
The QUIC Fix for Optimal Video Streaming
Mirko Palmer, Thorben Krüger, Balakrishnan Chandrasekaran, Anja Feldmann

Max-Planck-Institut für Informatik
{mpalmer, tkrueger, balac, anja}@mpi-inf.mpg.de

ABSTRACT
Within a few years of its introduction, QUIC has gained traction:
a significant chunk of traffic is now delivered over QUIC. The net-
working community is actively engaged in debating the fairness,
performance, and applicability of QUIC for various use cases, but
these debates are centered around a narrow, common theme: how
does the new reliable transport built on top of UDP fare in differ-
ent scenarios? Evaluation of unreliable delivery in QUIC remains
largely unexplored.

The option for delivering content unreliably, as in a best-effort
model, deserves the QUIC designers’ and the QUIC community’s at-
tention. We propose extending QUIC to support unreliable streams
and discuss a simple use case of video streaming—an application
that dominates the overall Internet traffic—that can leverage the un-
reliable streams and potentially bring immense benefits to network
operators and content providers. We demonstrate, using controlled-
environment trials, how to combine reliable and unreliable streams
to outperform TCP and QUIC in video streaming.

CCS CONCEPTS
• Networks→ Transport protocols; Network protocol design;

KEYWORDS
Video Streaming, Partial Reliability, QUIC

ACM Reference Format:
Mirko Palmer, Thorben Krüger, Balakrishnan Chandrasekaran, Anja Feld-
mann. 2018. The QUIC Fix for Optimal Video Streaming. In Workshop
on the Evolution, Performance, and Interoperability of QUIC (EPIQ’18), De-
cember 4, 2018, Heraklion, Greece. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3284850.3284857

1 INTRODUCTION
Google’s Quick UDP Internet Connections (QUIC) protocol offers
TCP-like properties at the application layer on top of UDP [16, 26].
Although the protocol was designed and made public only recently,
in 2013, it is rapidly gaining adoption: nearly 6% of the global Inter-
net traffic flows over QUIC, and many CDNs and content providers
already support the protocol [26]; Google, unsurprisingly, leads
the Internet in QUIC adoption and delivers more than 40% of its
traffic via QUIC [39]. Given the browser support, notably with the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EPIQ’18, December 4, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6082-1/18/12. . . $15.00
https://doi.org/10.1145/3284850.3284857

Google Chrome browser even enabling the protocol by default, to-
gether with the popularity of Google’s services—the infrastructure
of which support QUIC—these adoption statistics will quickly and
significantly increase.

Although QUIC seems to deliver data in a reliable, secure, and
fast manner, this fixation on only the reliable-delivery aspect of
the protocol (and, consequently, the lack of support for unreliable
delivery) needs a closer examination. Naturally, we ask the follow-
ing questions: (a) Is the lack of unreliable streams in QUIC really
an issue? (b) Is there a clear use case for a selectively or partially
reliable transport, where an application can seamlessly multiplex
reliable and unreliable streams over a single connection? (c) Is it
practical to extend QUIC to offer a partially reliable transport?

To highlight a need to reconsider the strict adherence to reli-
able transport, we focus on one class of traffic delivered, today, via
QUIC—video streaming. Video traffic constitutes a significant share
of traffic delivered using QUIC [4, 26].1 The inherent challenges
in streaming “real-time” video traffic [21, 40] over varying, and
sometimes less than ideal, network conditions are only exacerbated
by the choice of a reliable transport—so far, TCP. It is well known
that TCP is not suited for video streaming: the rich body of prior
work on optimizing and extending TCP, and adaptive bitrate (ABR)
selection attest to this observation [11, 19, 22, 31, 50]. TCP retrans-
missions of lost packets in a video stream, inadvertently lead to
stalls in the video stream. TCP also performs poorly when it en-
counters packet losses that are not due to congestion. By shunning
unreliable delivery, QUIC, thus, falls trap to most, if not all, of TCP’s
problems for video streaming; in some instances, QUIC has been
shown to perform even worse than TCP for video streaming [3].

The rationale for streaming video via TCP (or, generally, the fix-
ation on reliable transport), today, is rooted in the economics and
feasibility of streaming infrastructure deployment. More than 52%
of today’s Internet traffic is delivered by content delivery networks
(CDNs) [6]. When we consider the massive, distributed infrastruc-
ture and mature software stack that CDNs have already deployed
for delivering Web traffic, the idea of streaming video over HTTP,
using dynamic adaptive streaming over HTTP (DASH) or HTTP
live streaming (HLS) sounds appealing and practical. This choice of
HTTP, unfortunately, ties video streaming to TCP. But with CDNs
(e.g., Akamai) and popular Web browsers (e.g., Google Chrome)
already supporting QUIC, it is worth revisiting the status quo in
video streaming [1, 35, 39, 48].

We share a simple observation to highlight that reliable trans-
ports are ill-suited for video streaming: video data consists of dif-
ferent types of frames, some types of which do not require reliable
delivery. The loss of some types of frames has minimal or no im-
pact (since such losses can be recovered) on the end-user quality

1Although this video traffic over QUIC is only from Google, its YouTube video stream-
ing service is one of the largest video serving platforms in the Internet.

1

ar
X

iv
:1

80
9.

