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Abstract

Plasma screening effects affect the rate at which nuclear reactions occur in hot and dense
astrophysical plasmas. Their direct measurement in the laboratory has not succeeded
so far and is vital for our understanding of nuclear processes occurring in stellar nucle-
osynthesis. A promising route for such measurements involve petawatt laser facilities
capable of producing hot and dense plasmas in the laboratory. In this work, we consider
and compare theoretically four plasma screening models originally introduced for astro-
physical plasmas, and apply them to nuclear reactions in laser-generated plasmas for
a large range of densities and temperatures. We consider two astrophysically relevant
nuclear reactions, namely 13C(α, n) 16O, which is one of the important helium burning
processes in advanced stellar phases as well as one of the interesting neutron sources
for the slow neutron caption process of nucleosynthesis, and 7Li(d, α)α, which might
be the key to explain the lithium production problem of the standard big bang nucle-
osynthesis. Our results anticipate experiments on nuclear reactions in plasmas being
rendered possible at high power laser facilities such as the Extreme Light Infrastructure
under construction today, and shedding light on the validity of plasma screening models.

Die Effekte der Plasmaabschirmung (plasma screening) beeinflussen die Rate von Kern-
reaktionen in heißen und dichten astrophysikalischen Plasmen. Eine direkte Messung im
Labor war bisher nicht erfolgreich und ist wesentlich für unser Verständnis von nuklearen
Prozessen, welche in der stellaren Nukleosynthese vorkommen. Eine vielversprechende
Möglichkeit für solche Messungen beinhaltet Petawatt-Lasereinrichtungen, welche zur
Produktion von heißen und dichten Plasmas im Labor fähig sind. In dieser Arbeit wer-
den vier Modelle für Plasmaabschirmung, welche ursprünglich für astrophysikalische
Plasmen eingeführt wurden, theoretisch betrachtet und verglichen, und auf Kernreak-
tionen in Laser-generierten Plasmen für eine weite Auswahl von Dichten und Tempera-
turen angewandt. Wir untersuchen die zwei astrophysikalisch relevanten Kernreaktionen
13C(α, n) 16O, welches einer der wichtigen Heliumverbrennungsprozesse in fortgeschrit-
tenen Sternphasen sowie eine der interessanten Neutronenquellen für den s-Prozess der
Nukleosynthese ist, sowie 7Li(d, α)α, was der Schlüssel zur Erklärung des Problems der
Lithiumproduktion in der Standard-Urknall-Nukleosynthese sein könnte. Unsere Ergeb-
nisse wurden in der Erwartung berechnet, dass Experimente an Kernreaktionen in Plas-
men an Hochenergie-Lasereinrichtungen möglich sein werden, wie z.B. die Extreme Light
Infrastructure, welche sich heute im Bau befindet. Dies könnte über die Gültigkeit der
Plasmaabschirmungsmodelle aufklären.
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1 Introduction

A plasma is an ionized gas — a fundamental state of matter besides solids, liquids and

non-ionized gases. For the definition used here, the ionization is strong enough for the

plasma to be highly electrically conductive. Through the charge separation, macroscopic

currents and magnetic fields can occur and influence the macroscopic dynamics of the

plasma [1].

Plasmas can be generated by heating a gas to the extent that the thermal energy is

large enough for ionization to occur. The most prominent example for this are stars,

where the thermal energy is commonly larger than the ionization energy of the plasma

constituents, making plasma the most abundant form of matter in the observable uni-

verse. Stars consist of plasma because of their high temperature, which is mainly sus-

tained through thermonuclear reactions. In turn, the rates of these nuclear reactions

depend heavily on the plasma environment [2]. Therefore, measurements of these reac-

tion rates allow to draw conclusions about the plasma behavior.

In order for nuclear reactions to occur, the Coulomb barrier between the two reacting

nuclei must be overcome. Even in stars, this is not classically possible: The thermal

energy is much smaller than the energy necessary to combine two nuclei as close as the

length scale of their nuclear radius. Instead, the cross section of the reaction, which is

energy dependent, must be calculated quantum-mechanically because the ions still have

a non-zero probability of presence in the “forbidden” region. This probability is highly

dependent on the kinetic energy of the reacting ions relative to each other.

Because of the local charge separation in plasmas, the Coulomb potential can be quite

strongly modified especially for larger distances, depending on the plasma parameters.

This is the plasma screening effect which enhances the reaction rates in a plasma envi-

ronment by reducing the Coulomb barrier. As detailed in Ref. [3], the bare cross-sections

can be measured using neutral atoms and molecules, but taking into account another

type of screening, electron screening, which is very distinct from the plasma screening

considered here. In Ref. [4], this extraction of the bare cross-sections for laboratory

measurements is discussed.
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To calculate the plasma screening factor, the factor by which the reacting rates are

enhanced, different models can be used. Historically, the weak screening model by

Salpeter [2] serves as basis to several other models. As mentioned there, it is mathe-

matically equivalent to the Debye-Hückel model for solutions of electrolytes [5]. Mitler

improved this model using a more realistic approximation for the electron density and

the interaction energy between two reacting ions [6]. His work is based on Ref. [7] and

Ref. [8], where the approach by Salpeter [2] is extended. Refs. [6, 9] develop a differ-

ent approach that uses the same electrostatic potential, but calculates the penetrability

explicitly and the reaction rate is compared to a pure Coulomb potential. These three

models are all classical or semiclassical. Alternatively, Ref. [10] uses the density matrix

formalism to consider quantum mechanical effects. Other attempts to extend the weak

screening are reviewed in Ref. [9], but are not discussed here.

Obtaining experimental data to test the validity of plasma screening models is difficult,

because achieving in the laboratory the conditions under which plasma screening occurs

is very challenging. So far, different screening models were only studied on the basis of

reactions rates in astrophysical environments, which may be measured indirectly through

astrophysical observations such as solar neutrino fluxes. In Ref. [9], such a comparison

is performed, revealing a large discrepancy between the semiclassical theoretical models

and the neutrino measurements. Using the quantum model [10], this discrepancy can be

slightly reduced, but not removed. Ref. [4] explains that the actual discrepancy is mostly

due to the phenomenon of neutrino oscillations reported in [11] (Super-Kamiokande) and

[12] (Sudbury Neutrino Observatory) and is therefore not related to the used plasma

models. Thus, the neutrino flux measurements do not yield precise enough values to

decide which model is most appropriate for plasma screening [4]. Direct measurements

of the plasma screening factor in plasma environments would be required for that.

As proposed in Ref. [13], colliding laser-produced plasmas can be used to investigate

nuclear fusion in a plasma environment inside a laboratory. Solely heating a non-ionized

gas in order to ionize it is rather impractical in a laboratory because of the high tem-

perature required. Applying a strong electric field is much easier, but still the plasma

conditions that could be achieved are far from those of astrophysical plasmas, hence

the need for laser-generated plasmas. Several facilities exist today where strong enough

optical lasers are available or being built [14–20]. One proposed setup discussed in the

following requires two high-power optical lasers. Such lasers with a peak power up to 10

petawatt (PW) are being built at the Nuclear Pillar of the Extreme Light Infrastructure

(ELI-NP) [21]. The experimental setup consists of a gas jet of helium or deuterium and
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1 Introduction

a solid target shown in Fig. 1.1. The gas jet is ionized by one laser pulse, while the other

laser ionizes the solid target and accelerates this primary plasma towards the secondary

helium or deuterium plasma. This setup would allow a measurement of plasma screened

reaction rates in a laboratory, and the comparison of the measured screening effect to

theoretical models.

Figure 1.1: Experimental setup at ELI-NP, reproduced from Ref. [3].

In this work we perform for the first time calculations for the PW laser scenario taking

into account the plasma screening effects based on several theoretical models. We use

four plasma models: the Salpeter model [2], in the following denoted by M1, the Mitler

model [6] (M2), a variant of M2 using the Wentzel–Kramers–Brillouin (WKB) method

[6, 9] (M3), and the quantum mechanical model [10] (M4). Numerical results for these

four models are presented for two reaction of astrophysical interest: 13C(α, n) 16O, which

is one of the important helium burning processes in advanced stellar phases as well as one

of the interesting neutron sources for the slow neutron caption process of nucleosynthesis,

and 7Li(d, α)α, which might be the key to explain the lithium production problem of

the standard big bang nucleosynthesis. We consider plasma densities in the region 1018–

1024 cm−3 and temperatures in the interval 50–100 eV for the respective applicability

domain. Our results show that there are considerable differences between M1 and M2.

M3 however does not differ significantly from M2 for all considered cases, a conclusion

also noted in Ref. [9]. M4 differs from the other models slightly, but more so than M1,

M2 and M3 among themselves especially at large temperatures and small RD. For small
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temperatures and large densities however, M4 is no longer applicable. Numerically, this

conincides with severe difficulties with the used grid size and spacing. To verify the

validity of the considered four models, the values computed here need to be compared

to experimental data. We anticipate that a future experiment at ELI-NP as described

above can yield precise enough measurements to enable this comparison.

This work is structured as follows: In Ch. 2, reaction rates and plasma screening are

discussed. The relevant parameters and assumptions for all models are defined here.

