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Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent
in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive
understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and
experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing
a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly
available data sets profiling root gene expression under various environmental stress conditions suggested that this root
endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of
endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation
with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion
with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may
explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments.

INTRODUCTION

Organismal development involves continuous and reiterative
organogenesis, during which complex molecular and develop-
mental programs maintain the production of new cells and their
subsequent differentiation. In plants, this processmainly occurs
at the root and shoot apical meristems, the focal points where
cells proliferate through mitotic cell divisions. Upon leaving
these meristems, the cells differentiate and simultaneously in-
crease their cell size through postmitotic expansion. This switch
fromproliferation to differentiation is accompanied in someplant
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species by a transition from themitotic cell cycle to the endocycle,
an alternative cell cycle duringwhich chromosomesare replicated
but cells do not divide (De Veylder et al., 2011; Breuer et al., 2014).
During such endocycles, also known as endoreplication, every
round of full-genome DNA replication results in a doubling of the
endoploidy level of the cell.

Endoreplication is not restricted to higher plants but is observed
also across a wide variety of cell types in lower invertebrates,
arthropods, and mammals (Fox and Duronio, 2013). In lower in-
vertebrates, endoreplication is most often associated with in-
creased cell size, and it is believed to be a crucial determinant of
adult body size (Flemming et al., 2000). In arthropods such as the
fruit fly Drosophila melanogaster, endoreplication is associated
withgrowthand increasedmetabolicactivityofdifferentcell types,
including the salivary glands, gut epidermis, and follicle and nurse
cells of the adult fly (Edgar and Orr-Weaver, 2001). Mammalian
cells that endoreplicate include placental trophoblast giant cells,
hepatocytes, bloodmegakaryocytes, and epithelial keratinocytes
(Fox and Duronio, 2013).

Across flowering plants, endoreplication appears to be par-
ticularly common and it often occurs in economically important
tissues, including cereal endosperm (Sabelli and Larkins, 2009),
cotton (Gossypium hirsutum) fibers (Van’t Hof, 1999), and tomato
(Solanum lycopersicum) fruits (Chevalier et al., 2011). Endor-
eplication typically occurs in plant tissues that developmass very
quickly or that possess a high metabolic activity. It is thought that
the extra gene copies generated by endoreplication support
transcription of sufficient RNA to sustain metabolic processes.
Correspondingly, Bourdon et al. (2012) demonstrated that rRNA,
RNA polymerase II abundance, and gene transcript levels in to-
mato fruits increase with endoploidy level. Next to a role in driving

metabolism, a correlation is frequently observed between the
endoploidy level and the size of a cell. This is most clearly illus-
tratedby theepidermal pavement andhair cellswithinArabidopsis
thaliana leaves, where the largest cells possess the highest
endoploidy level (Melaragno et al., 1993; Roeder et al., 2010).
However, many experiments assessing the relationship between
cell growth and endoploidy have revealed a lack of absolute rules;
for instance, there are cases in which trichome cell size does not
correlate with endoploidy (Schnittger et al., 1998, 2003). Similarly,
plants that ectopically express the cyclin-dependent kinase in-
hibitor KIP-RELATED2 display a strong inhibition of their endo-
cycle, but enlarged pavement cell size in comparison to control
plants (De Veylder et al., 2001), and it has been suggested that the
relationship between cell volume and endoploidy depends on cell
identity (Katagiri et al., 2016). Finally, endoreplication has been
reported to play a role in sustaining cell fate (Bramsiepe et al.,
2010) and cell size patterning (Roeder et al., 2010).
Different environmental factors have an effect on the endor-

eplication level of cells and tissues (De Veylder et al., 2011;
Scholes and Paige, 2015). Among these, absence of light trig-
gers an extra endoreplication cycle in Arabidopsis hypocotyls
(Gendreauet al., 1997). Partial shadingalsoaffects theendoploidy
level, as exemplified by the reduced DNA content in leaves of
Arabidopsis plants grown under reduced light intensity, whereas
an increased endoreplication in leaves has been observed under
water deficit conditions (Cookson and Granier, 2006; Cookson
et al., 2006). Endoreplication can also be triggered at biotic in-
teraction sites, as observed upon symbiotic interactions with
mycorrhizal fungi (Lingua et al., 2001) and nitrogen-fixing bacteria
(Cebolla et al., 1999), and interactions with pathogens such
as powdery mildew (Chandran et al., 2010) and nematodes

Endoploidy Map of the Arabidopsis Root 2331



(de Almeida Engler et al., 2012). In such cases, endoploidy
changes are probably triggered by an alteration of phytohormone
balances, with auxin and jasmonate known to inhibit the mitosis-
to-endocycle transition, and cytokinin promoting it (Ishida et al.,
2010; Noir et al., 2013; Takahashi et al., 2013).

Although in recent years, many genes have been identified that
control endoreplication onset and progression in plants, lack of
a detailed knowledge of the temporal and spatial occurrence of
endopolyploidy in an endoreplicating species has hampered the
study of the physiological roles of the endocycle. In Arabidopsis,
the endocycle is very common and endopolyploidization is seen
during development of organs throughout its life cycle (Galbraith
et al., 1991). However, in contrast to germline polyploidy, in which
all cells within the organism possess the same DNA ploidy level,
endopolyploidization does not occur in all cells equally, resulting in
subpopulations of cells with different DNA content. A major open
question ishowcellsand tissueswithdifferentendoploidy levelsare
integrated into a developing organ and how this organization
contributes to plant growth under different environmental con-
ditions. Protocols to quantify endoploidy include flow cytometry,
DNA densitometry, and fluorescent in situ hybridization (Bourdon
et al., 2011; Katagiri et al., 2016; Melaragno et al., 1993). Whereas
flowcytometryallows rapidmeasurementof theploidy level of large

numbers of cells, it falls short in terms of spatial resolution. DNA
densitometry and fluorescent in situ hybridization, encompassing
microscopy and image analysis of fluorescent-stained nuclei
through quantitative DNA dyes, provide detailed endoploidy maps
of individual tissues but are rather laborious and low throughput.
In this work, we generated an Arabidopsis tissue- and

endoploidy-specific transcriptome data set that was combined
with previously published spatiotemporal root expression data to
computationally predict a spatiotemporal endoploidy map for the
complete root tip of Arabidopsis, which was subsequently vali-
dated experimentally. This map reveals that the endocycle is, to
a remarkable extent, differentially controlled across root tissues
anddevelopmental stages,withaputative role instress responses
and the coordination of cell expansion.

RESULTS

Transcriptome Profiles of Arabidopsis Root Cortex Cells of
Different Endoploidy

To assess how gene expression varies with the endoploidy level
of cells, Arabidopsis root cortical nuclei were collected by

Figure 1. Peak Expression Distribution of Genes in 28 Clusters across Root Tissues and Sections.

Displayed is the proportion (%) of genes in each cluster that are peak-expressed in any given marker line (top) or at any given developmental stage (slices,
bottom)of theArabidopsis root.Onlyclusterswithexpressionpatternspeakingatasingleendoploidy level (indicatedon top)areshown.Formarker lines that
do not mark all developmental stages of a particular tissue, the slices marked are given in parentheses. Tissues are abbreviated as follows: lateral root cap
(LRC), columella (Colu), quiescent center (QC), atrichoblast (NHC), trichoblast (HC), cortex (Cor), endodermis (Endo), xylem pole pericycle (XPP), phloem
pole pericycle (PPP), lateral root primordia (LRP), xylem (X), phloem (P), and phloem companion cells (PCC).
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fluorescence-activated nuclear sorting (FANS) based on DNA
content (2C, 4C, 8C, and 16C) and subjected to transcriptome
analysis (see Methods). In total, 3737 genes were found to be
differentially expressed (P < 0.05, Benjamini-Hochberg FDR
correction) across cortex cells of different endoploidy status
(Supplemental Data Set 1). The expression profile of each gene
was discretized into a pattern reflecting the expression level
ranks across the four endoploidy levels, e.g., the pattern “1 2 34”
indicates that a given gene is most highly expressed in 2C, then
4C, 8C, and 16C. Equal ranks were allowed, as, e.g., in the
pattern “3 2 2 1” for genes that aremost highly expressed in 16C,
averagely expressed in 4C and 8C, and most lowly expressed in

2C (see Methods). Genes with the same rank pattern were
grouped together, resulting in 70 clusters (Supplemental Data
Set 2 and Supplemental Figure 1). Downstream analyses fo-
cused on the subset of 28 clusters with only one rank-1 ex-
pression value (clear peak expression at a single endoploidy
level) andwith a size ofmore than10genes (Supplemental Figure
2). The spatiotemporal peak expression of these 28 clusters was
profiled based on available root cell type- (marker-) and de-
velopmental stage-specific gene expression data (Brady et al.,
2007) (Figure 1). This analysis revealed that transcripts that
exhibit peak expression in 2C or 4C are predominantly found in
the meristematic zone (slices 1–3) of the root and in lateral root

Figure 2. Schematic Representation of the Mathematical Modeling Approach Used to Predict the Root Endoploidy Map.

Shown is an example of how a root endoploidy map is predicted from the endoploidy-specific and spatiotemporal expression patterns of a single gene g.
Initially, the endoploidy boundaries are randomly positionedon themap. Simulated annealing-basedoptimization is then used to shift endoploidy boundary
positions along the longitudinal root axis and find the root endoploidy map that generates the best possible fit between the simulated and observed
spatiotemporal expression profiles for the investigated gene (lower panels). The boxes in the simulated expression panels symbolize the slice s andmarker
linem for which root cells in the upper panels have been colored according to their predicted endoploidy levels (no real data). See SupplementalMovie 1 for
a time-lapse movie of an example optimization run for a single gene.
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primordia, phloem and developing and maturing xylem cells,
whereas 8C- and 16C-peaking transcripts are primarily ex-
pressed in the transition andmaturation zones (slices 7–12), and
in columella, epidermal hair cells, cortex, and maturing xylem
cells (Figure 1). Gene Ontology (GO) enrichment analyses
showed that many of the clusters with peak expression at

a particular endoploidy level are enriched in genes of particular
function, e.g., several 4C-peaking clusters were found to be
enriched in cell wall biogenesis genes, whereas several 8C- and
16C-peaking clusters were found to be enriched in genes in-
volved in transport processes (Supplemental Data Set 3 and
Supplemental Figure 3).

Figure 3. The Predicted Root Endoploidy Map and Experimental Validation.

(A) The endoploidy map of the Arabidopsis root using a balanced set of 332 marker genes.
(B)Differencemapbetween thesimulatedendoploidymap in (A)and themapderived fromflowcytometrymeasurements.Colorhues indicate thedifference
in the number of endoreplication rounds between both maps for each cellular position. Hair cell slices 1 to 6 are unresolved in the flow cytometry map (gray).

Figure 4. Experimental Mapping of Ploidy Borders in Atrichoblast and Trichoblast Cell Files.