10
27

0v
2

 [
cs

.N
I]

 1
9

O
ct

 2
01

8

https://doi.org/10.1145/3284850.3284857
https://doi.org/10.1145/3284850.3284857

of experience (QoE) [9]. Therefore, by adding support for unreli-
able streams in QUIC and offering a selectively reliable transport,
wherein not all video frames are delivered reliably, we can optimize
video streaming and improve end-user experiences. This approach
has several advantages: (a) it builds atop QUIC that is rapidly gain-
ing adoption; and (b) it involves only a simple, backward compatible,
incrementally deployable extension—support for unreliable streams
in QUIC. These advantages taken together make this approach safe,
easy, and practical to deploy.

We propose a simple extension to QUIC: the addition of unre-
liable streams. To demonstrate the benefits of this extension for
video streaming and address the non-trivial challenges of combin-
ing both unreliable and reliable transport, we present ClipStream. 2
Our approach is motivated by a simple observation: not all frames
in a video encoding scheme, such as the widely used H.264, are
equally “important”; some frames (e.g., I -Frames) are more “impor-
tant” than others (e.g., B- and P-Frames). “importance” refers to the
implications of the loss of a frame, contained in a video stream, for
the QoE that an end user attributes when watching that video.

Our streaming solution, ClipStream, thus, uses reliable transport
for the important frames and unreliable transport, for all other
frames. To tackle losses in the unreliable stream, ClipStream uses
forward error correction (FEC), as required. Supporting such a
partially reliable stream, however, introduces other non-trivial chal-
lenges, e.g., synchronization of the streams. Demonstrating that
the partially reliable stream fares well compared to TCP and QUIC
using controlled-environment trials, and addressing the challenges
in using it for video streaming is the central theme of this paper.
We summarize our contributions as follows.
⋆ We propose the addition of unreliable streams to QUIC. We

discuss the ease of implementation of this extension and its
implications for applications.

⋆ We motivate the extension of QUIC through a simple, practical
use case: video streaming. To this end, we present ClipStream,
a hybrid transport protocol that offers selective (or partial) re-
liability; ClipStream provides reliable transport for frames that
explicitly request it, and unreliable, best effort transport (pro-
tected by FEC) for the rest.

⋆ We present preliminary evaluations—using experiments in con-
trolled environments—that show ClipStream outperforms other
solutions by a significant margin: even under 1.28% of loss, our
approach delivers the video stream without compromising video
quality, i.e., users see little or no visible quality degradation when
viewing the video.

2 THE STATUS QUO
Streaming video over a reliable transport has remained the status
quo for a long time, but this scheme suffers to sustain a high end-
user QoE when the network conditions are less than ideal. To high-
light some of the problems with current video streaming solutions
we performed a simple experiment where we, in the lab, repeatedly
streamed the “Big Buck Bunny” video (described in Tab. 1) across
a lossy link. For details on the setup refer §5. We varied the loss
rates from 0.08% to 5.12%, and set the link bandwidth to 20Mbps

2ClipStream, our hybrid approach, has no relation to the online video platform with a
nearly identical name.

and delay to 30ms. We repeated the experiment with several other
choices for network parameters and also using other videos, and
observed similar results (not shown).

To assess the performance of a streaming solution, we rely on
commonly used, industry-standard metrics—e.g., buffering ratio
(bufRatio) and rate of buffering (rateBuf) [7]. bufRatio is defined as
the ratio of time spent in re-buffering to the total video duration,
and rateBuf is the ratio of the frequency of re-buffering events to
the total number of video frames. The former captures for each
instance of a re-buffering event the duration for which it lasted and
affected end users’ experiences, while the latter only captures the
rate at which end users are interrupted in the course of watching a
video.

TCP Despite its shortcomings for streaming videos over the Inter-
net, TCP is still the dominant transport protocol for video streaming,
due to thewidespread use of DASH [38]. The rich body of prior work
on optimizing TCP, adaptive bitrate selection algorithms, or TCP
variants highlights TCP’s shortcomings [11, 19, 22, 31, 50]. TCP re-
transmits lost packets without considering if these retransmissions
are “useful” for the video player; unnecessary retransmissions intro-
duce stalls and degrade the quality of the video stream. Besides, it is
well-known that TCP performs poorly when it encounters packet
losses that are not due to congestion. Fig. 1(a) shows bufRatio as a
function of loss, and, per this figure, even at a loss rate of 0.16%—
lower than that typically observed in the Internet [44]—the video
player spends 20% of the total video time in stalls (i.e., in waiting
for the lost packets to arrive at the playback buffer). To put this
bufRatio in perspective, note that a 1% of bufRatio can reduce user
engagement by more than 3 minutes [7]. The rate of re-buffering
events in Fig. 1(b) is also high: at 0.64% loss TCP introduces on
average 105% of re-buffering. A recent study indicates that traffic
policing is highly prevalent world-wide and induces, globally, an
average loss rate of over 20% [10]: streaming video over TCP under
such loss rates is infeasible.