Ch. 3 discusses the classical and semiclassical models, M1, M2 and M3 in detail, i.e.

their assumptions and derivation. In Ch. 4, M4 is described in great detail. The first

part of Ch. 4 deals with the influence of the electrostatic energy on the screening factor,

while the second part shows the calculation of the quantum mechanical deviation of

the mean kinetic energy from the prediction of the equipartition theorem, (3/2)kBT .

Ch. 5 shows the numerical results for the previously mentioned parameters. The work

concludes with a summary and outlook in Ch. 6.

As unit system, (Hartree) atomic units are used throughout this work (unless otherwise

mentioned), except for the temperatures and densities, which are given in eV and cm−3.
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2 Screening of reaction rates in a

plasma

The plasma considered here is electrically neutral and consists of positive ions and elec-

trons. It is large enough that boundary effects are negligible, and the time scale of the

nuclear reactions is much smaller compared to any change in external parameters, which

therefore can be considered as fixed. In the plasma environment, the other ions and elec-

trons in the plasma affect the reacting ions. The classical model of Salpeter in Ref. [2]

describes this plasma screening of the positive ions’ pure Coulomb potential through

“charge clouds”, which reduce the Coulomb potential. Because these “charge clouds”

are mostly determined by electrons, the electromagnetic field around the reaction ions

can be treated electrostatically. This means that the reactions in the plasma can be

considered quasi-static and statistical equilibrium is assumed at all times.

2.1 Reaction rates

For a reaction between two ions to occur, they first have to overcome the Coulomb

barrier. Because the Coulomb potential is screened by the plasma environment, there

is an increased reaction rate compared to a pure Coulomb potential. Since the cross

section is highly dependent on the kinetic energy, the reaction rates can be calculated

by integrating the cross section over all possible energies weighted with the kinetic energy

distribution of the reacting ions in the plasma. For the cases considered here, a classical

Maxwell-Boltzmann distribution is used. The intrinsic nuclear part S of the cross section

σ(E) =: P (E)S/E with penetrability P (E) is considered to be negligibly dependent on

the kinetic energy of the reacting ions [9].

Let v(E) ≈
√

2E/mred be the non-relativistic velocity of the reacting ions with mred

being their reduced mass, and E their relative kinetic energy. Given the cross section

σ(E) of the reaction in question, the unscreened, average reaction rate per volume

and per number density of both reactants for a Maxwell-Boltzmann distribution at
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2.2 Screening factor

temperature T is

〈σv〉 =
2β

3
2

√
π

∫ ∞
0

dEσ(E)v(E)
√
Ee−βE, (2.1)

see Ref. [2], Eq. (1) or Ref. [9], Eq. (6). β := 1/(kBT ) is the thermodynamic beta.

In Eq. (2.1), the integrand is almost zero except for a small region around the Gamow

energy [6]. Here, the “joint probability” for the relative kinetic energy to occur in the

Maxwell-Boltzmann distribution and for the tunneling to be “successful” is maximal.

For a pure Coulomb potential between ions with charge numbers Z1 and Z2, the Gamow

peak of the integrand is at

EG, pure =

(
1

β

√
mred

2
Z1Z2

) 2
3

; (2.2)

for the derivation see Eq. (3.44).

2.2 Screening factor

The temperature is assumed to be low enough such that the classical turning point

between the ions is much larger than the length scale on which nuclear reactions take

place. Therefore, the influences of nuclear and plasma effects are well separated, meaning

that the intrinsic nuclear part of the cross-section is assumed to be constant. This is

done by calculating an enhancement factor, i.e., the ratio of the reaction rate in the

considered plasma and the theoretical reaction rate calculated by considering a pure

Coulomb potential. If the separation of nuclear and plasma effects is assumed, it can be

seen that for a wide range of parameters, the screening factor can be calculated without

an integration over the cross section and is not significantly dependent on the masses

of the reacting nuclei. Therefore, this enhancement factor f is precisely what we want

to calculate in order to be able to compare the plasma screening model to experimental

measurements:

f :=
〈σv〉screened

〈σv〉unscreened

(2.3)
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2 Screening of reaction rates in a plasma

2.3 Plasma parameters

The relevant parameters used are the temperature T (or β), as well as the charge, mass

and densities of the plasma constituents and the reacting ions. Let Zi be the charge

number of the ion with index i, Ai its mass number and Xi its mass fraction in the

plasma. Given the mass density ρmass, the baryon number density nba and the electron

number density ne are (neglecting the electron mass)

nba =
1

u
ρmass, (2.4)

ne = nba

∑
i

ZiXi

Ai
, (2.5)

with the atomic mass unit u.

In the following, the indices 1 and 2 stand for the considered reacting ions, with

Z1 ≥ Z2. X1 and X2 may be negligible, e.g. when the reacting ions are not part of

the plasma, but are introduced externally as an ion beam. Their kinetic energy is still

assumed to be thermal.

Because statistical equilibrium is assumed, the electron and ion densities are modified

by a Boltzmann factor:

ni(~r) = n̄ie
−βZieΦZ(~r), (2.6)

ne(~r) = n̄ee
βeΦZ(~r), (2.7)

where the sum over i is taken over all significantly abundant ions in the plasma. Fur-

thermore, ΦZ(~r) is the spatially dependent electrostatic potential around an ion (or

two “combined” ions) with charge Z, which is spherically symmetric because of the as-

sumption of a homogeneous plasma. The potential is given by the Poisson-Boltzmann

equation — Ref. [2], Eq. (15) and Eq. (16):

~∇2ΦZ(~r) = −4π

(
Zδ(3)(~r) + nba

∑
i

ZiXi

Ai
e−βZiΦZ(~r) − nee

βΦZ(~r)

)
. (2.8)

(See Sec. 2.3 for the parameters.)

These assumptions are shared by all models treated here, with the exception of the

electron density in Eq. (2.8), which is calculated differently in the quantum mechanical

model described in Sec. 4.1.

In the next chapters, we proceed to introduce these models in more detail. M1, M2
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2.3 Plasma parameters

and M3, the classical and semiclassical models, are described in Ch. 3, whereas M4 is

reviewed in Ch. 4.
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3 Classical and semiclassical models

The first model described here is the weak screening model (M1) developed by Salpeter

in Ref. [2], which is (apart from the electron degeneracy factor) purely classical. It also

forms the basis for all other discussed models. The used linear approximation of the

Poisson-Boltzmann equation, Eq. (3.1) results in the Debye-Hückel potential.

To improve this model considerably, the electrostatic potential was more carefully

derived by Mitler in Ref. [6] to obtain a better behavior at the origin (M2). Instead of

using the potential energy directly as interaction energy, the change in free energy when

combining the reacting ions is used.

In the model of Ref. [9] (M3), the ratio of the screened and unscreened reaction

rates are calculated directly. For this, the WKB approximation is chosen instead of the

“amplitude density function” method in the paper. The quantum mechanical effects are

instead considered more elaborately in the dedicated quantum mechanical model (M4)

in the next chapter.

3.1 Salpeter’s model for weak screening (M1)

3.1.1 Assumptions

Let a = 3
√

1/(4πnba). Then inside a sphere of radius a, a mass of 1
3
u (atomic mass

unit) is contained. The assumption of statistical equilibrium is valid if a is small com-

pared to the characteristic scale of the charge distribution, the Debye-Hückel radius RD

(Eq. (3.5)). This is fulfilled for low densities and high temperatures. To justify the

linear approximation in the Poisson-Boltzmann equation in Eq. (3.1), the Coulomb en-

ergy between Z1 and Z2 should be small compared to β−1. As noted in Ref. [9], this is

given for RD � rt with the classical turning point of the potential energy for the ion

Zi, rt. The semi-classical treatment of the electrons is valid if the (absolute value of

the) energy of the bound states is much smaller than the thermal energy. For a ground-

state electron (first quantum number n = 1) in a hydrogen-like atom of charge Z, this
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3.1 Salpeter’s model for weak screening (M1)

means βZ2/2� 1. This condition is not fulfilled for the lowest temperatures considered

in Ch. 5, especially with ions of high charge numbers. At higher temperatures, this

problem does not appear. These assumptions are described in more detail in Ref. [2].

In addition, the weak screening model accounts for the statistical nature of the elec-

trons with a modified R̃D, as described in Sec. 3.1.3.

