 are dimensionless in the natural unit, αn for n ≥ 2 bears the
dimension of (energy)1−n, such that αnk

n
⊥ has the dimension of energy. Note that α1 and α2 are respectively

the Fermi velocity and the inverse mass of gapless Weyl excitations in the xy-plane However, there is no
standard nomenclature for αn with n > 2.
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3 Kinetic Theory

Kinetic theory is a semiclassical framework, which we employ for the rest of our analysis.
We assume the following hierarchy of scales T �

√
B � µ, where T is temperature, B is

the magnetic field and µ is the chemical potential, measured from the band-touching point.
In this regime, one can ignore the Landau quantization and use Boltzmann kinetic equation

∂tf
(s) +∇xf

(s) · ẋ(s) +∇pf
(s) · ṗ(s) = C[f (s)], (3.1)

which describes the evolution of the particle distribution function f (s) in the phase space,
where s is the valley index and C

[
f (s)

]
denotes the collision integral. The effective semi-

classical dynamics of Weyl quasiparticles is modified by the Berry curvature in momentum
space, which leads to the following equations of motion

ẋ(s) = vp + ṗ(s) ×Ω
(s)
p , ṗ(s) = eE + eẋ(s) ×B, (3.2)

where vp = ∇pεp is the group velocity [57]. A comment about the energy dispersion (εp) is
due at this stage. In this article we take εp to be the dispersion relation obtained from the
effective Hamiltonian [see Eq. (2.2)]. Wave-packet construction reveals that a correction
proportional to the inner product of the wave-packet orbital magnetization and the magnetic
field should be added to the standard energy dispersion εp [58]. In particular for n = 1

Weyl semi-metals, Lorentz invariance requires εp → εp ∓ 1
2p2

p ·B [75, 76]. However, such
a correction can lead to an undesired consequence: group velocity becomes bigger than the
Fermi velocity vf [59], as vf plays the role of the velocity of light in our construction. On
the other hand, in [35] the LMC was studied for Weyl semi-metals in the context of kinetic
theory concluding that such a modification in the dispersion relation only changes the LMC
quantitatively, without altering its overall B2 dependence. Therefore, considering the issues
with the group velocity and the conclusions of [35], we neglect this correction in the present
article and leave its imprint on LMC as a subject for a future investigation.

The challenge to solve Eq. (3.1) arises from the complex form of the collision term,
which captures the interactions between particles. Nevertheless, significant progress can be
made by employing the so-called relaxation time approximation, which encodes the fact that
the system returns to equilibrium via scattering events among its constituent particles and
impurities [63]. This process is controlled by a phenomenological parameter which can be
interpreted as the average time between two successive collisions. The nature of collisions
should follow as a physical input and different choices correspond to different physical out-
comes. Specifically, we here analyse two different collision integrals and the corresponding
physical scenarios in two subsequent sections. Most importantly we assume that in the
semiclassical limit the average scattering times can be considered to be independent of the
magnetic field strength for the following reason: in the weak field limit, the radius of the
cyclotron orbit is so large that the path between to successive collisions can be approxi-
mated as a straight line, and concomitantly B-independent. We also assume the relaxation
time to be independent of the angles.
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3.1 Collisions with single effective relaxation time

Our first choice of the collision term assumes the existence of a single relaxation time
(τ). The collision integral then takes the following form

C1[f (s)] = −δf
(s)

τ
, (3.3)

where δf (s) = f (s) − f0, and f0 the equilibrium Fermi-Dirac distribution function. This
type of collision integral was recently used in Refs. [60–62]. The above collision integral has
to be taken with care as it assumes that impurity scattering relaxes both regular and axial
charge densities [63]. Therefore we assume the equilibrium state is given by fixed electron
and vanishing axial chemical potentials. Such a scenario is common for open systems, an
example given by electronic systems in the presence of charged impurities. However, we
here do not derive the above collision integral from any microscopic model, rather treat it
as a phenomenological input in the kinetic theory formalism. To show this explicitly we
calculate the semiclassical expressions for the chiral currents (J(s)). First we invert the
semiclassical equations of motion and obtain [64–66]

ẋ(s) =
(

1 + eB ·Ω(s)
p

)−1 [
vp + eE×Ω

(s)
p + e

(
vp ·Ω(s)

p

)
B
]
, (3.4)

ṗ(s) =
(

1 + eB ·Ω(s)
p

)−1 [
eE + evp ×B + e2 (E ·B) Ω

(s)
p

]
. (3.5)

The presence of the Berry curvature modifies the phase space volume element by the factor
(1 + eB ·Ω(s)

p ), which satisfies the Liouville equation [66]

∂t(1+eB·Ω(s)
p )+∇x ·

[
(1 + eB ·Ω(s)

p )ẋ(s)
]
+∇p ·

[
(1 + eB ·Ω(s)

p )ṗ(s)
]

= 2πsn e2E·B δ3(p) .

(3.6)
Combining the last expression with the Boltzmann equation [Eq. (3.1)] we arrive at the
following continuity equation

∂tρ
(s) +∇ · J(s) =

s e3 n

4π2
E ·B− δρ(s)

τ
, (3.7)

where the charge (ρ) and current (J) densities are respectively defined as

ρ(s) = e

∫
d3p

(2π)3

(
1 + eB ·Ω(s)

p

)
f (s), J(s) = e

∫
d3p

(2π)3

(
1 + eB ·Ω(s)

p

)
ẋf (s) . (3.8)

Notice that Eq. (3.7) already discerns the connection between the Berry curvature and
chiral anomaly, and will imply relaxation of both electromagnetic and axial charges.