DAPIfluorescencewasmeasured in12 trichoblast (A)andatrichoblast (B)cellfiles. Thefluorescencemeasurementsacrosscellfileswerenormalizedso that
the average fluorescence of the last threemeasured cells in each cell file equals 1600 (for trichoblasts) or 800 (for atrichoblasts), and the average of the first
threemeasured cells equals 200, reflecting the expected endoploidy levels at thebeginning andendof themeasured cell files. Amodelwith 3 (4) endoploidy
boundaries and average DAPI fluorescence levels of 200, 400, 800, and 1600 for 2C, 4C, 8C, and 16C cells, respectively, was fit to the atrichoblast
(trichoblast) data using a simulated annealing optimization routine in Matlab R2014b. Open circles indicate the average measured fluorescence (after
normalization) across all cell files at any given cell number, and the black contours indicate the corresponding standard deviations (standard deviations <10,
caused by insufficient numbers of data points at a few early and late cell numbers, were manually set to 100 to avoid technical optimization problems).

2334 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.17.00983/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00983/DC1


A Virtual DNA Endoploidy Map of the Arabidopsis Root Tip

The observation that genes with peak expression at a specific
endoploidy level in the cortex are expressed in specific spatio-
temporal root zones and that those associationsmake sense from
an endoreplication perspective (genes that are peak-expressed
at higher endoploidy levels in the cortex data set are found to
be spatiotemporally peak-expressed progressively further away
from the root tip) suggests that the gene expression profile of
a tissueataspecificdevelopmental stagemightbeused topredict
its endoploidy state. To construct a DNA endoploidy map of the
Arabidopsis root tip, we devised a mathematical model that
predicts the expression level of genes in 12 different root slices
and 17 different tissuemarker lines (covering 14 root cell types) as
a function of their endoploidy-specific expression levels in the
cortex (see Methods). The parameters in this model are the
endoploidy boundaries along the longitudinal axis of the different
root tissues, i.e., the 2C-4C, 4C-8C, and 8C-16C boundaries, the
position of which is optimized to obtain the best possible fit be-
tween the predicted and experimentally observed gene expres-
sion levels (Figure 2; Supplemental Movie 1). Our model assumes
that (1) the endoploidy levels in each cell type (arising through
developmentally regulated endoreplication) exhibit a logical in-
crement in DNA content over time (2C→4C→8C→16C from the
root tip upwards along the longitudinal root axis), (2) the ex-
pression level of agivengene inaparticular slice is aweightedsum
of theexpression levels of thegene in all cells of thedifferent tissue
types within that slice, and (3) the measured expression level of
a gene in a particular tissue marker line is a weighted sum of the
expression levels of the gene in all marked cells, which may have
different endoploidy levels (Figure 1). In the model equations,
relative gene expression levels in marker lines and slices are
modeled as aweighted sumof the relative expression levels of the
gene at different endoploidy levels in the cortex (see Methods).
Theweight of each endoploidy level in the gene expressionmodel
for agivenslice/marker line isproportional to thenumberof cells of
that endoploidy in the slice/marked tissues concerned, as de-
termined by the tissue-specific endoploidy boundaries to be
optimized.

A crucial assumption is that there exists a set of genes for which
such a weighting scheme is valid, i.e., genes for which (1) the
endoploidy-specific expression levelsmeasured in the cortex can
beusedasaproxy for theendoploidy-specificexpression levels in
other tissues and (2) the spatiotemporal expression levels are
primarily determined by the endoploidy state of the cell and not
by tissue- or developmental stage-related factors that are in-
dependent of endoploidy. These genes can then be used as
“markers” of the endoploidy state of cells. Two different kinds of
genes can reasonably be considered potential markers: genes
with a constant relative expression level across tissues at each
endoploidy, and genes with a constant absolute expression level
across tissues at each endoploidy. Assessing the model equa-
tions’ validity for these two types of markers predicts that the
model should work best for genes with a constant absolute ex-
pression level per endoploidy (see Methods).

To identify potential marker genes, the following selection
criteria were used. First, genes were selected for high expression
levels (>50th quantile, i.e., >73.17) and high endoploidy-specific

expression variation in the endoploidy-specific cortex data set
(SD/mean expression >50th quantile, i.e., >0.2), since genes that
exhibit low endoploidy-specific expression variation (flat profiles
in the cortex data set) are uninformative with regard to detecting
endoploidy differences. This selection resulted in a reduced list of
4378genes (Supplemental DataSet 4). Next, geneswere selected
based on whether or not their spatiotemporal expression pattern
could be reliably predicted by the model from their endoploidy-
specific expression levels in the cortex, both in terms of quanti-
tative differences (x2 statistic R; see Methods) and the Pearson
correlation coefficient between simulated and measured ex-
pression profiles (Supplemental Data Set 4). For both criteria, we
again used the 50th quantile (R < 372.5350 and Pearson corre-
lation coefficient > 0.39) as the selection cutoff, resulting in a
further reducedset of 954genes. Among thesegenes, 407peakat
2C in the endoploidy-specific cortex data set, 162 at 4C, 302 at
8C, and83at 16C. Since employing unequal numbers of genes for
thedifferent endoploidy levels leads toendoploidy-specificbiases
in the model optimization runs and the resulting endoploidy map

Figure 5. Ploidy Map of Lateral Root Cap Cells.

(A) Representative longitudinal mid-section of a DAPI-stained root meri-
stem (of three independent roots imaged).
(B) Extraction of nuclear outlines of the lateral root cap cells. Note that this
image has been processed using MorphoGraphX to highlight the LRC
nuclei only (see Methods).
(C) DAPI fluorescence (arbitrary units) heat map. Nuclei fall into three
categories likely corresponding to 2C (dark blue, n = 7), 4C (light blue-
green, n= 16), and 8C (red, n= 2) nuclei. Bar = 20mm.Data on independent
roots are given in Supplemental Data Set 9.
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(Supplemental Figure 4), we selected an equal number of genes
fromeach class (the top 83 in terms of optimizedR value) to obtain
a final balanced set of 332 endoploidy marker genes to be used in
the model (Supplemental Data Set 5). In accordance with the
prediction that themodel shouldworkbest forgeneswithconstant
absolute expression levels at each endoploidy, this balanced set
of 332 genes was found to be significantly enriched in, among
others, genes involved in chromatin modification (FDR-corrected
P = 7.71E-10), DNA replication (P = 2.66E-09), and epigenetic
regulation of gene expression (P = 1.95E-09) (Supplemental Data
Set 6), gene categories that are arguably likely to exhibit absolute
expression levels linked to DNA content.

The model was jointly optimized for all 332 marker genes to
predict a DNA endoploidy map for the complete root tip. In total,
10 optimization runs were performed to optimize the endoploidy
boundaries in the model (see Methods), of which four converged
on Optimal Map I (Figure 3A; R = 63.3373), whereas six runs
converged on Optimal Map II (Supplemental Figure 5A; R =
62.9712). While exhibiting largely the same endoploidy patterning
andhavingcomparableR values, the twomapsexhibit substantial
differences in the 4C-8C boundary position for non-hair cells and
in the 2C-4C boundary position for phloem companion cells
(Supplemental Figure 5B and Supplemental Data Set 7), next to
small differences in a number of 2C-4Cboundarypositions (lateral
root cap, cortex, endodermis, xylem pole pericycle, phloem pole
pericycle, phloem, and lateral root primordia), 4C-8C boundary
positions (lateral root cap, cortex, endodermis, xylem, phloem
pole pericycle, phloem companion cell, and procambium), and
8C-16Cboundary positions (non-hair cell and phloemcompanion

cell). A breakdown of the contribution of each marker and slice to
the total R value of both maps indicates that the observed
boundaryshifts reflect trade-offs inoptimizationof themodelfit for
particular slices and marker lines (Supplemental Data Set 8). In
particular, the backward shift of the non-hair cell 4C-8C boundary
fromslice 7 to slice 9 inOptimalMap II,which is beneficial for the fit
of the model to the GL2marker data, has a negative effect on the
modelfit for slices7 to9,which isonlypartially compensated forby
(less detrimental) slight forward shifts of the cortex and endo-
dermis 4C-8C boundaries into slice 8, and to a lesser extent of the
xylemandprocambium4C-8Cboundaries into slice 9. The reason
for the phloem companion cell 2C-4C boundary shift between
both maps is less obvious, although it also impacts slice 9.
Compensatory small 2C-4C boundary shifts can be seen for the
phloem and phloem pole pericycle in slice 10 and for the xylem
polepericycle in slice11. Ingeneral,OptimalMap Iperformsbetter
for seven slices and six markers, while Optimal Map II performs
better for only two slices and five markers, despite having an
overall lower (better)Rscore.OptimalMap Iperformsbetter for the
combinedsetof slices,whereasOptimalMap II performsbetter for
the combined set of marker lines, again indicating a slice/marker
optimization trade-off. Experimental validation efforts (see below)
suggest that Optimal Map I is closer to the true spatiotemporal
endoploidy map, which is why this map is displayed in Figure 3A.

Validation of the Endoploidy Map Predictions

The endoploidy map predictions were experimentally validated in
different ways. First, we measured the DNA content of cells of

Figure 6. Temporal-Spatial Expression Patterns of the SIM and SMR1 Endocycle Markers.

CrosssectionsofSMR1:GFP-GUS (A)andSIM:GUS (B)marker lines. Thepositionsof thecrosssectionsalong the longitudinal rootaxis are indicatedby red
lines. Thecoloredcrosssectionson the right depict theendoploidy levelspredictedby the root endoploidymapshown inFigure3A for the tissuesmarkedby
SMR1 (atrichoblast, cortex, xylem, and procambium; [A]) or SIM (trichoblast, atrichoblast, cortex, and phloem; [B]). Predicted 4C and 8C cells are colored
blue and green, respectively. Bars for total root and cross sections are 100 and 20 mm, respectively.
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specific tissues in root tips using flow cytometry on cell type-
specific GFP marker lines (Supplemental Figure 6), and a
cytometry-based endoploidy map was constructed from the
endoploidy-specific cell counts across all marker lines (see
Methods and Supplemental Figure 7). The experimental and
predicted maps present a very similar overall picture of spa-
tiotemporal endoploidy organization, except for the location of
the 2C-4C boundaries (Figure 3B), which is likely due to the fact
that flow cytometry cannot distinguish mitotic G2 nuclei from
G1 endoreplicating nuclei.

For the hair cells, the 2C-4C and 4C-8C boundaries in both the
modeledmaps and the cytometry-derivedmap are unreliable due
to the late temporal expression of the underlying tissue marker
gene (COBL9). To circumvent this problem, the DNA content
progression in trichoblast cell fileswasmapped experimentally by
49,6-diamidino-2-phenylindole (DAPI) staining and fluorescence
microscopy. This technique mapped the 2C-4C boundary to the
13thhair cell on average (countedperfile starting from theQC) and
the 4C-8C transition to the 30th cell (Figure 4A). The 8C-16C
boundary was found to be located around the 40th cell, in ac-
cordance with the model predictions. DAPI staining and fluo-
rescence microscopy on atrichoblasts mapped the 2C-4C and
4C-8C boundaries to the 18th and 27th cell, respectively (Figure
4B), fitting well with the predicted borders of Optimal Map I (at the
18th and 25th cell, respectively) but less well with the atrichoblast
4C-8C border in Optimal Map II (at the 32nd cell).