3.1.2 Derivation

In the considered scenario, Z1 is fixed at the origin and the effect of the electrostatic

potential on Z2 are regarded. This assumption is only symmetric in Z1 and Z2 for the

model discussed here; in the Mitler model, the change in free energy when combining

Z1 and Z2 is calculated from the electrostatic energy, and in the WKB model, the

calculation is done in the center of mass frame using the reduced mass. To solve the

Poisson-Boltzmann equation (2.8) analytically, the exponentials are approximated to

linear order:

~∇2Φ(~r) = 4π

(
−Z1δ

(3)(~r) + nba

∑
i

ZiXi

Ai
βZiΦ(~r) + neβΦ(~r)

)
. (3.1)

The constant terms of the expansions cancel each other due to Eq. (2.5). Because the

problem is spherically symmetric (in the Z1 coordinate system) and as per assumption

electrostatic, this is an inhomogeneous ordinary differential equation of second order in

r. With Ψ(r) := Φ(r)− Z1/r, it becomes

(
2

r

∂

∂r
+

∂2

∂r2

)
Ψ(r) = 4π

(
nba

∑
i

ZiXi

Ai
βZi + neβ

)(
Z1

r
+ Ψ(r)

)
. (3.2)

The homogeneous equation without the 1/r-term is solved by the following two solutions:

Ψ̃1(r) =
Z1

r
e
− r
RD , (3.3)

Ψ̃2(r) =
Z1

r
e

r
RD . (3.4)

There, RD is the Debye-Hückel radius, given by

RD
−2 = 4π

(
nba

∑
i

ZiXi

Ai
βZi + neβ

)
= 4πnbaβ

∑
i

Xi

Ai

(
Z2
i + Zi

)
. (3.5)
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3 Classical and semiclassical models

The two solutions Ψ̃1 and Ψ̃2 are linearly independent, because the Wronskian is

Ψ̃1Ψ̃′2 − Ψ̃2Ψ̃′1 = − 2Z2
1

r2RD

6≡ 0. (3.6)

A particular solution of the inhomogeneous equation is given by

Ψ =
Z1

r

(
e
− r
RD − 1

)
. (3.7)

Because lim
r→∞

Ψ̃2(r) = ∞, and Φ should go to Z1/r (plus a constant term) for r → 0,

this particular solution is already the only physical solution.

The effect of Ψ is to increase the kinetic energy of the other reacting particle Z1

compared to a pure Coulomb potential because of the increased potential energy (“in-

teraction energy”)

δV (r) = Z2Ψ(r) ≈ δV (0) =
Z1Z2

RD

. (3.8)

Modifying Eq. (2.1) with this shift gives then

〈σv〉screened =
2β

3
2

√
π

∫ ∞
δV (0)

dE ′σ(E ′)v(E)
√
Ee−βE (3.9)

as described in Ref. [9]. The kinetic energy is shifted by E → E ′ = E + δV (0).

Due to the assumption that the classical turning point is much smaller than RD, we

have V (0) � EG, pure with the Gamow energy EG, pure from Eq. (3.44), and thus the

screened reacting rate becomes

〈σv〉screened =
2β

3
2

√
π

∫ ∞
0

dE ′σ(E ′)v(E ′)
√
E ′e−β(E′−δV (0)). (3.10)

The screened rate therefore differs from the unscreened rate only by the enhancement

factor [see Eq. (2.3)]

f = eβδV (0). (3.11)

3.1.3 Electron degeneracy

In the model of Ref. [2], the only non-classical consideration is a change of RD by

considering the Fermi-Dirac statistics for the electrons, which are treated as a Fermi
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3.1 Salpeter’s model for weak screening (M1)

gas. For low enough densities (see Sec. 3.1.1), the ratio of the Fermi energy to the

thermal energy kBT is given by

D := βEF = β
1

2
(3π2ne)

2
3 . (3.12)

For a free Fermi gas, the mean electron density can be calculated as

ne =

√
2

π2
β

2
3f(η) (3.13)

with the Fermi-Dirac integral

f(η) =

∞∫
0

dx

√
x

e(x−η) + 1
(3.14)

and η = βµ, where µ is the chemical potential. This way, η can be determined by

solving Eq. (3.13) numerically. Given the (change in) potential energy for the electrons,

Ve = −eΨ, the electron density is given by

ne
f(η − βVe(r))

f(η)
≈ 1− βVe(r)

f ′(η)

f(η)

instead of the Boltzmann factor. This means that the Debye-Hückel radius is replaced

for all calculations by

R̃−2
D = 4πnbaβ

∑
i

Xi

Ai

(
Z2
i + Zi

f ′(η)

f(η)

)
. (3.15)

For this model, this means replacing RD by R̃D in Eq. (3.8) and correspondingly in

Eq. (3.11).

3.1.4 Summary

Because of the rather strong assumptions used in this model, the calculation of the

screening factor is very easy. Given R̃D from Eq. (3.15), or only RD with f ′/f ≈ 1, the

screening factor f is obtained from Eq. (3.11) with Eq. (3.8).
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3 Classical and semiclassical models

3.2 Mitler formula (M2)

The model discussed next is the first part of “Model A” by Mitler in Ref. [6].

3.2.1 Derivation

Potential

To calculate the change in free energy (in Sec. 3.2.1), the potential is not only calculated

for a charge Z1 as in the weak screening model, but for an arbitrary charge Z. The

Poisson-Boltzmann equation, Eq. (2.8), is still used. However, it is not linearly approxi-

mated as before, but only for large r. This is performed by splitting the density into two

parts: r < r1 and r > r1, where r1 is determined in order to fulfill correct normalization

(i.e. a total charge of 0). For small r, the electron density is approximated by the

constant plasma mean density ne, unlike for the Debye-Hückel result, where it diverges.

For large r, the previous solution for the linear approximation of the Poisson-Boltzmann

is still used, with R̃D from Eq. (3.15). The result is:

ρZ(r) =


ρZ,inside(r) ≈ Zδ(3)(r)− ne, r < r1,

ρZ,outside(r) ≈ −r1ne
e−R̃

−1
D (r−r1)

r
, r > r1,

(3.16)

with r1 = R̃D

(
3Z

4πneR̃3
D

+ 1

) 1
3

− R̃D (3.17)

With the normalization constant of ρZ,outside defined in this manner, ρZ is automatically

continuous at r = r1. r1 can be calculated by solving
∫
d3rρZ(~r)

!
= 0, for which there

only is one real solution. The potential is then simply given by solving the Poisson

equation ~∇2ΦZ = −4πρZ analytically:

ΦZ(r) =


Z

r
− 2πne(2R̃Dr1 + r2

1) +
2

3
πner

2, r < r1,

4πner1R̃
2
D

e−R̃
−1
D (r−r1)

r
, r > r1.

(3.18)

The solution for r < r1 is unique, because the (non-constant) homogeneous solution of

the radial Laplace equation for r > 0, ∝ 1/r, is fixed by the delta function of ρZ,inside.

The constant term is chosen to ensure ΦZ is continuous at r = r1. For r > r1, the

solution is unique, because the the potential should go to 0 for r →∞, which implies a

vanishing constant term. Including a term ∝ 1/r would make the r-derivative at r = r1
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3.2 Mitler formula (M2)

discontinuous. For weak screening with strong non-degeneracy, R̃D ≈ RD and r1 ≈ 0,

from which the previous result, the Debye-Hückel potential, is recovered.

Free energy

The potential energy Z2ΦZ1 is not symmetric in 1 and 2, because the respective “polar-

ization clouds” do not superimpose linearly, but continuously deform. To account for

this, the interaction energy is rather taken to be the change in free (Helmholtz) energy

∆F (r), with r being the distance between Z1 and Z2.

Thus Eq. (3.8) is, to first order, replaced by

V (r) ≈ Z1Z2e
2

r
+ ∆F (0), (3.19)

with the change in free energy when “combining” Z1 and Z2, ∆F (0) = ∆F (r = 0). In

order to determine ∆F (0), the work done by combining Z1 and Z2 needs to be calculated

from the change in electrostatic self-energy. The latter, excluding the infinite self-energy

of the charge Z, is given by

UZ =
Z

2
δΦZ(0) +

1

2

∫
d3rΦZ(r)δρZ(r) (3.20)

with δΦZ = Φ − Z
r

and δρ = ρ − Zδ(3)(r), as stated in Ref. [10]. For the previously

calculated charge density and potential, Eq. (3.16) and Eq. (3.18), respectively, the

electrostatic energy is given by

UZ = 2πner1

(
−2πR̃3

Dner1 − R̃DZ +
4

3
πR̃Dner

3
1 − Zr1 +

8

15
πner

4
1

)
. (3.21)

To obtain the free energy, we consider the canonical partition function Zpart. The free

energy and the mean energy (ensemble average) are given by

〈U(β)〉 = − ∂

∂β
ln(Zpart), (3.22)

F = − 1

β
ln(Zpart). (3.23)
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3 Classical and semiclassical models

We then obtain:

∂

∂β
(βF ) = 〈U(β)〉 and (3.24)

βF
∣∣∣
β=0

= 0 (3.25)

=⇒ βF =

β∫
0

〈U(τ)〉 dτ. (3.26)

Setting 〈U〉 = UZ and integrating over a := 1/R̃3
D, this results in the free energy

FZ =
2

3

1

a
2
3

a∫
0

UZ(a′) da (3.27)

= −8

5
π2n2

eR̃
5
D

[(
1 +

3Z

4πR̃3
Dne

) 5
3

− 1− 5Z

4πR̃3
Dne

]
(3.28)

= −8

5
π2n2

eR̃
5
D

(
(ζZ + 1)

5
3 − 1− 5

3
ζZ

)
, (3.29)

where ζZ = 3Z/(4πneR̃
3
D). Thus the difference in free energy when combining Z1 and

Z2 from being infinitely far separated is

∆F (0) = FZ1+Z2 − FZ1 − FZ2

= −8

5
π2n2

eR̃
5
D

(
(ζZ1 + ζZ2 + 1)

5
3 − (ζZ1 + 1)

5
3 − (ζZ2 + 1)

5
3 + 1

)
. (3.30)

If Eq. (3.11) is still assumed, the enhancement factor becomes

f = eβ|∆F (0)|. (3.31)

As noted by Mitler, the linear approximation which leads to Eq. (3.11) increases the

inaccuracy of the linear approximation of the Poisson-Boltzmann equation for plasma

parameters where the linearization it is no longer valid. Instead, the screened and

unscreened reaction rates should be calculated more accurately, e.g. with the WKB

approximation for the penetration factor, as discussed in the next section.
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3.3 WKB method (M3)

3.3 WKB method (M3)

Instead of using Eq. (3.31), the reaction rates with and without screening are calculated

and then compared. This is described in Ref. [9].