Our goal here is to study the system in a homogeneous and stationary state3. Therefore,
linearising the Boltzmann equation we obtain

δf (s) = − τ

1 + eB ·Ω(s)
p

[(
eE + e2 (E ·B) Ω

(s)
p

)
· vp

] ∂f0

∂εp
= −τeE · ẋ(s) ∂f0

∂εp
, (3.9)

3Notice that in order to achieve a steady state, axial charge needs to be relaxed by the presence of
impurities, otherwise the parallel electric and magnetic fields would pump charges indefinitely into the
system and the LMC would be infinite.
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to the leading order. The out-of-equilibrium distribution function is proportional to the
work done by the electric field between successive collisions. The injected energy is used by
the system in two different mechanisms:
• Transport of charge. The first term in Eq. (3.9) is proportional to the work done

by the electric field to move the electrons along a trajectory with effective velocity vp.
• Creation of charges via the anomaly. Eq. (3.7) suggests that the second term

in Eq. (3.9) is proportional to the induced charge, δρ ∼ nτE ·B.
Hence we can split the out-of-equilibrium distribution function as δf (s) = δf

(s)
O + δf

(s)
A ,

where

δf
(s)
O = − eτ(E · vp)

1 + eB ·Ω(s)
p

∂f0

∂εp
, δf

(s)
A = −e

2τ(Ω
(s)
p · vp)

1 + eB ·Ω(s)
p

∂f0

∂εp
(E ·B) . (3.10)

Now the current operator can be decomposed as J(s) = JO
(s) + JAH

(s) + JCM
(s) [66],

where JO
(s), JAH

(s) and JCM
(s) denotes the Ohmic, anomalous Hall and out-of-equilibrium

chiral magnetic currents, respectively. For simplicity we will assume the multi-Weyl metal
is made of two valleys, therefore the specific form of each component reads

JO = e
∑
s=±

∫
d3p

(2π)3
vp δf

(s), (3.11)

JAH = e2E×
∑
s=±

∫
d3p

(2π)3
Ω

(s)
p δf (s), (3.12)

JCM = e2B
∑
s=±

∫
d3p

(2π)3

(
vp ·Ω(s)

p

)
δf (s) . (3.13)

As we are interested in computing the LMC, and the anomalous Hall current is always
transverse to the electric field, we ignore it from now on. Note that each component of the
current receives two sub-contributions, which can be appreciated by expressing them as

JO = e
∑
s=±

∫
d3p

(2π)3
vp

4π2eδρ(s)

sn

(
vp ·Ω(s)

p

)
1 + eB ·Ω(s)

p

+
eτ(E · vp)

1 + eB ·Ω(s)
p

(−∂f0

∂εp

)
(3.14)

JCM = e2 B
∑
s=±

∫
d3p

(2π)3

4π2eδρ(s)

sn

(
vp ·Ω(s)

p

)2

1 + eB ·Ω(s)
p

+
eτ(E · vp)

(
vp ·Ω(s)

p

)
1 + eB ·Ω(s)

p

(−∂f0

∂εp

)
.

The first term is proportional to an imbalance of charge, which causes a net current
along the direction of the group velocity or the external magnetic field. The second contri-
bution is related to the energy needed to transport the particles with an effective velocity
given by vp. Nonetheless, we would like to emphasize that even though we identify an
anomalous contribution in the current with this collision integral [see Eq. (3.3)], it is not
possible to disentangle it from the non-anomalous one, due to the presence of a single
effective scattering time τ . However, if we introduce two different scattering times in the
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µ

p

L R

✏p

⌧inter ⌧intra⌧intra

Figure 2. A schematic representation of two scattering processes in a simple Weyl metal, pos-
sessing linear dispersion along all three direction. Respectively the forward (intravalley) and back
(intervalley) scattering processes are shown by turquoise and blue arrows. The chemical potential
(µ) is measured from the band touching point. This construction is also applicable for arbitrary
monopole charge n. Here L and R respectively denotes the Weyl node with left and right chirality.

collision integrals, which can arise from inter- and intra-valley scattering processes, then it is
conceivable to isolate the anomalous contributions from the non-anomalous one, specifically
when τinter � τintra, which we discuss in the next section.

3.2 Collisions with inter-valley and intra-valley relaxation times

In this subsection we introduce a different collision integral that corresponds to the
situation in which there exist two relaxation times. The collision with impurities can either
change the chirality of the particle or keep it intact. The former process is captured by the
so-called inter-valley relaxation time and the latter one by the intra-valley relaxation time
(see Fig. 2). The inter-valley scattering changes the relative number of particles between
two valleys, and is responsible for the “charge-pump" between them. It involves a large
momentum transfer and is assumed to be dominated by elastic scattering of particles from
impurities. In particular, Gaussian impurities can be a microscopic source of such an inter-
valley scattering, while Coulomb impurities, at least in the weak field limit, give rise to
forward or intra-valley scattering. Formally we may write the collision term as [35]

C2[f (s)] =
f̄ (s) − f (s)

τintra
+
f̄ (s̄) − f (s)

τinter
≡ f̄ (s) − f (s)

τ∗
+ Λ(s), (3.15)
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where τ∗ = τinterτintra/ (τinter + τintra), s̄ = −s,

f̄ (s) =
〈(

1 + eB ·Ω(s)
p

)
f (s)

〉
, Λ(s) =

f̄ (s̄) − f̄ (s)

τinter
.