In contrast to the majority of root tissues, in which all cells arise
linearly from a group of stem cells that surround the quiescent
center, the lateral root cap (LRC) consists of distinct layers that
repeatedly displace the older LRC layers toward the root pe-
riphery. Within these layers, the cells divide and subsequently
elongate, followed by their elimination through programmed cell
death in the distal LRC (Fendrych et al., 2014). Because of this
multilayered structure, there is no strict correspondence in the
LRC between cell age and distance from the QC as for the other
root tissues, partially violating our modeling assumptions. The
spatiotemporal endoploidy structure of the LRC can therefore not
directly be inferred from the modeled map, which is expected to
only show the average endoploidy trend across LRC layers. To
assess whether our model correctly predicts the presence of 2C,
4C, and 8C nuclei in the LRC, we quantified the nuclear content of
LRC cells by DAPI staining. Quantification revealed that within
a single root, nuclei fell into three distinct classes, likely corre-
sponding to 2C, 4C, and 8C nuclei (Figure 5A; Supplemental Data
Set 9). Moreover, the pattern of staining suggests a spatial or-
ganization mimicking that of the predicted map, with cells pre-
sumably reaching8Cendoploidy at themost distal part of the LRC
(Figures 5B and 5C).

SIM and SMR1 encode direct regulators of endoreplication
onset (Churchman et al., 2006; Roeder et al., 2010; Yi et al., 2014).
To validate the predicted order of endoreplication onset across
different cell types, we examined sequential cross sections of
SMR1:GFP-GUS and SIM:GUS endocycle onset marker lines,
confirming that endocycle onset in xylem and atrichoblast cells
precedes that of the cortex cells (Figure 6A), whereas trichoblast
cells enter the endocycle before atrichoblast, cortex, and phloem
tissues (Figure 6B), in accordancewith the virtual endoploidymap
predictions. The fluorescent marker of the SMR1:GFP-GUS line

allowed the experimental mapping of endocycle onset within the
atrichoblast and cortex cells to the 19th 6 1 and 29th 6 1 cell,
respectively, corresponding well to the 2C-4C boundaries pre-
dicted by Optimal Maps I and II (at the 18th and 26th atrichoblast
and cortex cell, respectively; Supplemental Data Set 10).

Identification of Genes Whose Transcript Level Is Most
Strongly Linked to the Endoploidy Level of the Cell

Genes for which the expression levels across various root tissues
and developmental stages are primarily a function of the endor-
eplication state of the cells concerned, rather than of tissue or
developmental stage, are interesting candidates for being either
tightly regulated by or regulating the endoreplication process. To
identify the genes for which the measured spatiotemporal ex-
pressionprofile conformsmost to the expressionprofile predicted
by the root endoploidy map, we used our modeling approach in
reverse. Given Optimal Map I as input, we predicted the spatio-
temporal expression profiles of the 4378 genes in Supplemental
Data Set 4 and ranked them in order of best fit between predicted
and observed expression profiles (Supplemental Data Set 11).
Not surprisingly, many of the top-ranked genes are part of the
balanced 332 gene set used to build the virtual root endoploidy
map. However, many other genes also show a spatiotemporal
expression profile that closely matches the endoploidy-based

Figure 7. Functional Enrichment of Transcripts Peaking at a Given
Endoploidy Level for Hormone and Stress Response GO Categories.

(A) Hormones.
(B) Stress conditions.
Cells are colored according to their enrichment P value after Benjamini and
Hochberg false discovery rate correction (only for corrected P # 0.05).
Columns, endoploidy level; rows, GO categories.
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predictions. GO enrichment analysis of the top 332 genes in the
best-fit ranking reveals similar functional enrichments as in
the balanced gene set, but generally stronger enrichments
(Supplemental Data Set 12; e.g., chromatin modification FDR-
corrected P = 1.25E-18, DNA replication P = 3.00E-15, epigenetic
regulation of gene expression P = 7.50E-17). Interestingly, about
one-third (104) of the top 332 genes are annotated in GO as
“developmental process” genes (P = 4.14E-06).

A Simplified Model Predicts the Arabidopsis Root
Endoreplication Response to Various Stresses

The extent of endoreplication is controlled by both environmental
(Gendreau et al., 1998; Engelen-Eigles et al., 2001; Cookson and
Granier, 2006) and endogenous factors, such as phytohormones
(Ishida et al., 2010; Myers et al., 1990; Artlip et al., 1995; Valente
et al., 1998). Accordingly, gene transcripts peaking at different
endoploidy levels show distinct functional enrichment for hor-
monal andstress responses (Figure 7), suggesting that transcripts
whose expression is primarily determined by the endoploidy state

of the cell may be useful for predicting the impact of stress and
hormonal treatments on the endocycle program during root de-
velopment. A non-spatiotemporal version of the root endoploidy
model (see Methods) was used to predict the impact on the root
endoreplication stateof 149 treatments forwhichgeneexpression
data in root tips is publicly available (Supplemental Data Set 13).
To accurately predict changes in the endoploidy distribution upon
stress treatment, genes that exhibit stress-responsive expression
changes that cannot be attributed to endoploidy changes were
removed from the balanced set of 332 genes used in the spa-
tiotemporal model version. To this end, we selected 26 out of the
149 treatments (stress versus control; Supplemental Data Set 14)
that were generated in a similar experimental setup as used for
the spatiotemporal root expression map (except for the stress
treatment). Then, we used the non-spatiotemporal model to
predict the expression under stress conditions for each of the
332 genes individually, optimizing the fit to the measured ex-
pression profiles under stress given the endoploidy-specific ex-
pression levels in thecortexdataset, andwecalculated the sumof
squared errors (SSQ) between measured and modeled gene

Figure 8. Predicted and Validated Effects of Stress on the Root Endoploidy Content.

(A) The predicted effect of stress conditions on root endoreplication levels. The x axis represents 149 publicly available stress/control expression profiling
data sets, and the y axis depicts the sumof squares (SSQ) of the endoploidy weight differences in the stress and control endoploidy distributions (scaled to
the range [0,1]). Red and green circles indicate that endoreplication is suppressed or promoted, respectively. The number between parentheses represents
the stress condition index in Supplemental Data Set 12. The dotted line indicates a cutoff below which the conditions are not annotated on the panel.
Condition keywords indicate: salt (117) = 150mMNaCl, 6 h treatment; salt (119) = 150mMNaCl, 12 h treatment; salt (121) = 150mMNaCl, 24 h treatment;
gold (1183)=0.125mMKAuCl4, 6h treatment; KNO3 (413)=5mMKNO3, 3.5 h treatment; Pi (1165)=Pi starvation, 6h treatment;UV-B (182) =15min1.18W/m2

Philips TL40W/12, 24 h after treatment; osmotic (206) = 300 mM mannitol, 12 h treatment; osmotic (1226) = 300 mMmannitol, 3 h treatment; osmotic
(208)=300mMmannitol, 24h treatment; salt (381)=140mMNaCl, 1h treatment; salt (115)=150mMNaCl, 3h treatment; sulfate (339)=sulfate limitation, 4h
treatment;boron (1203)=5mMboricacid, 12h treatment;auxin (1176)=1mMIAA,12h treatment; auxin (1181)=1mMIAA,8h treatment; hot (218)=38°C,3h
treatment, 1 h recovery;UV-B (172) = 15min 1.18W/m2Philips TL40W/12, 0.5 h after treatment; cold (109) = 4°C, 24 h treatment; iron (379) = irondeficiency,
72 h treatment; osmotic (204) = 300 mMmannitol, 6 h treatment; genotoxic (166) = 1.5 mg/ml bleomycin + 22 mg/mL mitomycin, 12 h treatment; osmotic
(202) = 300mMmannitol, 3 h treatment; pH (11) =pH4.6, 6 h treatment; hot (216) = 38°C, 3 h treatment, 0 h recovery. The dotted line indicates a cutoff below
which the conditions are not annotated on the panel.
(B)Predicted and validatedendoreplication indices (EI) under stress conditions. Five-day-old seedlingwere transferred to either controlmediumormedium
holding salt (140mMNaCl), auxin (1mM IAA), or low pH (4.6). Ploidy levels weremeasured in 5-mm root tips 48 h after treatment. Data representmean6 SD

(2 replicates with >200 seedlings per replicate used; *P < 0.05, two-sided Student’s t test).
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expression foreachgeneacross the26treatments (Supplemental
Figure 8). The nine genes whose stress-responsive expres-
sion levels were worst-predicted based on their non-stress
endoploidy-specific cortex expression levels were removed from
the balanced 332 gene set. These genes (indicated in green in
Supplemental Data Set 5) are mainly annotated in the GO data-
base as responsive to jasmonic acid stimulus, wounding, or salt
stress. The remaining set of 323 genes was used for predicting
endoploidy distributions under all 149 treatments and the
corresponding control conditions, and endoploidy distribu-
tion changes under treatment versus control conditions were
assessed.

The model predicted that the phytohormone auxin negatively
controls the extent of endoreplication (Figure 8A), which was
confirmed experimentally (Figure 8B) and is in agreement with
previous reports (Ishida et al., 2010). Positive effects on endor-
eplication are predicted for treatments related to macronutrients
(such as phosphate and sulfate deficiency), micronutrients (in-
cluding iron starvation and elevated levels of boron), and en-
vironmental stresses (including temperature, DNA stress, and
salinity) (Figure 8A). Measurements of the root endoreplication
indexundersalt stressand lowpHconditionsconfirmed themodel
predictions (Figure 8B).

A Link between Endoreplication and Cell Volume
(or Wall Structure)

Endoreplication is generally thought to drive growth. Many cell
wall biogenesis genes were found to be peak-expressed in
4C cortex cells in wild-type Arabidopsis plants (Supplemental
Figure 3), suggesting that endoreplication-driven growth might be

associated with cell wall modifications. To study the role of en-
doreplication in cell growth and cell wall processes in more detail,
we introgressed the SMR1:GFP-GUS marker in the smr1 mutant
background. Subsequently, we first mapped the nuclear and
cellular sizeof atrichoblast cells inbothgenotypes in relation to the
expression of the SMR1:GFP-GUS marker. In the control plants,
SMR1 expression appeared before the onset of cell expansion
(Figure 9; Supplemental Figure 9A). Likewise, expression pre-
ceded the increase in nuclear size (Supplemental Figure 9B). By
contrast, smr1 cells displayed no significant increase in nuclear
size, corresponding with their endoploidy phenotype, but still
underwent rapid cell expansion (Supplemental Figure 9), likely
driven by turgor generated by the expanding vacuole. Tomap the
covariates of this altered nuclear-to-cellular volume ratio at the
transcript level, we compared the transcriptome of SMR1:GFP-
GUS fluorescent protoplasts isolated from wild-type versus smr1
mutant roots. In total, 40 genes were found to be differentially
expressed (FDR < 0.05) (Figure 10; Supplemental Data Set 15).
Among the 29 genes downregulated in wild-type versus smr1
plants, six histone and two histone modifying genes were found,
which might reflect extensive chromatin reorganization coincid-
ing with endocycle onset, as reported recently (Otero et al.,
2016). Also, CDKB1;1 was found to be downregulated in the wild
type, fitting with its role as suppressor of the endocycle onset
(Boudolf et al., 2004). At a higher FDR, another five chromatin
genes and CDKB1;2 were found to be differentially expressed as
well (Figure 10).
Among the 11 genes upregulated in wild-type plants versus

smr1, three cell wall biosynthesis genes were identified, including
GUX5 and TBL41. Although neither have yet been characterized
yet, theyarehomologous togenes that addglucuronic acid (GUX1

Figure 9. SMR1 Expression Precedes Cell Expansion.