3.3.1 WKB wave function in a temporally constant potential

This section follows the derivation of the one-dimensional WKB wave function of a

single particle in a slowly varying potential from Ref. [22], section 31.3, generalized to

3 dimension with spherical symmetry. ~, which is 1 in atomic units, is restored only in

this section to separate the order of the derivatives. Assuming V (r) ≥ E, the radial

wave function of a single particle can be calculated. The Schrödinger equation (with ~
restored) for a particle with mass m is

− ~2

2m
~∇2Ψ(r) = (E − V (r))Ψ(r) (3.32)

with constant total energy E and potential V (r). Using Ψ(r) = Ψ0e
−f(r)/~ with a real

function f in Eq. (3.32), this results in

− ~2

2m
~∇2e−

f(r)
~ = (E − V (r))e−

f(r)
~ (3.33)

=⇒ ~~∇2f −
(
~∇f
)2

= 2m(E − V (r)) (3.34)

=⇒
(
~∇f
)2

− ~~∇2f = 2m(V (r)− E). (3.35)

Using the WKB idea of separating the partial differential equation in orders of ~, which

correspond to the orders of the derivatives, we can write f = W + ~W1 + · · ·. The

differential equation Eq. (3.35) is fulfilled for W approximately by using only the parts

with power ~0:

=⇒
(
~∇W

)2

= 2m(V (r)− E) (3.36)

i.e. (only using the radial part) (
df

dr

)2

= 2m(V (r)− E). (3.37)
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3 Classical and semiclassical models

To compute the penetration factor, the probability density at r = 0 compared to the

classical turning point rt with E = V (rt) is determined. Thus

W (r) = ±
rt∫
r

dr′
√

2m(V (r′)− E). (3.38)

Only the positive solution makes sense, because the probability should fall for small r

and not rise exponentially. This approximation is valid for small wavelengths, that is

for ~−1
√

2m(V − E)� rt.

We now turn to the calculation of the screening factor using the results from this

section.

3.3.2 Derivation

The reaction rates are calculated from Eq. (2.1) for an unscreened σunscreened(E) and a

screened σscreened(E). The cross section can be written as

σ(E) =
S(E)

E
P (E) (3.39)

with nuclear part S(E) ≈ S, which is approximately constant. P (E) is the penetra-

tion factor, which can be obtained from the electrostatic potential. For this the WKB

approximation is used. From the preceding paragraph, the penetration factor can be

obtained from

P (E) =: e−G(E) =
|Ψ(0)|2

|Ψ(rt)|2
= e−2W (0) (3.40)

= exp

(
− 2
√

2µ

rt∫
0

dr′
√
V (r′)− E

)
(3.41)

where m was substituted by the reduced mass µ of the reacting ions and ~ = 1 was

omitted again.

For a pure Coulomb potential, V = Z1Z2/r, G(E) can be obtained analytically:

G(E) = 2
√

2µ

Z1Z2
E∫

0

dr′
√
Z1Z2

r′
− E =

√
2µπZ1Z2√

E
. (3.42)

To obtain G(E) for the screened potential, the integration needs to be performed nu-
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3.3 WKB method (M3)

merically. With the electrostatic potential ΦZ(r) from Eq. (3.18), the potential is given

by V (r) = Z1ΦZ2(r) ≡ Z2ΦZ1(r).

3.3.3 Gamow energy

As mentioned in 3.1.2, the factor exp(−G(E)− βE) almost vanishes everywhere except

for a small region around the Gamow energy EG > 0, at which it is maximal. To find

the Gamow energy, G(E) + βE needs to be minimized. Because the second derivative

of this expression is positive,

G′(EG) + β
!

= 0 (3.43)

=⇒ EG =

(√
µ

2

πZ1Z2

β

) 2
3

(3.44)

for a pure Coulomb potential.

3.3.4 Numerical calculation

We are only interested in the ratio of the screened and unscreened reaction rates, not

their absolute values. Thus it is advantageous to calculate values proportional to the

rates which are not too small to handle numerically with a (double-precision) float-

ing point representation. To achieve this, the factor exp (−G(E)− βE) is replaced by

exp (−G(E)− βE +G(EG,pure) + EG,pure) with the Gamow energy for the pure Coulomb

potential, EG,pure, from Eq. (3.44) for both reaction rates. Doing so prevents rounding

the exponential to 0.
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4 Quantum model (M4)

This model from Ref. [10] (M4) also calculates the change in free energy for the screening

factor in Eq. (3.31), as does the Mitler model M2. However, the electrons are treated

much more extensively via the density matrix formalism described in Ref. [23]. In the

first part, the change in free energy is determined by numerically calculating the diagonal

of the density matrix, which is proportional to the electron density. Using this electron

density, the Poisson-Boltzmann equation is solved numerically to obtain the potential

and finally the electrostatic energy.

For the second part, the assumption that the electrons have a mean kinetic energy of

(3/2)kBT is dropped and the corresponding change in free energy calculated from the

density matrix for the electrons. The Debye-Hückel potential is used for large r, and

for small r the density matrix is obtained from bound and continuum eigenstates with

corresponding Boltzmann factors.

Both parts are only valid as long as β/R̃D is small enough. This is due to the used

approximations of the potential and charge density by the Debye-Hückel potential, which

is not valid if β > R̃D. In the first part, this could be alleviated by using the Mitler

potential instead as initial value and for large r, but this is out of scope for this work.

4.1 Density matrix formalism

4.1.1 Derivation

Density matrix in the canonical ensemble

The density operator is defined as

ρ̂ = pi
∑
i

|ψi〉 〈ψi| (4.1)
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4.1 Density matrix formalism

for a normalized basis ψi of the Hilbert space and probabilities pi. In position represen-

tation, the density “matrix” is defined as

ρ(~x, ~x′) = 〈~x| ρ̂ |~x′〉 . (4.2)

The “diagonal” of the density matrix is the probability density:

ρ(~x) = ρ(~x, ~x). (4.3)

In the canonical ensemble in statistical equilibrium, the density operator is given by

ρ̂ = eβF e−βĤ (4.4)

with normalization exp(βF ) := Tr[exp(−βĤ)]. This is described in Chapter 2.3 of

Ref. [23]. Ĥ = −(1/2)~∇2 + V is the Hamilton operator of the system with potential

energy V and β = 1/(kBT ) with temperature T .

In the following, the factor exp(βF ) is omitted and the unnormalized density matrix

is used. To obtain the number density of the described particles, the result is divided

by the corresponding value for a uniform distribution, i.e. with V = 0. Thus

− ∂

∂β
ρ̂ = Ĥρ̂ (4.5)

=⇒ − ∂

∂β
〈~x| ρ̂ |~x′〉 = 〈~x| Ĥρ̂ |~x′〉 (4.6)

= 〈Ĥ~x| ρ̂ |~x′〉 , (4.7)

because Ĥ is Hermitian. In position representation

∂

∂β
ρ(~x, ~x′; β) =

(
1

2
~∇2
x − V (~x)

)
ρ(~x, ~x′; β). (4.8)

In the limit of infinite temperature, the unnormalized density operator is ρ̂ = 1, because

β = 0. The initial condition for the partial differential equation (4.8) at β = 0 is thus

ρ(~x, ~x′; 0) = 〈~x|1 |~x′〉 = δ(3)(~x− ~x′). (4.9)

This implies a uniform distribution without any spatial correlation, as would be expected

in the high-temperature limit. To obtain the density matrix at inverse temperature β,
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4 Quantum model (M4)

Eq. (4.8) can be integrated from β̃ = 0 to β̃ = β. For V = 0, this results in

ρ0(~x, ~x′; β) =

(
m

2πβ

) 3
2

e−β
m
2
|~x−x′|2 . (4.10)

The probability density is then

ρprob.(~x) =
ρ(~x, ~x; β)

ρ0(~x, ~x; β)
=

(
2πβ

m

) 3
2

ρ(~x, ~x; β). (4.11)

Total charge density

The charge density can be calculated given the electrostatic potential ΦZ . For electrons,

the potential energy is simply VZ = −ΦZ . With the density matrix obtained from the

preceding section with V = VZ and m = 1 (electron mass), the electron density is

neρe(r) = ne(2πβ)
3
2ρ(~r, ~r; β) (4.12)

with the average plasma electron density ne. The rest of the total charge density is the

same as in Eq. (2.8):

ρtotal = Zδ(3)(~r) + nba

∑
i

ZiXi

Ai
e−βZiΦZ(r) − neρe. (4.13)

Potential

To obtain the potential, the Poisson-Boltzmann equation with the charge density from

Eq. (4.13) is solved numerically. Instead of solving for the divergent ΦZ , the equation is

solved for δΦZ = ΦZ − Z/r:

~∇2δΦZ = −4π

(
nba

∑
i

ZiXi

Ai
e−βZi(δΦZ(r)+Z

r ) − neρe

)
. (4.14)

Screening factor

The electrostatic energy UZ is calculated by iterating the above procedure three times.