QUIC Google’s QUIC protocol [16] takes a positive, albeit small,
step forward towards improving the status quo. QUIC vastly im-
proves connection establishment times, which might lower the
initial video buffering times, but Ghasemi et al. empirically show
that the impact of throughput on end-users’ video quality is higher
than that of latency [14]. QUIC packs support for better bandwidth
estimation and pluggable congestion control mechanisms, and its
transport streams allow applications to seamlessly multiplex sev-
eral requests or data exchanges on a single connection to avoid
head-of-line blocking. The current design, however, demands the
use of reliable transport even though, in principle, unreliable trans-
port options and error correction schemes could be supported. Due
to this strict adherence to reliable transport, QUIC inherits some of
TCP’s issues: Fig. 1(c) shows that even at a loss rate of 0.64%, QUIC
fails to deliver 10% of the video frames, i.e., these frames arrive
much later than when they were required, thereby causing stalls.
Our experiments in a controlled environment show, typically (i.e.,
in the median), a relatively high bufRatio, in Fig. 1(a), and rateBuf,
in Fig. 1(b), even at a loss rate of 0.64%.

2

 0.1

 1

 10

 100

 1000

0.08 0.16 0.32 0.64 1.28 2.56 5.12

bu
fR
at
io

(in

pe

rc
en

ta
ge

)

loss rate (in percentage)

TCP QUIC

(a) Percentage of playback time spent in buffering.

 0

 20

 40

 60

 80

0.08 0.16 0.32 0.64 1.28 2.56 5.12

ra
te
Bu

f (
in

pe

rc
en

ta
ge

)

loss rate (in percentage)

TCP QUIC

(b) Percentage of frames where stall events occurred.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 T 2T 3T 4T 5T 6T 7T 8T

CD
F
of

fr
am

es

time as multiples of frame rate (in ms)

TCP (0.16%)
QUIC (0.16%)

TCP (0.64%)
QUIC (0.64%)

TCP (2.56%)
QUIC (2.56%)

(c) CDF of frame arrival times.

Figure 1: TCP and QUIC are not well suited for video streaming. Even at a loss rate of 0.64% TCP (QUIC) encounters, in the median,
105% (30%) buffering, per Fig. (a), with 50% (19%) of stall events, per Fig. (b). At this loss rate, Fig. (c) shows that TCP (QUIC) delivers
64% (90%) of frames before the deadline (region shaded in green).

While ABR schemes help in alleviating some of the issues, they
are still akin to “band-aids”: they are designed to fix transient prob-
lems that the underlying transport fails to handle; besides, switching
bitrates has implications for the end-user QoE [12, 18]. In case of
QUIC, surprisingly, prior work also show that ABR schemes ported
to QUIC operate poorly compared to TCP [3]. Simply switching to
UDP for video streaming also does not suffice. The inherent unre-
liability of UDP necessitates the use of coding or error-correction
techniques to recover lost packets. Blindly coding every packet,
in an application-agnostic manner, to recover from losses poses
problems: error correction schemes have a significant overhead,
and unrestricted use of such schemes even by a small fraction of the
users on a network will add significant load (or traffic) on the net-
work. Besides, without proper congestion control, the UDP streams
will not share network resources equitably with other TCP flows.

3 A PRIMER ON STREAMING
Today, video streams are being delivered typically via HTTP using
either DASH [42] or HLS [34]. While both, DASH and HLS, have
similar requirements regarding the video format, we restrict our
attention to the codec-agnostic DASH. When streaming a video via
DASH, the client first requests a manifest file [42]. The manifest
specifies the quality levels at which the video can be delivered, the
details of the encoding, and metadata on the actual video (e.g., name
of files and locations) stored on the server.

Today, the most widely used video codec in the Internet is
H.264 [8]. To encode a video using H.264 and stream it via DASH,
the video data is split into chunks, each of which contain the same

96 s

chunk chunkchunk

4 s

BPI P P•••

4 s

Video

Chunks

Frames

Figure 2: Components of a video file encoded using the H.264
codec for streaming via DASH. Video is split into equally sized
chunks, each of which comprises one I-Frame and, depending
on the length, several B- and P-Frames.

number of video frames,3 as illustrated in Fig. 2. Often the video is
encoded at different qualities (i.e., at different bitrates and/or reso-
lutions) to enable ABR switching at the receiver or video player; in
case of congestion, for instance, the video player might fetch the
next chunk at a lower quality and avoid stalling the video stream.
To allow fast switching, the chunk duration is commonly in the
range of 1 s to 10 s.

The H.264 codec defines three types of slices: I-, P-, and B-
slices [23]. We simplify, however, the H.264 specification’s terminol-
ogy in that we do not use the term slice explicitly. Each frame, in
our terminology, consists of only one (I-, P-, or B-) slice; an I -Frame,
for instance, refers to a frame consisting of only H.264 I-slices.

To help video players instantly start playback upon receiving
a chunk (or after buffering enough chunks), each chunk needs
to start with an I -Frame. Since I -Frames are independent frames,
they can be rendered instantaneously. This lack of dependence on
other frames results in the I -Frames being significantly large in
size, and, hence, they should be used sparingly to keep the size of
the video file small. To seamlessly switch between the different
quality levels, we need, however, an I -Frame at the start of each
chunk. In contrast, P-Frame depends on one or more previous
frames, which can be of any type, and B-Frames depend on both
previous as well as following frames. These inter-dependencies
confirm a simple observation: I -Frames are essential and, therefore,
should be well protected against loss while P- and B-Frames are
less essential [2, 9, 41, 49].