The angular brackets stand for a generalized average over the angles (θ and φ)

〈. . .〉 =
Γ(1

2 + 1
n)

2π3/2 Γ( 1
n)

∫
dφdθ (sin θ)2/n−1 . . . , (3.16)

introduced in the new coordinate system

px =

(
εp

sin θ

α

)1/n

cosφ, py =

(
εp

sin θ

α

)1/n

sinφ, pz = εp
cos θ

v
, (3.17)

compatible with the symmetry of the problem.
After introducing this average the phase space volume integral reads∫

d3p

(2π)3
. . . =

2π3/2 Γ( 1
n)

nvΓ(1
2 + 1

n)

∫ (
εp
αn

)2/n dεp
(2π)3

〈. . .〉 . (3.18)

Given this new collision integral the continuity equation can be written as follows

∂tρ
(s) +∇ · J(s) =

s e3 n

4π2
E ·B− s

2

ρ5

τinter
. (3.19)

From the above equation, after writing the corresponding electromagnetic and axial conti-
nuity equations, it can be seen how τinter relaxes only the axial charge ρ5 = (ρ(+)−ρ(−))/2.

By solving the kinetic equation we obtain the following leading order solution for the
distribution function

f (s) = f̄ (s) + τ∗
(

Λ(s) − ṗ(s) · v ∂εpf0

)
, (3.20)

where Λ(s) can be obtained by averaging the product of the phase space measure with the
kinetic equation (see Appendix B for the detailed computations), leading to

Λ(s) = se2 (E ·B)n2v
( ε
α

)−2/n Γ(1
2 + 1

n)

π1/2 Γ( 1
n)
∂εpf0. (3.21)

Finally, the expression for the vector current (considering only a pair of nodes) reads as

J = e2τinterB

∫
d3p

(2π)3

(
vp ·Ω(+)

p

)
Λ(−) − 2e2τ∗B

∫
d3p

(2π)3

(
vp ·Ω(+)

p

)
Λ(−)

+ eτ∗
∑
s=±

∫
d3p

(2π)3

[
vp + e

(
vp ·Ω(s)

p

)
B
] (
−ṗ(s) · vp ∂εpf0

)
. (3.22)

The first term in the above expression for the current corresponds to the LMC computed
in Refs. [25, 67, 68] for n = 1 Weyl semimetals, which becomes the dominant once we take
τinter � τintra. The rest of the contributions are associated to the effective relaxation time
τ∗. Notice that the second line coincides with Eqs. (3.14) after setting τ → τ∗. Now we
proceed to the computation of LMC with the above two collision integrals.
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4 Magnetotransport in the multi-Weyl system

Previous studies reporting a positive LMC in a simple Weyl semimetal (with n = 1),
solely computed the contribution which has a simple connection to the chiral magnetic
effect. Here we show that even in the general case with higher monopole charge (with
n > 1), the LMC is possitive for both collision integrals. Otherwise, the LMC (σjj) can be
computed from the following definition

σjj =
∑
s=±

∂Js

∂Ej
· ĵ, (4.1)

where ĵ is the unit vector in the jth direction. The electric and magnetic fields are assumed
to have the following form E = Eĵ and B = Bĵ. We here present the analysis for two
different physical scenarios corresponding to the collision integrals [see Eq. (3.3) and (3.15)].

4.1 LMC with single effective relaxation time

A single relaxation time does not distinguish between the processes relaxing the axial
and vector currents. As a result LMC receives contributions from both chiral magnetic and
Ohmic processes. For convenience we split the total conductivity as follows

σjj = 2σ
(1)
jj;τ + σ

(2)
jj;τ + σ

(3)
jj;τ , (4.2)

where various components (σ(k)
jj ) in the above equation are given by the following integral

expressions

σ
(1)
jj;τ = τe3B

∑
s=±

∫
d3p

(2π)3

(vp)j(Ω
(s)
p · vp)

1 + eB ·Ω(s)
p

(
−∂f0

∂εp

)
, (4.3)

σ
(2)
jj;τ = τe4B2

∑
s=±

∫
d3p

(2π)3

(Ω
(s)
p · vp)2

1 + eB ·Ω(s)
p

(
−∂f0

∂εp

)
, (4.4)

σ
(3)
jj;τ = τe2

∑
s=±

∫
d3p

(2π)3

(vp)2
j

1 + eB ·Ω(s)
p

(
−∂f0

∂εp

)
. (4.5)