As starting potential, the Debye-Hückel potential

ΦZ(r) =
Z

r
exp− r

R̃D

(4.15)
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4.1 Density matrix formalism

is used and from this the electron density calculated with the density matrix formalism.

The potential does not depend on the integration variable β̃, because the electron density

is calculated for the (in the current iteration) given fixed potential. Solving Eq. (4.14)

yields then the improved potential. UZ can then be obtained from Eq. (3.20). To get

the corresponding free energy, Eq. (3.26) is numerically integrated:

FZ =
1

β

β∫
0

UZ(τ) dτ. (4.16)

Obviously, R̃D is dependent on τ and must be calculated for each UZ(τ). Eq. (3.31) is

then used to calculate the enhancement factor, with

∆F (0) = FZ1+Z2 − FZ1 − FZ2 . (4.17)

4.1.2 Numerical calculation

Eq. (4.8) and Eq. (4.14) are both solved numerically as described in the following.

Electron density

In order to solve the partial differential equation (4.14), space and the integration vari-

able, now called τ , are discretized.

As described in Ref. [10], a 303 grid with 313 points and a spacing of ∆ = 0.015 are

used. The Laplace operator is approximated by using central finite differences with a

five-point stencil and propagating explicitly from τ = 0 to τ = β.

To obtain the density matrix for different ~r, this integration needs to be performed for

different ~x′ = ~r. Due to the spherical symmetry and because the only point of interest

is the diagonal ~x = ~x′, ~x′ = 0 can be chosen, but the potential shifted such that it is

centered at ~x′. The diagonal element is then the value at the origin for every ~r. This

guarantees that the point of interest is always in the middle of the grid and boundary

effects are reduced. The term 1/r is regulated as described in Sec. 4.1.2.

The ~r points are chosen on a diagonal of the grid from r = 0 to r ≈ rmax = 0.4 / R̃D.

ΦZ is given for discrete (one-dimensional) r = 0 until r = rmax, which is detailed in the

next section. For r ≤ rmax, ΦZ is interpolated using a cubic spline, while for r > rmax,

the classical Debye-Hückel potential, V = −Z/r exp(−r/R̃D), is used.

Because the initial condition is a δ-function, which can not be (directly) used numer-
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4 Quantum model (M4)

ically, an approximation needs to be used. For this, the analytical solution Eq. (4.10) is

used at τ = τ0, essentially neglecting the potential at high temperatures. The numerical

integration with the potential is then continued from τ = τ0 to τ = β. In order to de-

termine a good τ0, the steps in Ref. [24], page 2213, are used for the chosen grid spacing

∆ and the “support” rmax. This means solving the equation

exp

(
x2 − π2m2

x2

)
!

=
m∆

π
(4.18)

with m = rmax/(
√

3∆) for x and setting τ0 = x2/(2π2) = 7.09× 10−4 for the given choice

of ∆ and rmax.

To calculate FZ from Eq. (4.16), UZ is calculated for 30 evenly spaced τ values. These

are obtained from Eq. (3.20) where the r-integration is performed numerically from r = 0

to r = rmax. The remaining term is approximated by the Debye-Hückel potential ΦZ =

(Z/r) exp(−r/R̃D) and the corresponding charge density from the linearized Poisson-

Boltzmann equation, δρZ = −Z exp(−r/R̃D)/(4πR̃2
D):

1

2

∞∫
rmax

drr2ΦZ(r)δρ(r) = − Z2

4R̃d

e
− 2rmax

R̃D . (4.19)

Potential

Eq. (4.14) is a one-dimensional problem due to the spherical symmetry. As mentioned

above, it needs to be solved from r = 0 to r = rmax. This is done radially by discretizing

r, but with finer spacing ∆δΦ < ∆, which can be chosen since the problem is just one-

dimensional. The electron density, calculated only for a few r, is interpolated afterwards

using a cubic spline. For the Laplace operator, only the radial part is used:

~∇2
r =

2

r

∂

∂r
+

∂2

∂r2 . (4.20)

For r > 0, the first and second derivatives are calculated using central finite differences

with a 4-point stencil and a 5-point stencil, respectively. For the smallest point with

r > 0, the missing values are “mirrored” at r = 0 because of the spherical symmetry. The

stencils for the last two r are missing the values for r > rmax. These are approximated

by using the Debye-Hückel potential, as also performed for the shifted potential when

calculating the electron density.
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4.1 Density matrix formalism

At r = 0, L’Hôpital’s rule is used:

lim
r→0

~∇2
rf(r) = f ′′(0) + lim

r→0

2

r

∂

∂r
f(r) = f ′′(0) + lim

r→0

2

r
f ′(r) = 3f ′′(0) (4.21)

For the second derivative, the missing values are again “mirrored”.

The total potential ΦZ is then calculated for all r by adding the factor Z/r. It does

not need to be regulated in order to solve the Poisson-Boltzmann equation, because the

ions have a positive charge which makes the Boltzmann factor vanish for r → 0, and

the electron density is taken from the numerical calculation. In the integral for UZ ,

Eq. (3.20), regulation is not needed as well, because the integrand goes to 0 for r → 0.

For the calculation of the electron density, the regulation is needed however. This is

achieved by replacing r →
√
r2 + ∆2/7.7 as in Ref. [10].

4.1.3 Example for the potential and density

To see the differences in charge density when comparing the quantum model with the

weak screening model, we present here a numerical result for one set of parameters for

the helium plasma. The helium density chosen is nHe = 1023 cm−3 and the temperature

T = 1keV (i.e. β = 0.027).

The densities compared are δρtotal = ρtotal − Zδ(3)(~r), see Eq. (4.13), and the Debye-

Hückel density ρDH = ΦZ/(4πR̃
2
D) obtained from the linearized Poisson-Boltzmann equa-

tion Eq. (3.1). The ratio of these densities is plotted against the total potential ΦZ in

Fig. 4.1, as in Ref. [10], Fig. 1. We may interpret the results in the following manner:

• For small r (large ΦZ), the quantum mechanical nature of the electrons becomes

relevant and the electron density approaches a finite value at r = 0 instead of

diverging.

• For intermediate r (and ΦZ), the factor exp(βΦZ), to which the electron den-

sity is approximately proportional, is larger than its linear approximation, which

therefore underestimates the electron density and the absolute value of the charge

density.

• For large r and thus small ΦZ , the linear approximation of the ion contribution is

responsible, and overestimates the absolute value of the charge density.
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Figure 4.1: Ratio of the quantum mechanical charge density using the full Poisson-
Boltzmann equation to the Debye-Hückel density, as a function of the total
electrostatic potential ΦZ , which was used to calculate both densities.

4.2 Kinetic energy shift

Apart from the change in free energy because of the electrostatic energy, the kinetic

energy of the electrons also contributes to the change in free energy. This is described

in the Appendix of Ref. [10].

4.2.1 Derivation

To calculate the kinetic energy shift from the electron number density ne(2πβ)3/2ρ (4.12)

with the diagonal of the density matrix ρ, the total energy is calculated according to

Eq. (4.6) and the sum of 3/2β and the potential energy V subtracted:

δK = ne(2πβ)
3
2

∫
d3r

(
−∂βρ− (

3

2β
+ V )ρ

)
. (4.22)
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4.2 Kinetic energy shift

The partial derivative ∂β does not include the β-dependence of the potential, because

the Hamilton-operator in Eq. (4.6) is regarded as fixed for the calculation of the density

matrix. For this part, the Debye-Hückel potential energy V (r) = −(Z/r) exp(−r/R̃D)

is used. Thus ∂β does not act on R̃D. To calculate the density matrix analytically, two

methods are used: For small r using the eigenstates of a hydrogen-like atom, and for

large r using a second order approximation of V . The first method is used below r0, and

the second one above, where R̃D > r0 >
√
β.

Small r

For Z = 1, the radial part of the bound states of the hydrogen atom for the non-

relativistic Schrödinger equation without spin are given by

Rnl(r) =
2

nl+2(2l + 1)!

√
(n+ l)!

(n− l − 1)!
(2r)le−

r
nF

(
−n+ l + 1, 2l + 2,

2r

n

)
(4.23)

with principal quantum number n ∈ N>0 and orbital angular momentum quantum

number l ∈ { 0, . . . , n− 1 }. The derivation can be found in Ref. [25], §36. F is Kummer’s

confluent hypergeometric function, defined by

F (α, γ, z) =
∞∑
k=0

(α)k
(γ)k

zk

k!
(4.24)

with the rising factorial (x)0 := 1 and (x)k+1 := (x + k)(x)k. If α is a nonpositive

integer, as is the case for Rnl, the series terminates and becomes a polynomial, here

proportional to a Laguerre polynomial. Each (n, l) corresponds to 2l + 1 states with

magnetic quantum numbers m ∈ {−l, . . . , l }. The energy of the states depends only on

n and is En = −1/(2n2). The Rnl are normalized such that
∫∞

0
R2
nl(r)r

2 dr = 1.