(A) Representative confocal image of a SMR1:GFP-GUS root counterstained with propidium iodide, displaying atrichoblast expression.
(B) GFP expression heat map.
(C)Cell volume heat map. The asterisks indicate the position of the first GFP signal. Note that for the purpose of visualization, MorphographX was used to
digitalize the images. Theconfocal imagewasconverted into aworking stack to edit the stacked images, deleting the layers over andunder the epidermis to
enable visualization of the boundaries between epidermal cells and the presence of GFP. Bar = 50 mm.
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and GUX2) or acetyl groups (TBL27 and ESKIMO1) to xylans,
respectively (Bromley et al., 2013; Gille et al., 2011; Xiong et al.,
2013; Yuan et al., 2013). The pattern of xylan substitution de-
termines whether or not xylan interacts with cellulose (Grantham
et al., 2017) and hence determines the cell wall flexibility and
strength. Strikingly, we also identified the atypical E2F tran-
scription factor gene DEL3/E2Ff as downregulated in wild-type
plants, although at a higher FDR threshold (Figure 10). This
transcriptional repressor has been demonstrated to restrain the
growthof postmitotic cells by inhibiting theexpressionof cellwall-
modifying genes, including expansins (EXP3, EXP7, and EXP9)
and an UDP-glucose-glycosyl transferase (Ramirez-Parra et al.,
2004)

Because xylans play a major role in strengthening cell walls
(Scheller and Ulvskov, 2010), we took a closer look at cell wall
phenotypes in Col-0 and smr1 roots, comparing radial sections
through the root elongation zone of wild-type and mutant plants.
Although no striking differences in tissue organization or cell wall
thickness were observed, smr1 trichoblast cells were found to be
more radial in shape (Figures 11). A similar phenotype was ob-
served in the independent lgo-1mutant (Supplemental Figure 10),
although less strongly, whichmay be due to lgo-1 being a weaker
allele in a different ecotype (Roeder et al., 2010). Together with
the cell volume effect, these data suggest that the endoreplica-
tion cycle may play a role in coordinating turgor-driven rapid
cell expansion with adequate production of specific cell wall

compounds.Given the substantially thicker exterior cell wall of the
outer tissues (Dyson et al., 2014), a link between endoreplication
and cell wall biogenesis may also help explain the overall out-
wardly increasing endoploidy levels observed in the Arabidopsis
root tip (Figure 3A).

DISCUSSION

In this study, we predicted an endoploidy map of the developing
Arabidopsis root tip from endoploidy-specific gene expression
profiles in the cortex and existing spatiotemporal gene expression
data sets of the Arabidopsis root (Brady et al., 2007). Flow cy-
tometricexperimentsonGFPmarker lines (SupplementalFigure6)
produced an overall similar endoploidy map of the root tip, ex-
cept that the 2C-4C boundaries could not be resolved because
cytometry cannot distinguish G2 phase nuclei from cells that un-
derwent one endocycle. Fluorescence microscopy on the DAPI-
stained wild-type root epidermis and on cortex and atrichoblast
cell files in a SMR1:GFP-GUS marker line confirmed that the
modeled endoploidy map predicts 2C-4C boundaries to within
a few cells from their true location in atrichoblasts and cortex
(Supplemental Data Set 10). Interestingly, not only 2C-4C bound-
aries but also higher-level endoploidy boundaries appear to be
more accurately predicted by the model than by the cytometry-
derived map. Fluorescence microscopy on DAPI-stained roots
revealed that both the 4C-8C boundary in atrichoblasts and the

Figure 10. VolcanoPlot Showing Transcripts That AreUp- andDownregulated in SMR1:GFP-GUSFluorescent Protoplasts of Control (Col-0) versus smr1
(Col-0) Plants.

Red, green, and blue dots correspond to cell wall modifying, chromatin-linked, and cell cycle genes, respectively. Gene IDs are given at the right.
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8C-16Cboundary in trichoblastsalignmorecloselywith themodel
predictions than with the cytometry-derived map (Supplemental
Data Set 10). This may point to the existence of certain biases in
the FANS-sorting efficacy for cells of different endoploidy levels
within a given tissue. Although sorted cells of comparable lines
werealsoused togenerate the tissueexpressiondata (Bradyetal.,
2007) used in themodel, the inclusionof root slice expressiondata
fromsortedprotoplasts (Bradyetal., 2007) in themodel appears to
compensate for such biases.

Next to the fact that the model outperforms experimental
approaches such as flow cytometry (in terms of accuracy) and
fluorescence microscopy (in terms of feasibility for inner tissues)
for mapping the spatiotemporal distribution of root endoploidy
levels, themodeling approachalsooffersother advantages.Given
the established root endoploidy map as input, we used themodel
in reverse to assess which genes exhibit spatiotemporal root
expression patterns that can be predicted accurately by the
root endoploidy patterning. In line with the prediction that the
model should primarily identify genes that have a constant ab-
solute expression level per cell at each endoploidy, the top of
the list contains many chromatin modifiers and cell cycle genes
(Supplemental Data Sets 11 and 12). Other than these, many
regulatory and developmental genes are also found to exhibit
expression patterns that are linked to the endoreplication state of
thecell, offering inroads tostudyhowendoreplication patterns are
linked to root physiology.

The model also allowed us to predict the endoreplication re-
sponse to stress treatments in Arabidopsis roots (Figure 7) from
publicly available expression data. Interestingly, some degree
of endoreplication response was predicted for the majority of
treatments in the expression compendium that we analyzed.
The strongest response was predicted for salt, osmotic, and

temperature stress, various nutrient and DNA stresses, and auxin
treatment. Several of these predictions (for salt, pH, and IAA
treatments) were qualitatively validated, but more work is needed
to unravel exactly how spatiotemporal endoreplication patterns
change under various stresses and whether and how these pat-
tern changes are linked to stress adaptation. Endoploidy pattern
changes under stress might in some cases rather be associated
with developmental and root morphology changes under stress
than be a direct response to the stress treatment. On the other
hand, in some cases, developmental and endoploidy changes
might be inextricably linked. Regardless, our model can be con-
sidered a tool to scout gene expression databases for treat-
ments that might provoke an interesting endoreplication response,
which can then be studied in more detail to unravel the physio-
logical roles of endoreplication under stress.
Most importantly, the obtained endoploidy map details the

extent and order of endoreplication among different root tissue
types, revealing thatendoreplication isunderstrict spatiotemporal
control. The predicted endoploidy levels appear to be associated
primarily with the radial organization of the root, with the outer
tissue layers displaying higher endoploidy levels than the inner
tissues. Xylem pole pericycle cells, but not phloem pole pericycle
cells, are predicted to undergo endoreplication only after lateral
root primordia have been established, in accordance with their
role as an “extended meristem” from which lateral roots emerge
(Casimiro et al., 2003). Remarkably, epidermal hair cells undergo
one more endocycle than the non-hair epidermal cells in the root
tip.Thepredicted16Cvalue for thehaircells in thematurationzone
confirmswhathasbeenexperimentallydetectedbefore (Sliwinska
et al., 2012; Sugimoto-Shirasu et al., 2005) and suggests the need
of the third endocycle to support hair tip growth. However, when
studying the endoploidy level in a number of root hair mutants, no
direct correlation between the hair tip size and endoploidy level
was observed (Sliwinska et al., 2015); therefore, the exact role of
the third endocycle in the process of hair development still needs
to be unraveled. A putative scenario might be that the high ploidy
level is required for an increased metabolic output required for tip
outgrowth. Root hairs have been found to express unique cell
expansion and cell wall-modifying enzymes, including specific
expansins and pectin-interacting proline-rich proteins (Bernhardt
and Tierney, 2000; Boron et al., 2014; Cho and Cosgrove, 2002;
Vissenberg et al., 2001).
Among vasculature tissues, xylem is predicted to undergo

endoreplication much earlier than other tissues, resulting in a
deviation from the radial endoploidy pattern. Given that the ma-
ture xylem cells possess a thick secondary cell wall providing
mechanical strength for upward transport of water and nutrients,
the early transition of xylem cells to 4C suggests that theremaybe
a functional link between endoreplication and cell wall architec-
ture. Strikingly, genes with peak expression in 4C cortex cells
display a functional enrichment for cell wall-related processes,
including “cell wall organization or biogenesis” and “xylem de-
velopment” (Supplemental Figure 3), whereas among the genes
being differentially expressed in SMR1:GFP-GUS positive cells
several cell wall-modifying genes were found to be upregulated in
wild-type versus smr1 mutant roots (Figure 10). One of these
(TBL41) is homologous toESKIMO (ESK1). ESK1possessesxylan
O-acetyltransferase activity and its mutation results in collapsed

Figure 11. smr1 Mutant Cells Display Altered Shape.

(A)Serial block-face scanningelectronmicroscopy radial sections through
the elongation zone of Col-0 and smr1 mutant plants. Trichoblasts, atri-
choblasts, and cortex cells are false-colored in yellow, blue, and green,
respectively. Bar = 25 mm.
(B) Circularity of control (Col-0) and smr1 trichoblast cells within the
transition zone. Data represent mean 6 SE (n > 20, *P # 0.05, two-sided
Student’s t test).
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xylem vessels (Lefebvre et al., 2011). Recently, a functional link
between endopolyploidy and ESK1 activity has been suggested,
as a suppressormutant screen using esk1-5dwarf plants resulted
in the isolation of a mutant KAKTUS allele, fully recovering the
xylem morphology and its hydraulic conductivity (Bensussan
et al., 2015). KAKTUS encodes a suppressor of endoreplication
(ElRefyet al., 2003;Perazzaetal., 1999), and itsmutation results in
increased endoploidy levels.

A putative role for endocycle onset in control of cell wall
modifications might also explain reports on the observed path-
ogen susceptibility of endocycle mutants, such as smr1 and sim
smr1 (Hamdoun et al., 2016;Wanget al., 2014). On theother hand,
ectopic overexpression of the endocycle-promoting UVI4 and
OSD1 genes results in enhanced disease resistance (Bao and
Hua, 2014; Bao et al., 2013). We speculate that endocycle-driven
cell wall modifications (or lack of such modifications) might im-
pact the success of pathogen penetration. A link between en-
doploidy and cell wall composition is also suggested by the
phenotypes of plants mutated in the CONSTITUTIVE EXPRES-
SION OF PATHOGENESIS-RELATED GENES5. These mutants
display trichomes with reduced DNA content, linked to the pres-
ence of a thinner cell wall and reduced cellulose content (Brininstool
et al., 2008; Kirik et al., 2001).

In plant cells, vacuolar expansion rather than an increase in
cytoplasmic volume is believed to be the major force driving cell
growth (Sugimoto-Shirasu and Roberts, 2003). Correspond-
ingly, smr1 mutant cells still expand in the absence of endocy-
cle onset (Supplemental Figure 9). Based on the observations
that endoreplication onset precedes cell elongation (Figure 9;
Hayashi et al., 2013), that smr1 trichoblast cells exhibit enhanced
radial symmetry (Figure 11), that particular cell wall-related
gene classes, including xylan biosynthesis genes, are over-
represented among the genes exhibiting peak expression in 4C
cells (Supplemental Figure 3), and that several cell wall-related
genes are downregulated in the smr1mutant, we put forward the
hypothesis that endoreplication might prepare the cell to cope
with the turgor-driven rapid cell expansion by inducing appro-
priate cell wall modifications. This might be of particular im-
portance for tissues holding extremely rapidly expanding cells,
where an increase in the gene copy number might be a way
to cope with the high demand for new cell wall materials. Cor-
respondingly, Bourdon et al. (2012) have demonstrated a clear
link between cellular endoploidy and the level of gene tran-
scription. How the endocycle specifically controls expression of
cell wall biosynthesis and cell wall-modifying genes remains to
be addressed, although the high number of chromatin-related
genes being downregulated in wild-type versus smr1 plants
upon activation of the SMR1 promoter suggests an epigenetic
component.