Next we compute the components of σjj for various choices of j (for concreteness we choose
j = x, y, z) for arbitrary n (monopole charge of the Weyl node). A generalization of the
simple Weyl-node metal involves a momentum space merging of n simple Weyl points with
the same chirality at a specific point in the momentum space. This situation is qualitatively
similar to the ones in two-dimensional bilayer (for n = 2) and trilayer (for n = 3) graphene,
where respectively the bi-quadratic and bi-cubic touching of the valence and conduction
bands can be considered as merging of two and three momentum space vortices. As a
result a defect in the form of double- and triple-vortex is realized in these two systems,
respectively [69]. The low energy dispersion can then be characterized by multi-Weyl nodes
with linear dispersion only along one high symmetry direction and nth polynomial dispersion
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along the remaining two directions. For concreteness, the linear dispersion is chosen to be
along the z-direction. We seek to understand how such spectral anisotropy manifest in
LMC and, in particular, how does it affect the response from anomalies. In what follows we
thus compute the LMC along the z direction and perpendicular to it (in the x− y plane).
First we consider the situation where E = Eẑ and B = Bẑ. Following the steps highlighted
above (see Appendices C.1 and C.2 for details) we find the various components of LMC
[defined in Eqs. (4.3)-(4.5)] to be

σ(1)
zz;τ = f1(n) σn0 , σ(2)

zz;τ = f2(n) σn0 , σ(3)
zz;τ = f3(n) σnM + f4(n) σn0 , (4.6)

where

f1(n) = −
n3Γ

[
2− 1

n

]
16π3/2Γ

[
7
2 −

1
n

] , f2(n) =
n3Γ

[
2− 1

n

]
8π3/2Γ

[
5
2 −

1
n

] ,
f3(n) =

Γ
[
1 + 1

n

]
4π3/2Γ

[
3
2 + 1

n

] , f4(n) =
3n3Γ

[
2− 1

n

]
32π3/2Γ

[
9
2 −

1
n

] , (4.7)

and

σn0 = v

(
αn
µ

)2/n

τe4B2, σnM = v

(
αn
µ

)−2/n

τe2 (4.8)

bear the dimensionality of conductivity for any value of n, and respectively they capture
the magnetoductivity and metallic conductivity. The scaling of the functions fj(n)s are
shown in Fig. 3(a). In the above expression we kept the terms only up to the order B2.
Therefore, the total LMC along the z direction in a multi-Weyl system is given by

σzz = [2f1(n) + f2(n) + f4(n)]σn0 + f3(n)σnM ≡ F (n)σn0 + f3(n)σnM . (4.9)

The scaling of the function F (n) is shown in Fig. 3(b) (blue curve). Finally we align
the electric and magnetic fields along the x̂ direction. Following the exact same steps we
immediately find

σ(1)
xx;τ = f5(n)σn0 , σ(2)

xx;τ = σ(2)
zz;τ , σ(3)

xx;τ =
τe2nµ2

6π2v
+ f6(n)σn0 , (4.10)

where

f5(n) = −
n3Γ

[
3− 1

n

]
16π3/2Γ

[
7
2 −

1
n

] , f6(n) =
3n3Γ

[
4− 1

n

]
64π3/2Γ

[
9
2 −

1
n

] . (4.11)

Scaling of f5(n) and f6(n) with n is shown in Fig. 3(a) . Hence, the total LMC along the
x direction in a multi-Weyl system is given by

σxx = [2f5(n) + f2(n) + f6(n)]σn0 +
τe2nµ2

6π2v
≡ G(n)σn0 +

τe2nµ2

6π2v
. (4.12)

The scaling of the function G(n) is shown in Fig. 3(b) (green curve). Due to an in-plane
rotational symmetry, σ(i)

xx = σ
(i)
yy , implying σxx = σyy.

We now discuss the results. Notice that the contribution to the LMC solely arising from
σ

(2)
jj;τ , is independent of the choice of j = x, y, z. Such a behaviour unveils the underling
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Figure 3. Scaling of the functions (a) fj(n)s for j = 1, · · · , 6, defined in Eqs. (4.7) and (4.11) and
(b) F (n) and G(n), respectively appearing in Eqs. (4.9) and (4.12), with the monopole’s charge n,
for n ∈ [1, 5].

topological protection of the chiral anomaly on LMC. However, the rest of the contributions
to the LMC, namely σ(1)

jj;τ and σ
(3)
jj;τ scales differently along various high symmetry directions.

This should be contrasted with the linear n dependence of the equilibrium chiral magnetic
conductivity. As a result the total LMC σjj despite being always positive, is direction
dependent [compare Eq. (4.9) and Eq. (4.12)]. We also note that for weak enough magnetic
field the leading contribution to LMC goes as B2, irrespective of the direction. Otherwise,
σjj scales as n3 with the monopole charge of the Weyl nodes.

We would like to make a final remark regarding the positive LMC. This observable is
believed to be a direct indication of the underling chiral anomaly. However, to the best
of our knowledge there is no solid proof of that statement (directly connecting negative
LMR arising from the Berry curvature with the quantum chiral anomaly computed from
the triangle diagrams)4 [71–73]. Nonetheless, upon splitting the LMC of the multi-Weyl
semimetal in terms of the out-of-equilibrium chiral magnetic and the Ohmic5 conductivities
(see Eq. (3.14))

σCMzz =
n3Γ

[
3− 1

n

]
16π3/2Γ

[
7
2 −

1
n

]σn0 , σOzz = −
n3Γ

(
3− 1

n

)
32π3/2Γ

(
9
2 −

1
n

)σn0 , (4.13)

σCMxx =
n2 (3n− 1) Γ

[
2− 1

n

]
32π3/2Γ

[
7
2 −

1
n

] σn0 , σOxx = −
(5n− 1)n2Γ

(
3− 1

n

)
128π3/2Γ

(
9
2 −

1
n

) σn0 , (4.14)

we observe that the dominant LMC for arbitrary n is the one related to the chiral magnetic
conductivity. This supports the idea of a direct relation between positive LMC and the
chiral anomaly. in the next section we show that in presence of two distinct time scales it
possible to demonstrate a one-to-one correspondence between LMC and the chiral anomaly
when τinter � τintra.