The radial part of the continuum eigenstates of a hydrogen atom is also described

in Ref. [25], §36. It can be obtained by substituting n → −i/k. The normalization is

chosen such that
∫∞

0
Rk′l(r)Rkl(r)r

2 dr = 2πδ(k′ − k), which results in

Rkl(r) = 2ke
π
2k
|Γ(l + 1− i

k
)|

(2l + 1)!
(2kr)le−ikrF

(
i

k
+ l + 1, 2l + 2, 2ikr

)
(4.25)

with the gamma function Γ. The energy is given by En = −1/(2n2) → Ek = k2/2 and

is therefore positive. Each (k, l)-state has a again a degeneracy of 2l + 1.

For Z > 1, the probability density can be obtained by replacing r → Zr and |R|2 →
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4 Quantum model (M4)

Z3|R|2 for R ∈ {Rnl, Rkl }. The energies are scaled as E → Z2E for E ∈ {En, Ek }.

The unnormalized density matrix can be calculated by expanding the Debye-Hückel

potential to the Coulomb potential with a constant correction:

V (r) = −Z
r

exp

(
− r

R̃D

)
≈ −Z

r
+

Z

R̃D

. (4.26)

According to Eq. (4.8), this implies a constant factor exp
(
−βZ/R̃D

)
in the density

matrix. Thus the (unnormalized) spherical symmetrical diagonal of the density matrix

is given by

ρ(r) = Z3e
−β Z

R̃D

∞∑
l=0

2l + 1

4π

 ∞∑
n=l+1

|Rnl(Zr)|2e
βZ2

2n2 +
1

2π

∞∫
0

dk|Rkl(Zr)|2e−β
Z2k2

2

 .

(4.27)

The factor 1/(4π) appears because the Rnl and Rkl are the radial wave functions without

the factor 4π in their normalization. Performing a derivative with respect to β yields

∂βρ(r) =− Z

R̃D

ρ(r) + Z3e
−β Z

R̃D

∞∑
l=0

2l + 1

4π
(4.28)

×

 ∞∑
n=l+1

|Rnl(Zr)|2
Z2

2n2
e
βZ2

2n2 +
1

2π

∞∫
0

dk|Rkl(Zr)|2
(
−Z

2k2

2

)
e−β

Z2k2

2

 ,

to be used in Eq. (4.22) for the integration from r = 0 to r = r0. This then yields the

contribution δKnear.

Large r

For large r, V is expanded to second order around a fixed point ~r = (r, 0, 0) with small

deviations (x, y, z):

V (r + x, y, z) = V (r, 0, 0) + V ′x+
1

2
V ′′x2 +

1

2

V ′

r
y2 +

1

2

V ′

r
z2, (4.29)
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4.2 Kinetic energy shift

where V ′ and V ′′ are the first and second r-derivatives of V , respectively. Thus the

differential equation for the density matrix becomes

− ∂βρ((r + x, y, z), (r + x′, y′, z′)) = (4.30)

− 1

2
(∂2
x + ∂2

y + ∂2
z )ρ+ (V (r, 0, 0) + V ′x+

1

2
V ′′x2 +

1

2

V ′

r
y2 +

1

2

V ′

r
z2)ρ.

Substituting x→ x− V ′/V ′′ yields:

− ∂βρ((r + x− V ′

V ′′
, y, z), (r + x′, y′, z′)) = (4.31)

− 1

2
(∂2
x + ∂2

y + ∂2
z )ρ+ (V (r, 0, 0)− V ′2

2V ′′
+

1

2
V ′′x2 +

1

2

V ′

r
y2 +

1

2

V ′

r
z2)ρ.

Using the solution for the one-dimensional linear harmonic oscillator with the Hamilton

operator

Ĥ = −1

2
∂2
x +

ω2

2
x2, (4.32)

for which the diagonal of the density matrix is

ρ(x, x) =

√
ω

2π sinh(ωβ)
exp

(
−ωx2 tanh(

1

2
ωβ)

)
, (4.33)

as shown in Ref. [23], Sec. 2.5, the density matrix can be calculated. The values for ω

for the different dimensions are:

• ω = i
√
−V ′′ for x,

• ω =
√

V ′

r
for y and z.

For the first case, sinh(ix) = i sin(x) and tanh(ix) = i tan(x).

The constants in the differential equation simply yield an exponential factor, and thus
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4 Quantum model (M4)

the diagonal becomes:

ρ(r + x− V ′

V ′′
, y, z) = (4.34)

e−βV (r,0,0)eβ
V ′2
2V ′′

√√√√√
√
−V ′′V ′

r(2π)3 sin
(√
−V ′′β

) (
sinh

(√
V ′

r
β
))2

× exp

(√
−V ′′x2 tan

(
1

2

√
−V ′′β

))
× exp

(
−
√
V ′

r
y2 tanh

(
1

2

√
V ′

r
β

))

× exp

(
−
√
V ′

r
z2 tanh

(
1

2

√
V ′

r
β

))
.

Setting y = z = 0 and x = V ′/V ′′, the spherical symmetric density matrix becomes

ρ(r) = e−βV (r)eβ
V ′2

2V ′′

√√√√√
√
−V ′′V ′

r(2π)3 sin
(√
−V ′′β

) (
sinh

(√
V ′

r
β
))2 (4.35)

× exp

(√
−V ′′ V

′2

V ′′2
tan

(
1

2

√
−V ′′β

))
.

Expanding the expression√ √
−V ′′V ′

r(2π)3 sin(
√
−V ′′β)

(
sinh

(√
V ′
r
β

))2

(2πβ)−3/2
(4.36)

×eβ
V ′2

2V ′′ exp

(√
−V ′′ V

′2

V ′′2
tan

(
1

2

√
−V ′′β

))
in β around β = 0 to order β3 yields the approximation

ρ(r) = (2πβ)−
3
2 e−βV

(
1 +

1

24
β3V ′

2 − 1

12
β2(V ′′ +

2

r
V ′)

)
. (4.37)
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4.2 Kinetic energy shift

Using this expression in Eq. (4.22), the contribution to the kinetic energy shift is

δKfar = ne4π

∞∫
r0

drr2e−βV
(
−1

8
β2V ′

2
+

1

6
β

(
V ′′ +

2

r
V ′
))

, (4.38)

as noted in Ref. [10]. This contribution is negative, but the total kinetic energy shift

δK = δKnear + δKfar is positive.

4.2.2 Numerical calculation

For small enough β values, the only numerical difficulties are the infinite series, the Rkl-

integral and the confluent hypergeometric function F for complex arguments and large

z. We can choose a large nmax, the n where the series is truncated, without problems,

e.g. nmax = 50 + l. lmax however needs to be chosen more carefully for smaller Z. For

l < 10, F can still be evaluated precise enough with a double precision floating point

representation with an asymptotic expansion for large z, while for larger l and large k,

the precision of the floating point representation needs to be increased. For too large l

and small β and Z, the k-integral in Eq. (4.27) and Eq. (4.28) is very oscillatory, thus

lmax = 9 is used, which gives very similar values even compared to lmax = 19, if r0 is not

much larger than
√
β.
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5 Numerical results

The four methods detailed in the preceding chapters are applied to two reactions:
13C(α, n) 16O and 7Li(d, α)α. The first reaction takes place in a (almost) pure helium

plasma; the second in a deuterium plasma.

Accordingly, the free energies in Ch. 4 need to be calculated for Z = 1, 2, 3, 4, 6, 8. The

screening factor is calculated for the number densities 1018 cm−3, 1019 cm−3, 1020 cm−3,

1021 cm−3, 1022 cm−3, 1023 cm−3 and 1024 cm−3 of helium and deuterium, respectively.

The temperatures are chosen between 50 eV and 1.1 keV.

The results are shown in Fig. 5.1, Fig. 5.2, Fig. 5.3, Fig. 5.4, Fig. 5.5, Fig. 5.6 and

Fig. 5.7 for each of the mentioned number densities, respectively. For small temperatures

< 100 eV, some very large values were omitted for which the respective model is clearly

no longer applicable.

For small densities or large temperatures, all models agree very well. At larger den-

sities and smaller temperatures however, they can differ drastically. This is especially

notable for the weak screening model (M1), whose screening factor becomes very large,

because the Debye-Hückel radius RD is very small. Here, the “interaction energy” needs

to contain the change in free energy from deforming the “polarization clouds”, which is

done in the model by Mitler.

The WKB method (M3), which calculates two values proportional to the screened

and unscreened reaction rates, also uses the same potential as the Mitler model (M2).

The approximation to calculate the change in free energy is dropped however. As can

be seen very clearly, this approximation is valid for all considered temperatures and

densities for both reactions, where the difference to M3 is insignificant. Thus the latter

can be preferred, because it is much easier to use and does not suffer from floating point

overflows at small temperatures (where the values in the plots are missing). The method

of calculating the screening factor from the change in free energy, which was introduced

in M2 and is therefore confirmed in its validity, is also used in M4.