4 THE QUIC FIX
The design of an optimal transport for video streaming hinges on
two simple observations: (a) I-Frames should be reliably streamed,
and (b) It is relatively easy to recover from B- and P-Frame losses.

We require an I -Frame to start video playback, and, hence, this
frame should be reliably delivered; the playback of the remaining
frames (of the concerned chunk) depend on it. Since the remaining
frames encode only the deltas or differences with reference to the
starting I -Frame, the loss of the I -Frame renders the deltas of no
use, resulting in significant implications for the QoE. Regarding
losses, a recent study [33] shows that the impact of B- and P-Frame
losses on end-user QoE is less severe than that of I -Frame losses.
In DASH streaming, we can quickly recover from losses after each
3Except, perhaps, the last chunk, which might contain fewer frames.

3

chunk, which is at most a few seconds long, if we transfer the I -
Frame of each chunk reliably. If sufficient I -Frames are available (at
brief-enough intervals) the impact of QoE should not be significant,
despite losses in other frames. In practice, we can also use forward
error correction (FEC) mechanisms, while carefully measuring the
overheads introduced, to correct for losses in B- and P-Frames.

QUIC offers a good starting point for redesigning video trans-
port. QUIC supports multiple streams within a single association
and decouples congestion control from retransmission. In particu-
lar, QUIC’s congestion control and acknowledgments operate on a
per-packet basis while retransmissions are realized on a per-stream
basis. This feature enables the sender to selectively retransmit or to
introduce FEC on a per-stream basis, and, thus, allows, in principle,
reliable and unreliable streams within the same association. Extend-
ing QUIC to support such selective delivery of the video frames
over either reliable or unreliable streams, as required based on the
frame type, introduces several non-trivial challenges.

• Adding unreliable streams to QUIC. Streams in QUIC offer a
light-weight, in-order byte-stream abstraction [20]; they are indi-
vidually flow-controlled and subject to congestion control. Streams,
however, only offer reliable delivery. Indeed, QUIC makes, quot-
ing the current IETF Internet draft [20], “no specific allowance for
partial reliability. Endpoints MUST be able to deliver stream data to
an application as an ordered byte-stream.” This limitation makes it
challenging to add support for unreliable streams and ensuring such
changes are backward compatible, i.e., do not break QUIC’s flow
control and congestion control logic. We exploit a simple insight
to solve this problem: to support unreliable streams we need to
change only the way retransmissions are handled. More concretely,
at the sender, we choose to replace retransmission of missed data
with opportunistic transmission of the next byte range, i.e., the set
of next QUIC frames. At the receiver we do not change the acknowl-
edgment strategy: all packets, including out-of-order packets, are
acknowledged using selective ACKs. The sender, hence, receives
the feedback on lost packets to adjust its congestion window, but
it sends new rather than the lost data. This approach ensures that
transmission can continue without breaking flow or congestion
control. We also leverage the existing re-order buffer at the receiver:
an out-of-order packet is inserted into the byte-stream within this
buffer unless the data has already been consumed by the applica-
tion. If the application tries to consume “missing” byte-ranges the
byte-stream is filled with zeros.

• Negotiating appropriate streams. The choice of reliable as well
as unreliable QUIC streams leads to an obvious follow-up question:
what data should be delivered reliably? Based on prior work on the
impact of losses of different types of frames on video quality [9, 33],
we deliver I -Frames over a reliable stream and the other kinds —B-
and P-Frames—over unreliable streams. Since unreliable streams are
initiated (or requested) by the client, we reuse the QUIC handshake
mechanism, which includes the capabilities of the sender or receiver,
to advertise and negotiate support for unreliable streams.

• Selectively enabling reliability. We can either provide a meta
streamwithinQUIC that dictates how to selectively offer reliability—
by tagging individual QUIC frames as reliable or unreliable—or
implement an interface in QUIC that facilitates a client (e.g., Web
browser or video player) in opening reliable as well as unreliable
streams. In either case video frames are sent via the appropriate

Table 1: Video file characteristics: Resolution (Res); Bitrate,
inMbps (Br); Duration (Dur); Size, inMB; #I-Frames (#I); and
#B-/P-Frames (#B/P).4

Video Res Br Dur Size #I #B/P

Big Buck Bunny 1080p 5 296.21 176 75 (1%) 7,031
Sintel 1080p 5 296.21 182 75 (1%) 7,031

Tears of Steel 1080p 5 296.21 182 75 (1%) 7,031

streams based on application-offered insights into reliability. The
receiver may also use this meta-information to de-multiplex the
streams and deliver the data to the application.

• Synchronizing partially reliable QUIC streams. Multiplexing
the video frames over reliable and unreliable streams introduces
another challenge: How will the receiver (of a video stream) com-
bine the frames from the different streams into the appropriate order
in the playback buffer? To this end, we can add a reliable control
stream to signal multiplexing and demultiplexing information for
the different streams to the client. The control stream helps the
client to orchestrate its reads from the different streams and, thus,
re-assemble the video file. Lastly, an issue that arises in case of out-
of-order delivery is that the receiver will be unable to determine
the end of the transmission on a stream; suppose, for instance, that
the last (QUIC) frame is lost. To cope with this issue, one solution,
which we choose, is to reliably transfer end-of-stream markers.