Besides sensitivity to pathogens, mutant plants with reduced
endoreplication levels typically do not display any obvious plant
phenotype, suggesting that at least under normal growth con-
ditions a loss of coordination between rapid cell expansion and
gene transcription might still be fairly tolerable to the plant.
Nevertheless, our stress modulation data suggest that the
endocycle is stimulated by many different stresses (Figure 8),
including salinity and boron, which are both known to affect the
plant cell wall (Tenhaken, 2015). It is therefore conceivable that the

changes to the normal endoreplication pattern that are observed
under stress conditions may also be related to cell wall adjust-
ments tomitigate the stress. In any case, the observed changes in
root tip endoploidy patterning in response to several stresses
suggest that endoreplication pattern changes may play a role in
adaptive stress responses, whichmay explain why the endocycle
is mainly observed in species growing in variable environments
(Barow, 2006; Scholes and Paige, 2015). However, these spec-
ulations need to be further substantiated.

METHODS

Plant Lines and Growth Conditions

Endoploidy-specific gene expression profiles were obtained from sorted
nuclei of the cortical cells of the Arabidopsis thaliana pCO2:YFP-H2b line
(Heidstra et al., 2004). Tissue-specific endoploidy measurements were
obtained via flow cytometric analysis of the 13 Arabidopsis marker lines
listed in Supplemental Data Set 16 (Brady et al., 2007; Dietrich et al., 2017).
Endoploidy boundary positions were confirmed using SIM:GUS and
SMR1:GFP-GUS reporter lines (Yi et al., 2014). The sim, smr1, and lgo-1
mutant lines have been described by Churchman et al. (2006) and Roeder
et al. (2010), respectively.

Seeds were surface-sterilized using a solution of 20 parts by volume of
commercial bleach and 80 parts by volume of 100% ethanol and then
washed twice with 100% ethanol. The dried seeds were germinated
vertically on plates containing half-strength Murashige and Skoog (MS)
medium (Murashige and Skoog, 1962), 1% sucrose, and 0.5 g/L MES (pH
5.7) in 1%agar, except for theSMR:GFP-GUS sorting experiment in which
sucrose was omitted from themedium. Plants were grown under long-day
conditions (16 h light, 8 hdarkness) at 22°C. For pH, salt, and IAA treatment
experiments, plants were grown on a layer of nylon strip embedded on the
agar surface. Five days after germination, the nylon filters were transferred
for48hontocontrol or treatmentmedia, followedbysamplingof5-mmroot
tips for flow cytometric analysis. Low pH (4.6), high salt (140 mM NaCl),
auxin (1 mM IAA), and respective MS standard media were prepared as
described by Dinneny et al. (2008), Iyer-Pascuzzi et al. (2011), and Lewis
et al. (2013), respectively.

Endoploidy-Specific Microarray Data Acquisition

Roots of 5-d-old pCO2:YFP-H2B (Col-0 ecotype) plants grown under
continuous light conditions at 22 to 23°Cwere excised using a razor blade
just below the hypocotyl region. Samples of combined root material (10 g
fresh weight) were collected in a glass Petri dish and chopped with slicing
action after adding 10 mL nuclear isolation buffer (45 mM MgCl2, 30 mM
sodium citrate [trisodium], and 20 mM MOPS, pH adjusted to 7.0). The
solution was collected into a 15-mL tube and centrifuged at 2500 rpm in
a Sorvall swinging bucket AH-3000 at 4°C for 8min. The pellet was drained
to ;0.5 mL and resuspended in nuclear isolation buffer to 4 mL, then trans-
ferred to a 30-mm strainer in a 5-mL tube and DAPI was added (20 mL/mL
0.1 mg/mL stock). Biparametric sorting was then done based on YFP
fluorescence and nuclear DNA content, as previously described (Zhang
et al., 2005). Sorting of isolated nuclei was done using a Dako-Cytomation
MoFlo flow cytometer/cell sorter as described (Zhang et al., 2008). The
nuclearRNAwasextracted fromeachnuclearDNAcontentpopulation (2C,
4C, 8C, and 16C,;0.2mL [200,000 nuclei]/0.95mLRLT) using theQiagen
RNeasykit according to themanufacturer’s instructions.Prior toAffymetrix
ATH1 array hybridization, two consecutive rounds of RNA amplification
weredone in theVIBNucleomics core, using standardAffymetrix protocols
for small samples. The amplified nuclear RNA of each DNA content class
was used for microarray analysis.
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Microarray Data Normalization and Exploratory Analyses

The raw endoploidy-specificmicroarray data were preprocessed using
the robust multichip average (RMA) normalization approach (background
correction, quantile normalization, and summarization) implemented in the
Bioconductor R package, version 2.5 (Irizarry et al., 2003; Gentleman et al.,
2004). The Bioconductor package Limma (Smyth, 2004) was used to
identify differentially expressedgenes.Pairwise comparisonsbetweenany
two endoploidy levelswere performed usingmoderated t statistics and the
eBayes method as implemented in Limma (Smyth, 2004). P values were
corrected for multiple testing using the Benjamini-Hochberg method
(Hochberg and Benjamini, 1990) at an FDR threshold of 0.05.

The expression profile of each gene was discretized into a pattern
reflecting the expression level ranks across the four endoploidy levels. To
allow for patterns with equal ranks among two or more endoploidy levels
(e.g., “3 2 2 1” for genes that are most highly expressed in 16C, averagely
expressed in 4C and 8C, and most lowly expressed in 2C), a criterion is
needed to decide whether two expression levels are the same or different.
As differential expression calls proved to be not sensitive enough to dis-
criminate more than a few of the possible rank patterns, we instead dis-
cretized expression profiles using the square root of the averaged
expression values as a yardstick. The following protocol was followed to
discretize expression profiles into rank patterns: (1) Rank endoploidy-
specific expression levels from high to low (indexed by i ). (2) The first
(highest) expression level (i = 1) gets rank r = 1 and becomes the reference
level. Augment i. (3) Thenexthighest expression level i is comparedwith the
reference level. There are two possibilities: (a) The expression difference
between both levels is less than the square root of the reference level.
Expression level i gets the same rank r as the reference level, and the
reference level remains unchanged. Augment i and repeat step 3. (b) The
expressiondifference betweenboth levels is equal ormore than the square
root of the reference level. Augment r. Expression level i is assigned the
augmented rank r and becomes the new reference level. Augment i and
repeat step 3. (4) Reorder the resulting discretized expression patterns to
match the original endoploidy sequence 2C-4C-8C-16C.

A spatiotemporal root gene expression data set (Brady et al., 2007) was
used togetherwith theendoploidy-specificcortexdata set inmathematical
model I (see below). To this end, the raw data from both data sets were
jointly RMA normalized as described above. The untransformed (i.e., non-
log-scale) expression values were used in the model. For mathematical
model II (see below), raw microarray data sets for stress experiments on
whole roots were obtained from CORNET (De Bodt et al., 2010, 2012) and
the GEO repository (Edgar et al., 2002) (Supplemental Data Set 13). These
data were RMA normalized together with the endoploidy-specific cortex
data as described above. Again, untransformed expression values were
used in the mathematical model.

GO Enrichment Analyses

Functional enrichment results reported in this study were calculated with
the BiNGO tool (Maere et al., 2005) using hypergeometric tests and
Benjamini-Hochberg (Benjamini and Hochberg, 1995) multiple testing
correction at FDR = 0.05. GO information and annotations for Arabidopsis
were obtained from the GO database (www.geneontology.org; version
downloaded on 4/22/2015). The 19,937 genes in the preprocessed Affy-
metrix ATH1microarray data set were used as the reference set for the GO
enrichment analyses presented in Supplemental Figures 4 and 10 and
SupplementalDataSet3.The4378genes listed inSupplementalDataSet4
were used as the reference set for all other analyses.

RNA-Seq Analysis of Fluorescence-Sorted Protoplasts

Protoplasts were prepared as described by Birnbaum et al. (2003). Ap-
proximately 10,000 seeds (per replicate) of Col-0 and smr1 plants holding

theSMR1:GUS-GFP construct were sown on top of nylonmesh on square
plates holding 1% agar and 0.53 MS medium. Five days after sowing,
0.5-cm root tips were isolated and placed at room temperature in 30 mL
protoplasting solutionB [solutionB= (solutionA+1.5%cellulaseand0.1%
pectolyase), solutionA= (600mMmannitol, 2mMMgCl2, 0.1%BSA, 2mM
CaCl, 2 mMMES, and 10mMKCl, pH 5.5)]. After 50min, the protoplasting
solution was filtered using a 40-mm strainer into a 50-mL conical tube.
Twenty milliliters of solution B was added to the residual roots to wash out
the remaining protoplasts and added to the 50-mL conical tube. Samples
were centrifuged at 4°C for 8 min at 200g. The supernatant was discarded
and resuspended in 1 mL solution A. Then the samples were sorted with
a BD FACSAria II cell sorter (85-m nozzle, 45 p.s.i.) following a previously
described protocol (Brady et al., 2007). The samples were sorted within
15 to 20min of finishing the protoplasting step, and a period of 30min was
needed for collecting 120,000 GFP-positive protoplasts (per replicate).
Samples were collected in 1.5-mL tubes containing 300 mL RLT buffer
(Qiagen) supplemented with 3 mL b-mercaptoethanol and immediately
frozen in liquid nitrogen to be stored at 270°C. RNA was extracted using
the Qiagen RNeasy Micro Kit. RNA concentration and purity were de-
termined spectrophotometrically using a Nanodrop ND-1000 (Nanodrop
Technologies), and RNA integrity was assessed using a Bioanalyzer
2100 (Agilent). Per sample, an amount of 250 ng of total RNA was used as
input. Using the Illumina TruSeqStrandedmRNA sample prep kit (protocol
version: part no. 15031047 rev. E, October, 2013), poly(A)-containing
mRNAmoleculeswere purified from the total RNA input usingpoly-Toligo-
attachedmagnetic beads. In a reverse transcription reaction using random
primers, RNA was converted into first strand cDNA and subsequently
converted into double-stranded cDNA in a second-strand cDNA synthesis
reaction using DNAPolymerase I and RNaseH. The cDNA fragments were
extended with a single “A” base to the 39 ends of the blunt-ended cDNA
fragments, afterwhichmultiple indexingadapterswere ligated, introducing
different barcodes for each sample. Finally, enrichment PCR was per-
formed to enrich those DNA fragments that have adapter molecules on
both ends and to amplify the amount of DNA in the library. Sequence li-
braries of each sample were equimolarly pooled and sequenced on an
Illumina NextSeq 500 instrument (medium output, 75 bp, paired end, v2)

Transcript quantificationwas performed bySalmon version 0.7.2 (Patro
et al., 2017), using the TAIR10 list of all coding sequences. The option to
correct for sequence-specific bias was turned off and all parameters were
set to their default values. Transcript quantification results generated by
Salmonwerecorrected forgene lengthvariationsacross thesamplesusing
the tximport 1.6.0 R package (Soneson et al., 2015) and were further
analyzed using the DESeq2 package (Love et al., 2014). Transcripts with
a read count of less than 10 in all samples combined were removed from
further analyses. Principal component analysis showed one Col-0 sample
not clustering with the other two Col-0 samples, and this sample was
omitted from further analyses. Normalized read counts were log2 trans-
formed, and a negative binomial generalized linear model was fitted to the
data using the genotype as the factor to identify differential gene ex-
pression. The significance of the expression changes was determined
using Wald tests and corrected for multiple testing by the Benjamini-
Hochberg method (Benjamini and Hochberg, 1995).