4In Ref. [70] a positive LMC is discused in a context without Weyl nodes.
5For comparative reasons we ignore the Drude part in the Ohmic conductivity.
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4.2 LMC with two relaxation times

We now present the expression for magnetotransport when both intervalley and in-
travalley scattering times are taken into account. This corresponds to the collision term,
shown in Eq. (3.15). In this case the computation reduces to the evaluation of only the first
line of Eq. (3.22) [see Appendix B for details], since the second line identically matches
with the expression for LMC for the single relaxation time collision integral after changing
τ → τ∗. Therefore the LMC for the actual case can be written down as follows

σjj = τinter
e4n3vΓ(1

2 + 1
n)

4π5/2Γ( 1
n)

(
α

µ

)2/n

B2 (4.15)

− τ∗
e4n3vΓ(1

2 + 1
n)

2π5/2Γ( 1
n)

(
α

µ

)2/n

B2 + 2σ
(1)
jj;τ∗ + σ

(2)
jj;τ∗ + σ

(3)
jj;τ∗ ,

where {σ(1)
τ∗ , σ

(2)
τ∗ , σ

(3)
τ∗ } are given by Eqs. (4.6)-(4.11). In this case we see that when τ∗ �

τinter, corresponding to τinter � τintra, we obtain the generalization of the LMC of Ref. [25]
for the multi-Weyl case. In this limit, the LMC is purely governed by the chiral anomaly,
which is direction independent and thus topological in nature.

5 Conclusions and Discussions

To summarize, we here present a comprehensive analysis of LMC in a three-dimensional
multi-Weyl semimetal in the semi-classical regime, which can be accessed in experiments
for sufficiently weak magnetic field, such that ωcτ � 1 (thus no Landau quantization).
The distribution of the underlying Berry curvature in the momentum space is isotropic
only when n = 1, for which the dispersion of Weyl fermions scales linearly with all three
components of momentum. By contrast, due to a natural anisotropy in the Weyl dispersion
for n > 1 [see Fig. 1], the system looses Lorentz covariance and the Berry curvature is no
longer uniformly distributed [see Sec. 2]. In this work we investigate the imprint of the
(anisotropic) Berry curvature on LMC in multi-Weyl system.

Throughout we assume the electric and magnetic fields to be parallel to each other.
Specifically, we considered two different types of collision integrals corresponding to two
different physical scenarios: (a) When both regular and axial charge are relaxed by a single
effective scattering time (τ) [see Sec. 3.1], and (b) in the presence of both inter-valley and
intra-valley scattering processes, respectively characterized by τinter and τintra [see Sec. 3.2
and Fig. 2]. In the latter construction only τinter causes the relaxation of the axial charge.

Within the framework of single scattering time approximation, we show that the con-
tribution to LMC arising from the chiral anomaly gets mixed with the non-anomalous ones,
and they cannot be separated [see Sec. 4.1]. By contrast, these two contributions are sep-
arated when we invoke two different time-scales in the collision integrals in the form of
inter-valley (τinter) and intra-valley (τintra) scattering times [see Sec. 4.2]. In particular,
when τinter � τintra the dominant contribution to LMC arises from chiral anomaly [see
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Eq. (4.15)] and proportional to the inter-valley scattering time τinter. However, irrespective
of these details we show that the LMC always increases as σjj ∼ B2 for j = x, y, z, and
scales as n3 with the monopole charge. While in the single scattering time approximation
the amplitude of σjj is always direction dependent, LMC becomes direction independent
in the presence of two scattering times, but only when τinter � τintra. In this regime LMC
solely arises from the chiral anomaly, and its direction independence reveals its topological
origin. In brief, our work strongly suggests an one-to-one correspondence among the un-
derlying Berry curvature of the Weyl medium, the chiral anomaly and the positive LMC
in a multi-Weyl system. The proposed topologically robust LMC can be observed in Weyl
systems at weak magnetic fields, if back-scattering dominates over the forward one (yield-
ing τinter � τintra), which can be realized when concentration of Gaussian impurities is
sufficiently larger than that for Coulomb impurities. We also note that for sufficiently weak
magnetic field the weak anti-localization effect leads to a negative LMC [74]. The interplay
of chiral anomaly and weak anti-localization effects and the crossover behaviour between
them remains an unresolved issue at this moment.