• Tagging each video frame with reliability markers. The sender
of the video stream needs to tag each frame as reliable or unreliable
to deliver it via the appropriate stream. Naturally, the sender has
to parse and decode the video file, and mark each video frame to
indicate whether it requires reliability. Is it feasible for the sender to
decode and tag frames? This need to decode the video, in contrast
to treating it as an opaque object, induces some overhead, but it is
either a one-time cost or incurs only a small overhead. Indeed, to
enable the widely used industry practice of supporting multiple res-
olutions as well as bitrate selections by clients, e.g., via DASH [42],
video files are typically encoded a priori at different (predefined) res-
olutions. In case of live streams, videos are transcoded on demand.
The tagging or reliability information (i.e., marking of frames), in
either case, can be seamlessly integrated into this encoding pro-
cess. The only remaining overhead is that the server must parse
these reliability tags to choose the appropriate QUIC stream. We
can, however, add these reliability tags to the DASH manifest files
allowing clients to initiate the appropriate streams and deliver data
corresponding to each without any additional overhead.

4.1 Prototype
We developed our prototype based on quic-go [37], specifically
the version with commit ID c852814 from Oct. 2017. The implemen-
tation of ClipStream comprises a shim layer application and our
modifications to QUIC. The latter involves only ~200 lines of code.
We realized unreliable streams by instructing the server (or sender)
to avoid retransmissions in case of loss. We implemented a new
interface for unreliable streams for allowing the clients (e.g., video
player, or Web browser) to explicitly specify the required stream
4We shortened the videos to have the same length: The number of I -Frames (one per
96 frames or 4 s) and the combined number of P- and B-Frames is the same across the
videos. We do not discuss control frames, they account for 0.05% of the video.

4

 0.1

 1

 10

 100

 1000

0.08 0.16 0.32 0.64 1.28 2.56 5.12

bu
fR
at
io

(in

pe

rc
en

ta
ge

)

loss rate (in percentage)

TCP QUIC CS CSFEC

(a) Playback time spent in buffering.

 0

 20

 40

 60

 80

0.08 0.16 0.32 0.64 1.28 2.56 5.12

ra
te
Bu

f (
in

pe

rc
en

ta
ge

)

loss rate (in percentage)

TCP QUIC CS CSFEC

(b) Relative frequency of stall events.

aS
SI
M

in
de

x

loss rate (in percentage)

TCP QUIC CS CSFEC

 0.2

 0.4

 0.6

 0.8

 1

0.08 0.16 0.32 0.64 1.28 2.56 5.12

Excellent
Good
Fair

Poor

Bad

(c) Adjusted SSIM of reference & received frames.

Figure 3: ClipStream (CS) and ClipStreamFEC (CSFEC) outperform TCP and QUIC across a wide range of loss values.

type. In addition, we added a reliable control stream to signal multi-
plexing and demultiplexing information for the different streams to
the client so that it can orchestrate its reads from the streams and,
thus, re-assemble the video. The shim processes this control stream:
on the server side, it receives untagged video files and marks the
video frames, as reliable or not, on the fly; on the client side, it
reassembles the video frames before feeding it to the video player.

When the client attempts to consume data that has not yet ar-
rived or that has been lost, it will receive a buffer of zeros;5 the
buffer is sized to match the missing QUIC frames. We currently
transmit the last byte of each frame reliably. The shim compensates
for some of the loss, in unreliable streams, by using Reed-Solomon
erasure coding technique (an implementation of which is available
as a Go library [36]) for each of the video frames. This FEC coding
scheme is well-suited for our needs as it can deal with various kinds
of byte errors including bursts. We configured the FEC scheme to
deliver each video frame with an overhead of 1/3 of the frame size
as redundant data; more concretely, we split each video frame into
18 shards, compute 6 parity shards, and deliver the 24 shards.

5 EVALUATION
To compare and contrast the performance of ClipStream (and Clip-
StreamFEC, which adds FEC support) with QUIC [20] and TCP, we
streamed videos from one host to another through an intermediate
host, called the shaper. The hosts are physical machines running
Debian Linux (version 9) with kernel version 4.9.91.1. We used the
tc utility in Linux for emulating specific link capacities and delays.
We set the link capacities to 20Mbps, which is large enough to
accommodate the video streams and FEC overheads, and we sized
buffers to hold 1000 packets, chiefly to accommodate QUIC’s bursti-
ness [45]. To emulate typical “last mile” latencies, we configured
a 30ms delay on the link between the client and shaper. Lastly,
we captured packet traces using tcpdump and instrumented the
server-side and client-side video streaming software for obtaining
frame-level timing data.

Data Set. We selected videos (Tab. 1) that are deemed standard [25]
and widely used in the literature: “Big Buck Bunny”, for instance,
was used in [27], “Sintel” in [52], and “Tears of Steel” in [18]. We re-
encoded these videos using the ffmpeg utility to adhere to a frame
rate of 24 fps. To simplify evaluation, the original videos were cut

5Modern video players, e.g., VLC, are capable of decoding zero-padded streams without
any issue.

to be of uniform length spanning 296.21 s. The videos require a
minimum bandwidth (Bmin) of approximately 5Mbps, and nearly
1% of the frames in the video file are I -Frames.