Mathematical Models

Model I: Predicting the Spatiotemporal Root Endoploidy Map

Model I simulates the expression patterns of genes in root slices and
marker lines as a function of their endoploidy-specific expression levels in
the cortex (Figure 2). The model equations are as follows:

ESðg; sÞ ¼
∑14

t¼1

h
∑c∈Cðs;tÞ

�
∑pwPðt; c;pÞ$EPðg;pÞ

�i
∑14

t¼1jCðs; tÞj
ð1Þ
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EMðg;mÞ ¼
∑t∈TðmÞ

n
∑s∈Sðm;tÞ

h
∑c∈Cðs;tÞ

�
∑pwPðt; c;pÞ$EPðg;pÞ

�io
∑t∈TðmÞ

�
∑s∈Sðm;tÞjCðs; tÞj

� ð2Þ

In these equations, ESðg; sÞ and EMðg;mÞ represent the simulated ex-
pression of gene g in slice s and marker line m, respectively. t indexes
tissues (cell types). The indexp represents theendoploidy level (2C,4C,8C,
or 16C) and the index c indicates the position of a cell in a particular tissue t
along the longitudinal axis. EPðg;pÞ represents the endoploidy-specific
expression level of gene g at endoploidy p in the cortex data set.WP is the
endoploidymatrix,withwPðt; c;pÞ=1 if cellc in tissue thasendoploidy level
p, and wPðt; c;pÞ = 0 otherwise. Cðs; tÞ is the set of cell numbers in slice s
and tissue t, as derived from the cell count matrixWC, which incorporates
average cell count estimates across slices and tissues obtained from the
visual inspection of 10 confocal images of Arabidopsis wild-type (Col-0)
roots for the cell types hair cell, cortex, and endodermis in themeristematic
and elongation zones (slices 1–8), and for the xylem pole pericycle and
phloem pole pericycle in the meristematic zone (slices 1–6) (Supplemental
Data Set 17). The WC cell counts in the non-hair, phloem, phloem com-
panion, xylem, andprocambiumcell files in slices 1 to8werededuced from
the measured counts for other cell types. The cell counts in the remaining
tissues and slices were based on the cell counts provided by Cartwright
et al. (2009). In Equation 2, TðmÞ represents the set of tissues covered in at
least some developmental stages (slices) by a particular markerm, Sðm; tÞ
being the set of slices inwhichmarkerm covers tissue t (Brady et al., 2007).

Equations 1 and 2 essentially sum up the endoploidy-specific ex-
pression levels of geneg in all cells in a slice sand allmarked cells inmarker
linem, where the endoploidy of each cell (and, hence, its contribution to the
gene’s expression level) is determined from the endoploidy matrix WP.
Simulated slice and marker line expression levels are then compared with
the slice and marker line expression levels experimentally determined
by Brady et al. (2007). The parameters of the model, the endoploidy
boundaries (i.e., the cells at which the endoploidy level changes along the
longitudinal root axis, as encoded in the endoploidy matrix WP), are ran-
domly assigned at the beginning of a simulation and optimized using
a Monte Carlo Simulated Annealing strategy to obtain the best possible fit
between the simulated andmeasured expression patterns across all slices
and marker lines (see “Simulation and Optimization Strategy”).

Two different derivations of the weighting scheme used in Equations
1and2, for twodifferentclassesofcandidateendoploidymarkergenes, are
described below using a hypothetical example (Supplemental Figure 11).

Derivation 1. For transcripts of which the absolute expression level
scales with cytoplasmic volume, as appears to be the case for most
transcripts in, e.g., mammals (Padovan-Merhar et al., 2015) and yeast
(Marguerat and Bähler, 2012), the relative expression level is the same
across cells with different volume. Under the assumption that there exists
a set of genes for which the relative expression level at any particular
endoploidy is approximately the same across tissues, the relative ex-
pression level of any such gene g in a marker line m or slice s should be
a volume-weighted sum across the component cells, e.g., for a slice s
containing a number of 4C and 8C cells:

ESðg; sÞ ¼ Vtot;4C EPðg; 4CÞ þ Vtot;8C EPðg; 8CÞ
Vtot;4C þ Vtot;8C

ð3Þ

with EPðg; 4CÞ and EPðg; 8CÞ the relative expression levels of gene g in 4C
and 8C cells, respectively, of the cortex (which are assumed to be equal to
the relative expression levels in other tissues), and Vtot;4C and Vtot; 8C the
total cytoplasmic volume of the 4C and 8C cells in slice s. Conceptually,
Equation 3 is the easiest form for describing relative expression levels in an
ensemble of cells (be it a slice or a tissue) as a function of the endoploidy-
specific relative expression levels measured in the cortex. However, de-
termining the volumes Vtot;4C andVtot;8C for any slice ormarker line requires

adetailedassessmentof thecytoplasmicvolumesof individual cellsacross
all root tissues and developmental stages, which is very challenging. Note
that measuring total root cell volumes instead of cytoplasmic volumes is
not sufficient, due to the interfering impact of expandingplant cell vacuoles
on the cytoplasmic/cell volume ratio. Equation 3 can be approximated by
assuming that the average cytoplasmic volume of cells in a particular
endoploidy state is the sameacross tissues/slices, say V4C and V8C for
4Cand8Ccells, respectively. Plant root cells of different types have indeed
been found to exhibit fairly similar cytoplasmic volumes on average (av-
eraged across endoploidies) (Petersson et al., 2009). Equation 3 then
becomes:

ESðg; sÞ ¼ n4CV4C EPðg; 4CÞ þ n8CV8C EPðg; 8CÞ
n4CV4C þ n8CV8C

ð4Þ

withn4C andn8C thenumberof 4Cand8Ccells, respectively, in slice s. If the
volumes of 4C and 8C cells are written as a function of the volume of an
average 2Ccell ( V2C ), with scaling factors f4C and f8C, respectively, this
reduces to:

ESðg; sÞ ¼ n4C f4C V2C EPðg; 4CÞ þ n8C f8CV2C EPðg; 8CÞ
n4C f4C V2C þ n8C f8C V2C

¼ n4C f4C EPðg; 4CÞ þ n8C f8C EPðg; 8CÞ
n4C f4C þ n8C f8C

ð5Þ

When assuming f4C ¼ f8C ¼ 1 (see below for rationale), Equation 5 be-
comes the toy example equivalent of Equation 1. Equation 2canbederived
similarly.

Derivation 2. The same equation can be derived for genes for which
the absolute (rather than the relative) expression levels remain approxi-
mately constant acrosscellsof thesameendoploidy, regardlessof volume.
Although such genes are expected to constitute aminority, somegenes, in
particular some transcription factor genes, have been shown to have
absolute expression levels that do not scale with cell volume (Marguerat
andBähler, 2012; Schmidt andSchibler, 1995). Under the assumption that
a gene g has a constant absolute expression level at any given endoploidy
level, regardless of cell volume, the relative expression level of g in, e.g.,
a slice s containing a number of 4C and 8C cells (counts n4C and n8C,
respectively) can be written as:

ESðg; sÞ ¼ Eabs;Sðg; sÞ
mRNAtotðsÞ

¼ ∑n4C
i¼1Eabs;4Cðg; iÞ þ∑n8C

j¼1Eabs;8Cðg; jÞ
∑n4C

i¼1mRNA4CðiÞ þ∑n8C
j¼1mRNA8CðjÞ

¼ðaÞ n4C Eabs;Pðg; 4CÞ þ n8C Eabs;Pðg; 8CÞ
∑n4C

i¼1mRNA4CðiÞ þ∑n8C
j¼1mRNA8CðjÞ

¼ðbÞ n4C cV4C EPðg; 4CÞ þ n8C c V8C EPðg; 8CÞ
∑n4C

i¼1cV4CðiÞ þ∑n8C
j¼1cV8CðjÞ

≅
ðcÞ n4CV4c EPðg; 4CÞ þ n8CV8C EPðg; 8CÞ

n4CV4C þ n8CV8C

¼ n4C f4C EPðg; 4CÞ þ n8C f8C EPðg; 8CÞ
n4C f4C þ n8C f8C

ð6Þ

where Eabs;Sðg; sÞ is the absolute expression level of gene g in slice s,
Eabs;4Cðg; iÞ is the absolute expression level of gene g in 4C cell i,
Eabs;Pðg; 4CÞ is the absolute expression level of gene g in 4C cortex cells
(remember that in this derivation, absolute expression levels in 4C cells are
assumed to be constant across tissues), EPðg; 4CÞ is the relative ex-
pression of gene g in the average 4C cortex cell,mRNAtotðsÞ indicates the
total mRNA count in slice s,mRNA4CðiÞ is the total mRNA count in 4C cell i,
V4CðiÞ is the cytoplasmic volumeof 4Ccell i, V4C is thecytoplasmic volume
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of an average 4C cortex cell, c is a constant total mRNA concentration per
unit volume, and f4C and f8C are volume scaling factors, as in Equation 5.
The codes (a) to (c) indicate the use of the following assumptions/
approximations in the derivation: (a) The absolute expression level
Eabs;4Cðg; iÞ in any 4C cell is the same as the absolute expression level in
cortex cells Eabs;Pðg; 4CÞ, and similarly for 8C cells. (b) The total mRNA
content per unit volume c is roughly constant across cells of different size
and cell type. The assumption of a constant mRNA concentration across
different-sizedcells is supported in, e.g.,mammals (Padovan-Merhar et al.,
2015) and yeast (Marguerat and Bähler, 2012), also for cells of different
(endo)ploidy (Padovan-Merhar et al., 2015;Schmidt andSchibler, 1995). (c)
In any tissue, cells of a particular endoploidy are assumed to have more or
less the same cytoplasmic volume on average as cortex cells of that
endoploidy (Petersson et al., 2009).

Although the form of Equations 5 and 6 is identical, fewer approxima-
tions are made in the case of derivation 2, where the marker genes g have
a constant absolute expression level across cells of different volume. This is
because approximation (c) is only used in the denominator of Equation 6,
whereas it is used in both the numerator and denominator of Equation 5,
with its use in the numerator directly affecting the balance between 4C and
8C endoploidy contributions to the slice expression level ESðg; sÞ. An al-
ternativewayofappreciatingthedifference inapproximationeffectsbetween
genes with constant relative versus constant absolute expression levels
for any given endoploidy is to consider Equations 5 and 6 as reshuffling the
cytoplasmic volumes of all cells in slice s to match the cell sizes for any
particular endoploidy to the cortex average (Supplemental Figure 11).