The values for the screening factor f for the same reactions and densities as in the plots

are shown in Tab. 5.1, Tab. 5.2, Tab. 5.3, Tab. 5.4, Tab. 5.5 and Tab. 5.6, respectively.
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For large densities and small temperatures (small RD), the density matrix formalism

method (M4) is not applicable anymore and encounters numerical difficulties. On the

one hand, the assumption that β � R̃D needed for both parts of M4 no longer holds. On

the other hand, the numerical calculation of the density matrix becomes problematic for

large β, because the inaccuracies due to the limited grid size, finite spacing and regulation

of the Coulomb potential increase for larger β. Also, the Debye-Hückel potential, which

is used as initial condition, is not valid anymore under these circumstances. This leads

to a calculated electrostatic energy which is much too large. For conditions near those

extreme parameters, numerical issues begin to appear and the results could be made

more accurate by adjusting the numerical methods in M4 carefully. At intermediate

temperatures and densities however, a comparison with experimental results can be

expected to provide correct information about the validity of the model. These problems

do not appear for plasma screening in stars, because although the densities are indeed

large, the temperatures are very high as well [10], which therefore poses no difficulties.

Fixing some of these problems may be the subject of future work, as noted in the

Outlook.

n[cm−3] 1018 1019 1020 1021 1022 1023 1024

fM1 1.0020 1.0064 1.0203 1.0657 1.2230 1.8892 7.3865
fM2 1.0020 1.0063 1.0199 1.0620 1.1890 1.5777 2.9913
fM3 1.0020 1.0063 1.0199 1.0620 1.1890 1.5777 2.9912
fM4 1.0020 1.0064 1.0205 1.0680 1.2486 2.0851 6.6391

Table 5.1: Calculated screening factors for different electron densities n considering the
reaction 13C(α, n) 16O in a helium plasma at T = 200 eV.

n[cm−3] 1018 1019 1020 1021 1022 1023 1024

fM1 1.0003 1.0009 1.0029 1.0092 1.0295 1.0962 1.3352
fM2 1.0003 1.0009 1.0029 1.0091 1.0284 1.0866 1.2553
fM3 1.0003 1.0009 1.0029 1.0091 1.0284 1.0866 1.2553
fM4 1.0003 1.0009 1.0029 1.0092 1.0291 1.0932 1.3033

Table 5.2: Calculated screening factors for different electron densities n considering the
reaction 7Li(d, α)α in a deuterium plasma at T = 200 eV.

For a prediction of the observables in a nuclear reaction in plasma experiments as

envisaged at ELI, we consider the scenarios discussed in Refs. [3, 26].

For the 13C(α, n) 16O reaction, the number of neutron events N per laser pulse with a

carbon target thickness of 5 µm in a helium gas (plasma) with a density of 1021 cm−3 and
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5 Numerical results

n[cm−3] 1018 1019 1020 1021 1022 1023 1024

fM1 1.0005 1.0016 1.0051 1.0162 1.0522 1.1747 1.6626
fM2 1.0005 1.0016 1.0051 1.0160 1.0498 1.1525 1.4632
fM3 1.0005 1.0016 1.0051 1.0160 1.0498 1.1525 1.4632
fM4 1.0005 1.0016 1.0051 1.0162 1.0523 1.1774 1.6837

Table 5.3: Calculated screening factors for different electron densities n considering the
reaction 13C(α, n) 16O in a helium plasma at T = 500 eV.

n[cm−3] 1018 1019 1020 1021 1022 1023 1024

fM1 1.0001 1.0002 1.0007 1.0023 1.0074 1.0235 1.0762
fM2 1.0001 1.0002 1.0007 1.0023 1.0073 1.0228 1.0699
fM3 1.0001 1.0002 1.0007 1.0023 1.0073 1.0228 1.0699
fM4 1.0001 1.0002 1.0007 1.0023 1.0073 1.0233 1.0748

Table 5.4: Calculated screening factors for different electron densities n considering the
reaction 7Li(d, α)α in a deuterium plasma at T = 500 eV.

a temperature of 100 eV is shown in Table 3 of Ref. [3], which is pretty much the same

as for 200 eV. The plasma value there is obtained from the weak screening formula. For

the weak screening M1 and the methods M2, M3 and M4, the values calculated in this

work can be seen in Tab. 5.7, at a temperature of 200 eV.

For the 7Li(d, α)α reaction, the number of neutron events per laser pulse for a lithium

target and deuterium gas (plasma) with a target thickness of 10 µm and the same

plasma density as for Tab. 5.7, but with a temperature of 100 eV, is shown in Table 5.2

of Ref. [26]. The weak screening value is shown as well. The values for the other methods

are seen in Tab. 5.8. The predictions of all four models are here very close to each other.

These results show that the 7Li(d, α)α reaction is less sensitive to plasma screening

effects than the 13C(α, n) 16O reaction.
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n[cm−3] 1018 1019 1020 1021 1022 1023 1024

fM1 1.0002 1.0006 1.0018 1.0057 1.0182 1.0586 1.1971
fM2 1.0002 1.0006 1.0018 1.0057 1.0179 1.0556 1.1697
fM3 1.0002 1.0006 1.0018 1.0057 1.0179 1.0556 1.1697
fM4 1.0002 1.0006 1.0018 1.0057 1.0180 1.0576 1.1891

Table 5.5: Calculated screening factors for different electron densities n considering the
reaction 13C(α, n) 16O in a helium plasma at T = 1.1 keV.

n[cm−3] 1018 1019 1020 1021 1022 1023 1024

fM1 1.0000 1.0001 1.0003 1.0008 1.0026 1.0083 1.0263
fM2 1.0000 1.0001 1.0003 1.0008 1.0026 1.0082 1.0255
fM3 1.0000 1.0001 1.0003 1.0008 1.0026 1.0082 1.0255
fM4 1.0000 1.0001 1.0003 1.0008 1.0026 1.0082 1.0259

Table 5.6: Calculated screening factors for different electron densities n considering the
reaction 7Li(d, α)α in a deuterium plasma at T = 1.1 keV.

Nunscreened [105] NM1 [105] NM2 [105] NM3 [105] NM4 [105]
4.31 4.59 4.58 4.58 4.60

Table 5.7: Number of neutron events for a carbon target with a thickness of 5 µm in a
helium plasma.

Nunscreened [105] NM1 [105] NM2 [105] NM3 [105] NM4 [105]
2.13965 2.19598 2.19416 2.19416 2.19428

Table 5.8: Number of neutron events for a lithium target with a thickness of 10 µm in a
deuterium plasma.
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Figure 5.1: Calculated screening factor for a plasma number density of 1018 cm−3 as a
function of plasma temperature T .
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Figure 5.2: Calculated screening factor for a plasma number density of 1019 cm−3 as a
function of plasma temperature T .
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Figure 5.3: Calculated screening factor for a plasma number density of 1020 cm−3 as a
function of plasma temperature T .
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Figure 5.4: Calculated screening factor for a plasma number density of 1021 cm−3 as a
function of plasma temperature T .
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Figure 5.5: Calculated screening factor for a plasma number density of 1022 cm−3 as a
function of plasma temperature T .
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function of plasma temperature T .
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Figure 5.7: Calculated screening factor for a plasma number density of 1024 cm−3 as a
function of plasma temperature T .
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6 Summary and Outlook

6.1 Summary

In this work, we have investigated the effects of plasma screening on nuclear reactions.

We examined these effects for a PW laser scenario of astrophysical interest, which would

enable direct measurements of the same nuclear reaction with and without the plasma

environment. Such a future experiment promises to shed light on the validity of different

plasma screening models. To this end, four models were considered in detail:

• M1: Salpeter’s weak screening model, which is classical except for electron degen-

eracy,

• M2: Mitler’s model, which uses an improved electrostatic potential and calculates

the difference in free energy,

• M3: The WKB method, which calculates the penetrability using the WKB ap-

proach and integrates the reaction rate explicitly. Its results do not differ signifi-

cantly from M2 for all cases considered in this work,

• M4: The density matrix formalism method, which calculates the electron density

completely quantum mechanically and uses the non-linearized Poisson-Boltzmann

equation. It also considers the quantum mechanical kinetic energy shift of the

electrons.

These models were employed to calculate the screening enhancement factor for two

reactions of astrophysical interest: 7Li(d, α)α in a helium plasma and 13C(α, n) 16O

in a deuterium plasma for a variety of plasma densities and temperatures. For large

temperatures and small densities, all models agree rather well, but for small temperatures

and large densities, the prediction of model M1 diverges and model M3 encounters

numerical problems due to zero rounding of exponentials. Model M2, which uses the

same electrostatic potential as M3, does not encounter such difficulties and does not differ

significantly from M3 for all parameters where the latter is applicable. Furthermore, the
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6 Summary and Outlook

approximations made in model M2 to calculate the plasma screening factor from the

change in free energy are valid to a high precision, as a comparison with M3 showed.

This procedure of using the change in free energy to calculated the screening factor is

employed in M4 as well. Notably, the similarity of M2 and M3 shows that the screening

factor only depends on the plasma parameters and the electrical charges of the reacting

ions, but not significantly on their masses. In its present implementation, M4 encounters

numerical instabilities while approaching its validity limit at small temperatures and

large densities.