SSIM & aSSIM. In addition to bufRatio and rateBuf , we compute
the structural similarity (SSIM) [47] index values to objectively
estimate the stream quality. SSIM index looks at the quality of the
received frames, but ignores the time at which the frames were
delivered. When a video frame arrives after its deadline the client
encounters a stall, significantly degrading the perceived quality of
the video. SSIM is, hence, not a good metric for evaluating either
TCP or QUIC. To capture the effect of these stalls, we compute an
adjusted SSIM (aSSIM) score wherein each frame period (i.e., 1/fT ,
where fT is the duration or time span of a frame) over the duration
of the stall is assigned an SSIM index of zero. In assigning these
aSSIM scores, we are still being generous in the evaluation of the
reliable transports: we assume that despite the stalls the end user
will watch the video rather than abandoning the stream, which
seems to be the norm according to prior work [7, 12, 13, 17, 51]. To
estimate the subjective video quality, we map the aSSIM values to
Mean Opinion Score (MOS) values (based on [53]); the MOS values,
e.g., “excellent”, “good”, and “bad”, reflect the subjective measure of
quality perceived by the user.

Controlled-Environment Trials. We streamed the video files
under different loss rates, repeating 10 times for each loss rate. We
computed the mean, median, and standard deviations of the three
performancemetrics, bufRatio, rateBuf , and aSSIM . We repeated the
experiments with several combinations of the network parameters—
bandwidth, buffer size, and delays; we omit some of the plots in
the interest of space, but discuss the relevant results in the text.
Since prior work shows that switching between quality levels has
a negative impact on QoE [12, 18], we only use a single quality
level in our experiments. The evaluations, hence, show the ability
of ClipStream to sustain the same quality level under varying loss
rates; more quality levels allow ClipStreammore freedom (although
each switch affects QoE), and we leave evaluation with multiple
quality levels to future work.

Under no loss, bufRatio and rateBuf for all four transport proto-
cols is rather small—less than 0.25%. Overall, TCP was the worst
protocol for both metrics, and both ClipStreamFEC and ClipStream
outperformQUIC. Per Fig. 3(a) and 3(b) we observe that the bufRatio
and rateBuf for both ClipStream and ClipStreamFEC (abbreviated
as CS and CSFEC, respectively, in the figures) absolutely dominate

5

that of TCP and QUIC. The rateBuf values for both ClipStream
and ClipStreamFEC are very close to 0%, with the maximum being
0.012%. These low rateBuf s are due to ClipStream streaming only a
small percentage (approx. 1% by count or 12% by size) of the overall
video stream reliably; the potential for stalls, hence, is rather small.
ClipStream, hence, imposes the bare minimum load, even at loss
rates as high as 5.12%.

The plot of aSSIM values as a function of loss rate, in Fig. 3(c),
also shows that ClipStream performs better than the rest. The QoE
for TCP drops very quickly from “excellent” to “bad”; even at a
low loss rate of 0.32%, TCP delivers a typical aSSIM value that is
less than 0.5, far below what is typically considered “acceptable”
quality. The QoE for QUIC stays above “fair” quality for loss rates
smaller than 0.32%, but drops to “bad” above 1% loss. ClipStream
sustains “fair” quality video until 0.64% loss and does not reach “bad”
quality even at 5.12% loss. ClipStreamFEC significantly improves
upon ClipStream, owing to the use of FEC, delivering “good” quality
till 1.28% and “fair” until 2.56%.

6 RELATEDWORK
There exists a large body of prior work on video streaming. Several
studies have, for instance, looked at factors affecting QoE [7, 14]
and on designing optimal streaming infrastructures [21, 29]. In this
section we briefly discuss only those most relevant to our work.
Adaptive bitrate schemes. Buffer-based and rate-based schemes
that dynamically adapt the video bitrate [19, 22, 30, 43, 50] suffer
invariably from the limitations of the underlying transport: these
schemes simply operate on top of an existing transport protocol
that does not discriminate between the different types of frames
in the video stream. While they help in improving end-user QoE,
simply porting over ABR to QUIC offers poor performance [3].
TCP variants & “tweaks”. TCP variants such as TCP-RTM [28]
and TL-TCP [32] either ignore retransmissions or avoid retransmit-
ting data that have already missed the deadline. The former needs
support for loss recovery to be built into the application and the
latter requires application’s cooperation to obtain the deadlines:
both complicate application design, making deployment imprac-
tical, if not impossible. Brosh et al. [5] suggest optimizations to
make TCP more friendly for delivering real-time media. In a similar
vein, Goel et al. [15] tune TCP’s send buffer for mitigating delays.
While these optimizations are important, they will be even more
beneficial when applied selectively to only the portion of data that
requires reliability in the first place.
Partial reliability. McQuistin et al. [31] propose a novel TCP
variant that uses retransmissions to deliver new data, instead of
the lost data. The idea of using the retransmissions to send new
data alleviates some but not all of the overhead; B- and P-Frames
that have not missed their deadlines will still be retransmitted. [9]
explores the effect of selective reliability for streaming MPEG-4
video via RTP, necessitating substantial changes to the network
stack. ClipStream requires minimal changes and can be deployed
incrementally.
Error-correction schemes. Kim et al. [24] propose CTCP, which
codes data in an application-agnostic manner, to improve perfor-
mance in lossy channels. CTCP’s indiscriminate coding of all video

frames by a significant number of users might, under certain con-
ditions, overwhelm the network capacity. ClipStream can benefit,
however, from using CTCP’s adaptive coding scheme for delivering
B- and P-Frames.