A residual problem is the determination of the volume-scaling factors f
for the different endoploidy levels in Equations 5 and 6. According to the
karyoplasmic ratio theory, the cytoplasmic volume of cells should scale
with ploidy (Wilson, 1925). Evidence supporting the karyoplasmic ratio
theory has been presented previously for several organisms, including
plants, but a clear relationship between endoploidy and cell (cytoplasm)
size is not always observed (Chevalier et al., 2014). We tested several
possible fweightingschemes, andsurprisingly, thepredictedploidymaps I
and II using the weighting scheme f2C ¼ f4C ¼ f8C ¼ f16C ¼ 1 (i.e., cells of
different endoploidy are assumed to have roughly the same cytoplasmic
volume) correspond best to the flow cytometry-derived endoploidy map
presented in Supplemental Figure 8 and the endoploidy boundaries ob-
served in other validation experiments (Figure 2; Supplemental Figure 9).
This suggests that in Arabidopsis roots, the cytoplasmic volume of a cell
may not scale with its endoploidy level. We used the equal f weighting
assumption in equations 1 and 2 to predict the root endoploidy map
presented in Figure 3. Other weighting schemes in which f scales with
endoploidy lead to qualitatively similar root endoploidy map layouts, but
withmost endoploidyboundaries shifted to later developmental stages.An
example optimized map for f2C ¼ 1; f4C ¼ 2; f8C ¼ 4; f16C ¼ 8 (i.e.,
under the assumption that cytoplasmic volume doubles with every en-
docycle) is presented in Supplemental Figure 11.

Model II: Prediction of Endoploidy Distribution Changes upon
Stress Treatment

Model II is a simplified version of model I that simulates gene expression
patterns in awhole root asa functionof the endoploidy-specific expression
levels in the cortex data set. The expression level of a particular gene in
a root is taken to be a weighted sum of the expression levels in cells with
different endoploidy levels in that root:

EðgÞ ¼ ∑pwðpÞ$EPðg;pÞ ð7Þ

where EðgÞ represents the simulated expression level of gene g to be
compared with the measured expression level in a given publicly available
gene expression data set on whole roots subjected to a particular

treatment, wðpÞ represents the weight of endoploidy p, i.e., the fraction of
root cells having endoploidy p, and EPðg;pÞ represents the endoploidy-
specific expression level of gene g at endoploidy level p in the cortex data
set.Model II uses the sameoptimization strategy asmodel I to optimize the
endoploidy weights wðpÞ (see below).

Model Optimization Strategy. We used a Monte Carlo Simulated
Annealing strategy with exponential temperature decay to optimize the
parameters in both models I and II. The optimization strategy is sche-
matically represented in Supplemental Figure 12. Initially, the parameters,
i.e., the endoploidy boundaries in each cell type along the longitudinal axis
of the root for model I, or the endoploidy weights for model II, are randomly
assigned, and optimization progresses by attempting random steps in
parameter space, i.e., bymoving a particular endoploidy boundary one cell
upor down inasingle cell type (model I) or bysimulating theeffect of a slight
endoploidy shift on the endoploidy percentages in a root (model II). A step
was accepted if

rand < expð2DR=SAÞ ð8Þ
with rand a random number drawn uniformly from the interval [0,1], DR the
change in optimization potential (see Equation 9) upon taking a step in
parameter space, and SA the simulated annealing parameter (tempera-
ture), which gradually decreases during the course of an optimization run.
Endoploidymap optimizations for single genes, as used in the selection of
the balanced gene set, were performed with the following parameter
settings: start temperature SAinit = 5, end temperature SAend = 0.001, and
exponential cooling scheme SAi = 0.9999 SAi-1 with a single iteration at
each SAi. Endoploidy map optimizations for the full gene sets were per-
formed with the parameter settings SAinit = 10, SAend = 0.00001 and the
exponential cooling scheme SAi = 0.99999 SAi-1 with 1000 iterations at
eachSAi. Theoptimization potentialR is definedby thex2 (goodness-of-fit)
statistic betweenmeasured andsimulated expression levels, averagedper
data point, e.g., in the case of Model I:

R ¼
∑nG

g¼1

"�
Mg 2 simMg

sðMgÞ

�2

þ
�

Sg 2 simSg

sðSgÞ

�2
#

nG 3 29
ð9Þ

wherenG is the total number of genes included in the simulation,Sg andMg

are the measured expression profiles (vectors) of gene g across 12 slices
and 17 marker lines, respectively, and simSg and simMg are the corre-
sponding simulated expression profiles, i.e., the vectors of predicted
ESðg; sÞ and EMðg;mÞ values across all slices and marker lines, re-
spectively, as derived from Equations 1 and 2 using the endoploidy
boundaries of themap that is being optimized. sðSgÞ and sðMgÞ represent
SD vectors approximated by element-wise square roots of the Sg and Mg

vectors, respectively [note that the divisions involvingsðSgÞ andsðMgÞ are
element-wise divisions]. The calculated R values are divided by a nor-
malization factor nG329 representing the number of data points fitted,
where 29 is the sum of the number of slices (12) and marker lines (17)
represented in the spatiotemporal expression data set (Brady et al., 2007).
This normalization factor has no effect on the optimal map layout.

Endoploidy Map Validation Experiments

I. Flow Cytometer Experiments

The endoploidy content of cells of different tissue types (Supplemental
Figure 6) was measured in 0.5-cm-long Arabidopsis root tips using flow
cytometric analysis of cell type-specific GFP marker lines (Brady et al.,
2007; Dietrich et al., 2017). For some tissues, multiple marker lines cover
different developmental stages (Brady et al., 2007). In this case, we used
marker lines that cover the later developmental stages (Supplemental Data
Set 16).
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Sections from roots of 5-d-old plants were excised with a razor blade
;0.5cmabove the root tip. For sortingofprotoplasts, theexcised tipswere
incubated in 8mLof protoplasting solution (1.25%cellulase [Yakult], 0.3%
macerozyme [Yakult], 0.4 M mannitol, 20 mM MES, 20 mM KCl, pH 5.7
adjusted with 1 M Tris/HCl, pH 7.5, activated at 55°C for 10 min and then
cooled to room temperature, 0.1% BSA, and 10 mM CaCl2) in 25-mL
Erlenmeyer flasks for 2 h on an orbital shaker (100 rpm) under continuous
white light. The protoplasts were then filtered through a 40-mm filter and
centrifuged at 1000 rpmat 4°C for 10min. The pelletswere resuspended in
1 mL of wash buffer (identical composition to that of the protoplasting
solution but lacking the enzymes and activation pretreatment). The GFP-
expressing protoplasts were flow-sorted and collected in 200 mL CyStain
UVPrecise nuclei extraction buffer (Partec) and their nuclei were stainedby
adding 800 mL nuclei staining buffer (Partec). DNA contents of GFP-ex-
pressingprotoplastsweremeasuredwithaCyFlowflowcytometer (Partec)
excited by illumination at 395 nm and analyzed with the FloMax software
(Partec).

ForflowcytometryonnuclearGFP lines,cut root tipswerechoppedwith
a razor blade in 200mL of nuclei extraction buffer containing 45mMMgCl2,
30 mM sodium citrate, and 20 mM 3-morpholinopropane-1-sulfonic acid,
pH 7.0 (Galbraith et al., 1991) for 2min, then filtered through a 50-mmnylon
filter. The DNAwas stained with 1mg/mL DAPI (Zhang et al., 2005). Nuclei
were measured using a CyFlow flow cytometer excited by illumination at
395 nm and equipped with an additional 488-nm laser to excite and detect
GFP-specific fluorescence. The DNA content of cells was derived from
DAPI fluorescence measurements using FloMax software (Partec).

To represent the flow cytometry-derived endoploidy distributions in
a format comparable to the predicted endoploidymap, the number of cells
analyzedby flowcytometry for a given cell type is rescaled to fit the number
of cells present on the predicted map in the slices marked by the cell type
marker concerned. The rescaled numbers of measured 2C, 4C, 8C, and
16C cells are then distributed in a logical order (2C→4C→8C→16C) over
the root slices marked, and endoploidy levels for earlier or later de-
velopmental stages are inferred where possible (Supplemental Figure 7).
For procambium cells, a special protocol was followed because WOL
marks not only procambium cells, but the entire stele in slices 1 to 8. The
WOL-derived endoploidy, cell counts were normalized to the total number
of stele cells in slices 1 to 8 of the predicted map, and the numbers of 2C,
4C, 8C, and 16C cells obtained for nonprocambium stele tissues (phloem
polepericycle, xylempolepericyle, xylem,phloem,andphloemcompanion
cells) in slices 1 to 8 using other marker lines were subtracted from the
rescaledWOL endoploidy cell counts to obtain an estimate of the number
of 2C, 4C, 8C, and 16C procambium cells to be filled in on the validation
map. Using this protocol, a negative estimate of the 2C procambium cells
was obtained, i.e., the number of 2C cells observed for nonprocambium
stele tissues using tissue-specific markers is larger than the number in-
ferred from the WOL measurements, indicating that WOL may mark dif-
ferent stele tissueswith different efficiency. For filling in the validationmap,
the surplus of nonprocambium 2C cells was treated as 4C cells and
subtracted from the total 4C stele cell count. Because of the lack of
a procambium-specific marker line, the procambium endoploidy dis-
tributions in both the predicted endoploidy map and the flow cytometry-
based map are likely less reliable.

II. Endoploidy Border Analysis

The endoploidy boundary positions observed in the flow cytometry-
derived map are not always reliable because they are highly dependent on
the absolute number of nuclei or protoplasts extracted and measured per
tissue in the flow cytometer analysis. The efficiency of protoplasting and
nuclear extraction are dependent on the duration of the treatment of the
roots with the respective extraction buffers. Such dependency often gives

quantitative variations in the endoploidy distributions, and it is not
straightforward to compare data obtained from different experiments.
Moreover, flow cytometry cannot distinguish mitotically dividing G2 cells
fromendoreplicating 4Ccells, leading to uncertainties in the location of the
2C-4C boundary in any given cell type. To overcome these technical
limitations, we used confocal microscopy to locate the first atrichoblast
and cortex cells from the QC exhibiting a visible GFP signal in the SMR1:
GFP-GUSmarker line.Weperformed this analysison three tofive roots and
the average first cell number was taken as the endoploidy boundary cell
number estimate.

III. Mapping Endoploidy Borders through Histochemical
GUS Staining

To validate the order of endoreplication onset across tissues, we studied
root cross sections at various distances from the QC in GUS-stained
endocyclemarker lines (SMR1andSIM ). First,wegeneratedacell distance
matrix of the atrichoblast cell type by counting the cells along the longi-
tudinal axis of the root and measuring their distance from the QC. We
repeated this analysis for 30different roots togenerateanaveragedistance
map (Supplemental Data Set 18). Next, we used the measured average
distance matrix to identify the atrichoblast cell number (counted along the
longitudinal axis) visible in a root cross section at a given distance from
the QC. The measured endoreplication onset order was compared with
the predicted order at the inferred atrichoblast cell number on the virtual
endoploidy map.