Finally, we wish to draw a comparison between our conclusions regarding the LMC in a
multi-Weyl system in the weak field and the one obtained in a quantum limit (ωcτ � 1) [77],
when Landau levels are sharply formed (strong magnetic field regime). In the strong field
limit it has been demonstrated that positive LMC scales linearly with the monopole charge
(n) and magnetic field (B), as long as it is applied along the ẑ direction (separating two Weyl
nodes). The linear-dependence of positive LMC on n comes from the fact that the zeroth
Landau level in a multi-Weyl semimetal possesses an exact and topologically protected n-
fold degeneracy [78]. In a simple Weyl semimetal (n = 1) such a linear dependence on the
B-field is insensitive to its direction. However, for n = 2 and 3 as one tilts the field away
from the ẑ direction the LMC (still positive) starts to develop a non-linear dependence on
the B-field, and most likely scales as B2 when the field is aligned in the x−y plane. Such a
stark distinct crossover behaviour of LMT from semi-classical to quantum regime (accessed
by systematically increasing the strength of the magnetic field or strength of impurity
scattering) along various direction of a multi-Weyl system is extremely fascinating, which
can also be observed in real materials by tilting the magnetic field away from high symmetry
directions.
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A Computation of Berry Curvature

In this appendix we elaborate on the computation of the integer topological invariant
of generalized Weyl semimetals. To proceed with the analysis we exploit the azimuthal
symmetry of the system for n > 1. First, we express the Berry curvature in cylindrical
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B = (0, 0,−Pz)

C = (P⊥, 0,−Pz)
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O

C

Figure 4. Illustration of the chosen surface for the computation of flux of the Berry curvature in
a multi-Weyl semimetal (see Appendix A). The Weyl monopole is placed at O.

coordinates according to

Ωp =
nα2

nvp
2n−1
⊥

2(α2
np

2n
⊥ + v2p2

z)
3/2

(ep⊥ + npzp
−1
⊥ epz). (A.1)

Then, choosing the surface Σ to be a cylinder centred around the monopole (see Fig. 4),
we obtain

∮
Σ

Ωp · dS =

∫
ΣS

Ωp · dSS +

∫
ΣT

Ωp · dST +

∫
ΣB

Ωp · dSB

=

∫ Pz

−Pz

πnα2
nvP

2n
⊥[

α2
nP

2n
⊥ + v2p2

z

]3/2dpz + 2

∫ P⊥

0

πn2α2
nvp

2n−1
⊥ Pz

[α2
np

2n + v2P 2
z ]3/2

dp⊥ = 2πn. (A.2)

Note that ΣS , ΣT and ΣB respectively represents the side (S), top (T ) and bottom (B)
surfaces of the cylinder.

B Calculation of magnetoconductance with two relaxation times

In this Appendix, we display details of the computation of LMC in the presence of two
scattering time in the collision integral [see Eq. (3.15)]. We begin with the kinetic equation

∂tf
(s) + ẋ(s) · ∂xf (s) + ṗ(s) · ∂pf (s) =

f̄ (s) − f (s)

τ∗
+
f̄ (s̄) − f̄ (s)

τinter
(B.1)

≡ f̄ (s) − f (s)

τ∗
+ Λ(s), (B.2)

– 16 –



where f̄ (s) =
〈(

1 + eB ·Ω(s)
)
f (s)

〉
. The angular brackets stand for a generalized average

over the angles, to be specified below.
Given the symmetry of the system, we work with the coordinate system in which the

radial component corresponds to the energy dispersion relation

εp =
√
α2(p2

x + p2
y)
n + v2p2

z, (B.3)

defined by

px =

(
εp

sin θ

α

)1/n

cosφ, py =

(
εp

sin θ

α

)1/n

sinφ, pz = εp
cos θ

v
. (B.4)

In this coordinate system, the group velocity and the Berry curvature take the simple form

vp =
1

h1
ε̂p, Ωp =

n2vα2

2ε2

(
ε sin θ

α

)2(n−1)/n

h1ε̂p, (B.5)

where h1 =

√
cos2 θ
v2

+ 1
n2ε2p

(
εp sin θ
α

)2/n
. Finally, the above mentioned average of a quantity

g over the angles is defined as follows

〈g〉 =
Γ(1

2 + 1
n)

2π3/2 Γ( 1
n)

∫
dφdθ (sin θ)2/n−1 g. (B.6)

To compute the explicit form of Λ(s) for static and homogeneous solutions we angle-
average the kinetic equation after multiplying it by the phase space measure, yielding

〈(
1 + eB ·Ω(s)

p

)
ṗ(s) · ∂pf (s)

〉
=

〈(
1 + eB ·Ω(s)

p

)( f̄ (s) − f (s)

τ∗
+ Λ(s)

)〉
. (B.7)

Since
〈(

1 + eB ·Ω(s)
p

)〉
= 1, we find

Λ(s) =
〈(

1 + eB ·Ω(s)
p

)
ṗ(s) · ∂pf (s)

〉
. (B.8)

Using the equations of motion, we obtain the following simplified expression for Λ(s) within
the linear response

Λ(s) =
〈(
eE · v + e2 (E ·B) Ω

(s)
p · vp

)〉
∂εpf0

= se2 (E ·B)n2v
( ε
α

)−2/n Γ(1
2 + 1

n)

π1/2 Γ( 1
n)
∂εpf0, (B.9)

where f0 =
[
1 + eβ(εp−µ)

]−1, and µ is the equilibrium chemical potential. The solution of
the kinetic equation (in linear response) is given by

f (s) = f̄ (s) + τ∗
(

Λ(s) − ṗ(s) · vp ∂εpf0

)
. (B.10)
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The current is defined as 6