7 SUMMARY & OUTLOOK
The increasing adoption of QUIC on the server side (e.g., CDNs)
as well as the client side (e.g., Google Chrome browser) offers us
the unprecedented opportunity to rethink about an ideal transport
protocol for video streaming. We show that such an ideal transport,
exploiting partial reliability, can be realized simply through the
addition of unreliable streams to QUIC. We already submitted a
draft to the QUICWorking Group [46] to add support for unreliable
streams, and plan on following up with insights and observations
from our experience of implementing unreliable streams in QUIC
and leveraging it in ClipStream for use in video streaming. While
our preliminary evaluation of the selective use of reliability for
video streaming shows our approach to be better than TCP and
QUIC, we envision conducting real-world experiments (i.e., over
the Internet) and comparing our approach with ABR schemes.

REFERENCES
[1] Akamai Technologies. Community Blog, FAQ: QUIC Native Platform Support

for Media Delivery Products. https://tinyurl.com/yab23e4f, March 2018.
[2] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan. Priority encoding

transmission. IEEE Transactions on Information Theory, 42(6), Nov 1996.
[3] D. Bhat, A. Rizk, and M. Zink. Not So QUIC: A Performance Study of DASH over

QUIC. In Proceedings of NOSSDAV ’17, 2017.
[4] S. Bouzas. Why the Meteoric Rise of Google QUIC is Worrying Mobile Operators.

https://tinyurl.com/y927mctq, January 2018.
[5] E. Brosh, S. A. Baset, D. Rubenstein, and H. Schulzrinne. The Delay-friendliness

of TCP. In Proceedings of SIGMETRICS ’08, 2008.
[6] Cisco. The Zettabyte Era: Trends and Analysis. https://bit.ly/2h3jXbJ, June 2017.
[7] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and

H. Zhang. Understanding the Impact of Video Quality on User Engagement. In
Proceedings of ACM SIGCOMM ’11, 2011.

[8] encoding.com. Global Media Format Report 2018. https://bit.ly/2HXfSxn, 2018.
[9] N. Feamster and H. Balakrishnan. Packet Loss Recovery for Streaming Video. In

12th International Packet Video Workshop, April 2002.
[10] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim, E. Katz-Bassett,

and R. Govindan. An Internet-Wide Analysis of Traffic Policing. In Proceedings
of ACM SIGCOMM ’16, 2016.

[11] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein. Salsify:
Low-Latency Network Video through Tighter Integration between a Video Codec
and a Transport Protocol. In Proceedings of USENIX NSDI ’18, 2018.

[12] M. . Garcia, F. D. Simone, S. Tavakoli, N. Staelens, S. Egger, K. Brunnström, and
A. Raake. Quality of experience and HTTP adaptive streaming: A review of
subjective studies. In International Workshop on Quality of Multimedia Experience
(QoMEX), Sept 2014.

[13] D. Ghadiyaram, A. C. Bovik, H. Yeganeh, R. Kordasiewicz, and M. Gallant. Study
of the effects of stalling events on the quality of experience of mobile stream-
ing videos. In Signal and Information Processing (GlobalSIP), 2014 IEEE Global
Conference on. IEEE, 2014.

[14] M. Ghasemi, P. Kanuparthy, A. Mansy, T. Benson, and J. Rexford. Performance
Characterization of a Commercial Video Streaming Service. In Proceedings of
ACM IMC ’16, 2016.

[15] A. Goel, C. Krasic, and J. Walpole. Low-latency Adaptive Streaming over TCP.
ACM Trans. Multimedia Comput. Commun. Appl., 4(3), Sept. 2008.

[16] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. QUIC: A UDP-Based Secure and
Reliable Transport for HTTP/2. Internet-draft, Transport Area Working Group,
January 2016.

[17] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. Initial
delay vs. interruptions: Between the devil and the deep blue sea. In International
Workshop on Quality of Multimedia Experience, pages 1–6, July 2012.

[18] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner. Assessing effect sizes of influence
factors towards a QoE model for HTTP adaptive streaming. In Sixth International
Workshop on Quality of Multimedia Experience (QoMEX), Sept 2014.

[19] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-based
Approach to Rate Adaptation: Evidence from a Large Video Streaming Service.

6

https://tinyurl.com/yab23e4f
https://tinyurl.com/y927mctq
https://bit.ly/2h3jXbJ
https://bit.ly/2HXfSxn

In Proceedings of ACM SICOMM ’14, 2014.
[20] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and Secure Trans-

port. Internet-draft, IETF, May 2018.
[21] J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Shedding Light on the Structure of

Internet Video Quality Problems in the Wild. In Proceedings of CoNEXT ’13, 2013.
[22] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in

HTTP-based Adaptive Video Streaming with FESTIVE. In Proceedings of CoNEXT
’12, 2012.

[23] B. Juurlink, M. Alvarez-Mesa, C. C. Chi, A. Azevedo, C. Meenderinck, and
A. Ramirez. Understanding the Application: An Overview of the H.264 Standard.
SpringerBriefs in Computer Science, 2012.