IV. Mapping Endoploidy Borders in Atrichoblast and Trichoblast Cell
Files through Densitometry

Whole seedlings were fixed in 1.5% (v/v) formaldehyde and 0.5% (v/v)
glutaraldehydemade up in PEMTbuffer (50mMPIPES, 2mMEGTA, 2mM
MgSO4,and0.05%[v/v] TritonX-100,pH7.2) for 40minand rinsed inPEMT
buffer three times for 10minand then rinsed threemore times inPBSbuffer.
Seedlingswere stained for 10minwith DAPI using 25%CyStain B solution
(Partec) in PBS buffer, washed with PBS buffer three times, and then
mounted in PBS buffer. DAPI signal was visualized by fluorescence mi-
croscopy using a Carl Zeiss inverted LSM710 confocal laser microscope,
equippedwithobjectivesc-apochromat403/1.2WKorrM27.Fijiwasused
to export the .lsm z-stack file as a TIFF file. MorphoGraphX (MGX) (Barbier
de Reuille et al., 2015) was used to digitalize the images and create 3D
meshesof the nuclei thatwere thenused to extract thenuclear volume. The
position of the cells/nuclei in relation to the QC was used to assess the
changes in nuclear volume.

V. Mapping Nuclear Volumes within the LRC

Seedlingswere incubated in water with RNase A (20 mg/mL) for 30min and
subsequently fixedwith 2% (v/v) paraformaldehyde and 0.1% (v/v) triton in
MTSB buffer (15 g PIPES, 1.90 g EDTA, 1.22 g MgSO4$7H2O, 2.5 g KOH
dissolved in a total of 1 literwater at pH7.0). Vacuumwasapplied two times
for 10 min for air removal, followed by incubation in the dark on a shaker
(100 rpm) for 30min, andseedlingswere then rinsed three timeswithMTSB
buffer. Seedlings were transferred to methanol for 5 min at 60°C and the
methanol was slowly diluted by adding small volumes of water until
a concentration of 50% methanol was obtained. After two washes with
water, thisprocedurewas repeated.After awashwithMTSB, thebufferwas
replaced with MTSB buffer holding 3% (v/v) nonionic detergent IGEPAL
CA-630 and 10% (v/v) DMSO for 25 min. Samples were washed twice in
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MTSB buffer, followed by removal of MTSB buffer and addition of DAPI
(1mg/mL) for 10min.After removal of theDAPI solution, glycerin (50%)was
added in a small volume. Finally, seedlings weremounted on cover slips in
100% glycerin. The DAPI signal was visualized by fluorescence micros-
copy using a Carl Zeiss inverted LSM710 confocal laser microscope
equippedwithobjectivesc-apochromat403/1.2WKorrM27.Fijiwasused
to export the .lsm z-stack file as a TIFF file. MGX (Barbier de Reuille et al.,
2015) was used to wipe all non-nuclear background signals and to create
3D meshes of the nuclei for DAPI fluorescence measurements.

Mapping of Nuclear and Cellular Volumes

Five-day-old seedlings were incubated in 15 mM (10 mg/mL in distilled
water) propidium iodide (Sigma-Aldrich) for 5 min and then mounted in
water.GFPandPIsignalwerevisualizedbyfluorescencemicroscopyusing
a Carl Zeiss inverted LSM710 confocal laser microscope, equipped with
objectives c-apochromat 403/1,2 W Korr M27. Fiji was used to split the
channels (PI/GFP) and export them as TIFF. If there were shift produced by
the movement of the root during the imaging process, we used the Fiji
plug-in Registration>StackReg>Rigid Body to correct them.MGX (Barbier
de Reuille et al., 2015) was used to digitalize the GFP channel images and
create 3D cellular and nuclear meshes that were then used to extract the
cellular and nuclear volumes. The analyzed region was determined based
on the cell/nucleus position with the first peak expression of SMR1:GFP-
GUS. Based on this position, we selected two cells bellow and seven cells
above this position for the nuclear and cellular volume analysis.

Transmission Electron Microscopy

Root tips of 5-d-old seedlings of Arabidopsis were excised, immersed in
20% (w/v) BSA, and frozen immediately in a high-pressure freezer (Leica
EM ICE; Leica Microsystems). Freeze substitution was performed using
a Leica EM AFS (Leica Microsystems) in dry acetone containing 1% (w/v)
OsO4 and 0.2% glutaraldehyde over a 4-d period as follows: 290°C for
54h, 2°Cper hour increase for 15h,260°C for 8h, 2°Cper hour increase for
15 h, and 230°C for 8 h. Samples were then slowly warmed up to 4°C,
infiltrated stepwise over 3 d at 4°C in Spurr’s resin and embedded in
capsules. The polymerization was performed at 70°C for 16 h. Ultrathin
sectionsweremade from the latemeristematic zone (200–250mmfrom the
root tip) up to themature zone (350–400 mm from the root tip) every 15 mm
using an ultramicrotome (Leica EM UC6) and poststained in a Leica EM
AC20 for 40 min in uranyl acetate at 20°C and for 10 min in lead stain at
20°C. Sections were collected on formvar-coated copper slot grids. Grids
were viewed with a JEM 1400plus transmission electron microscope
(JEOL) operating at 60 kV.

Serial Block-Face Scanning Electron Microscopy

Five-day-old seedlings were fixed on a plate for 2 h using 0.1Mphosphate
buffer, pH 6.8, 2.5% (v/v) glutaraldehyde, and 0.5% (v/v) para-
formaldehyde, afterwhich the root tipswere isolatedbycutting, transferred
to fresh fixative, and kept overnight at 4°C. Samples were washed the next
day in cold 0.15 M cacodylate buffer. En bloc contrast staining was per-
formed by consecutive incubations in heavy metal-containing solutions.
Between incubationsteps, sampleswerewashed inultrapurewater (UPW).
The first staining step was in 0.2% (w/v) ruthenium red and 2% (v/v)
aqueous osmium tetroxide in 0.15 M cacodylate buffer (pH 7.4). After
washing, the samples were incubated in a fresh thiocarbohydrazide (TCH)
solution (1% w/v in UPW). The next washing step was followed by in-
cubation in 1%osmium in UPW. After this, an additional incubation in TCH
followed by 1% (v/v) osmium was performed. Next, samples were in-
cubated in 1% (w/v) uranyl acetate followed by a Walton’s lead aspartate
staining. For this, a 30-mM L-aspartic acid solution was used to freshly

dissolve lead nitrate (20 mM, pH 5.5). The solution was filtered through
a0.22-mmMillipore syringefilter after a30-min incubationat60°C.After the
final washing steps, the sampleswere dehydrated using ice-cold solutions
of 23 30%, 50%, 70%, 90%, 100% ethanol (anhydrous), and 23 100%
acetone. Resin embedding was done by placing the samples in solutions
containing 30%, 50%, 70%, 90%, and 100% Spurr’s resin (ethyl methyl
sulfonate) in acetone. Next, samples were placed in fresh 100% Spurr’s
resin for polymerization. All staining, washing, dehydration, infiltration, and
polymerization steps were performed in a Pelco Biowave Pro microwave
(Ted Pella). For serial block-face imaging, the resin-embedded root tips
were mounted on an aluminum specimen pin (Gatan), using conductive
epoxy (Circuit Works). The specimens were trimmed in a pyramid shape
using an ultramicrotome and coated with 5 nm of Pt, in a Quorum sputter
coater. The aluminum pins were placed in the Gatan 3View2 in a Zeiss
Merlin scanning electron microscope, for imaging at 1.5 kV with a Gatan
Digiscan II energy-selective backscattered detector and slicing 80-nm
slices. The 3D serial block-face-scanning electron microscopy Z-stacks
have been registered with IMOD (http://bio3d.colorado.edu/imod/) to
correct for movements of the specimen within the microscope during the
imaging process.

Accession Numbers

RNA microarray and RNA-seq data have been deposited in the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion numbers GSE108399 and GSE115001. Sequence data from this
article can be found in the Arabidopsis Genome Initiative or GenBank/
EMBL databases under the following accession numbers: SIM (AT5G04470)
and SMR1 (AT3G10525).

Supplemental Data

Supplemental Figure 1. Endoploidy-specific expression patterns in
the Arabidopsis root cortex.

Supplemental Figure 2. Centroids of endoploidy-specific expression
clusters.

Supplemental Figure 3. GO enrichment of endoploidy-specific ex-
pression clusters.

Supplemental Figure 4. Optimized endoploidy maps for selected
unbalanced gene sets.

Supplemental Figure 5. Comparison between two optimized endo-
ploidy map alternatives (Optimal Maps I and II).

Supplemental Figure 6. Flow cytometry-based tissue-specific endo-
ploidy distributions.

Supplemental Figure 7. Endoploidy map determined through flow
cytometry.

Supplemental Figure 8. Expression prediction performance for the
332 genes in the balanced gene set in selected stress conditions.

Supplemental Figure 9. Nuclear and cellular volume of control (black
bars) versus smr1 (gray) atrichoblast cells.

Supplemental Figure 10. Circularity measurements of control (Ler)
and lgo1 trichoblast cells within the transition zone.

Supplemental Figure 11. Endoploidy map modeling assumptions for
volume scaling.

Supplemental Figure 12. Schematic representation of the endoploidy
boundary optimization approach.

Supplemental Data Set 1. Log2 expression values and differential
expression analysis results for all genes in the cortex endoploidy-
specific expression data set.
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Supplemental Data Set 2. Cluster membership for all differentially
expressed genes in the cortex data set.

Supplemental Data Set 3. GO enrichment results for 28 clusters with
clear peak expression at one endoploidy level in the cortex expression
data set.

Supplemental Data Set 4. Single-gene Model I optimization R scores
and Pearson correlations for the reduced set of 4378 genes.

Supplemental Data Set 5. Annotation of the balanced set of
332 genes used in Model I.

Supplemental Data Set 6. GO enrichment results for the balanced set
of 332 genes used in Model I.

Supplemental Data Set 7. Comparison between predicted endo-
ploidy boundaries on Optimal Maps I and II.

Supplemental Data Set 8. Chi-squared contributions of individual
markers and slices to the R values of Optimal Maps I and II.

Supplemental Data Set 9. Endoploidy classes of lateral root cap cells
as inferred from DAPI staining.

Supplemental Data Set 10. Comparison of predicted and validated
endoploidy boundaries for trichoblast, atrichoblast, and cortex tissues.

Supplemental Data Set 11. List of genes ranked in order of best fit
between their observed spatiotemporal expression levels and the
expression levels predicted from the optimized endoploidy map.

Supplemental Data Set 12. GO enrichment results for top 332 genes
whose transcript level is most strongly linked to the endoploidy level of
the cell.

Supplemental Data Set 13. Description of publicly available gene
expression data sets used for predicting endoploidy distribution shifts
under stress.

Supplemental Data Set 14. Subset of stress experiments used for
eliminating stress-sensitive genes from the balanced gene set for use
in model II.

Supplemental Data Set 15. Transcriptome data of sorted SMR1:GFP-
GUS cells in the wild type versus smr1.

Supplemental Data Set 16. Cell types and cytoplasmic or nuclear-
tagged GFP marker lines used for validating the Arabidopsis root
endoploidy map by flow cytometry.

Supplemental Data Set 17. Adapted cell counts of 14 cell types in
12 slices.

Supplemental Data Set 18. Average distance of atrichoblast cells
(numbered along the longitudinal axis) from the quiescent center.

Supplemental Movie 1. Model optimization run for a single gene
(AT4G22070).

Supplemental Movie Legend.
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