J(s) = e

∫
d3p

(2π)3

(
1 + eB ·Ω(s)

p

)
ẋ(s)f (s) (B.11)

= e

∫
d3p

(2π)3

[
vp + e

(
vp ·Ω(s)

p

)
B
]
f̄ (s)

+ eτ∗
∫

d3p

(2π)3

[
vp + e

(
vp ·Ω(s)

p

)
B
] (

Λ(s) − ṗ(s) · vp ∂εpf0

)
= e

∫
d3p

(2π)3

[
e
(
vp ·Ω(s)

p

)
B
] (
f̄ (s) + τ∗Λ(s)

)
+ eτ∗

∫
d3p

(2π)3

[
vp + e

(
vp ·Ω(s)

p

)
B
] (
−ṗ(s) · vp ∂εpf0

)
. (B.12)

For a pair of nodes the vector current can be computed yielding

J = e
∑
s=±

∫
d3p

(2π)3

(
1 + eB ·Ω(s)

p

)
ẋ(s)f (s)

= e

∫
d3p

(2π)3
e (vp ·Ωp) B

[
sf̄ (s) + s̄f̄ (s̄) + τ∗

(
sΛ(s) + s̄Λ(s̄)

)]
+ eτ∗

∑
s=±

∫
d3p

(2π)3

[
vp + e

(
vp ·Ω(s)

p

)
B
] (
−ṗ(s) · vp ∂εpf0

)
= e

∫
d3p

(2π)3
e (vp ·Ωp) B

[
τinterΛ

(−) − 2τ∗Λ(−)
]

+ eτ∗
∑
s=±

∫
d3p

(2π)3

[
vp + e

(
vp ·Ω(s)

p

)
B
] (
−ṗ(s) · vp ∂εpf0

)
. (B.13)

Note that

eτinter

∫
d3p

(2π)3
[e (vp ·Ωp) B] Λ(−) =

e4τintern
3vΓ(1

2 + 1
n)

4π5/2Γ( 1
n)

(
α

µ

)2/n

(E ·B) B, (B.14)

eτ∗
∫

d3p

(2π)3

[
vp + e

(
vp ·Ω(s)

p

)
B
] (
−ṗ(s) · vp ∂εpf0

)
= Jb, (B.15)

where Jb has the same structure than the vector current computed for C1

[
f (s)

]
but it is

now proportional to τ∗. Therefore, the total LMC (in the presence of two scattering times)
for a pair of Weyl nodes is given by Eq. (4.15).

C Computation of magnetoconductivity

We now present some essential details of the computation of LMC for multi-Weyl
semimetal (with n > 1) that appear in both single and two relaxation time approximations,
namely σ(k)

jj,τ for k = 1, 2, 3 and j = x, y, z. Finally, we also justify the power series expansion
in powers of B for the calculation of the LMC.

6Note that we here ignore the term responsible for the Hall current.
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C.1 Multi-Weyl semimetal

The aim of this section is to illustrate how we obtain the results quoted in Eqs. (4.6)-
(4.12). We present the full computation for one of the terms, as the remaining ones can be
evaluated in a similar way. Let us focus on σ(1)

zz,τ which can be written as

σ(1)
zz,τ =

τe3B

(2π)2

∑
s=±

s

∫ ∞
0

dp⊥

∫ ∞
−∞

dpz
(n2α2

nv
3)p2n+1
⊥ pz δ(µ−

√
α2
np

2n
⊥ + v2p2

z)

2p2
⊥(α2

np
2n
⊥ + v2p2

z)
3/2 + vn2α2

n(seB)p2n
⊥ pz

.

Now we perform the variable substitution pz → pz/v and p⊥ → p⊥α
−1/n
n , yielding

σ(1)
zz,τ =

τe3B

(2π)2

∑
s=±

s

∫ ∞
0

dp⊥

∫ ∞
−∞

dpz
(n2α

−2/n
n v)p2n+1

⊥ pz δ(µ−
√
p2n
⊥ + p2

z)

2α
−2/n
n p2

⊥(p2n
⊥ + p2

z)
3/2 + n2(seB)p2n

⊥ pz
.

Next, we take p⊥ = p̃
1/n
⊥ . For brevity we drop the tildes and find

σ(1)
zz,τ =

τe3B

(2π)2

∑
s=±

s

∫ ∞
0

dp⊥

∫ ∞
−∞

dpz
(nα

−2/n
n v)p⊥pz δ(µ−

√
p2
⊥ + p2

z)

2α
−2/n
n (p2

⊥ + p2
z)

3/2 + n2(seB)p
2(n−1)/n
⊥ pz

.