[24] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. Leith, and M. Medard.
Network Coded TCP (CTCP). ArXiv e-prints, Dec. 2012.

[25] C. Kreuzberger, D. Posch, and H. Hellwagner. A Scalable Video Coding Dataset
and Toolchain for Dynamic Adaptive Streaming over HTTP. In Proceedings of
ACM MMSys ’15, 2015.

[26] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Koura-
nov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC
Transport Protocol: Design and Internet-Scale Deployment. In Proceedings of
ACM SIGCOMM ’17, 2017.

[27] S. Lederer, C. Müller, and C. Timmerer. Dynamic Adaptive Streaming over HTTP
Dataset. In Proceedings of ACM MMSys ’12, 2012.

[28] S. Liang and D. Cheriton. TCP-RTM: Using TCP for real time multimedia appli-
cations. In International Conference on Network Protocols, 2002.

[29] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A Case for
a Coordinated Internet Video Control Plane. In Proceedings of ACM SIGCOMM
’12, 2012.

[30] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming with
Pensieve. In Proceedings of ACM SIGCOMM ’17, 2017.

[31] S. McQuistin, C. Perkins, and M. Fayed. TCP Goes to Hollywood. In Proceedings
of NOSSDAV ’16, 2016.

[32] B. Mukherjee and T. Brecht. Time-lined TCP for the TCP-friendly delivery
of streaming media. In Proceedings 2000 International Conference on Network
Protocols, 2000.

[33] P. Orosz, T. Skopkó, and P. Varga. Towards estimating video QoE based on frame
loss statistics of the video streams. In IFIP/IEEE International Symposium on
Integrated Network Management (IM), May 2015.

[34] R. Pantos and W. May. HTTP Live Streaming. RFC 8216, Aug. 2017.
[35] M. Ponec. QUIC @ Akamai, IETF 96. https://tinyurl.com/y7ysw8js, July 2016.
[36] K. Post. Reed-Solomon Erasure Coding in Go. https://tinyurl.com/oszpooz,

November 2017.

[37] QUIC-go. A QUIC implementation in pure Go. https://tinyurl.com/hp9r3sm,
November 2017.

[38] D. Robinson and D. De Vleeschauwer. TCP: From Data to Streaming Video.
https://goo.gl/SsZcbr, March 2011.

[39] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld. A First Look at QUIC in the Wild.
In Passive and Active Measurement, 2018.

[40] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE J.Sel. A.
Commun., 13(7), Sept. 2006.

[41] K. Shimamura, Y. Hayashi, and F. Kishino. Variable-Bit-Rate Coding Capable Of
Compensating For Packet Loss. In Proceedings Vol. 1001, Visual Communications
and Image Processing ’88: Third in a Series, 1988.

[42] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the
Internet. IEEE MultiMedia, 18(4), Oct. 2011.

[43] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli. CS2P:
Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput
Prediction. In Proceedings of ACM SIGCOMM ’16, 2016.

[44] S. Sundaresan,W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescapè.
Broadband Internet Performance: A View from the Gateway. In Proceedings of
ACM SIGCOMM ’11, August 2011.

[45] I. Swett. QUIC: Congestion Control and Loss Recovery. https://tinyurl.com/
y9szq6k8, July 2015.

[46] P. S. Tiesel, M. Palmer, B. Chandrasekaran, A. Feldmann, and J. Ott. Considera-
tions for Unreliable Streams in QUIC. Internet-draft, IETF, Oct. 2017.

[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assess-
ment: From Error Visibility to Structural Similarity. Trans. Img. Proc., 13(4), Apr.
2004.

[48] M. Yakan and A. Jayaprakash. Introducing QUIC for Web Content. https://tinyurl.
com/y93uqryr, October 2018.

[49] X. Yang, C. Zhu, Z. G. Li, X. Lin, and N. Ling. An unequal packet loss resilience
scheme for video over the Internet. IEEE Transactions on Multimedia, 7(4), Aug
2005.

[50] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP. In Proceedings of ACM SIGCOMM
’15, 2015.

[51] T. Zhao, Q. Liu, and C. W. Chen. QoE in video transmission: A user experience-
driven strategy. IEEE Communications Surveys & Tutorials, 19(1), 2016.

[52] W. Zia, T. Stockhammer, and K. Walker. Demonstrating ATSC ROUTE-DASH
Delivery. In Proceedings of MMSys ’16, 2016.

[53] T. Zinner, O. Hohlfeld, O. Abboud, and T. Hossfeld. Impact of frame rate and
resolution on objective QoE metrics. In Second International Workshop on Quality
of Multimedia Experience (QoMEX), June 2010.

7

https://tinyurl.com/y7ysw8js
https://tinyurl.com/oszpooz
https://tinyurl.com/hp9r3sm
https://goo.gl/SsZcbr
https://tinyurl.com/y9szq6k8
https://tinyurl.com/y9szq6k8
https://tinyurl.com/y93uqryr
https://tinyurl.com/y93uqryr

	Abstract
	1 Introduction
	2 The Status Quo
	3 A Primer on Streaming
	4 The QUIC fix
	4.1 Prototype

	5 Evaluation
	6 Related Work
	7 Summary & Outlook
	References