To find out which models and underlying assumptions are correct, a comparison with

accurate experimental data is required. Our calculations show that such a comparison

should be performed for reactions with high energy in low-temperature plasmas as well

as large charge numbers of the reaction ions. Otherwise, the predictions of all four

models are very similar making a comparison difficult. Among the two reactions studied

in the present work, the differences between the models were larger for the case of the
13C(α, n) 16O reaction in a helium plasma than for the 7Li(d, α)α reaction in a deuterium

plasma. This is because models M2+M3 and M4 have different approaches for the

parameter regime where M1 is no longer applicable, i.e. for large densities, large charge

numbers of the reacting ions and small temperatures. Indeed, for the 13C(α, n) 16O

reaction the considered densities and charge states are larger than for the 7Li(d, α)α

reaction and this can be also seen in the larger differences between the screening values

calculated with the four models.

6.2 Outlook

Our results in this work can be subject to a number of analytical and numerical im-

provements, especially concerning M4. The numerical issues of M4 could be improved

by refining the first part of the method, e.g. by using the Mitler potential as initial

solution, reducing the grid spacing and increasing the number of grid points or regulat-

ing the Coulomb potential more carefully. Allegedly, such a procedure would make the

time-consuming numerical calculations even more intensive. This would be helpful in

extending the possible application of the method to smaller temperatures, larger densi-

ties and higher charge numbers of the reacting ions, where the assumptions of M1 are no

longer valid, as well as reducing the numerical uncertainty for parameters in the validity

range. The kinetic energy shift, which is currently calculated from the Debye-Hückel

potential, could also be obtained from the numerical diagonal of the density matrix in
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6.2 Outlook

the first part, given a large enough precision.

Considering the comparison with experimental values, the reaction 13C(α, n) 16O is

more promising than 7Li(d, α)α, because the differences between the predictions of the

different models are larger, rendering a comparison between them possible. Because the

differences between the models depend on the reaction taking place, a different aspect

that could involve future work would be finding a better candidate of a sensitive nuclear

reaction suitable for a laser-generated plasma experiment, ideally between ions with high

charge numbers and in a plasma consisting of heavier ions, as long as the reaction rates

are large enough to be measurable.

The present work considers the framework of statistical equilibrium of a plasma, i.e.,

the two interacting ions should carry with them their full screening cloud during the

interaction. However, when looking into the effect of the kinetic energy of the interacting

ions on their interaction energy, the issue of dynamic screening [27–32] would arise. The

basic idea of dynamic screening is that most of the thermal ions in the plasma are much

slower than the electrons and the fastest ions. The thermal ions are therefore not able

to rearrange themselves as quickly around individual fast ions. Since nuclear reactions

require energies much larger than the average thermal energy, the ions involved in nuclear

reactions in the plasma are the fast moving ions, which may not be accompanied by their

full static screening cloud. It would be interesting to investigate in future works this

dynamic screening effect for the experimental detection in laser experiments.

47



Bibliography

[1] Francis F Chen and Schweickhard E von Goeler. “Introduction to plasma physics

and controlled fusion volume 1: Plasma physics”. In: Physics Today 38 (1985),

p. 87.

[2] EE Salpeter. “Electron screening and thermonuclear reactions”. In: Australian

Journal of Physics 7.3 (1954), pp. 373–388.

[3] Yuanbin Wu and Adriana Pálffy. “Determination of plasma screening effects for

thermonuclear reactions in laser-generated plasmas”. In: The Astrophysical Journal

838.1 (2017), p. 55.

[4] Eric G Adelberger et al. “Solar fusion cross sections. II. The p p chain and CNO

cycles”. In: Reviews of Modern Physics 83.1 (2011), p. 195.

[5] P Debye and E Hückel. “De la theorie des electrolytes. I. abaissement du point

de congelation et phenomenes associes”. In: Physikalische Zeitschrift 24.9 (1923),

pp. 185–206.

[6] HE Mitler. “Thermonuclear ion-electron screening at all densities. I-Static solu-

tion”. In: The Astrophysical Journal 212 (1977), pp. 513–532.

[7] HE DeWitt, HC Graboske, and MS Cooper. “Screening factors for nuclear reac-

tions. I. General theory”. In: The Astrophysical Journal 181 (1973), pp. 439–456.

[8] HC Graboske et al. “Screening Factors for Nuclear Reactions. II. Intermediate

Screen-Ing and Astrophysical Applications”. In: The Astrophysical Journal 181

(1973), pp. 457–474.

[9] H Dzitko et al. “The screened nuclear reaction rates and the solar neutrino puzzle”.

In: The Astrophysical Journal 447 (1995), p. 428.

[10] Andrei V Gruzinov and John N Bahcall. “Screening in thermonuclear reaction

rates in the sun”. In: The Astrophysical Journal 504.2 (1998), p. 996.

[11] S Fukuda et al. “Solar B 8 and hep Neutrino Measurements from 1258 Days of

Super-Kamiokande Data”. In: Physical Review Letters 86.25 (2001), p. 5651.

48



Bibliography

[12] Q Retal Ahmad et al. “Measurement of the Rate of νe + d → p + p + e− Inter-

actions Produced by B 8 Solar Neutrinos at the Sudbury Neutrino Observatory”.

In: Physical Review Letters 87.7 (2001), p. 071301.

[13] D Mascali et al. “Colliding laser-produced plasmas: a new tool for nuclear astro-

physics studies”. In: Radiation Effects & Defects in Solids: Incorporating Plasma

Science & Plasma Technology 165.6-10 (2010), pp. 730–736.

[14] ELI-beamlines L4 beam line webpage. https://www.eli-beams.eu/en/facility/

lasers/laser-4-10-pw-2-kj/. 2018.

[15] A Casner et al. “LMJ/PETAL laser facility: Overview and opportunities for lab-

oratory astrophysics”. In: High Energy Density Physics 17 (2015), pp. 2–11.

[16] LULI2000 laser system webpage. https://portail.polytechnique.edu/luli/

en/facilities/luli2000/luli2000-laser-system. 2018.

[17] Central Laser Facility Vulcan laser webpage. https://www.clf.stfc.ac.uk/

Pages/Vulcan-laser.aspx. 2018.

[18] Petawatt High-Energy Laser for heavy Ion Experiments—PHELIX webpage. https:

//www.gsi.de/en/work/research/appamml/plasma_physicsphelix/phelix.

htm. 2018.

[19] National Ignition Facility & Photon Science webpage. https://lasers.llnl.

gov/. 2018.

[20] The Magajoule Laser facility webpage. http://www-lmj.cea.fr/index-en.htm.

2018.

[21] F Negoita et al. “Laser driven nuclear physics at ELI–NP”. In: Romanian Reports

in Physics 68.Supple (2016), S37–S144.

[22] Matthias Bartelmann et al. Theoretische Physik. Springer-Verlag, 2014.

[23] RP Feynman. Statistical Mechanics, A Set of Lectures, California, Institute of

Technology. 1972.

[24] Sara Zahedi and Anna-Karin Tornberg. “Delta function approximations in level

set methods by distance function extension”. In: Journal of Computational Physics

229.6 (2010), pp. 2199–2219.

[25] LD Landau and EM Lifshitz. “Quantum mechanics, vol. 3”. In: Course of theoret-

ical physics 3 (1977).

49

https://www.eli-beams.eu/en/facility/lasers/laser-4-10-pw-2-kj/
https://www.eli-beams.eu/en/facility/lasers/laser-4-10-pw-2-kj/
https://portail.polytechnique.edu/luli/en/facilities/luli2000/luli2000-laser-system
https://portail.polytechnique.edu/luli/en/facilities/luli2000/luli2000-laser-system
https://www.clf.stfc.ac.uk/Pages/Vulcan-laser.aspx
https://www.clf.stfc.ac.uk/Pages/Vulcan-laser.aspx
https://www.gsi.de/en/work/research/appamml/plasma_physicsphelix/phelix.htm
https://www.gsi.de/en/work/research/appamml/plasma_physicsphelix/phelix.htm
https://www.gsi.de/en/work/research/appamml/plasma_physicsphelix/phelix.htm
https://lasers.llnl.gov/
https://lasers.llnl.gov/
http://www-lmj.cea.fr/index-en.htm


Bibliography

[26] Antonia Schneider. Nucleosynthesis in Astrophysical Plasmas. Bachelor Thesis,

Heidelberg University, 2016.

[27] Nir J Shaviv and Giora Shaviv. “The Electrostatic Screening of Thermonuclear

Reactions in Astrophysical Plasmas. I.” In: The Astrophysical Journal 468 (1996),

p. 433.

[28] Giora Shaviv and Nir J Shaviv. “Is there a dynamic effect in the screening of

nuclear reactions in stellar plasmas?” In: The Astrophysical Journal 529.2 (2000),

p. 1054.

[29] Nir J Shaviv and Giora Shaviv. “The electrostatic screening of nuclear reactions

in the Sun”. In: The Astrophysical Journal 558.2 (2001), p. 925.

[30] John N Bahcall et al. “The Salpeter plasma correction for solar fusion reactions”.

In: Astronomy & Astrophysics 383.1 (2002), pp. 291–295.

[31] Dan Mao, Katie Mussack, and Werner Däppen. “Dynamic screening in solar
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