At last, performing the transformation p⊥ = R sin θ and pz = R cos θ, we obtain

σ(1)
zz,τ =

τe3B(nα
−2/n
n v)

(2π)2

∑
s=±

s

∫ π

0
dθ

∫ ∞
0

dR
R3 sin θ cos θ δ(µ−R)

2α
−2/n
n R3 + (seB)n2(R cos θ)(R sin θ)2(n−1)/n

=
τe3B(nv)

2(2π)2

∑
s=±

s

∫ π

0
dθ

sin θ cos θ

1 + ( seB
2µ2

)n2α
2/n
n cos θ(µ sin θ)2(n−1)/n

. (C.1)

The previous coordinates transformations amount to going from the Cartesian coordinates
to the ones introduced in Eq. (B.4). Performing the same steps, it is straight forward to
show that

σ(2)
zz,τ =

τe4B2(n3α
2/n
n v)

4(2π)2µ2

∑
s=±

∫ π

0
dθ

sin θ(µ sin θ)2(n−1)/n

1 +
(
seB
2µ2

)
n2α

2/n
n cos θ(µ sin θ)2(n−1)/n

,

σ(3)
zz,τ =

τe2vµ

(2π)2nα
2/n
n

∑
s=±

∫ π

0
dθ

cos2 θ(µ sin θ)2/n−1

1 +
(
seB
2µ2

)
n2α

2/n
n cos θ(µ sin θ)2(n−1)/n

,

σ(1)
xx,τ =

τe3B(n2α
1/n
n )

2(2π)3µ2

∑
s=±

s

∫ 2π

0
dφ

∫ π

0
dθ

(µ sin θ)3−1/n cosφ

1 +
(
seB
2µ3

)
nvα

1/n
n (µ sin θ)2−1/n cosφ

,

σ(2)
xx,τ =

τe4B2(n3α
2/n
n v)

4(2π)3µ3

∑
s=±

∫ 2π

0
dφ

∫ π

0
dθ

(µ sin θ)3−2/n

1 +
(
seB
2µ3

)
nvα

1/n
n (µ sin θ)2−1/n cosφ

,

σ(3)
xx,τ =

τe2nµ2

(2π)3v

∑
s=±

∫ 2π

0
dφ

∫ π

0
dθ

sin3 θ cos2 φ

1 +
(
seB
2µ3

)
nvα

1/n
n (µ sin θ)2−1/n cosφ

. (C.2)

To compute these integrals, next we need to perform a series expansion of the integrands
in powers of eB/2µ2 (see Appendix C.2).
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C.2 Power Series Expansion

0 2 4 6 8 10
0

5

10

15

20



ρ
(n
)

Figure 5. Scaling of ρ(n) [defined in Eq. (C.7)] with the monopole number n of generalized Weyl
fermions.

We seek to perform the integrals from Eqs. (C.1) and (C.2). As before, let us focus
on σ(1)

zz,τ . To compute σ(1)
zz,τ , we make use of the power series expansion

1

1 + ε
=
∞∑
i=0

(−1)iεi, (C.3)

which allows us to write

σ(1)
zz,τ =

τe3B(nv)

2(2π)2

∑
s=±

s

∫ π

0
dθ

∞∑
i=0

sin θ cos θ(−1)i
[(

seB

2µ2

)
n2α2/n

n cos θ(µ sin θ)2(n−1)/n

]i
.

(C.4)

To proceed further we need to interchange the integral with the sum sign. A sufficient
condition is

∑
n

∫
dx|fn(x)| < ∞, or equivalently,

∫
dx
∑

n |fn(x)| < ∞. Let us prove the
former condition. First of all, note that

∫ π

0
dθ

∣∣∣∣∣∣(−1)i

[(
eB

2

)
n2

(
αn
µ

)2/n

cos θ(sin θ)2(n−1)/n

]i
sin θ cos θ

∣∣∣∣∣∣
=

(eB)in2i
(
αn
n

)2i/n
Γ
[
1 + i

2

]
Γ
[
1 + i− i

n

]
2iΓ

[
2 + i

(
3
2 −

1
n

)] . (C.5)

Next we compute the ratio

r = lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

∣∣∣∣ eB2µ2

∣∣∣∣
∣∣∣∣∣ α2/n

n

µ2/n−2

∣∣∣∣∣
∣∣∣∣∣ n2Γ

[
3+i

2

]
Γ
[
2 + i− 1+i

n

]
Γ
[
2 + i

(
3
2 −

1
n

)]
2Γ
[
1 + i

2

]
Γ
[
1 + i− i

n

]
Γ
[
2 + (1 + i)

(
3
2 −

1
n

)]∣∣∣∣∣
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=

∣∣∣∣ eB2µ2

∣∣∣∣
∣∣∣∣∣ α2/n

n

µ2/n−2

∣∣∣∣∣ lim
i→∞

ρi(n). (C.6)

Specifically, for integer n bigger or equal to 1, we have

ρ(n) = lim
i→∞

ρi(n) = n(n− 1)(n−1)/n

(
3n

2
− 1

)1/n( n

3n− 2

)3/2

. (C.7)

We can now study ρ(n) as a function of n (see Fig. 5). For the series to converge r < 1.
With no loss of generality, we can assume αn/µ to be a positive finite number. Thus, for

finite n, we can always find the regime where
∣∣∣ eB2µ2

∣∣∣ < (∣∣∣ α
2/n
n

µ2/n−2

∣∣∣ ρ(n)
)−1

, making the series
convergent.

It can be shown for all the other terms that we can choose eB/2µ2 to be small in
order for the series to be convergent. Therefore, we can compute the desired integrals by
expanding the integrands in powers of eB/2µ2. Keeping only the terms up to quadratic
order in the magnetic field, we arrive at the results quoted in Eqs. (4.6)-(4.12).
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